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Abstract
Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal,
if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e.,
the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets
of consecutive edges with the same orientation. In this paper, we study the k-Modality problem,
which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem
is at the very core of a variety of constrained embedding questions for planar digraphs and flat
clustered networks.

First, since the 2-Modality problem can be easily solved in linear time, we consider the general
k-Modality problem for any value of k > 2 and show that the problem is NP-complete for planar
digraphs of maximum degree ∆ ≥ k+3. We relate its computational complexity to that of two notions
of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations.
This allows us to answer in the strongest possible way an open question by Di Giacomo et al. [GD17],
concerning the complexity of constructing planar NodeTrix representations of flat clustered networks
with small clusters, and to address a research question by Angelini et al. [JGAA17], concerning
intersection-link representations based on geometric objects that determine complex arrangements.
On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree,
whose running time is exponential in k and linear in the input size. Second, motivated by the
recently-introduced planar L-drawings of planar digraphs [GD17], which require the computation of a
4-modal embedding, we focus our attention on k = 4. On the algorithmic side, we show a complexity
dichotomy for the 4-Modality problem with respect to ∆, by providing a linear-time algorithm for
planar digraphs with ∆ ≤ 6. This algorithmic result is based on decomposing the input digraph into
its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees.
In particular, we are able to show that the constraints imposed on the embedding by the rigid
triconnected components can be tackled by means of a small set of reduction rules and discover
that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be
always NAE-satisfiable – a result of independent interest that improves on Porschen et al. [SAT03].
Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a
digraph always admits a k-modal embedding with k = 4 and that this value of k is best possible for
the digraphs in this family.
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1 Introduction

Computing k-modal embeddings of planar digraphs, for some positive even integer k called
modality, is an important algorithmic task at the basis of several types of graph visualizations.
In 2-modal embeddings, also called bimodal embeddings, the outgoing and the incoming edges
at each vertex form two disjoint sequences. Bimodal embeddings are ubiquitous in Graph
Drawing. For instance, level planar drawings [15, 22] and upward-planar drawings [8, 17] –
two of the most deeply-studied graph drawing standards – determine bimodal embeddings.
4-modal embeddings, where the outgoing and the incoming edges at each vertex form up to
four disjoint sequences with alternating orientations, arise in the context of planar L-drawings
of digraphs. In an L-drawing of an n-vertex digraph, introduced by Angelini et al. [1], vertices
are placed on the n × n grid so that each vertex is assigned a unique x-coordinate and a
unique y-coordinate and each edge uv (directed from u to v) is represented as a 1-bend
orthogonal polyline composed of a vertical segment incident to u and of a horizontal segment
incident to v. Recently, Chaplick et al. [13] addressed the question of deciding the existence
of planar L-drawings, i.e., L-drawings whose edges might possibly overlap but do not cross
and observe that the existence of a 4-modal embedding is a necessary condition for a digraph
to admit such a representation (Fig. 1a).

To the best of our knowledge, no further relationships have been explicitly pointed out in
the literature between modal embeddings and notable drawing models for modality values
greater than four, yet they do exist. Da Lozzo et al. [14] and Di Giacomo et al. [18] study the
planarity of NodeTrix representations of flat clustered networks, a hybrid representational
model introduced by Henry, Fekete, and McGuffin [19], where clusters and intra-cluster
edges are represented as adjacency-matrices, with rows and columns for the vertices of each
cluster, and inter-cluster edges are Jordan arcs connecting different matrices (Fig. 1b). For
clusters containing only two vertices, it is possible to show that the problem of computing
planar NodeTrix representations coincides with the one of testing whether a special digraph,
called the canonical digraph, associated to the network admits a 6-modal embedding. For
higher values of modality, k-modal embeddings occur in the context of Intersection-Link
representations of flat clustered networks. In an intersection-link representation [3, 5],
vertices are represented as translates of the same polygon, intra-cluster edges are represented

(a) (b) (c)

Figure 1 (a) A planar L-drawing, which determines a 4-modal embedding. (b) A planar NodeTrix
representation. (c) A planar intersection-link representation using comb-shaped polygons.
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via intersections between the polygons corresponding to their endpoints, and inter-cluster
edges – similarly to NodeTrix representations – are Jordan arcs connecting the polygons
corresponding to their endpoints. For any modality k ≥ 2, it can be shown that testing the
existence of a k-modal embedding of the canonical digraph of a flat clustered network with
clusters of size two is equivalent to testing the existence of an intersection-link representation
in which the curves representing inter-cluster edges do not intersect, when vertices are drawn
as comb-shaped polygons (Fig. 1c).

Related Work. It is common knowledge that the existence of bimodal embeddings can be
tested in linear time: Split each vertex v that has both incoming and outgoing edges into two
vertices vin and vout, assign the incoming edges to vin and the outgoing edges to vout, connect
vin and vout with an edge, and test the resulting (undirected) graph for planarity using any of
the linear-time planarity-testing algorithms [11, 20]. Despite this, most of the planarity
variants requiring bimodality are NP-complete; for instance, upward planarity [17], windrose
planarity [6], partial-level planarity [12], clustered-level planarity and T -level planarity [4, 23],
ordered-level planarity and bi-monotonicity [23]. In this scenario, a notable exception is
represented by the classic level planarity problem, which can be solved in linear time [22], and
its generalizations on the standing cylinder [7], rolling cylinder and the torus [2]. Although
the existence of a bimodal embedding is easy to test, Binucci, Didimo, and Giordano [9]
prove that the related problem of finding the maximum bimodal subgraph of an embedded
planar digraph is an NP-hard problem. Moreover, Binucci, Didimo, and Patrignani [10] show
that, given a mixed planar graph, i.e., a planar graph whose edge set is partitioned into a
set of directed edges and a set of undirected edges, orienting the undirected edges in such a
way that the whole graph admits a bimodal embedding is an NP-complete problem. On the
other hand, the question regarding the computational complexity of constructing k-modal
embedding for k ≥ 4 has not been addressed, although the related problem of testing the
existence of planar L-drawings has been recently proved NP-complete [13].

