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Abstract
A key challenge of smart contract systems is the fact that many useful contracts require access to
information that does not natively live on the blockchain. While miners can verify the value of a
hash or the validity of a digital signature, they cannot determine who won an election, whether there
is a flood in Paris, or even what is the price of ether in US dollars, even though this information
might be necessary to execute prediction market, insurance, or financial contracts respectively.

A number of promising projects and research developments have provided a better understanding
of how one might construct a decentralized, binary oracle - namely an oracle that can respond by
one of two possibilities, typically “yes” or “no”, even while not requiring the interaction of a trusted
third party. In this work, we extend these ideas to construct a general-purpose, decentralized oracle
that can estimate the value of a real-world quantity that is in a dense totally ordered set, such
as R. In particular, this proposal can be used to estimate real number valued quantities, such as
required for a price oracle. We will establish a number of desirable properties about this proposal.
Particularly, we will see that the precision of the output is tunable to users’ needs.
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1 Introduction and related work

Blockchains and, specifically, smart contract platforms such as Ethereum [2], provide signific-
ant opportunities for systems that transfer value in a trustless way. However, the inability
of blockchains to natively observe events in the outside world has limited this potential.
While miners can verify computations, such as required for validating a digital signature, as
part of the protocol they perform, this protocol generally does not have access to off-chain
information, such as weather data or even prices of blockchain-based assets in USD terms
that may be required for contracts such as flood insurance or financial contracts to perform
properly. Indeed, while new models of economic relationships have been seen to be facilitated
by smart contracts [20, 11], such smart contracts will likely often require access to off-chain
information. Already in the Ethereum white paper [2], the need for oracles, i.e. mechanisms
that can import external information on-chain, is discussed as necessary to overcome the
limitation of “value-blindness” of financial contracts towards crypto-assets. The limitations
on the types of applications that are possible on smart contract platforms that are imposed by
the difficulty in obtaining adequate oracles have since remained an active source of discussion
in the blockchain community [9, 13].
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Town Crier [21] and TLS Notary [6] allow for demonstrating on-chain that some informa-
tion has been published on a given TLS enabled website. However, this approach requires
that the website be trusted to honestly provide the required information; hence it is not
appropriate for all use cases. Furthermore, this style of oracle can be vulnerable to insider
attacks where a malicious employee of whatever entity controls the website can influence
the information that is used on-chain. ChainLink [14], which has acquired Town Crier [12],
proposes a model in which data drawn from multiple third party sources can be aggregated
and a reputation system is used to evaluate different sources.

A contrasting approach is taken by decentralized oracles, namely oracles that do not
depend on any trusted third party with special privileges. These systems typically involve
setting up some economic game. Then, the incentive structure of this game is designed so
that if participants follow their incentives, the oracle will produce correct answers.

The most successful example of a price oracle to date is likely that which is used by
Maker DAO [16] so that its stablecoin Dai can remain pegged to the US dollar. As Maker
DAO is based on a system of collateralization, and collateral is in ether, an oracle that can
give the price of ether in USD is required. Maker DAO uses a median of values provided
by trusted authorities such as leading exchanges, which are chosen (and can be replaced)
by MKR token holders. Thus, this oracle is decentralized in the sense that it is ultimately
responsive to token holders, albeit via a delegated system. It is worthwhile to note that, in
this case, MKR holders have a strong incentive to choose good oracles as the usefulness of
Dai as a stablecoin drives demand for MKR tokens, which must be burned to pay a fee when
recovering collateral. While this system has contributed to the impressive stability of Dai,
even in the recent cryptocurrency bear market, it is not clear how to generalize this idea to
price oracles not built around a widely-used stablecoin.

Of particular note are the existing oracles based on the concept of Schelling points [18].
Here, users submit answers for what the output of the oracle should be and are rewarded
if they are coherent with the majority and/or punished if they are incoherent. An early
proposal for a Schelling point based oracle was Truthcoin [19]. The underlying idea, is then
that users will submit true answers because they expect other users to also submit true
answers. An attempt to apply this idea to price oracles discussed in [10] is to have users
submit a value and then outputting the median submission. Then submitters are penalized
if their submission falls outside of the 25th to 75th percentile range of all submissions,
ideally encouraging coherence around the true result. As already discussed in [10], this first
version of a Schelling point based price oracle is potentially vulnerable to “micro-cheating”
as submitters risk little penalty if they provide small variations on the true value, as long as
this variation is not too extreme. Such “micro-cheating” may allow an attack to nudge the
output of the oracle and potentially affect the decision making of other submitters, leading
to more substantially deviations over time.

