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—— Abstract

Recently, Generative Adversarial Networks (GANs) have demonstrated great potential for a range
of Machine Learning tasks, including synthetic video generation, but have so far not been applied to
the domain of modeling geographical processes. In this study, we align these two problems and —
motivated by the potential advantages of GANs compared to traditional geosimulation methods
— test the capability of GANs to learn a set of underlying rules which determine a geographical
process. For this purpose, we turn to Conway’s well-known Game of Life (GoL) as a source for
spatio-temporal training data, and further argue for its (and simple variants of it) usefulness as a
potential standard training data set for benchmarking generative geographical process models.

2012 ACM Subject Classification Computing methodologies — Neural networks
Keywords and phrases GAN, generative modeling, deep learning, geosimulation, game of life

Digital Object Identifier 10.4230/LIPIcs.COSIT.2019.27

Category Short Paper

1 Introduction

Contrary to the inherently rather space-focused perspective of Geographical Information
Systems (GIS), spatial systems are in general highly dynamic. Thus, the involved geographical
entities are susceptible to change with regards to their spatial (e.g., appearance, disappearance,
expansion, contraction, movement) or thematic domain (changes of one or more attributes)
[6, 4]. Modeling such dynamic behavior is of critical importance for a wide range of
applications (e.g., transport planning and traffic prediction, weather forecasting, or disaster
management), and involve both explanatory and predictive modeling approaches [20].

Explanatory models are typically targeted towards reaching a thorough understanding
of the modeled domain. Relevant features are described in the form of a causal theoretical
model, which is then either tested statistically or by hand-crafting a set of fundamental
behavioral rules, running simulations and exploring different scenarios (e.g., traffic demand
modeling, wildfire spread simulation). In geosimulation applications, in contrast to more
aggregate statistical modeling approaches, the elementary system units are typically modeled

in great detail as individual automata, using paradigms such as Cellular Automata (CA) or
Agent-based Models (ABM) [3].
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Nowadays, however, due to an increased usage of geo-sensors, large-scale spatio-temporal
data sets are widely available which describe various geographical processes with an un-
precedented level of detail. Thus, for predictive models, where the focus is put less on
understanding the functional principles of the system but rather on predicting its next state
based on previous observations [20], supervised machine learning algorithms such as Artificial
Neural Networks (ANN) have been increasingly used, e.g., for short-term traffic forecasting
[14, 16] or precipitation prediction [26]. In contrast to explanatory approaches, these models
are based on data rather than theory, and can usually be trained in an end-to-end manner.
Abstract features of relevance for the predictive task are learned directly from the data,
however, to what degree such models reach a true understanding of the problem domain
remains largely unclear.

Recently, a new wave of generative models has had a disruptive effect on the Machine
Learning community, which aim to generate realistic samples of a complex, real world
distribution having only observed true samples of said distribution. Thus, being presented
with data (e.g., images, text, music or videos), these models move beyond predictive models
by learning a representation which particularly encodes important semantic features in order
to generate new, hitherto unseen, 'realistic’ samples, therefore potentially understanding
the underlying data-generating process itself [5]. A particularly successful example for these
models are Generative Adversarial Networks (GANs) [8], which require no prior assumptions
or hypotheses about the function principles of the modeled system.

To the best of our knowledge, our work represents the first study which explores the
potential of GANSs for the simulation of geographical processes. This is motivated by the
fact that in our view, GANs combine strengths of both explanatory and predictive modeling
approaches. GANs, as used here, are explanatory with regards to a geographical process as
they capture its underlying hidden rules and -on this basis- are able to not only generate
novel sample states, but also provide a learned loss metric which describes how “realistic” a
given sample is. In contrast to traditional explanatory models, however, GANs do not rely
on hand-crafted parameters (as in expert systems), but directly learn them from observation
alone while preserving the capability of capturing and applying complex rules (one could thus
refer to them as “self-learned explanatory” models). If the generated samples describe future
states of a process a GAN can be used as predictive model, thereby eliminating the need
for descriptive rules or a set framework (cf. variational bayesian methods or deterministic
methods such as SVMs) while preserving the apparent ability to sample highly complex
naturally occurring distributions.

