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Abstract
In this paper, we design a framework to obtain efficient algorithms for several problems with a global
constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted
Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex
Set. For all these problems, we obtain 2O(k) · nO(1), 2O(k log(k)) · nO(1), 2O(k2) · nO(1) and nO(k) time
algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and maximum
induced matching width. Our approach simplifies and unifies the known algorithms for each of
the parameters and match asymptotically also the running time of the best algorithms for basic
NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the
d-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain
highlight the importance and the generalizing power of this equivalence relation on width measures.
We also prove that this equivalence relation could be useful for Max Cut: a W[1]-hard problem
parameterized by clique-width. For this latter problem, we obtain nO(k), nO(k) and n2O(k)

time
algorithm parameterized by clique-width, Q-rank-width and rank-width.
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1 Introduction

Tree-width is one of the most well-studied graph parameters in the graph algorithm community,
due to its numerous structural and algorithmic properties. Nevertheless, despite the broad
interest on tree-width, only sparse graphs can have bounded tree-width. But, many NP-hard
problems are tractable on dense graph classes. For many graph classes, this tractability
can be explained through other width measures. The most remarkable ones are certainly
clique-width [8], rank-width [18], and maximum induced matching width (a.k.a. mim-width)
[23]. We obtain most of these parameters through the notion of rooted layout (see Section 2).

These other width measures have a modeling power strictly stronger than the modeling
power of tree-width. For example, if a graph class has bounded tree-width, then it has
bounded clique-width [8], but the converse is false as cliques have clique-width at most 2
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and unbounded tree-width. While rank-width has the same modeling power as clique-width,
mim-width has the strongest one among all these width measures and is even bounded on
interval graphs [1]. Despite their generality, a lot of NP-hard problems admit polynomial
time algorithms when one of these width measures is fixed. But, dealing with these width
measures is known to be harder than manipulating tree-width.

Concerning their computations, it is not known whether the clique-width (respectively
mim-width) of a graph can be approximated within a constant factor in time f(k) · nO(1)

(resp. nf(k)) for some function f. However, for rank-width and its variant Q-rank-width [19],
there are efficient FPT algorithms for computing a decomposition approximating the width
of the input graph [19, 20].

Finding efficient algorithms parameterized by one of these width measures is by now
standard for problems based on local constraints [7, 22]. In contrast, the task is quite
complicated for problems involving a global constraint, e.g., connectivity or acyclicity. For a
long time, our knowledge on the parameterized complexity of this latter kind of problems,
with parameters the common width measures, was quite limited even for tree-width. For
a while, the FPT community used to think that for problems involving global constraints
the naive kO(k) · nO(1) time algorithm, k being the tree-width of the input graph, could not
be improved. But, quite surprisingly, in 2011, Cygan et al. introduced in [9] a technique
called Cut & Count to design Monte Carlo 2O(k) · nO(1) time algorithms for a wide range
of problems with global constraints, including Hamiltonian Cycle, Feedback Vertex
Set, and Connected Dominating Set. Later, Bodlaender et al. proposed in [5] a general
toolkit, called rank-based approach, to design deterministic 2O(k) · n time algorithms to solve
a wider range of problems.

Recently, Bergougnoux and Kanté [3] adapted the rank-based approach of [5] to obtain
2O(k) · n time algorithms, k being the clique-width of a given decomposition, for many
problems with a global constraint, e.g. Connected Dominating Set and Feedback
Vertex Set. Unlike tree-width and clique-width, algorithms parameterized by rank-width
and mim-width for problems with a global constraint, were not investigated, except for some
special cases such as Feedback Vertex Set [12, 15] and Longest Induced Path [14].

One successful way to design efficient algorithms with these width measures is through
the notion of d-neighbor equivalence. This concept was introduced by Bui-Xuan, Telle and
Vatshelle in [7]. Formally, given A ⊆ V (G) and d ∈ N+, two sets X,Y ⊆ A are d-neighbor
equivalent w.r.t. A if, for all v ∈ V (G) \A, we have min(d, |N(v)∩X|) = min(d, |N(v)∩Y |),
where N(v) is the set of neighbors of v in G. Notice that X and Y are 1-neighbor equivalent
w.r.t. A if and only if both have the same neighborhood in V (G) \ A. The d-neighbor
equivalence gives rise to a width measure, called in this paper d-neighbor-width (defined
in Section 2). It is worth noticing that the boolean-width of a layout introduced in [6]
corresponds to the binary logarithm of the 1-neighbor-width.

These notions were used by Bui-Xuan et al. in [7] to design efficient algorithms for the
family of problems called (σ, ρ)-Dominating Set problems. This family of problems was
introduced by Telle and Proskurowski in [22] (we define this family in Section 4). Many
NP-hard problems based on local constraints belong to this family, see [7, Table 1].

Bui-Xuan et al.[7] designed an algorithm that, given a rooted layout L, solve any (σ, ρ)-
Dominating Set problem in time s-necd(L)O(1) · nO(1) where d is a constant depending on
the considered problem. The known upper bounds on s-necd(L) and the algorithm of [7]
give efficient algorithms to solve any (σ, ρ)-Dominating Set problem, with parameters tree-
width, clique-width, (Q)-rank-width, and mim-width. The running times of these algorithms
are given in Table 1.
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Table 1 Upper bounds on s-necd(L)O(1) · nO(1) with L a layout and d a constant.