Our results. We study the complexity of the k-Modality problem, which asks for the
existence of k-modal embeddings of planar digraphs – with an emphasis on k = 4. Our
results are as follows:

We demonstrate a complexity dichotomy for the 4-Modality problem with respect to the
maximum degree ∆ of the input digraph. Namely, we show NP-completeness when ∆ ≥ 7
(see [21, Section 9]) and give a linear-time testing algorithm for ∆ ≤ 6 (Theorem 19).
Further, we extend the hardness result to any modality value larger than or equal to 4,
by proving that the k-Modality problem is NP-complete for k ≥ 4 when ∆ ≥ k + 3.
We provide an FPT-algorithm for k-Modality that runs in f(k)O(n) time for the class
of directed partial 2-trees (Theorem 16), which includes series-parallel and outerplanar
digraphs.
In Section 3, we relate k-modal embeddings with hybrid representations of flat clustered
graphs, and exploit this connection to give new complexity results (Theorems 4 and 8) and
algorithms (Theorems 3 and 7) for these types of representations. In particular, our NP-
hardness results allow us to answer two open questions. Namely, we settle in the strongest
possible way an open question, posed by Di Giacomo et al. [18, Open Problem (i)], about
the complexity of computing planar NodeTrix representations of flat clustered graphs with
clusters of size smaller than 5. Also, we address a research question by Angelini et al. [3,
Open Problem (2)] about the representational power of intersection-link representations
based on geometric objects that give rise to complex combinatorial structures, and solve
it when the considered geometric objects are k-combs.
Finally, in [21, Section 10], we show that not every outerplanar digraph admits a bimodal
embedding, whereas any outerplanar (multi-)digraph admits a 4-modal embedding.
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The algorithms presented in this paper employ the SPQ- and SPQR-tree data structures to
succinctly represent the exponentially-many embeddings of series-parallel and biconnected
planar digraphs, respectively, and can be easily modified to output an embedding of the
input digraph in the same time bound. In particular, our positive result for ∆ ≤ 6 is based
on a set of simple reduction rules that exploit the structure of the rigid components of
bounded-degree planar digraphs. These rules allow us to tackle the algorithmic core of the
problem, by enabling a final reduction step to special instances of NAESAT, previously
studied by Porschen et al. [26], which we prove to be always NAE-satisfiable [21, Section 7].2

2 Definitions

We assume familiarity with basic concepts concerning directed graphs, planar embeddings,
connectivity and the BC-tree data structure; see the full version [21] for more details.

Directed graphs. A directed graph (for short digraph) G = (V,E) is a pair, where V is the
set of vertices and E is the set of (directed) edges of G, i.e., ordered pairs of vertices. We
also denote the sets V and E by V (G) and E(G), respectively. The underlying graph of G is
the undirected graph obtained from G by disregarding edge directions. Let v be a vertex,
we denote by E(v) the set of edges of G incident to v and by deg(v) = |E(v)| the degree
of v. For an edge e = uv directed from u to v and an end-point x ∈ {u, v} of e, we define
the orientation σ(e, x) of e at x as σ(e, x) = ◦�, if x = u, and σ(e, x) = �◦, if x = v, and we say
that uv is outgoing from u and incoming at v.

Modality. Let G be a planar digraph and let E be an embedding of G. A pair of edges e1, e2
that appear consecutively in the circular order around a vertex v of G is alternating if they
do not have the same orientation at v, i.e., they are not both incoming at or both outgoing
from v. Also, we say that vertex v is k-modal, or that v has modality k, or that the modality
of v is k in E , if there exist exactly k alternating pairs of edges incident to v in E . Clearly,
the value k needs to be a non-negative even integer. An embedding of a digraph G is k-modal,
if each vertex is at most k-modal; see Fig. 3(left).

We now define an auxiliary problem, called k-MaxModality (where k is a positive
even integer), which will be useful to prove our algorithmic results. We denote the set of
non-negative integers by Z∗ and the set of non-negative even integers smaller than or equal
to k as E+

k = {b : b = 2a, b ≤ k, a ∈ Z∗}. Given a graph G, we call maximum-modality
function an integer-valued function m : V (G) → E+

k . We say that an embedding E of G
satisfies m at a vertex v if the modality of v in E is at most m(v).

Problem: k-MaxModality

Input: A pair 〈G, m〉, where G is a digraph and m is a maximum-modality function.
Question: Is there an embedding E of G that satisfies m at every vertex?

2 In “Stefan Porschen, Bert Randerath, Ewald Speckenmeyer: Linear Time Algorithms for Some Not-
All-Equal Satisfiability Problems. SAT 2003: 172-187” [26], the authors state in the abstract “First
we show that a NAESAT model (if existing) can be computed in linear time for formulas in which
each variable occurs at most twice.”. We give a strengthening of this result by showing that the only
negative formulas with the above properties are those whose variable-clause graph contains components
isomorphic to a simple cycle and provide a recursive linear-time algorithm for computing a NAE-truth
assignment for formulas in which each variable occurs at most twice, when one exists, which is also
considerably simpler than the one presented in [26].
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Figure 2 (a) Illustrations for the duality between the canonical digraph and the canonical c-graph.
Correspondence (b) between 6-modal embeddings and planar NodeTrix representations, and (c)
between 4-modal embeddings and clique-planar representations using 2-combs as geometric objects.

3 Implications on Hybrid Representations

A flat clustered graph (for short, c-graph) is a pair C = (G = (V,E),P = (V1, V2, . . . , Vc)),
where G is a graph and P is a partition of V into sets Vi, for i = 1, . . . , c, called clusters. An
edge (u, v) ∈ E with u ∈ Vi and v ∈ Vj is an intra-cluster edge, if i = j, and is an inter-cluster
edge, if i 6= j. The problem of visualizing such graphs so to effectively convey both the
relation information encoded in the set E of edges of G and the hierarchical information
given by the partition P of the clusters has attracted considerable research attention. In a
hybrid representation of a graph different conventions are used to represent the dense and
the sparse portions of the graph [3, 5, 14, 18, 19, 24, 27]. We present important implications
of our results on some well-known models for hybrid-representations of c-graphs.

Let C be a c-graph whose every cluster forms a clique of size at most 2, that is, each
cluster contains at most two vertices connected by an intra-cluster edge. Starting from C we
define an auxiliary digraph G�, called the canonical digraph for C, as follows. Without loss
of generality, assume that, for i = 1, . . . , c, each cluster Vi contains two vertices denoted as
vi[�◦] and vi[◦�]. The vertex set of G� contains a vertex vi, for i = 1, 2, . . . , c, and a dummy
vertex de, for each inter-cluster edge e ∈ E. The edge set of G� contains two directed edges,
for each inter-cluster edge e = (vix, vjy) ∈ E, with x, y ∈ {�◦, ◦�} and i 6= j; namely, E(G�)
contains (i) either the directed edges vixde, if x = ◦�, or the directed edge devix, if x = �◦, and
(ii) either the directed edges viyde, if y = ◦�, or the directed edge deviy, if y = �◦.

Let now D = (V,E) be a digraph. We construct a c-graph C∗ = (G∗ = (V ∗, E∗),P∗)
from D whose every cluster forms a clique of size at most 2, called the canonical c-graph
for D, as follows. For each vertex vi ∈ V , G∗ contains two vertices vi[�◦] and vi[◦�], which
form the cluster Vi = {v[�◦], v[◦�]} in P∗. For each (directed) edge vivj of D, G∗ contains an
(undirected) edge (vi[◦�], vj [�◦]); that is, each directed edge in E that is incoming (outgoing) at
a vertex vi and outgoing (incoming) at a vertex vj corresponds to an inter-cluster edge in E∗
incident to vi[�◦] (to vi[◦�]) and to vj [◦�] (to vj [�◦]). Finally, for each vertex vi ∈ V , G∗ contains
an intra-cluster edge (vi[�◦], vi[◦�]). The canonical digraph and the canonical c-graph form
dual concepts, as illustrated in Fig. 2a; the canonical c-graph of G� is the original c-graph C
(neglecting clusters originated by dummy vertices) and the canonical digraph of C∗ is the
original digraph D (suppressing dummy vertices).