At this stage, we aim to demonstrate and quantify the performance of a GAN on a
well-controlled test data set (as it is the only way of measuring the effectiveness of most other
neural network architectures as well). For this, we choose a straight-forward example of a
complex, non-trivial and non-deteriorating geo-spatial process that arises out of a simple set
of deterministic rules: Conway’s Game of Life (GoL) [7]. In general, in view of the multitude
and diversity of potential use cases from different geo-spatial domains (and the according
spatio-temporal data sets), we argue for the general need for a standard training data set for
benchmarking generative geographical process models (comparable to MNIST [12] for image
processing tasks), and propose to use the GoL - and selected adaptations - for this purpose.
In our experiments, we demonstrate that a GAN can indeed learn the underlying rules of
the data-generating process (and therefore play the GoL correctly), however, processes with
different properties require different network architectures.
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2  Generative Adversarial Networks (GANs)

GANSs aim to capture the statistical distribution of training data and produce new, hitherto
unseen, samples from that distribution. In its original form [8] each GAN model has two
parts to it that compete against each other: a generator whose task it is to produce new “fake”
samples from the underlying distribution of the observed data (forger) and a discriminator
who, when faced with “real” and “fake” samples aims to tell them apart (policeman). The
Generator G and Discriminator D can be defined as a functions

Gy, : {random input} — {Samples},z — x (1)
Dy, : {Samples} — [0,1],2 — & (2)

where z refers to an input random noise variable, which is mapped via G to a sample x
in data space based on a set of parameters f,. Its counterpart D represents a function
where any input sample x is mapped to a scalar k£ which expresses the probability that z is
sampled from the original statistical distribution rather than created by G, based on a set of
parameters 6,. Typically, both functions G and D would be implemented as separate neural
networks.

The training process outlined in [8] is defined by D and G playing a two-player minimax
game with value function V (G, D):

min max V(D, G) = Eynp, [logD(x)] + E-rp. [log(1 — D(G(2)))] (3)

where p, is the data distribution (in many cases unknowable) from which 'real’ samples x,
are drawn and p, is the data distribution over noise input z. Although GANs have been able
to generate photo-realistic images, there is currently no known way of quantifying how well
the generator in general approximates the original distribution. In particular, in some cases,
GANSs are known to experience mode collapse and a plethora of techniques are employed
to mitigate this phenomena (see for instance [19]). So far, GANs have so far been rarely
used in the geospatial domain, which is mainly due to their relative novelty and notoriety
to be difficult to train. Exemplary applications have been set mostly in a remote sensing
context (e.g., [27]), but also included e.g., the generation of static traffic [16] or urbanization
patterns [1].

In this study, we use a conditional GAN [18], an extended concept where a conditional
input value y is added to the random input z in the formula above so that the aim of the
GAN is to produce samples from the corresponding conditional distribution:

Gy, : { random input, conditional input } — {samples},z,y — z (4)

Dy, : {samples , conditional input} — [0,1], 2,y — k (5)

In the past, GANs conditioned with past frames of videos have been successfully applied
to next frame prediction tasks (see e.g., [15, 13]). In [10], a conditional GAN was used
for augmenting the training set for a traffic prediction task. In this work, by modeling a
geographical process using the traditional snapshot approach [2], where each ’frame’ depicts
a time-stamped map view of the current state of the spatial system, we conceptually align
the tasks of spatio-temporal modeling and synthetic video generation.
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3 Conway’s Game of Life

Conway’s Game of Life is a popular example of a CA-based game (see [7]). Formally, a
CA can be defined as a discrete dynamic system consisting of a n-dimensional fixed lattice
arrangement of cells C, each cell ¢ € C being in a certain state s.(t) € S during a discrete
time step ¢ where the value lies in some set S. We shall restrict our attention to S = {0,1}.
At time step ¢ + 1, it is succeeded by a state which can be described by a transition function
 taking only into account the previous state s.(t) as well as the previous state of neighbours
of all direct neighbours of ¢ in the lattice C. We shall restrict our attention to games where
the dependence on the neighbours is indirect, given by a function on the neighbouring states,
such as the sum of all 1s occurring. Formally, if N, denotes the set of neighbours of ¢ in the
lattice C' and fn,(t) denotes the function value at time step ¢ for the neighbors of ¢, then

se(t+1) = ¢ (se(t), . (1)) (6)

Moving the perspective of the state of an individual cell ¢ € C to all states configurations of
C at a given time step ¢, we define

X(t) = {sc(t)|ce C} (7)

as the configuration of a CA at time ¢.