Tree-width Clique-width Rank-width Q-rank-width Mim-width
2O(k) · nO(1) 2O(k) · nO(1) 2O(k2) · nO(1) 2O(k log(k)) · nO(1) nO(k)

Our contributions. In this paper, we design a framework based on the 1-neighbor equivalence
(presented in Section 3) and using some ideas of the rank-based approach of [5] to design
efficient algorithms for many problems involving a connectivity constraint. This framework
provides tools to reduce the size of the sets of partial solutions we compute at each step of a
dynamic programming algorithm. We prove that many ad-hoc algorithms for these problems
can be unified into a single algorithm that is almost the same as the one from [7] computing
a dominating set.

In Section 4, we use our framework to design an algorithm that, given a rooted layout
L, solves any connectivity variant (a solution must induce a connected graph) of a (σ, ρ)-
Dominating Set problem. This includes some well-known problems such as Connected
Dominating Set, Connected Vertex Cover or Node Weighted Steiner Tree.
The running time of our algorithm is polynomial in n and s-necd(L), with d a constant that
depends on σ and ρ. Consequently, each connectivity variant of a (σ, ρ)-Dominating Set
problem admits algorithms with the running times given in Table 1.

In Section 5, we introduce some new concepts to deal with acyclicity. We use these
concepts to deal with the AC variants2 (a solution must induce a tree) of (σ, ρ)-Dominating
Set problems. Both Maximum Induced Tree and Longest Induced Path are AC
variants of (σ, ρ)-Dominating Set problems. We prove that there exist algorithms that
solve these AC variants in the running times given in Table 1. To obtain these results,
we rely heavily on the d-neighbor equivalence. However, we were not able to provide an
algorithm whose running time is polynomial in n and s-necd(L) for some constant d. Instead,
we provide an algorithm whose behavior depends slightly on each width measure considered
in Table 1. We moreover prove that we can modify slightly this algorithm to solve any
acyclic variant (a solution must induce a forest) of a (σ, ρ)-Dominating Set problem. In
particular, this shows that we can use the algorithm for Maximum Induced Tree to solve
the Feedback Vertex Set problem.

Up to a constant in the exponent, the running times of our algorithms and their algorithmic
consequences match those of the best known algorithms for basic problems such as Vertex
Cover and Dominating Set [7, 19]. Surprisingly, our result reveal that the d-neighbor
equivalence relation can be used for problems which are not based on local constraints. This
highlights the importance and the generalizing power of this concept on many width measures.

We conclude in Section 6 and state our theorem for the computation of Max Cut
– a problem which is W[1]-hard parameterized by clique-width – whose running time is
polynomial in n and the n-neighbor width of a given rooted layout. This algorithm gives
the best known algorithms parameterized by clique-width, Q-rank-width and rank-width. It
is worth mentioning that contrary to the algorithm for Max Cut given in [11], there is no
need to assume that the graph is given with a clique-width expression as our algorithm can
be parameterized by Q-rank-width, which is always smaller than clique-width and for which
also a fast FPT (3k + 1)-approximation algorithm exists [20].

2 AC stands for “acyclic and connected”.
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Relation to previous works. Our framework can be used on tree-decomposition to ob-
tain 2O(k) · nO(1) time algorithms parameterized by tree-width for the variants of (σ, ρ)-
Dominating Set problems. Indeed, given a vertex separator S of size k, the number
of d-neighbor equivalence classes over S (resp. V (G) \ S) is upper bounded by 2k (resp.
(d+ 1)k). For this reason, we can consider our framework as a generalization of the rank-
based approach of [5]. Our framework generalizes also the clique-width adaptation of the
rank-based approach used in [3] to obtain 2O(k) · n time algorithms, k being the clique-width
of a given decomposition, for Connected (σ, ρ)-Dominating Set problem and Feedback
Vertex Set. However, the constant in the running time of the algorithms in [3, 5] are better
than those of our algorithms. Indeed, our approach is based on a more general parameter
and is not optimized neither for tree-width nor clique-width. Our framework simplifies the
algorithms in [3, 5] because contrary to [3, 5] we do not use weighted partitions to encode the
partial solutions. Consequently, the definitions of the dynamic programming tables and the
computational steps of our algorithms are simpler than those in [3, 5]. This is particularly
true for Feedback Vertex Set where the use of weighted partitions to encode the partial
solutions in [3] implies to take care of many technical details concerning the acyclicity.

The results we obtain simplify the 2O(k2) · nO(1) time algorithm parameterized by rank-
width for Feedback Vertex Set from [12], and the nO(k) time algorithms parameterized
by mim-width for Feedback Vertex Set and Longest Induced Path from [14, 15].

Concerning mim-width, we provide unified polynomial-time algorithms for the considered
problems for all well-known graph classes having bounded mim-width and for which a
layout of bounded mim-width can be computed in polynomial time [1] (e.g., interval graphs,
circular arc graphs, permutation graphs, Dilworth-k graphs and k-polygon graphs for all
fixed k). Notice that we also generalize one of the results from [17] proving that the
Connected Vertex Cover problem is solvable in polynomial time for circular arc graphs.

It is worth noticing that the approach used in [9] called Cut & Count can also be
generalized to the d-neighbor-width for any Connected (σ, ρ)-dominating set problem
with more or less the same arguments used in this paper (see the PhD thesis [2]).

2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We write A \B
for the set difference of A from B. We denote by N the set of non-negative integers and by
N+ the set N \ {0}. We let min(∅) := +∞ and max(∅) := −∞. Let V be a finite set. A set
function f : 2V → N is symmetric if, for all S ⊆ V , we have f(S) = f(V \ S).