NodeTrix Planarity. A NodeTrix representation of a c-graph C = (G,P) is a drawing of C
such that: (i) each cluster Vi ∈ P is represented as a symmetric adjacency matrix Mi (with
|Vi| rows and columns), drawn in the plane so that its boundary is a square Qi with sides
parallel to the coordinate axes; (ii) no two matrices intersect, that is, Qi ∩ Qj = ∅, for
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19:6 Computing k-Modal Embeddings of Planar Digraphs

all 1 ≤ i < j ≤ c; (iii) each intra-cluster edge is represented by the adjacency matrix Mi;
and (iv) each inter-cluster edge (u, v) with u ∈ Vi and v ∈ Vj is represented as a simple
Jordan arc connecting a point on the boundary of Qi with a point on the boundary of Qj ,
where the point on Qi (on Qj) belongs to the column or to the row of Mi (resp. of Mj)
associated with u (resp. with v). A NodeTrix representation is planar if no inter-cluster edge
intersects a matrix or another inter-cluster edge, except possibly at a common end-point;
see Figs. 1b and 2b. The NodeTrix Planarity problem asks whether a c-graph admits a
planar NodeTrix representation. NodeTrix Planarity has been proved NP-complete for
c-graphs whose clusters have size larger than or equal to 5 [18].

We are ready to establish our main technical lemmas.

I Lemma 1. C-graph C is NodeTrix planar if and only if G� admits a 6-modal embedding.

I Lemma 2. Digraph D admits a 6-modal embedding if and only if C∗ is NodeTrix planar.

Proof sketch for Lemmas 1 and 2. Let Mi be the matrix representing cluster Vi =
{vi[�◦], vi[◦�]}. We have that, independently of which of the two possible permutations for the
rows and columns of Mi is selected, the boundary of Qi is partitioned into three maximal
portions associated with vi[�◦] and three maximal portions associated with vi[◦�]; that is, they
form the pattern [1, 2, 1, 2, 1, 2], see Fig. 2b. Therefore, any planar NodeTrix representation
of C (of C∗) can be turned into a 6-modal embedding of G� (of D) via a local redrawing
procedure which operates in the interior of Qi; also, any 6-modal embedding of G� (of D) can
be turned into a planar NodeTrix representation of C (of C∗) via a local redrawing procedure
which operates in a small disk centered at vi that contains only vi and intersects only edges
incident to vi.

Since G� can be constructed in linear time from C, Lemma 1 and the algorithm of
Theorem 16 for solving k-Modality of directed partial 2-trees give us the following.

I Theorem 3. NodeTrix Planarity can be solved in linear time for flat clustered graphs
whose clusters have size at most 2 and whose canonical digraph is a directed partial 2-tree.

Note that (i) C∗ can be constructed in polynomial time from D, (ii) C∗ only contains
clusters of size 2 (although clusters corresponding to vertices of D incident to incoming or
outgoing edges only could be simplified into clusters of size 1), and (iii) each cluster Vi ∈ P∗,
with vi ∈ V (D), is incident to α inter clusters edges, where α is the degree of vi in D. These
properties and the fact that in [21, Section 9] we prove the k-Modality problem to be
NP-complete for digraphs of maximum degree ∆ ≥ k + 3 give us the following.

I Theorem 4. NodeTrix Planarity is NP-complete for flat clustered graphs whose
clusters have size at most 2, even if each cluster is incident to at most 9 inter-cluster edges.

We remark that the above NP-completeness result is best possible in terms of the size
of clusters, as clusters of size 1 do not offer any advantage to avoid intersections between
inter-cluster edges. Also, it solves [18, Open Problem (i)], which asks for the complexity of
NodeTrix Planarity for c-graphs whose clusters have size between 2 and 5.

Clique Planarity. Hybrid representations have also been recently studied in the setting in
which clusters are represented via intersections of geometric objects. In particular, Angelini
et al. [3] introduced the following type of representations. Suppose that a c-graph (G,P) is
given, where P is a set of cliques that partition the vertex set of G. In an intersection-link
representation, the vertices of G are represented by geometric objects that are translates
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of the same rectangle. Consider an edge (u, v) and let R(u) and R(v) be the rectangles
representing u and v, respectively. If (u, v) is an intra-cluster edge (called intersection-edge
in [3]), we represent it by drawing R(u) and R(v) so that they intersect, otherwise if (u, v)
is an intra-cluster edge (called link-edge in [3]), we represent it by a Jordan arc connecting
R(u) and R(v). A clique-planar representation is an intersection-link representation in which
no inter-cluster edge intersects the interior of any rectangle or another inter-cluster edge,
except possibly at a common end-point. The Clique Planarity problem asks whether a
c-graph (G,P) admits a clique-planar representation.

Angelini et al. proved the Clique Planarity problem to be NP-complete, when P
contains a cluster V ∗ with |V ∗| ∈ O(|G|), and asked, in [3, Open Problem (2)], about
the implications of using different geometric objects for representing vertices, rather than
translates of the same rectangle. We address this question by considering k-combs as
geometric objects, where a k-comb is the simple polygon with k spikes illustrated in Fig. 2c.
We have the following.

I Lemma 5. C-graph C is a positive instance of Clique Planarity using k-combs as
geometric objects if and only if G� admits a 2k-modal embedding.

I Lemma 6. Digraph D admits an 4-modal embedding if and only if C∗ is a positive instance
of Clique Planarity using 2-combs as geometric objects.

Proof sketch for Lemmas 5 and 6. Let Ai be an arrangements of 2-combs representing
cluster Vi = {vi[�◦], vi[◦�]}. We have that, the boundary of Ai is partitioned into at most
two maximal portions associated with vi[�◦] and at most two maximal portions associated
with vi[◦�]; that is, they form the pattern [1, 2, 1, 2], see Fig. 2c. Therefore, as for Lemmas 1
and 2, we can exploit a local redrawing procedure to transform a clique-planar representation
of C (of C∗) into a 4-modal embedding of G� (of D), and vice versa.

Combining Lemma 5 and the algorithm of Theorem 16 gives us the following positive result.

I Theorem 7. Clique Planarity using r-combs, with r ≥ 1, as geometric objects can be
solved in linear time for flat clustered graphs whose clusters have size at most 2 and whose
canonical digraph is a directed partial 2-tree.

Finally, Lemma 6 and the discussion preceding Theorem 4 imply the following.