A notable example of a system that builds upon the ideas of Truthcoin is Augur [17].
Augur provides oracles for prediction markets by allowing holders of the Augur token REP
to dispute responses provided by default responders designated by the creator of the market.
Augur allows question askers to create markets where the answer can be binary, multiple
choice, or scalar (i.e. drawn from R). Notably, when creating a scalar prediction market, the
asker must currently specify a minimum and maximum value, as well as a precision, which
somewhat limits the flexibility of such markets. Moreover, note that Augur itself requires
knowledge of the price of the Augur token REP in order to determine if its fees should be
adjusted up or down in order to perform a “market cap nudge” so that buying a majority of
the REP to perform a 51% attack is financially not worthwhile relative to the amount of
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value at stake in Augur prediction markets. This would be a natural use case for Augur’s
own scalar oracle. However, for the moment, Augur has opted to use a delegated system
based on a collection of trusted third parties to determine the price of REP for these fee
adjustments and considers eventually using its scalar oracle for this purpose an “active area
of research” [5, 17].

Similar to Augur, Gnosis [4] offers a prediction market system based on oracles. Gnosis
is “oracle agnostic,” meaning that a Gnosis prediction market contract can reference any
oracle [8]. That said, the Gnosis team has developed oracles themselves which can be used
for their markets, such as their “ultimate oracle” mechanism [3]. Gnosis allows for prediction
markets based on scalar values such as prices, by proposing ultimately binary questions such
as whether the price will rise or fall [8].

Kleros [15] is a dispute resolution system on Ethereum based on the idea that parties
can enter into business relationships for which any financial transfers are held in escrow in
an Ethereum contract. Then, in case of dispute between the parties, a number of “jurors”
are randomly drawn via a token weighted system to rule on the case and are incentivized
via a Schelling point based mechanism. Already, such a system is a kind of oracle as it
brings knowledge of the honest party in these cases on-chain, and the Kleros white paper
[15] envisages asking jurors a wide variety of questions, so that Kleros can act as a general
oracle. At its current stage of development [1], Kleros allows its jurors to rule between a
finite set of predetermined options, particularly allowing binary choices. A notable feature of
Kleros, as the cases that are considered by Kleros may require a substantial per-juror effort
to be analyzed, is that it includes an appeal system so that juror effort is minimized even as
the security against potential attacks should scale with the number of jurors that would be
involved in a potential appeal.

Finally, ASTRAEA [7] proposes an oracle capable of providing a binary outputs and
provides a rigorous analysis of the security properties of their system. ASTRAEA makes use
of two groups – “voters” and “certifiers” – with different incentive structures that must agree
for the oracle to return a value. This departs somewhat from the structure of the Schelling
point based systems described above, but uses similar ideas.

2 Our contribution

We assume the existence of a decentralized, general purpose oracle that is capable of deciding
between binary propositions, namely it is capable of producing true answers to statements
about the external world such that the response is either “yes” or “no.” For example, one
could use Kleros [15], Augur [17], or ASTRAEA [7] to play this role, inheriting their respective
security models and guarantees. Then we propose a way to extend such a binary oracle
into an oracle capable of producing an element in a dense totally ordered set - namely a
totally ordered set such that if x and y are in the set, there exists some z in the set such
that x < z < y. In particular, as the set of real numbers R is an example of such a set,
our oracle can be used to determine the price of some asset in a way that can be used
on-chain. This oracle remains decentralized and general purpose. We establish a number of
desirable properties about this oracle, particularly that the ultimate precision of the output
dynamically adjusts to the greatest level of precision that is demanded by a user that is
ultimately determined to be honest. Hence, honest users can force very precise outcomes
(see Theorem 11) while limiting the ability of hostile users to delay the functioning of the
oracle or otherwise consume network resources (see Propositions 8 and 9).

Tokenomics 2019
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3 Proposal

We take S to be a dense totally ordered set (such as R).