Graphs. Our graph terminology is standard, and we refer to [10]. The vertex set of a graph
G is denoted by V (G) and its edge set by E(G). For every vertex set X ⊆ V (G), when the
underlying graph is clear from context, we denote by X, the set V (G) \X. An edge between
two vertices x and y is denoted by xy or yx. The set of vertices that is adjacent to x is
denoted by NG(x). For a set U ⊆ V (G), we define NG(U) :=

⋃
x∈U NG(x). If the underlying

graph is clear, then we may remove G from the subscript.
The subgraph of G induced by a subset X of its vertex set is denoted by G[X]. For

X,Y ⊆ V (G), we denote by G[X,Y ] the bipartite graph with vertex set X ∪ Y and edge
set {xy ∈ E(G) : x ∈ X and y ∈ Y }. Moreover, we denote by MX,Y the adjacency matrix
between X and Y , i.e., the (X,Y )-matrix such that MX,Y [x, y] = 1 if y ∈ N(x) and 0
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otherwise. For a graph G, we denote by cc(G) the partition {V (C) : C is a connected
component of G}. For two subsets A and B of 2V (G), we define the merging of A and B,
denoted by A

⊗
B, as

A
⊗
B :=

{
∅ if A = ∅ or B = ∅,
{X ∪ Y : X ∈ A and Y ∈ B} otherwise.

Let X ⊆ V (G). A consistent cut of X is an ordered bipartition (X1, X2) of X such that
N(X1) ∩X2 = ∅. We denote by ccut(X) the set of all consistent cuts of X.

The d-neighbor equivalence relation. Let G be a graph. The following definition is from
[7]. Let A ⊆ V (G) and d ∈ N+. Two subsets X and Y of A are d-neighbor equivalent w.r.t.
A, denoted by X ≡d

A Y , if min(d, |X ∩N(u)|) = min(d, |Y ∩N(u)|) for all u ∈ A. It is not
hard to check that ≡d

A is an equivalence relation.
For all d ∈ N+, we let necd : 2V (G) → N where, for all A ⊆ V (G), necd(A) is the number

of equivalence classes of ≡d
A. Notice that while nec1 is a symmetric function [16, Theorem

1.2.3], necd is not necessarily symmetric for d ≥ 2.
In order to manipulate the equivalence classes of≡d

A, one needs to compute a representative
for each equivalence class in polynomial time. This is achieved with the following notion of a
representative. Let G be a graph with an arbitrary ordering of V (G) and let A ⊆ V (G). For
each X ⊆ A, let us denote by repd

A(X) the lexicographically smallest set R ⊆ A such that
|R| is minimized and R ≡d

A X. Moreover, we denote by Rd
A the set {repd

A(X) : X ⊆ A}. It
is worth noticing that the empty set always belongs to Rd

A, for all A ⊆ V (G) and d ∈ N+.
Moreover, we have Rd

V (G) = Rd
∅ = {∅} for all d ∈ N+. In order to compute Rd

A, we use the
following lemma.

I Lemma 1 ([7]). For every A ⊆ V (G) and d ∈ N+, one can compute in time O(necd(A) ·
log(necd(A)) · |V (G)|2), the sets Rd

A and a data structure, that given a set X ⊆ A, computes
repd

A(X) in time O(log(necd(A)) · |A| · |V (G)|).

Graph width measures. A rooted binary tree is a binary tree with a distinguished vertex
called the root. Since we manipulate at the same time graphs and trees representing them,
the vertices of trees will be called nodes. A rooted layout of G is a pair L = (T, δ) of a
rooted binary tree T and a bijective function δ between V (G) and the leaves of T . For each
node x of T , let Lx be the set of all the leaves l of T such that the path from the root of
T to l contains x. We denote by V Lx the set of vertices that are in bijection with Lx, i.e.,
V Lx := {v ∈ V (G) : δ(v) ∈ Lx}. When L is clear from the context, we may remove L from
the superscript.

All the width measures dealt with in this paper are special cases of the following one, the
difference being in each case the used set function. Given a set function f : 2V (G) → N and
a rooted layout L = (T, δ), the f-width of a node x of T is f(V Lx ) and the f-width of (T, δ),
denoted by f(T, δ) (or f(L)), is max{f(V Lx ) : x ∈ V (T )}. Finally, the f-width of G is the
minimum f-width over all rooted layouts of G.

For a graph G, we let s-necd,mw,mim, rw, rwQ be functions from 2V (G) to N such that
for every A ⊆ V (G), s-necd(A) = max{necd(A), necd(A)}, mw(A) is the cardinality of
{N(v) ∩ A : v ∈ A}, mim(A) is the size of a maximum induced matching of the graph
G[A,A] and rw(A) (resp. rwQ(A)) is the rank over GF (2) (resp. Q) of the matrix MA,A.
The d-neighbor-width, module-width, mim-width, rank-width and Q-rank-width of G, are
respectively, its s-necd-width, mw-width, mim-width, rw-width and rwQ-width [23].

ESA 2019



17:6 Connectivity and Acyclicity Constraints Versus d-Neighbor Equivalence

Observe that, for every graph G, mw(G) ≤ cw(G) ≤ 2mw(G) where cw(G) is the clique-
width of G [21] , and one can moreover translate, in time at most O(n2), a given decomposition
into the other one with width at most the given bounds.