Conway’s Game of Life is set on the two-dimensional square lattice Z? (where each cell
has precisely 8 neighbours) with only two states for each cell and simple rules given, with
the notation above, by

_J 0 ifx#3 _J 0 ifzx<2orz>3
<p(0,a:)_{1 if 2 =3 S0(1’”“")_{1 if 2 € {2,3} ®

If one calls cells with a value 1 and 0 “alive” and “dead”, respectively, one can interpret this
update rule in terms of survival (cells with 2 or 3 “alive” neighbours stay “alive”), death
(through overpopulation or isolation) and birth, see [7]. In order to simulate the game on
finite computer architectures, most implementations restrict their view of the lattice Z? to
{0,1,--- N — 1}? and decreeing that the state value of neighbours on the boundary of that
lattice point square, but outside of it, have state zero.

Despite its simplicity, this game exhibits a surprising variety of oscillating, population
increasing and self-replicating state patterns ([7], [22], [25]). In our view, it also represents a
powerful abstraction of geographical processes in general, and is therefore a well-suited case
study for benchmarking models. Thus, the GoL exhibits similarities to well-known attributes
of geographical processes such as the conceptualization of objects, states, processes and
events [21], properties related to process dynamics like initiation, cessation and constancy [4],
or systemic attributes such as location, topology, spatial interaction [11], or emergence [3].

4 Method

In our experiments, we aim to test whether a GAN can learn the underlying rules of a
geographical process, at this stage abstracted as a GoL simulation. For this, we train a
GAN on the task of playing the game, i.e., generating the correct next cell configuration
X (t) while being conditioned on the previous X (£ — n : t) configurations (here n = 4). Both
the generator and the discriminator, therefore, have to internalize the game’s transition
rules, state space and neighborhood definition in order to successfully fool or expose their
counterpart.
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4.1 Adaptations of the Game of Life

As discussed previously, numerous properties of the GoL qualify it as a useful abstraction
from real-world geographical processes, such as spatial and temporal locality (Moore neigh-
borhood & Markov property) and spatio-temporal dependence. It is clear, however, that
most real-world processes are guided by much more complex rules, which, as we argue, can
be approximated by manipulating one or more parameters of the traditional game defini-
tion. Thus, for instance, more complex spatio-temporal dependencies could be achieved by
abolishing the Markov property and introducing more complex, non-uniform neighborhood
definitions. Other possible adaptations could include replacing the traditional deterministic
with stochastic transition rules, among others.

As a first example for such adaptations, we test our GAN on two versions of the GoL,
one following the traditional game definition (in the following: GoL I) and an adapted one
(GoL II), where the neighborhood concept is re-defined as follows: If the cell at lattice point
(i,5) € {0,1,--- , N — 1}? is denoted by c(i, j), then, if precisely one of i < % and j < %
holds, we replace the neighbourhood N; ;) with

Nijy = el k) |e(k, 1) € Negi gy )

It is not hard to see that, as sets, Nc*(ij) =
sum of state values over those sets, the upshot of these operations is that we replaced
neighbourhoods in the top right quadrant with those corresponding ones in the bottom left

through transposition (if we stipulate that ¢ and j, as is the case in matrices, grow from left

N¢(;,i) and since ¢ is only dependent on the

to right and top to bottom, respectively, in order to define the quadrants above). Thus, with
GoL II, the conditions of spatial proximity and homogeneity for defining the neighborhood
of cells are dismissed.

From both GoL I and II, we sample 30 000 frame sequences of length 5 frames, each
randomly initialized, and split them into training (90%) and test set (10%). For each of the
samples in both sets, we use the first 4 frames as conditional input for both the generator and
the discriminator, and generate - or discriminate, respectively- the subsequent final frame.