3.1 Assumptions on the underlying binary oracle
We suppose we have access to a pre-existing oracle that can decide binary propositions about
the real-world. Namely, suppose we have two statements A and B, one of which corresponds
to reality. Then the binary oracle:

OB : {possible submissions to a (cryptoeconomic) game} → {A,B}

will return one of A or B in a way that can be computed on-chain, after a delay of t Ethereum
blocks for the (cryptoeconomic) game to be played, and in exchange for paying some fee A.

Furthermore, we allow for the possibility that the binary oracle has an appeal mechanism,
which may cause an additional time delay and additional fees. Namely, we suppose that
any actor can appeal a ruling of the binary oracle in exchange for paying an additional fee,
fA,i or fB,i, when one is in the ith appeal round and is staking on the claim that A or B is
true respectively. One might want to have fA,i 6= fB,i, for example, to require higher appeal
fees for the side that lost the previous round. If this fee is paid on behalf of one “side,” i.e.
is staked on the truth of A or B, the corresponding fee must be paid for the other side as
well (with the potential for multiple actors to pay this fee collectively). If one side pays an
appeal fee and not the other, the side that pays its fees is considered to be the result of
the binary oracle. If both sides pay their fees, the binary oracle rules again (with the idea
that more resources can be put towards this ruling, so ideally it is more likely to be correct).
Whatever fees that are paid on behalf of the side that is the ultimate output of the oracle
after all appeals are refunded, whereas fees paid on behalf of the other side are lost (with the
potential that they are at least partially redistributed to the fee payers of the winning side).

Appeals result in delaying the result of the oracle by an additional t Ethereum blocks per
appeal, up to some maximum number of appeal rounds. In Section 5 we will assume bounds
on the growth of appeal fees and consider resulting bounds on the attacker’s ability to delay
the result of the oracle in terms of her resources.

This proposal was originally developed as an extension to Kleros [15]. As a result, our
assumptions above on the structure of eventual appeals are modeled on the Kleros system.
The Kleros fee model [1] is designed so that there is an incentive to pay fees on behalf of
outcomes that one thinks are likely to ultimately to be chosen by the oracle because one can
win some of the fees staked by the losing side. Indeed, Kleros envisages the participation
of fee insurers whose economic model is to pay fees on behalf of cases they deem worthy,
reducing the practical inconvenience of requiring both sides of the case to pay fees.

However, the successive dispute rounds used in Augur [17] can also be thought of as
appeals satisfying this structure (taking two consecutive dispute rounds together and thinking
of them as a single appeal), with their “forking market” representing a decision that has
reached the maximum number of appeals. Moreover, our results should be adaptable to
binary oracles with differing appeal systems. Indeed, one can recover the situation of a
binary oracle without an appeal mechanism by just considering that the maximum number
of appeals is zero. Hence our results apply equally to such systems.

3.2 Discussion of actors and attack model
The principal actors of our proposal, beyond whatever actors participate in the underlying
binary oracle that is used, are respondents, who submit information about v ∈ S, the value
that the oracle is attempting to determine. Specifically each respondent submits an interval in
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which they believe that v belongs. Respondents pay a deposit D which they risk losing if the
information provided is ultimately judged to be incorrect, see Section 4. While respondents
may obtain a reward if the information they provide is judged to be correct, we will see that
they are not on average compensated by our system. Hence, we expect that the primary
motivation of respondents is some external interest in the result the oracle produces. We
will see, under some idealized assumptions about the performance of the OB, that it is
sufficient for there to be a single honest respondent for our oracle to produce honest results,
see Theorem 11. For an oracle that is part of a decentralized application with wide use,
participation of respondents in these conditions is not an unrealistic assumption. However,
an investigation of additional ways to incentivize the participation of respondents may be a
subject for future work.

In this work, we will consider attacks from attackers that have the capacities of respondents.
Namely, we will analyze attacks that submit malicious responses or call appeals in a hostile
manner. Of course, the quality of the results of our real-valued oracle depends on the quality
of the results of the underlying binary oracle. As we allow for the possibility of using any
binary oracle, we do not directly consider an attack model where it is possible to corrupt
the results of the binary oracle. However, in our results, it will be clearly indicated when
one must make hypotheses about the accuracy of OB. Furthermore, we do not consider
attacks on the underlying infrastructure of the smart contract platform, such as 51% attacks
or network denial-of-service attacks on Ethereum.