In the following, we fix G an n-vertex graph, (T, δ) a rooted layout of G, and w : V (G)→ Q
a weight function over the vertices of G. We also assume that V (G) is ordered.

3 Representative sets

In this section, we define a notion of representativity between sets of partial solutions w.r.t.
the connectivity. Our notion of representativity is defined w.r.t. some node x of T and the
1-neighbor equivalence class of some set R′ ⊆ Vx. In our algorithms, R′ will always belong to
Rd

Vx
for some d ∈ N+. Our algorithms compute a set of partial solutions for each R′ ∈ Rd

Vx
.

The partial solutions computed for R′ will be completed with sets equivalent to R′ w.r.t.
≡d

Vx
. Intuitively, the R′’s represent some expectation about how we will complete our sets of

partial solutions. For the connectivity and the domination, d = 1 is enough but if we need
more information for some reasons (for example the (σ, ρ)-domination or the acyclicity), we
may take d > 1. This is not a problem as the d-neighbor equivalence class of R′ is included
in the 1-neighbor equivalence class of R′. Hence, in this section, we fix a node x of T and a
set R′ ⊆ Vx to avoid to overload the statements by the sentence “let x be a node of T and
R′ ⊆ Vx”. We let opt ∈ {min,max}; if we want to solve a maximization (or minimization)
problem, we use opt = max (or opt = min). We use it also, as here, in the next sections.

I Definition 2 ((x,R′)-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define
best(A, Y ) := opt{w(X) : X ∈ A and G[X ∪ Y ] is connected }.

Let A,B ⊆ 2Vx . We say that B (x,R′)-represents A if, for every Y ⊆ Vx such that
Y ≡1

Vx
R′, we have best(A, Y ) = best(B, Y ).

Notice that the (x,R′)-representativity is an equivalence relation. The set A is meant to
represent a set of partial solutions of G[Vx] associated with R′ which have been computed.
If a B ⊆ A (x,R′)-represents A, then we can safely substitute A by B because the quality of
the output of the dynamic programming algorithm will remain the same. Indeed, for every
subset Y of Vx such that Y ≡1

Vx
R′, an optimum solution obtained by the union of a partial

solution in A and Y will have the same weight as an optimum solution obtained from the
union of a set in B and Y .

The following theorem presents the main tool of our framework: a function reduce that,
given a set of partial solutions A, outputs a subset of A that (x,R′)-represents A and
whose size is upper bounded by s-nec1(L)2. To design this function, we use ideas from the
rank-based approach of [5]. That is, we define a small matrix C with |A| rows and s-nec1(Vx)2

columns. Then, we show that a basis of maximum weight of the row space of C corresponds
to an (x,R′)-representative set of A. Since C has s-nec1(L)2 columns, the size of a basis of
C is smaller than s-nec1(L)2. By calling reduce after each computational step, we keep the
sizes of the sets of partial solutions polynomial in s-nec1(L).

In order to compute a small (x,R′)-representative set of a set A ⊆ 2Vx , the following
theorem requires that the sets in A are pairwise equivalent w.r.t. ≡1

Vx
. This is useful

since in our algorithm we classify our sets of partial solutions with respect to this property.
We need this to guarantee that the partial solutions computed for R′ will be completed
with sets equivalent to R′ w.r.t. ≡d

Vx
. However, if one wants to compute a small (x,R′)-

representative set of a set A that does not respect this property, then it is enough to compute
an (x,R′)-representative set for each 1-neighbor equivalence class of A. The union of these
(x,R′)-representative sets is an (x,R′)-representative set of A. In the following, ω is the
matrix multiplication exponent.



B. Bergougnoux and M.M. Kanté 17:7

I Theorem 3. Let R ∈ R1
Vx

and R′ ⊆ Vx. Then, there exists an algorithm reduce that, given
A ⊆ 2Vx such that X ≡1

Vx
R for all X ∈ A, outputs in time O(|A| · nec1(Vx)2(ω−1) · n2) a

subset B ⊆ A such that B (x,R′)-represents A and |B| ≤ nec1(Vx)2.

Sketch of proof. We assume w.l.o.g. that opt = max (the case opt = min is symmetric).
If R′ ≡1

Vx
∅, then, from Definition 2, it is enough to output {X} where X is a set in A of

maximum weight such that G[X] is connected.
Assume that R′ is not equivalent to ∅ w.r.t. ≡1

Vx
. Observe that, for every X ∈ A which

admits a connected component C with N(C) ∩R′ = ∅, the graph G[X ∪ Y ] is not connected
for every Y ≡1

Vx
R′. Thus, we can safely remove from A all such sets, this can be done

in time |A| · n2. Let D be the set of all subsets Y of Vx such that Y ≡1
Vx

R′ and, for all
C ∈ cc(Y ), we have N(C)∩R 6= ∅. It is easy to check that the sets in 2Vx \ D do not matter
in the (x,R′)-representativity: they will not give a solution with a set in A.

For every Y ∈ D, we let vY be one fixed vertex of Y . In the following, we denote by R
the set {(R′1, R′2) ∈ R1

Vx
× R1

Vx
}. Let C, and C be, respectively, an (A,R)-matrix and an

(R,D)-matrix such that

C[X, (R′
1, R

′
2)] :=

{
1 if ∃(X1, X2) ∈ ccut(X) such that N(X1) ∩R′

2 = ∅ ∧N(X2) ∩R′
1 = ∅,

0 otherwise.