I Theorem 8. Clique Planarity using 2-combs as geometric objects is NP-complete,
even for flat clustered graphs with clusters of size at most 2 each incident to at most 7
inter-cluster edges.

4 Polynomial-time Algorithms

In this section, we present an algorithmic framework to devise efficient algorithms for the
k-Modality problem for notable families of instances. First, in Section 4.1, we show
how to efficiently reduce the k-Modality problem in simply-connected digraphs to the
k-MaxModality problem in biconnected digraphs. Then, in Section 4.2, we introduce
preliminaries and definitions concerning SPQR-trees and k-modal embeddings of bicon-
nected digraphs.

4.1 Simply-Connected Graphs
We first observe that the k-MaxModality problem is a generalization of the k-Modality
problem. In fact, a directed graph G = (V,E) admits a k-modal embedding if and only if
the pair 〈G,m〉, with m(v) = k, ∀v ∈ V (G), is a positive instance of the k-MaxModality
problem.
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Figure 3 (left) A 4-modal embedding of a simply-connected planar digraph G. (right) The SPQR
T of the block B of G rooted at the edge e = uv. The extended skeletons of all non-leaf nodes of T
are shown; virtual edges corresponding to S-, P-, and R-nodes are thick.

I Observation 1. k-Modality reduces in linear time to k-MaxModality.

Let 〈G,m : V (G)→ E+
4 〉 be an instance of 4-MaxModality; also, let β be a leaf-block

of the BC-tree T of G and let v be the parent cut-vertex of β in T . We denote by G−β the
subgraph of G induced by v and the vertices of G not in β, i.e., G−β = G− (β − {v}). Also,
let B(T ) be the set of blocks in T . We show that k-MaxModality (and k-Modality, by
Observation 1) in simply-connected digraphs is Turing reducible to k-MaxModality in
biconnected digraphs.

I Theorem 9. Given a subroutine TestBiconnected that tests k-MaxModality for
biconnected instances, there exists a procedure TestSimplyConnected that tests
k-MaxModality for simply-connected digraphs. Further, given an instance 〈G,m〉 of
k-MaxModality, the runtime of TestSimplyConnected(〈G,m〉) is

O
(
|G|+ log k

∑
β∈B(T )

r(β)
)
,

where r(β) is the runtime of TestBiconnected(〈β,m〉) and T is the BC-tree of G.

Sketch. The algorithm selects a leaf-block β of T , with parent cut-vertex v, and finds an
embedding of β with the minimum modality at v satisfying m at all vertices, by performing
a binary search using the TestBiconnected procedure. We then remove β, replace G
with G−β , and update the value of m(v), so to account for the alternations at v introduced
by β. The procedure terminates when all the blocks have been processed. Therefore, since
the total number of calls to subroutine TestBiconnected is bounded by the number
of blocks of G, which is O(|T |) = O(|G|) multiplied by log k, the overall running time is
O(|G|+ log k

∑
β∈B(T ) r(β)). J

4.2 Biconnected Graphs
To handle the decomposition of a biconnected digraph into its triconnected components, we
use SPQR-trees, a data structure introduced by Di Battista and Tamassia [16].

SPQR-trees. Let G be a biconnected digraph. We consider SPQR-trees that are rooted
at an edge e of G, called the reference edge. The rooted SPQR-tree T of G with respect to
e describes a recursive decomposition of G induced by its split pairs. The nodes of T are
of four types: S, P, Q, and R. Each node µ of T has an associated undirected multigraph
skel(µ), called the skeleton of µ, with two special nodes uµ and vµ (the poles of µ), and an
associated subgraph pert(µ) of G, called pertinent of µ. The skeleton graph equipped with
the edge uµvµ, called the parent edge, is the extended skeleton of µ. Refer to Fig. 3(right).
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Each edge of skel(µ), called virtual edge, is associated with a child of µ in T . The skeleton
of µ describes how the pertinent graphs of the children of µ have to be “merged” via their
poles to obtain pert(µ). The extended skeleton of an S-, P-, R-, and Q-node is a cycle,
parallel, triconnected graph, and a 2-gon, respectively. It follows that skeleton and pertinent
graphs are always biconnected once the parent edge is added. A series-parallel digraph is a
biconnected planar digraph whose SPQR-tree only contains S-, P-, and Q-nodes. A partial
2-tree is a digraph whose every block is a series-parallel digraph.

A digraph G is planar if and only if the skeleton of each R-node in the SPQR-tree
of G is planar. By selecting regular embeddings for the skeletons of the nodes of T , that
is, embeddings in which the parent edge is incident to the outer face, we can construct any
embedding of G with the edge e on the outer face, where the choices for the embeddings of
the skeletons are all and only the (i) flips of the R-nodes and the (ii) permutations for the
virtual edges of the P-nodes.

Consider a pair 〈G,m〉 such that G is biconnected and let E be a planar embedding of G.
Also, let T be the SPQR-tree of G rooted at an edge e of G incident to the outer face of E .
We will assume that the virtual edges of the skeletons of the nodes in T are oriented so that
the extended skeleton of each node µ is a DAG with a single source uµ and a single sink vµ.
Let µ be a node of T and let Eµ be the planar (regular) embedding of skel(µ) induced by E .
For an oriented edge d = uv of skel(µ), the left and right face of d in Eµ is the face of Eµ
seen to the left and to the right of d, respectively, when traversing this edges from u to v.
We define the outer left (right) face of Eµ as the left (right) face of the edge uµvµ in Eµ.

Embedding tuples. An embedding tuple (for short, tuple) is a 4-tuple 〈σ1, a, σ2, b〉, where
σ1, σ2 ∈ {◦�, �◦} are orientations and a, b ∈ N are non-negative integers. Consider two tuples
t = 〈σ1, a, σ2, b〉 and t′ = 〈σ′1, a′, σ′2, b′〉. We say that t dominates t′, denoted as t � t′,
if σ1 = σ′1, σ2 = σ′2, a ≤ a′, and b ≤ b′. Also, we say that t and t′ are incompatible, if
none of them dominates the other. Since the relationship � is reflexive, antisymmetric,
and transitive, it defines a poset (T,�), where T is the set of embedding tuples. A subset
S ⊆ T is succinct or an antichain, if the tuples in S are pair-wise incompatible. Consider
two subsets S, S′ ⊆ T of tuples. We say that S dominates S′, denoted as S � S′, if for any
tuples t′ ∈ S′ there exists at least one tuple t ∈ S such that t � t′. Also, S reduces S′ if
S � S′ and S ⊆ S′. Finally, S is a gist of S′, if S is succinct and reduces S′.

