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—— Abstract

We briefly introduce a unified model to characterize correctness levels stronger (or equal to) serializ-
ability in the presence of application invariant. We propose to classify relations among committed
transactions into data-related and application semantic-related. Our model delivers a condition that
can be used to verify the safety of transactional executions in the presence of application invariant.
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1 Introduction

When the concurrency control implementation of a transactional system is required to enforce
an application-level invariant on shared data accesses (i.e., an expression that should be
preserved upon every atomic update [4]), ad-hoc reasoning about its correctness is a tedious
and error-prone process. Traditional (data-related) constraints (e.g., transaction conflicts)
are well-formalized with established correctness levels, such as Serializability and Snapshot
Isolation [1]. However, a unified model encompassing the various ezternal (semantic-related)
constraints that enforce application invariant has not been formalized yet.

In this brief announcement we make a step towards defining such a model. We intro-
duce a theoretical framework that formalizes correctness levels stronger than (or equal to)
serializability by defining their transaction ordering relations as a union of two sets of data
and external dependency. This approach is opposed to the traditional way of defining these
relations through an ad hoc analysis. This framework can be used to define an offline checker
that verifies the safety of transactional executions. The intuition behind our formalization
is simple. Assuming a serializable concurrency control [1], relations between transactions
in an execution can be characterized as data dependency, if they are generated by data
conflicts, or external dependency, if they affect the satisfaction of application invariant. This
decomposition allows us to define a methodology to enrich the traditional transaction Direct
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Serialization Graph (DSG) [1] with such external ordering relations. We use the formaliz-
ation to introduce a safety condition that verifies correctness of transactional executions
(Theorem 3).

We motivate our model by showing an example of application with associated invariant.
The example mimics a simple monetary application that imposes different requirements to
clients interacting from different branch locations of the bank. The application mandates the
following invariant: when a transaction is issued by a client in one branch, this transaction
accesses the modifications performed by the latest transactions completed on the same branch
prior its starting. At the same time, the application does not require special constraints on
the order of monetary transactions issued from other branches. That is, transactions from a
remote branch should execute atomically and in isolation, but they might access stale data.

Suppose clients C and Cs from branch « issue two subsequent non-concurrent transactions
T; and Ty accessing the same bank account Ac. The first deposits $10 and the second checks
the total amount of Ac and then withdraws the latest deposited amount ($10). According to
the application semantics, T5 must observe the deposit by 7. Consider another transaction
T3, issued by a client from branch g doing auditing on accounts, including Ac. Application
semantics for T3 does not enforce any requirement on the set of transactions whose outcome
should be observed, including 77 and T5. A serializable concurrency control would “only”
guarantee a transactions order of 77, T and T3 equivalent to some serial order. This serial
order does not consider the application invariant and might order T before 77. Such a
mismatch is due to the lack of application invariant representation in the concurrency control.

One solution to overcome this problem in a serializable concurrency control is to provide
session guarantee [3], meaning transactions from one branch belong to the same session. This
guarantee imposes an additional constraint between 77 and T5 where T5 must observe the
output of T7. Clearly, T3 would belong to a different session. The other solution would be
adopting a stronger correctness level (e.g., strict serializability [1]) among all transactions,
irrespective of their originating branch. An even more conservative solution is to apply
external consistency [2], which brings the clients perceived order among transactions into the
concurrency control so that mismatches are prevented.

With our unified model, these three correctness levels can be modeled in the same way as
a combination of data-related transaction dependency, to satisfy serializability constraints,
and external transaction dependency, to satisfy application invariant. This way, despite the
differences among these correctness levels, our model can assess the correctness of concurrency
controls that satisfy each of them by relying on a single framework.

2 Formalization

A history [1] models the interleaved execution of a set of transactions 17, Tb, ..., T, as an
ordered sequence of their operations (such as read, write, abort, commit). The dependency
graph for a history H, denoted as DSG(H), represents the data-related dependency among
transactions in . Roughly, in this graph each node is a committed transaction in H, and
each directed edge between two nodes can be of the following categories:

read dependency: (T; WR i) A transaction T} read-depends on T; if a read of T} returns
a value written by T;.
write dependency: (T; Ww, T;) A transaction T; write-depends on T; if a write of T

overwrites a value written by T;.

anti-dependency: (T, 2y T;) A transaction T; anti-depends on T; if a write of Tj

overwrites a value previously read by T;.
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» Definition 1. DSG(H) contains a set of tuples and each tuple has the following form:
(T3, Tj, type). This representation shows that a directed data-related (read/write/anti-) de-
pendency edge exists from transaction T; to transaction T;. DSG(H) = {(T;,T;, type) : i,j €
{1,..,n} A type € {RW,WW,WR}}.

Since our model focuses on correctness levels stronger than, or equal to, serializability, we
recall that a history H is serializable if its corresponding D.SG does not contain any cycle [1].
Performing an offline analysis of the DSG graph is a convenient tool for reasoning about
the correctness of data-related dependencies produced by a concurrency control. However,
it does not help verifying correctness of application when invariant should be preserved in
addition to serializability. Our model aims at filling this gap, as follows.

» Definition 2. An External Dependency Graph (EDG) for a given history H, denoted as
EDG(H), determines application-level constraints. In this graph, an edge from transaction

T; to transaction T; means an application-level requirement forces an external dependency
EXT

between T; and T;. We say T; externally-depends on T; (T; — Tj).

Intuitively, application invariant expressed by FDG should neither violate data-related
dependency produced by the concurrency control nor include any two contradicting constraints.
This observation leads to the following theorem where, informally, we consider both DSG and
E DG as a single graph made by the union of them. We can check if a history is serializable
and does not violate application invariant by verifying that the aforementioned single graph
does not contain any cycle.

First, given a history H of n transactions, we define DSG, EDG, and their union as
follows:

DSG(H) = {(V,E1) : V ={T; :i € {1,...,n}} A E1 = {(T;, T}, type) : 3,5 € {1,..,n} A

type € {WR,WW, RW}}.

EDGH) ={(V,E2) : V ={T; : i € {1,..,n}} N E2 = {(T;, T}, type) : 4,5 € {1,..,n} A

type € {EXT}}.

DSG(H)U EDG(H) = (V,E1U E2).

We now define our new FExternal Serializability consistency level. We call a history H
Externally Serializable (or EC-SR) if: 1) it is serializable, and 2) external dependency defined
by the edges of its EDG are not violated. To prove that, it is necessary and sufficient to
show that the union of its DSG, built from the concurrency control implementation, with its
EDG, built from application invariant, does not have any cycle. We formalize that in the
following theorem (the proof is intuitive and omitted due to space limitations):

» Theorem 3. A history H satisfies EC-SR iff DSG(H)UEDG(H) does not have any cycle.
A concurrency control CC satisfies EC-SR iff all the histories produced by CC are EC-SR.
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