C[(R′
1, R

′
2), Y ] :=

{
1 if ∃(Y1, Y2) ∈ ccut(Y ) such that vY ∈ Y1, Y1 ≡1

Vx
R′

1, and Y2 ≡1
Vx
R′

2,

0 otherwise.

Owing to the partial solutions we have removed from A and the definition of D, we can
prove that a basis of maximum weight of the row space of C is an (x,R′)-representative set of
A. This follows from the fact that (C ·C)[X,Y ] equals the number of consistent cuts (W1,W2)
in ccut(X ∪ Y ) such that vY ∈ W1. Consequently, (C · C)[X,Y ] = 2|cc(G[X∪Y ])|−1 and thus
(C · C)[X,Y ] is odd if and only if G[X ∪ Y ] is connected. The running time of reduce and the
size of reduce(A) follows from the size of C (i.e. |A| · nec1(Vx)2) and the fact that both C
and a basis of maximum weight of C are easy to compute. J

Now to boost up a dynamic programming algorithm P on some rooted layout (T, δ) of G,
we can use the function reduce to keep the size of the sets of partial solutions bounded by
s-nec1(T, δ)2. We call P ′ the algorithm obtained from P by calling the function reduce at
every step of computation. We can assume that the set of partial solutions Ar computed by
P and associated with the root r of (T, δ) contains an optimal solution (this will be the cases
in our algorithms). To prove the correctness of P ′, we need to prove that A′r (r, ∅)-represents
Ar where A′r is the set of partial solutions computed by P ′ and associated with r. For
doing so, we need to prove that at each step of the algorithm the operations we use preserve
the (x,R′)-representativity. The following fact states that we can use the union without
restriction, it follows directly from Definition 2 of (x,R′)-representativity.

I Fact 4. If B and D (x,R′)-represents, respectively, A and C, then B∪D (x,R′)-represents
A ∪ C.

The second operation we use in our dynamic programming algorithms is the merging
operator

⊗
. In order to safely use it, we need the following notion of compatibility that just

tells which partial solutions from Va and Vb can be joined to possibly form a partial solution
in Vx. (It was already used in [7] without naming it.)

ESA 2019
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I Definition 5 (d-(R,R′)-compatibility). Suppose that x is an internal node of T with a

and b as children. Let d ∈ N+ and R ∈ Rd
Vx
. We say that (A,A′) ∈ Rd

Va
× Rd

Va
and

(B,B′) ∈ Rd
Vb
×Rd

Vb
are d-(R,R′)-compatible if we have (1) A∪B ≡d

Vx
R, (2) A′ ≡d

Va
B∪R′,

and (3) B′ ≡d
Vb
A ∪R′.

I Lemma 6. Suppose that x is an internal node of T with a and b as children. Let d ∈ N+ and
R ∈ Rd

Vx
. Let (A,A′) ∈ Rd

Va
×Rd

Va
and (B,B′) ∈ Rd

Vb
×Rd

Vb
that are d-(R,R′)-compatible.

Let A ⊆ 2Va such that, for all X ∈ A, we have X ≡d
Va
A, and let B ⊆ 2Vb such that, for all

W ∈ B, we have W ≡d
Vb
B. If A′ ⊆ A (a,A′)-represents A and B′ ⊆ B (b, B′)-represents B,

then A′
⊗
B′ (x,R′)-represents A

⊗
B.

4 Connected (Co)-(σ, ρ)-Dominating Sets

Let σ and ρ be two (non-empty) finite or co-finite subsets of N. We say that a subset
D of V (G) (σ, ρ)-dominates a subset U ⊆ V (G) if, for every vertex u ∈ U ∩ D, we have
|N(u) ∩D| ∈ σ, and, for every vertex u ∈ U \D, we have |N(u) ∩D| ∈ ρ. A subset D of
V (G) is a (σ, ρ)-dominating set (resp. co-(σ, ρ)-dominating set) if D (resp. V (G) \D) (σ, ρ)-
dominates V (G). A problem is a Connected (σ, ρ)-Dominating Set if it consists in finding
a connected (σ, ρ)-dominating set of maximum (or minimum) weight. Similarly, one can
define the Connected Co-(σ, ρ)-Dominating Set problems. Examples are Connected
Perfect Dominating Set and Connected Vertex-Cover3.

Let d(N) := 0, and for a finite or co-finite subset µ of N, let d(µ) := min(max(µ),max(N\
µ)) + 1. Let d := max{1, d(σ), d(ρ)}. The definition of d is motivated by the following lemma.

I Lemma 7 ([7]). Let A ⊆ V (G). Let X ⊆ A and Y, Y ′ ⊆ A such that Y ≡d
A
Y ′. Then

(X ∪ Y ) (σ, ρ)-dominates A if and only if (X ∪ Y ′) (σ, ρ)-dominates A.

In this section, we present an algorithm that computes a maximum (or minimum)
connected (σ, ρ)-dominating set with a graph G and a layout (T, δ) as inputs. Its running
time is O(s-necd(T, δ)O(1) · n3). The same algorithm, with some little modifications, will
be able to find a minimum Steiner tree or a maximum (or minimum) connected co-(σ, ρ)-
dominating set as well.