Let eu and ev be the edges of pert(µ) incident to the outer left face of Eµ and to uµ
and vµ, respectively, possibly eu = ev. Also, let a and b be non-negative integers. We say
that the embedding Eµ realizes tuple 〈σ1, a, σ2, b〉, if σ1 = σ(eu, uµ), σ2 = σ(ev, vµ), and
a and b are the number of inner faces of Eµ whose (two) edges incident to uµ and to vµ,
respectively, form an alternating pair. A tuple t = 〈σ1, a, σ2, b〉 is realizable by µ, if there
exists an embedding of pert(µ) that realizes t, and admissible, if a ≤ m(u) and b ≤ m(v). A
tuple is good for µ if it is both admissible and realizable by µ. We denote by S(µ) the gist of
the set of good tuples for a node µ. Let eµ be the virtual edge representing µ in the skeleton
of the parent of µ in T , with a small overload of notation, we also denote S(µ) by S(eµ).
For a tuple t = 〈σ1, a, σ2, b〉 ∈ S(eµ), where e = uµvµ, the pair (σ1, a) is the embedding pair
of t at uµ; likewise, the pair (σ2, b) is the embedding pair of t at vµ. We have the following
substitution lemma.

I Lemma 10. Let E be a planar embedding of G satisfying m. Let µ be a node of T and let
Eµ be the embedding of pert(µ) induced by E. Also, let E ′µ 6= Eµ be an embedding of pert(µ)
satisfying m. Then, G admits an embedding E ′ satisfying m in which the embedding of pert(µ)
is E ′µ, if t′ � t, where t and t′ are the embedding tuples realized by Eµ and by E ′µ, respectively.
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uµ vµ
E

Eµ

e′
t = 〈�◦, 3, ◦�, 2〉

e

(a)

E ′
E ′µ

e e′
t′ = 〈�◦, 1, ◦�, 1〉

uµ vµ

(b)

Figure 4 Illustration for the proof of Lemma 10. The parity of t and t′ is the same at uµ and
different at vµ; in particular, even if a new alternation is introduced between the pair (e, e′) at vµ,
the different parity guarantees that the modality at vµ does not increase from E to E ′.

Sketch. We show how to construct a drawing Γ′G of G satisfying m in which the embedding
of pert(µ) is E ′µ; see Fig. 4. Let ΓG be a drawing of G whose embedding is E . Remove
from ΓG the drawing of all the vertices of pert(µ) different from uµ and vµ and the drawing
of all the edges of pert(µ). Denote by f the face of the resulting embedded graph G− that
used to contain the removed vertices and edges. We obtain Γ′G by inserting a drawing of
pert(µ) whose embedding is E ′µ in the interior of f so that vertices uµ and vµ are identified
with their copies in G−. We can prove that the embedding E ′ of Γ′G satisfies m by exploiting
the interplay between the parity and the number of alternations at uµ (at vµ) in t′ and t
when t′ � t. J

Let T be the SPQR-tree T of G rooted at a reference edge e. In the remainder of the
section, we show how to compute the gist S(µ) of the set of good tuples for µ, for each
non-root node µ of T . In the subsequent procedures to compute S(µ) for S-, P-, and R-nodes,
we are not going to explicitly avoid set S(µ) to contain dominated tuples. In fact, this can
always be done at the cost of an additive O(k2) factor in the running time, by maintaining
an hash table that stores the tuples that have been constructed (possibly multiple times) by
the procedures and by computing the gist of the constructed set as a final step.

I Property 1. For each node µ ∈ T , it holds that |S(µ)| ∈ O(k).

Proof. By the definition of gist, any embedding pair (σ, a) has at most two tuples t′, t′′ ∈ S(µ)
such that (σ, a) is the embedding pair of t′ and t′′ at uµ; also, the embedding pairs (σ′, a′)
of t′ and (σ′′, a′′) of t′′ at vµ are such that σ′ 6= σ′′. Since there exist at most 2k realizable
embedding pairs (σ, a) at uµ (as σ ∈ {�◦, ◦�}, a ∈ {0, 1, . . . , k}, and the existence of tuple whose
embedding pair at uµ is (σ, 0) implies that all tuples have such an embedding pair at uµ),
we have |S(µ)| ≤ 4k. J

If µ is a leaf Q-node of T , then S(µ) = {〈σ(uµvµ, uµ), 0, σ(uµvµ, vµ), 0〉}. If µ is an
internal node of T , we visit T bottom-up and compute the set S(µ) for µ assuming to have
already computed the sets S(µ1), . . . , S(µk) for the children µ1, . . . , µk of µ (where µi is the
child of µ corresponding to the edge ei in skel(µ)). Let ρ be the unique child of the root
of T . Once the set S(ρ) has been determined, we can efficiently decide whether G admits an
embedding satisfying m in which the reference edge e is incident to the outer face by means
of the following lemma.

I Lemma 11. Given S(ρ), we can test whether G has an embedding that satisfies m in O(k2)
time.
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5 Partial 2-trees

In the following, we describe how to compute S(µ), if µ is an S-node (Lemma 12) and a
P-node (Lemma 13) in O(f(k)| skel(µ)|) time, where f is a computable function.

I Lemma 12. Set S(µ) can be constructed in O(k2| skel(µ)|) time for an S-node µ.

Sketch. Let µ be an S-node with skeleton skel(µ) = (e1, e2, . . . , eh). We define τj as the
S-node obtained by the series composition of µ1, µ2, . . . , µj , with j ≤ h. Initially we set
S(τ1) = S(e1). Then, we construct S(τj), for j = 2, . . . , h, by verifying the compatibility of
the embedding pairs of the good tuples of the virtual edges of skel(τj) at the internal vertices
of skel(τj). As S(τj) = S(τj−1) ∪ ej , we can compute S(τj) by considering all the tuples
obtained by combining every tuple t′ ∈ S(τj−1) with every tuple t′′ ∈ S(ej). Since both these
sets contain O(k) tuples, by Property 1, and since the tuple resulting from the combination
of t′ and t′′ can be determined in O(1) time, we have that S(τj) can be computed in O(k2)
time. Therefore, the overall running time for computing S(µ) = S(τh) is O(k2| skel(µ)|). J

I Lemma 13. Set S(µ) can be constructed in O((2k+ 4)!k3 + | skel(µ)|) time for a P-node µ.

Sketch. Let µ be a P-node with poles uµ and vµ, whose skeleton skel(µ) consists of h
parallel virtual edges e1, e2, . . . , eh. It can be shown that the computation of S(µ) reduces in
O(| skel(µ)|) time to the computation of S(τ), where τ is a P-node whose skeleton consists
of at most 2k virtual edges of skel(µ) that contribute with at least one alternating pair of
edges at uµ or vµ, plus up to 4 virtual edges of skel(µ) that contribute with no alternating
pair at uµ or at vµ. For any permutation π of the virtual edges of pert(τ), let τπi be the
P-node obtained by restricting τ to the first i virtual edges in π. We fix the embedding of
skel(τπi ) in such a way that the virtual edges of skel(τπi ) are ordered according to π. Then,
in a fashion similar to the S-node case, we can compute S(τπi ) for the given embedding of
skel(τπi ) by combining S(τπi−1) and S(ei) in O(k2) time (recall that both these sets have size
O(k), by Property 1). Clearly, for any fixed π, we can compute S(τhπ ) in O(k3) time. Thus,
by performing the above computation for all the (2k + 4)! possible permutations for the
virtual edges of pert(τ), we can construct S(τ) in O((2k + 4)!k3 + | skel(µ)|) time. J

Altogether, Lemmas 12 and 13 yield the following main result.