4.2 GAN Architecture

Our GAN architecture (see figure 1) is based on the convolutional long short term memory
(convLSTM) approach which has proven successful for a similar spatio-temporal prediction
task [26]. Concretely, in the generator the conditional input is encoded via three convLSTM
layers with 128 (3 x 3), 128 (3 x 3), and 1 (3 x 3) filters with stride 1, and concatenated
with the noise vector z, which has previously been encoded via 2 dense layers with 400 units
and leaky ReLU activations [17]. Finally, the encoded features flow through two additional
dense layers with each 400 units and leaky ReLLU and a final sigmoid activation.

In the discriminator, the conditional input and the predicted X (¢) or real frame X (t) are
concatenated and encoded by two convLSTM layers with 64 (3 x 3), and 64 (3 x 3) filters
and stride 1. Instead of a noise vector, however, the encoded features are concatenated with
the output of a minibatch discrimination layer [19] in order to prevent mode collapse, and
then fed through a dense layer with 32 units and leaky ReLU before a final 1 unit sigmoid
activation. To prevent the discriminator from completely dominating the generator, we apply
drop-out with a rate of 0.6 to the former, thus randomly dropping 60 % of units during each
training batch of both the last convLSTM layer and the first dense layer (see [23]).
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Figure 1 GAN architecture.

5 Results

We implemented the GAN in Python, using the tensorflow library, and tested it on the data
of GoL T and II for 50 epochs each with a batch size of 15, using the ADAM optimizer [9]
for training both the generator and the discriminator. To track the learning progress, we
additionally logged the cross entropy loss of real and generated frames, which is shown in
figure 2 for both experiments. With regards to GoL I, the results for GoL I show an almost
constant decrease towards 0 for both training and test set, and therefore clearly illustrate a
successful learning progress (the high quality of the generated samples is illustrated in figure
3). Thus, the GAN has apparently internalized the underlying rules of the traditional game
definition, and was able to generate correct predictions.

However, the results are different for the adapted GoL II. Here, apparently the con-
volutional layers were unable to successfully encode the adapted, non-proximity based
neighborhood definition as defined for a subset of cells. This negative example demonstrates
the need for developing and testing alternative network architectures on standardized training
data sets to understand the relationships between properties of geographical processes and
appropriate network structures. Thus, for instance, in case of GoL II (or other processes with
non-proximity based neighborhoods), a deeper network of multiple stacked convolutional
layers and larger filter sizes or an attention layer might lead to better results.

6 Conclusion

In this study, we have demonstrated the potential of GAN for understanding the underlying
rules of a geographical process directly from its generated data. GANs do not rely on any
expert knowledge or theoretical model of the study domain, can be trained end-to-end, and
have the ability to generate indistinguishable samples from distributions of any complexity.
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Therefore, in our view they are highly promising candidates for simulating geographical
processes in general, exploring different scenarios (by conditioning them with different inputs)
as well as serve for predictive tasks.

In this preliminary study, we used the GoL as useful abstraction for geographical processes,
still, it is clear that its restriction to (few and simple) purely local rules in terms of spatio-
temporal interactions represent great simplification compared to real-world processes which
are guided by much more complex rules and interactions. Thus, one could expect GAN
architectures which were successful on the GoL to fail when presented with real-world spatio-
temporal data. Still, however, by manipulating its rules (as we have demonstrated), one
could define gradually more complex versions of the game while still maintaining comparable,
standard data sets for benchmarking generative models of differing complexities. In general,
GANSs have no restriction with regards to the complexity of the modeled distribution, i.e.,
theoretically they can be applied to model any kind of geographical process. Still, more
research is needed to evaluate their practical value as an alternative to traditional explanatory
or predictive modeling approaches. Additionally, it can be expected that GANs with different
architectures will be more or less appropriate to capturing the rules of processes with varying
properties. To assess and drive the success of such architectures for general geo-spatial
processes will require a set of well understood, plentiful benchmark processes created and
utilized by the community.

A downside of GAN is their black box character. Thus, although the network itself
has understood and internalized the internal workings of the process, it is challenging to
translate that into human-understandable rule descriptions. Still, however, concepts such as
transfer learning, where a learned model is transferred and applied to a different task, or
attention mechanisms [24] where part of the network’s internal reasoning can be made visible
(identifying important features for the task), can help to either make explanatory models to
a degree obsolete or visualize insights into the derived rules.
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