To deal with the local constraint, i.e., the (σ, ρ)-domination, we use the ideas of Bui-Xuan
et al. [7]. For every x ∈ V (T ) and all pairs (R,R′) ∈ Rd

Vx
×Rd

Vx
, we let Ax[R,R′] := {X ⊆

Vx : X ≡d
Vx

R and X ∪ R′ (σ, ρ)-dominates Vx}. To compute a maximum (or minimum)
(σ, ρ)-dominating set, Bui-Xuan et al. [7] proved that it is enough to compute, for each node
x ∈ V (T ) and each pair (R,R′), a partial solution X in Ax[R,R′] of maximum (or minimum)
weight. Indeed, by Lemma 7, if a partial solution X ∈ Ax[R,R′] could be completed into a
(σ, ρ)-dominating set of G with a set Y ≡d

Vx
R′, then it is the case for every partial solution

in Ax[R,R′]. To deal with the connectivity constraint, for each node x of V (T ) and each
pair (R,R′), our algorithm will compute a set Dx[R,R′] that satisfies the following invariant.

Invariant. For every (R,R′) ∈ Rd
Vx
×Rd

Vx
, the set Dx[R,R′] is a subset of Ax[R,R′] of size

at most s-nec1(T, δ)2 that (x,R′)-represents Ax[R,R′].
Notice that, by the definition of Ar[∅, ∅] (r being the root of T ) and the definition of

(x,R′)-representativity, if G admits a connected (σ, ρ)-dominating set, then Dr[∅, ∅] must
contain a maximum (or minimum) connected (σ, ρ)-dominating set.

3 More can be found in [7, Table 1] by adding a connectivity constraint to the sets or their complements.
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We compute the tables Dx’s by a usual bottom-up dynamic programming algorithm,
starting at the leaves of T . The computational steps are trivial for the leaves, and for each
internal node x with children a and b, and for each (R,R′) ∈ Rd

Vx
×Rd

Vx
we let Dx[R,R′]

be an (x,R′)-representative set of
(⋃

(A,A′), (B,B′) d-(R,R′)-compatibleAa[A,A′]
⊗
Ab[B,B′]

)
computed with the function reduce defined in Section 3. This guarantees that each set
Dx[R,R′] contains at most s-nec1(T, δ)2 partial solutions. Thanks to Lemma 6, we can state.

I Theorem 8. There exists an algorithm that, given an n-vertex graph G and a rooted layout
(T, δ) of G, computes a maximum (or minimum) connected (σ, ρ)-dominating set in time
O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

As a corollary, we can solve in time s-nec1(T, δ)O(1) · n3 the Node-Weighted Steiner
Tree problem that asks, given a subset of vertices K ⊆ V (G) called terminals, a subset T
of minimum weight such that K ⊆ T ⊆ V (G) and G[T ] is connected.

I Corollary 9. There exists an algorithm that, given an n-vertex graph G, a subset K ⊆ V (G),
and a rooted layout (T, δ) of G, computes a minimum node-weighted Steiner tree for (G,K)
in time O(s-nec1(T, δ)(2ω+5) · log(s-nec1(T, δ)) · n3).

Observe that Corollary 9 simplify and generalize the algorithm from [5] for (Edge-
Weighted) Steiner Tree. Indeed the incidence graph of a graph of tree-width k has
tree-width at most k + 1, and one can reduce the computation of a edge-weighted Steiner
tree on a graph to the computation of a node-weighted Steiner tree on its incidence graph.

With few modifications of the algorithm from Theorem 8, we can state the following.

I Corollary 10. There exists an algorithm that, given an n-vertex graph G and a rooted
layout (T, δ) of G, computes a maximum (or minimum) connected co-(σ, ρ)-dominating set in
time O(s-necd(T, δ)3 · s-nec1(T, δ)(2ω+5) · log(s-necd(T, δ)) · n3) with d := max{1, d(σ), d(ρ)}.

5 Acyclic variants of (Connected) (σ, ρ)-Dominating Set

We call AC-(σ, ρ)-Dominating Set (resp. Acyclic (σ, ρ)-Dominating Set) the family of
problems which consists in finding a subset X ⊆ V (G) of maximum (or minimum) weight
such that X is a (σ, ρ)-dominating set of G and G[X] is a tree (resp. a forest). Examples
are Longest Induced Path and Feedback Vertex Set.

In this section, we present an algorithm that solves any AC-(σ, ρ)-Dominating Set
problem. Unfortunately, we were not able to obtain an algorithm whose running time is
polynomial in n and the d-neighbor-width of the given layout (for some constant d). But, for
the other parameters, by using their respective properties, we get the running time presented
in Table 1. Moreover, we show, via a polynomial reduction, that we can use our algorithm
for AC-(σ, ρ)-Dominating Set problems (with some modifications) to solve any Acyclic
(σ, ρ)-Dominating Set problem.

Let us first explain why we cannot use the same trick as in [5] on the algorithms of
Section 4 to ensure the acyclicity, that is classifying the partial solutions X – associated
with a node x ∈ V (T ) – with respect to |X| and |E(G[X])|. Indeed, for two sets X,W ⊆ Vx

with |X| = |W | and |E(G[X])| = |E(G[W ])|, we have |E(G[X ∪ Y ])| = |E(G[W ∪ Y ])|, for
all Y ⊆ Vx, if and only if X ≡n