I Lemma 14. k-MaxModality can be solved in O((2k+4)!k3n) for series-parallel digraphs.

Observation 1, Lemma 14, and Theorem 9 immediately imply the following.

I Corollary 15. k-Modality can be solved in O(((2k + 4)!k3 log k)n) for directed partial
2-trees.

Due to the special algorithmic framework we are employing, we can however turn the
multiplicative O(log k) factor in the running time into an additive O(k) factor by modifying
Theorem 9 as follows. When considering a cut-vertex v, we will execute “only once” the
function TestBiconnected by rooting the SPQ-tree at a Q-node η corresponding to an
edge incident to v. This will allow us to compute the minimum modality for cut-vertex v
in an embedding that satisfies m at every vertex, by simply scanning the set S(η), which
takes O(k) time by Property 1, rather than by exploiting a logarithmic number of calls to
TestBiconnected.

I Theorem 16. k-Modality can be solved in O((2k + 4)!k3n) for directed partial 2-trees.
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6 A Linear-time Algorithm for 4-MaxModality when ∆ ≤ 6

In this section, we show that in the special case when k = 4 and G has maximum degree ∆ ≤ 6,
it is possible to compute the set S(µ) when µ is an R-node in linear time in the size of skel(µ).

Our strategy to compute S(µ) is as follows. We select a single tuple from the admissible
set of each virtual edge incident to uµ and vµ, in every possible way. Each selection determines
a “candidate tuple” t for S(µ). First, we check if t is admissible at both u and v. Second,
we restrict the tuples of the edges incident to the poles to only the tuples that form t and
check if there is a way of satisfying m at the (inner) vertices of skel(µ). If both the poles
and the inner vertices are satisfiable, then we add t to S(µ). Since the degrees of the poles
are bounded, there is at most a constant number of candidate tuples which must be checked.
The complexity lies in this check.

We now formally describe how to compute S(µ). First, for each virtual edge ei of skel(µ)
incident to the poles of µ, we select a tuple ti from S(µi). Let Tu = [tu,1, tu,2, . . . , tu,`] and
Tv = [tv,1, tv,2, . . . , tv,h] be the list of tuples selected for the virtual edges incident to uµ and
to vµ, respectively. Each pair of lists Tu and Tv yields a candidate tuple t = 〈σ1, a, σ2, b〉
for µ. However, the tuples selected to construct Tu and Tv allow for an admissible embedding
of pert(µ) realizing tuple t if and only if : (Condition 1) tuple t satisfies m at uµ and at
vµ, and (Condition 2) it is possible to select tuples for each of the remaining virtual edges
of skel(µ) that satisfy m at every internal vertex of skel(µ). Let P(µ) be the set of candidate
tuples for µ constructed as described above. We can easily filter out the candidate tuples
that do not satisfy Condition 1. In the remainder of the section, for each pair of lists Tu and
Tv yielding a tuple t ∈ P(µ), we will show how to test Condition 2 for µ in linear time. This
and the fact that |P(µ)| ∈ O(1) imply the following.

I Lemma 17. Set S(µ) can be constructed in O(| skel(µ)|) time for an R-node µ, if ∆ ≤ 6.

Altogether, Lemmas 12, 13 and 17 yield the following main result.

I Lemma 18. 4-MaxModality can be solved in linear time for biconnected digraphs
with ∆ ≤ 6.

Observation 1, Lemma 18, and Theorem 9 immediately imply the following.

I Theorem 19. 4-Modality can be solved linear time for digraphs with ∆ ≤ 6.

To prove Lemma 17, we show how to solve the following auxiliary problem for special
instances.

Problem: 4-MaxSkelModality

Input: A triple 〈G = (V, E),S = {S(e1), . . . , S(e|E|)}, m〉 where G is an embedded directed
graph, each S(ei) is a set containing embedding tuples for the virtual edge ei ∈ E, and
m : V → E+

4 is the maximum-modality function.
Question: Can we select a tuple from each set S(ei) in such a way that the modality at each

vertex v ∈ V is at most m(v)?

For each pair of lists Tu and Tv yielding a candidate tuple in P(µ), we will construct
an instance Iµ(Tu, Tv) = (G,S,m) of 4-MaxSkelModality as follows. First, we set
G = skel(µ) and we fix the embedding of G to be equal to the unique regular embedding of
skel(µ). Second, for each virtual edge eu,i incident to uµ, with i = 1, . . . , `, we set S(eu,i) =
{tu,i}; for each virtual edge ev,j incident to vµ, with j = 1, . . . , h, we set S(ev,j) = {tv,j};
and, for each of the remaining virtual edges ed of skel(µ), we set S(ed) = S(µd). Finally,
the maximum-modality function of Iµ coincides with m.
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Clearly, Iµ(Tu, Tv) is a positive instance of 4-MaxSkelModality if and only if, given
the constrains imposed by the tuples in Tu and in Tv, there exists a selection of tuples for
the edges of G not incident to uµ or vµ that satisfies m at all the internal vertices of G, i.e.,
Condition 2 holds.

Let v be a vertex of G and let e be an edge in E(v), we denote by Av(e) the maximum
number of alternations at v over all the tuples in S(e).

I Definition 20 (Good instances). An instance of 4-MaxSkelModality is good if, for
any vertex v in G, it holds

∑
e∈E(v)(Av(e) + 1) ≤ 6.

Note that, for each edge e in ske(µ) incident to a vertex v, pert(e) contributes at least
Av(e) + 1 edges to dpert(e)(v). Thus, we have

∑
e∈E(v)(Av(e) + 1) ≤

∑
e∈E(v) dpert(e)(v) ≤ 6.

Therefore, instance Iµ(Tu, Tv) is good. Although 4-MaxSkelModality turns out to be
NP-complete in general [21, Section 9], we are now going to show the following main
positive result.

I Theorem 21. 4-MaxSkelModality is linear-time solvable for good instances.

The outline of the linear-time algorithm to decide whether a good instance I = 〈G =
(V,E),S = {S(e1), . . . , S(e|E|)},m〉 of 4-MaxSkelModality is a positive instance is
as follows.