3.3 Proposed oracle algorithm
The procedure we propose to approximate the true value of some quantity is based on a sort
of modified binary search of the responses, where, rather than split the list of responses at
the median when performing a comparison, we detect incoherences that prevent a consensus
answer from being accepted and then take a comparison with respect to the median of the
list of these incoherences. We are performing these operations on elements in S, which a
priori is not closed under averaging, so the normal median may not be defined. However, if
we need to take the median of a set D with an even number of elements, namely in the case
that requires computing an average, as S is a dense totally ordered set, we can find some
(not necessarily unique) element z of S such that half of the elements of D are on either side
of z. We suppose that for a given S one has some way of efficiently choosing such a z, and
we consider it to be a median of D. In the remainder of this paper, in the context of generic
dense totally ordered sets, we use the words median and average in this sense. In the case
S = R, we take the normal median.

In detail, we consider the following:

I Algorithm 1. Input: Each respondent USRi submits two distinct values - a lower bound
li ∈ S and an upper bound ui ∈ S, li < ui, giving an interval (li, ui) in which this respondent
believes the true value of the question is located.

Sort the lower bound responses into a list L and the upper bound responses into a list U ,
where in each case identical values are considered as single elements.
Compute the lists

L0 = {li ∈ L : ∃uj ∈ U , uj ≤ li, 6 ∃ lk ∈ [uj , li) ∩ L}

and

U0 = {ui ∈ U : ∃lj ∈ L, lj ≥ ui, 6 ∃ uk ∈ (ui, lj ] ∩ U} .

Tokenomics 2019
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Compute

C0 = {median(li, uj) : li ∈ L0, uj ∈ U0, uj ≤ li, 6 ∃ lk ∈ [uj , li) ∩ L, 6 ∃ uk ∈ (uj , li] ∩ U}

(So, if we considered L and U in the same line, essentially L0 would consist of lower
bounds which have an upper bound to their immediate left and U0 would consist of upper
bounds that have a lower bound to their immediate right. Then C0 consists of the midpoints
between each of these pairs.)
If C0 6= ∅

For each z ∈ C0 perform the following in parallel:
∗ Ask the binary oracle OB if

desired value ≤ z

or

desired value > z.

∗ Allow appeals of their decision as necessary following the fee structure described in
Section 3.1, where here the two sides are as follows:

desired value ≤ z

or

desired value > z

· If one side pays its required fees but not the other, OB is considered to rule in
favor of the side that paid its fees.

· If neither side pays its fees, the previous ruling stands.
Take C1 = C0.
While C1 6= ∅
∗ If #C1 is odd, calculate m = median(C1) ∈ C1. If #C1 is even, choose one of the two
middle-most values of C1 as m in some predictable way (such as by always taking
the value on the left).

∗ Eliminate all li and ui that are on the wrong side of what OB decided with respect
to m (taking into account the final outcome after any appeals) from L and U .

∗ Add m to L if OB has ruled that the true value is higher than m, and add m to U
otherwise.

∗ Recalculate L0 and U0 based on the updated L and U .
∗ (Re)calculate C1 as

{median(li, uj) : li ∈ L0, uj ∈ U0, uj ≤ li, 6 ∃ lk ∈ [uj , li) ∩ L, 6 ∃ uk ∈ (uj , li] ∩ U} .

Output the average of the largest remaining element of L and the smallest remaining element
of U . Payments are made to respondents according to a structure that will be described in
Section 4.

The respondent USRi is ruled incorrect and loses his deposit if the final output of
Algorithm 1, voutput 6∈ (li, ui). See Section 4 for details on the payment made to a respondent
USRi for whom voutput ∈ (li, ui).
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Figure 1 An example of Algorithm 1. Six respondents USRi each submit (li, ui). The elements
of C0 are marked by the short, straight blue lines. The binary oracle OB is called to rule on each
element of C0 in parallel, and then these results are translated into the output via two rounds of the
while loop. The three lines show the state of L ∪ U before the first round, between the two rounds,
and after the second round respectively. The execution shown corresponds to OB ruling that the
true value v is such that v > m1 in round one and v > m2 in round two.