Vx
W . Hence, the trick used in [5] would imply to classify

the partial solutions with respect to their n-neighbor equivalence class. But, the upper
bounds we have on necn(Vx) with respect to module-width, (Q-)rank-width would lead to
an XP algorithm.
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In the following, we introduce some new concepts that extends the framework designed in
Section 3 in order to manage acyclicity. All along, we give intuitions on these concepts through
a concrete example: Maximum Induced Tree. Finally, we present the algorithms for the
AC-(σ, ρ)-Dominating Set problems and the algorithms for Acyclic (σ, ρ)-Dominating
Set problems. We start by defining a new notion of representativity to deal with the
acyclicity constraint. This new notion of representativity is defined w.r.t. to the 2-neighbor
equivalence class of a set R′ ⊆ Vx. We consider 2-neighbor equivalence classes instead of 1-
neighbor equivalence classes in order to manage the acyclicity (see the following explanations).
Similarly to Section 3, every concept introduced in this section is defined with respect to a
node x of T and a set R′ ⊆ Vx. To simplify this section, we fix a node x of T and R′ ⊆ Vx.
In our algorithm, R′ will always belong to Rd

Vx
for some d ∈ N+ with d ≥ 2. For Maximum

Induced Tree d = 2 is enough and in general, we use d := max{2, d(σ), d(ρ)}. The following
definition extends Definition 2 of Section 3 to deal with the acyclicity.

I Definition 11 ((x,R′)acy-representativity). For every A ⊆ 2V (G) and Y ⊆ V (G), we define
best(A, Y )acy := opt{w(X) : X ∈ A and G[X ∪ Y ] is a tree}.

Let A,B ⊆ 2Vx . We say that B (x,R′)acy-represents A if, for every Y ⊆ Vx such that
Y ≡2

Vx
R′, we have bestacy(A, Y ) = bestacy(B, Y ).

In order to compute a maximum induced tree, we design an algorithm similar to those
of Section 4. That is, for each (R,R′) ∈ R2

Vx
× R2

Vx
, our algorithm will compute a set

Dx[R,R′] ⊆ 2Vx that is an (x,R′)acy-representative set of small size of the set Ax[R] := {X ⊆
Vx such that X ≡2

Vx
R}. This is sufficient to compute a maximum induced tree of G since we

have Ar[∅] = 2V (G) with r the root of T . Thus, by Definition 11, any (r, ∅)acy-representative
set of Ar[∅] contains a maximum induced tree.

The key to compute the tables of our algorithm is a function that, given A ⊆ 2Vx ,
computes a small subset of A that (x,R′)acy-represents A. This function starts by removing
from A some sets that will never give a tree with a set Y ≡2

Vx
R′. For doing so, we characterize

the sets X ∈ A such that G[X ∪Y ] is a tree for some Y ≡2
Vx
R′. The following gives a formal

definition of these important and unimportant partial solutions.

I Definition 12 (R′-important). We say that X ⊆ Vx is R′-important if there exists Y ⊆ Vx

such that Y ≡2
Vx
R′ and G[X ∪ Y ] is a tree, otherwise, we say that X is R′-unimportant.

By definition, any set obtained from a set A by removing R′-unimportant sets is an
(x,R′)acy-representative set of A. The following lemma gives some necessary conditions on
R′-important sets. It follows that any set which does not respect one of these conditions
can safely be removed from A. These conditions are the key to obtain the running times
of Table 1. At this point, we need to introduce the following notations. For every X ⊆ Vx,
we define X0 := {v ∈ X : N(v) ∩ R′ = ∅}, X1 := {v ∈ X : |N(v) ∩ R′| = 1}, and
X2+ := {v ∈ X : |N(v) ∩ R′| ≥ 2}. Notice that, for every Y ≡2

Vx
R′ and X ⊆ Vx, the

vertices in X0 have no neighbor in Y , those in X1 have exactly one neighbor in Y and those
in X2+ have at least 2 neighbors in Y .

I Lemma 13. If X ⊆ Vx is R′-important, then G[X] is a forest and the following properties
are satisfied:
1. for every pair of distinct vertices a and b in X2+, we have N(a) ∩ Vx 6= N(b) ∩ Vx,
2. |X2+| is upper bounded by 2mim(Vx), 2rw(Vx) and 2rwQ(Vx).

In order to prove these two necessary conditions, we need the properties of the 2-neighbor
equivalence relation. More precisely, we use the fact that, for all X ⊆ Vx and Y ≡2

Vx
R′,

the vertices in X having at least two neighbors in Y corresponds exactly to those having
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at least two neighbors in R′. These vertices play a major role in the acyclicity and the
computation of representatives in the following sense. By removing from A the sets that do
not respect the two above properties, we are able to decompose A into a small number of
sets A1, . . . ,At such that an (x,R′)-representative set of Ai is an (x,R′)acy-representative
set of Ai for each i ∈ {1, . . . , t}. We find an (x,R′)acy-representative set of A, by computing
an (x,R′)-representative set Bi for each Ai with the function reduce. This is sufficient
because B1 ∪ · · · ∪ Bt is an (x,R′)acy-representative set of A. The following definition gives
a characterization of the subsets of 2Vx for which an (x,R′)-representative set is also an
(x,R′)acy-representative set.

I Definition 14. We say that A ⊆ 2Vx is R′-consistent if, for each Y ⊆ Vx such that
Y ≡2

Vx
R′, if there exists W ∈ A such that G[W ∪ Y ] is a tree, then, for each X ∈ A, either

G[X ∪ Y ] is a tree or G[X ∪ Y ] is not connected.

The following lemma proves that an (x,R′)-representative set of an R′-consistent set is
also an (x,R′)acy-representative set of this latter.

I Lemma 15. Let A ⊆ 2Vx . For all D ⊆ A, if A is R′-consistent and D (x,R′)-represents
A, then D (x,R′)acy-represents A.