We process I by means of a set of reduction rules applied locally at the vertices of
G and their incident edges. Each of these rules, if applicable, either detects that the
instance I is a negative instance or transforms it into an equivalent smaller instance I ′ =
〈G′,S ′,m′〉. Each rule can be applied when specific conditions are satisfied at the
considered vertex. A rule may additionally set a vertex as marked. Any marked vertex
v has the main property that any selection of tuples from the admissible sets of the
edges incident to v satisfies m′ at v.
Let I∗ be the instance of 4-MaxSkelModality obtained when no reduction rule may
be further applied. We prove that instance I∗ has a special structure that allows us to
reduce the problem of testing whether I∗ is a positive instance of 4-MaxSkelModality
to that of verifying the NAE-satisfiability of a constrained instance of NAESAT, in fact,
of Planar NAESAT. Since Planar NAESAT is in P [25], this immediately implies
that 4-MaxSkelModality is also in P. However, in [21, Section 7], by strengthening
a result of Porschen et al. [26], we are able to show that the constructed instances
of NAESAT are always satisfiable and that a satisfying NAE-truth assignment can
be computed in linear time.

In [21, Section 8], we provide three reduction rules that turn a good instance I into an
equivalent smaller good instance I ′. Let I∗ = 〈G∗,S∗,m∗〉 be the good instance, equivalent
to I, produced by applying a maximal sequence of reduction rules to I. We say that I∗ is
irreducible. The following lemma will prove useful.

I Lemma 22. For each unmarked vertex v ∈ V (G∗), it holds that: (i) v has degree 3, (ii)
m∗(v) = 4, and (iii) there exist tuples t1, t2 ∈ S∗(e) such that the embedding pair of t1 and
of t2 at v are (�◦, 1) and (◦�, 1), respectively, for each edge e incident to v.

Our next and final tool is the following, quite surprising, result.

I Lemma 23. Any irreducible good instance I∗ is a positive instance.

Theorem 21 immediately follows from Lemma 23. We conclude the section by providing
a sketch of the proof of Lemma 23. A detailed proof can be found in [21, Section 8].
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Outline of the proof of Lemma 23. If a vertex is marked then any combination of tuples
will satisfy m∗ at it. So the proof is mainly concerned with unmarked vertices. By Lemma 22,
edges where both endpoints are unmarked have one of the following tuple sets: SA =
{〈�◦, 1, �◦, 1〉, 〈◦�, 1, ◦�, 1〉}, SB = {〈◦�, 1, �◦, 1〉, 〈�◦, 1, ◦�, 1〉}, or SA ∪SB . In the last case we arbitrarily
remove either SA or SB. Taking advantage of the structure of irreducible instances, the
problem of solving I∗ is reduced in linear time to the one of testing the NAE-satisfiability of
a CNF-formula φ in which every variable occurs in at most two clauses. Each edge incident
to an unmarked vertex has the two possible embedding pairs (�◦, 1) or (◦�, 1) at the vertex. We
create a variable for each incidence between an edge and an unmarked vertex. For each edge
with two unmarked endpoints, we introduce an edge clause to ensure that the embedding
pairs for each endpoint are selected in a consistent way. Consider an unmarked vertex v and
assume, for simplicity of description, that its three incident edges have the same orientation
at v. A selection of embedding pairs for the edges incident to v will not satisfy m∗(v) if
and only if all such pairs coincide. Therefore, we can introduce a vertex clause to model
such constraint as a NAESAT clause that is the disjunction of the three boolean variables
for the endpoints of the edges incident to v. The NAE-formula φ has the property that
each variable occurs in at most two clauses. Moreover, the variable-clause graph Gφ of φ
contains no connected component that is isomorphic to a simple cycle, since vertex clauses
have degree 3. In [21, Section 7], we prove that such instances are always NAE-satisfiable
and provide a linear-time algorithm to construct a NAE-truth assignment for such formulas.
This proves that I∗ is always a positive instance.

7 Conclusions

In this paper, we studied the complexity of the k-Modality problem, with special emphasis
on k = 4. We provided complexity, algorithmic, and combinatorial results. Our main
algorithmic contribution for k = 4 and ∆ ≤ 6 leverages an elegant connection with the
NAE-satisfiability of special CNF formulas, whose study allowed us to strengthen a result
in [26]. Moreover, we showed notable applications of the previous results to some new
interesting embedding problems for clustered networks, some of which solve open problems
in this area [3, 18].

References
1 Patrizio Angelini, Giordano Da Lozzo, Marco Di Bartolomeo, Valentino Di Donato, Maurizio

Patrignani, Vincenzo Roselli, and Ioannis G. Tollis. Algorithms and Bounds for L-Drawings
of Directed Graphs. Int. J. of Foundations of Computer Science, 29(04):461–480, 2018.
doi:10.1142/S0129054118410010.

2 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio
Patrignani, and Ignaz Rutter. Beyond Level Planarity. In Yifan Hu and Martin Nöl-
lenburg, editors, GD ’16, volume 9801 of LNCS, pages 482–495. Springer, 2016. doi:
10.1007/978-3-319-50106-2_37.

3 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrig-
nani, and Ignaz Rutter. Intersection-Link Representations of Graphs. J. Graph Algorithms
Appl., 21(4):731–755, 2017. doi:10.7155/jgaa.00437.

4 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo
Roselli. The importance of being proper: (In clustered-level planarity and T-level planarity).
Theor. Comput. Sci., 571:1–9, 2015.

5 Patrizio Angelini, Peter Eades, Seok-Hee Hong, Karsten Klein, Stephen G. Kobourov, Giuseppe
Liotta, Alfredo Navarra, and Alessandra Tappini. Turning Cliques into Paths to Achieve
Planarity. In Therese C. Biedl and Andreas Kerren, editors, GD 2018, volume 11282 of LNCS,
pages 67–74. Springer, 2018. doi:10.1007/978-3-030-04414-5_5.

https://doi.org/10.1142/S0129054118410010
https://doi.org/10.1007/978-3-319-50106-2_37
https://doi.org/10.1007/978-3-319-50106-2_37
https://doi.org/10.7155/jgaa.00437
https://doi.org/10.1007/978-3-030-04414-5_5


J. J. Besa, G. Da Lozzo, and M.T. Goodrich 19:15

6 Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista, Valentino Di Donato, Philipp
Kindermann, Günter Rote, and Ignaz Rutter. Windrose Planarity: Embedding Graphs with
Direction-Constrained Edges. ACM Trans. Algorithms, 14(4):54:1–54:24, September 2018.
doi:10.1145/3239561.

7 Christian Bachmaier, Franz-Josef Brandenburg, and Michael Forster. Radial Level Pla-
narity Testing and Embedding in Linear Time. J. Graph Algorithms Appl., 9(1):53–
97, 2005. URL: http://jgaa.info/accepted/2005/BachmaierBrandenburgForster2005.9.
1.pdf, doi:10.7155/jgaa.00100.

8 Paola Bertolazzi, Giuseppe Di Battista, Giuseppe Liotta, and Carlo Mannino. Upward Drawings
of Triconnected Digraphs. Algorithmica, 12(6):476–497, 1994. doi:10.1007/BF01188716.