The next lemma proves that, for each f ∈ {mw, rw, rwQ,mim}, we can decompose a set
A ⊆ 2Vx into a small collection {A1, . . . ,At} of pairwise disjoint subsets of A such that each
Ai is R′-consistent. Even though some parts of the proof are specific to each parameter,
the ideas are roughly the same. First, we remove the sets X in A that do not induce a
forest. If f = mw, we remove the sets in A that do not respect Condition (1) of Lemma 13,
otherwise, we remove the sets that do not respect the upper bound associated with f from
Condition (2) of Lemma 13. These sets can be safely removed as, by Lemma 13, they are
R′-unimportant. After removing these sets, we obtain the decomposition of A by taking the
equivalence classes of some equivalence relation that is roughly the n-neighbor equivalence
relation. Owing to the set of R′-unimportant sets we have removed from A, we prove that
the number of equivalence classes of this latter equivalence relation respects the upper bound
associated with f that is described in Table 2.

I Lemma 16. Let A ⊆ 2Vx . For each f ∈ {mw, rw, rwQ,mim}, there exists a collection
{A1, . . . ,At} of pairwise disjoint subsets of A computable in time O(|A| · Nf(T, δ) · n2) such
that (1) A1 ∪ · · · ∪ At (x,R′)acy-represents A, (2) Ai is R′-consistent for each i ∈ {1, . . . , t},
and (3) t ≤ Nf(T, δ); where Nf(T, δ) is the term defined in Table 2.

Table 2 Upper bounds Nf(T, δ) on the size of the decomposition of Lemma 16 for each f ∈
{mw, rw, rwQ,mim}.

f mw rwQ rw mim
Nf(T, δ) 2mw(T,δ) · 2n 2rwQ(T,δ) log2(2rwQ(T,δ)+1) · 2n 22rw(T,δ)2

· 2n 2n2mim(T,δ)+1

We are now ready to give an adaptation of Theorem 3 to the notion of (x,R′)acy-
representativity.

I Theorem 17. Let R ∈ R2
Vx
. For each f ∈ {mw, rw, rwQ,mim}, there exists an algo-

rithm reduceacy
f that, given a set A such that X ≡2

Vx
R for every X ∈ A, outputs in time

O((nec1(Vx)2(ω−1) +Nf(T, δ)) · |A| · n2), a subset B ⊆ A such that B (x,R′)acy-represents A
and |B| ≤ Nf(T, δ) · nec1(Vx)2.
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Now, The algorithm for any AC-(σ, ρ)-Dominating Set problem is essentially the same
as the algorithm from Theorem 8, except that we use reduceacy

f instead of reduce.

I Theorem 18. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm that, given an
n-vertex graph G and a rooted layout (T, δ) of G, solves any AC-(σ, ρ)-Dominating Set
problem, in time O(s-necd(T, δ)3 · s-nec1(T, δ)2(ω+1) · Nf(T, δ)2 · log(s-necd(T, δ)) · n3), with
d := max{2, d(σ), d(ρ)}.

By constructing for any graph G a graph G′ such that the width measure of G′ is linear
in the width measure of G, and any optimum acyclic (σ, ρ)-dominating set of G corresponds
to an optimum AC-(σ, ρ)-dominating set of G′ and vice-versa, we obtain the following which
allows for instance to compute a feedback vertex set in time nO(c), c the mim-width.

I Theorem 19. For each f ∈ {mw, rw, rwQ,mim}, there exists an algorithm that, given an
n-vertex graph G and a rooted layout (T, δ) of G, solves any Acyclic (σ, ρ)-Dominating
Set problem in time O(s-necd(T, δ)O(1) · Nf(T, δ)O(1) · n3) with d := max{2, d(σ), d(ρ)}.

6 Conclusion

Prior to this work, the d-neighbor-equivalence relation was used only for problems with a
locally checkable property like Dominating Set [7, 13, 19]. We prove that the d-neighbor-
equivalence relation can also be useful for problems with a connectivity constraint and an
acyclicity constraint. Is this notion also useful for other kinds of problems? Can we use
it for the problems which are unlikely to admit FPT algorithms parameterized by clique-
width, Q-rank-width or rank-width? This is the case for well-known problems such as
Hamiltonian Cycle, Edge Dominating Set, and Max Cut. The complexity of these
problems parameterized by clique-width is well-known. Indeed, for each of these problems, we
have an ad-hoc nO(k) time algorithm with k the clique-width of a given k-expression [4, 11].
On the other hand, little is known concerning rank-width and Q-rank-width. For mim-width,
we know that Hamiltonian Cycle is para-NP-hard parameterized by the mim-width of a
given rooted layout [15].

As these problems are W[1]-hard parameterized by clique-width, we cannot expect to
rely only on the d-neighbor equivalence relation for d a constant. Maybe, we can avoid
this dead-end by using the n-neighbor equivalence relation. In fact, we prove the following
theorem for Max Cut.

I Theorem 20. There exists an algorithm that, given an n-vertex graph G and a rooted
layout (T, δ), solves Max Cut in time O(s-necn(T, δ)2 · log(s-necn(T, δ)) · n3).

Consequently, this theorem implies the existence of nO(mw(L)), nO(rwQ(G)) and n2O(rw(G)) time
algorithms for Max Cut. Notice that, unless ETH fails, there are no no(mw(L)) and no(rwQ(G))

time algorithms for Max Cut [11].
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