9 Carla Binucci, Walter Didimo, and Francesco Giordano. Maximum upward planar subgraphs
of embedded planar digraphs. Comput. Geom., 41(3):230–246, 2008.

10 Carla Binucci, Walter Didimo, and Maurizio Patrignani. Upward and quasi-upward planarity
testing of embedded mixed graphs. Theor. Comput. Sci., 526:75–89, 2014. doi:10.1016/j.
tcs.2014.01.015.

11 Kellogg S. Booth and George S. Lueker. Testing for the Consecutive Ones Property, Interval
Graphs, and Graph Planarity Using PQ-Tree Algorithms. J. Comput. Syst. Sci., 13(3):335–379,
1976. doi:10.1016/S0022-0000(76)80045-1.

12 Guido Brückner and Ignaz Rutter. Partial and Constrained Level Planarity. In Philip N.
Klein, editor, SODA ’17, pages 2000–2011. SIAM, 2017. doi:10.1137/1.9781611974782.130.

13 Steven Chaplick, Markus Chimani, Sabine Cornelsen, Giordano Da Lozzo, Martin Nöllenburg,
Maurizio Patrignani, Ioannis G. Tollis, and Alexander Wolff. Planar L-Drawings of Directed
Graphs. In Fabrizio Frati and Kwan-Liu Ma, editors, GD ’17, volume 10692 of LNCS, pages
465–478. Springer, 2017. doi:10.1007/978-3-319-73915-1_36.

14 Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati, and Maurizio Patrignani. Computing
NodeTrix Representations of Clustered Graphs. J. Graph Algorithms Appl., 22(2):139–176,
2018.

15 Giuseppe Di Battista and Enrico Nardelli. Hierarchies and planarity theory. IEEE Trans.
Systems, Man, and Cybernetics, 18(6):1035–1046, 1988. doi:10.1109/21.23105.

16 Giuseppe Di Battista and Roberto Tamassia. On-Line Graph Algorithms with SPQR-Trees.
In Mike Paterson, editor, ICALP ’90, volume 443 of LNCS, pages 598–611. Springer, 1990.
doi:10.1007/BFb0032061.

17 Ashim Garg and Roberto Tamassia. On the Computational Complexity of Upward and
Rectilinear Planarity Testing. SIAM J. Comput., 31(2):601–625, 2001. doi:10.1137/
S0097539794277123.

18 Emilio Di Giacomo, Giuseppe Liotta, Maurizio Patrignani, and Alessandra Tappini. NodeTrix
Planarity Testing with Small Clusters. In Fabrizio Frati and Kwan-Liu Ma, editors, GD ’17,
volume 10692 of LNCS, pages 479–491. Springer, 2017. doi:10.1007/978-3-319-73915-1_37.

19 Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. NodeTrix: a Hybrid Visu-
alization of Social Networks. IEEE Trans. Vis. Comput. Graph., 13(6):1302–1309, 2007.
doi:10.1109/TVCG.2007.70582.

20 John E. Hopcroft and Robert Endre Tarjan. Efficient Planarity Testing. J. ACM, 21(4):549–568,
1974. doi:10.1145/321850.321852.

21 Juan José Besa, Giordano Da Lozzo, and Michael T. Goodrich. Computing k-Modal Embed-
dings of Planar Digraphs. CoRR, abs/1907.01630, 2019. arXiv:1907.01630.

22 Michael Jünger, Sebastian Leipert, and Petra Mutzel. Level Planarity Testing in Linear Time.
In Sue Whitesides, editor, GD ’98, volume 1547 of LNCS, pages 224–237. Springer, 1998.
doi:10.1007/3-540-37623-2_17.

23 Boris Klemz and Günter Rote. Ordered Level Planarity, Geodesic Planarity and Bi-
Monotonicity. In Fabrizio Frati and Kwan-Liu Ma, editors, GD ’17, volume 10692 of LNCS,
pages 440–453. Springer, 2017. doi:10.1007/978-3-319-73915-1_34.

ESA 2019

https://doi.org/10.1145/3239561
http://jgaa.info/accepted/2005/BachmaierBrandenburgForster2005.9.1.pdf
http://jgaa.info/accepted/2005/BachmaierBrandenburgForster2005.9.1.pdf
https://doi.org/10.7155/jgaa.00100
https://doi.org/10.1007/BF01188716
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1016/j.tcs.2014.01.015
https://doi.org/10.1016/S0022-0000(76)80045-1
https://doi.org/10.1137/1.9781611974782.130
https://doi.org/10.1007/978-3-319-73915-1_36
https://doi.org/10.1109/21.23105
https://doi.org/10.1007/BFb0032061
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1007/978-3-319-73915-1_37
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1145/321850.321852
http://arxiv.org/abs/1907.01630
https://doi.org/10.1007/3-540-37623-2_17
https://doi.org/10.1007/978-3-319-73915-1_34


19:16 Computing k-Modal Embeddings of Planar Digraphs

24 JiaWei Lu, Yuanming Zhang, Jun Xu, Gang Xiao, and Qianhui Althea Liang. Data Visu-
alization of Web Service with Parallel Coordinates and NodeTrix. In IEEE International
Conference on Services Computing, SCC 2014, Anchorage, AK, USA, June 27 - July 2, 2014,
pages 766–773. IEEE Computer Society, 2014. doi:10.1109/SCC.2014.104.

25 B. M. E. Moret. Planar NAE3SAT is in P. SIGACT News, 19(2):51–54, June 1988. doi:
10.1145/49097.49099.

26 Stefan Porschen, Bert Randerath, and Ewald Speckenmeyer. Linear Time Algorithms for
Some Not-All-Equal Satisfiability Problems. In Enrico Giunchiglia and Armando Tacchella,
editors, SAT ’03, volume 2919 of LNCS, pages 172–187. Springer, 2003. doi:10.1007/
978-3-540-24605-3_14.

27 Xinsong Yang, Lei Shi, Madelaine Daianu, Hanghang Tong, Qingsong Liu, and Paul M. Thomp-
son. Blockwise Human Brain Network Visual Comparison Using NodeTrix Representation.
IEEE Trans. Vis. Comput. Graph., 23(1):181–190, 2017. doi:10.1109/TVCG.2016.2598472.

https://doi.org/10.1109/SCC.2014.104
https://doi.org/10.1145/49097.49099
https://doi.org/10.1145/49097.49099
https://doi.org/10.1007/978-3-540-24605-3_14
https://doi.org/10.1007/978-3-540-24605-3_14
https://doi.org/10.1109/TVCG.2016.2598472

	Introduction
	Definitions
	Implications on Hybrid Representations
	Polynomial-time Algorithms
	Simply-Connected Graphs
	Biconnected Graphs

	Partial 2-trees
	A Linear-time Algorithm for 4-MaxModality when Delta <= 6
	Conclusions