We will choose the respondent deposits to be large enough so that the deposits of
respondents who are ruled incorrect is sufficient to cover the fees required for the initial
ruling (i.e. excluding potential appeals) of each call of OB required by the for loop, namely
at every point in C0. This will require that the deposit D from each respondent be greater
than or equal to A, the total amount of fees required by a single, non-appealed call of OB . In
contrast, the fees for any appeals are submitted independently from the respondent deposits
(depending on the structure of the cryptoeconomic game used by OB , this will typically be
done by parties interested in winning the stake of the other side as discussed in Section 3.1).

I Proposition 1. Enough fees are paid by respondents who are ultimately ruled incorrect to
cover the initial round of all required calls to the binary oracle. Specifically,

# submissions ruled incoherent ≥ #C0 = # rulings required

Proof. As each respondent pays a deposit that includes A, the cost of a call to OB before
appeals, there is A · (# submissions ruled incoherent) available to cover the fees of the total
initial round of binary oracle calls. By construction, there is a ruling with respect to each
point in C0. So it suffices to prove the first inequality.

Take c ∈ C0 such that c ≥ v, where v is the ultimate output of the oracle. For each such c
there are some li ∈ L0, uj ∈ U0 such that uj ≤ c ≤ li and there is no lk ∈ (uj , li) ∩ L. Then
li was the lower bound of an incoherent submission.

We claim that this process produces a distinct li for each c ∈ C0. Indeed, if c1, c2 ∈ C0
are as above with uj,1 ≤ c1 ≤ li,1 and uj,2 ≤ c2 ≤ li,2 but li,1 = li,2, then either

uj,1 ∈ (uj,2, li,2] which contradicts the definition of C0
uj,2 ∈ (uj,1, li,1] which again contradicts the definition of C0 or
uj,1 = uj,2 which, as li,1 = li,2, implies that c1 = c2.

Similarly, for each element of C0 less than v there corresponds some uj ∈ U0 that is the
upper bound of an incoherent submission. J

Tokenomics 2019
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We see that all of the rulings of the binary oracle that are needed to evaluate the while
loop were, in fact, decided.

I Proposition 2. During the while loop, each C1 that is computed is a subset of C0. Hence,
for each m computed during the loop, OB will have ruled either

desired value ≤ m or
desired value > m

Proof. The sets L and U are only modified during the while loop. There, if OB rules that
desired value ≤ m, all elements greater than or equal to m are eliminated from L and U ,
and m is added to U . Due to the local way that C1 is defined, as the elements of L and U
less than m remain unchanged, the only way a new element could be added to C1 is if there
existed some li ∈ L0, m ≤ li such that median(li,m) ∈ C1. However, when computing C1, m
is a strict upper bound for L, so there will not exist any such li. A similar argument applies
if OB had ruled that desired value > m. J

I Remark 3. Note that is possible that OB ’s rulings on different points in C0 will be incoherent;
e.g. one call of OB will rule that v ≤ m1 and another call of OB will rule that v > m2 even if
m2 ≥ m1. This does not prevent the algorithm from halting as the while loop gives priority
to the decisions required along the path of a binary search.

I Remark 4. At the expense of additional gas, after each appeal round in algorithm 1, one
can test whether the required OB calls for the while loop to terminate have been finalized,
i.e. have not been appealed. Depending on how underlying binary oracle it structured, it
may be necessary to resolve all of the appealed calls of OB for an appropriate payment of its
internal incentives, however this need not unnecessarily delay the finalization of the result of
Algorithm 1.

A priori, it is conceivable that at some point of Algorithm 1, L and U become empty and
the last step of the algorithm fails. We see that this cannot, in fact, occur.

I Proposition 5. Suppose that there is at least one submission (l∗, u∗) to the oracle. Then
if Algorithm 1 halts, it returns a value in S.

Proof. We will see that neither L nor U becomes the empty set. Then, in particular, the
last step of Algorithm 1 is well-defined because there is a largest remaining element in L
and a smallest remaining element of U .

We argue inductively that l = min {L ∪ U} is in L after each round of the while loop.
Before the first round, this is clearly true, as we have assumed there is at least one submission,
and for each submitted element of U there is a corresponding, smaller element of L. In each
round of the while loop, after the appropriate value of m is calculated, either
OB rules that desired value > m or
OB rules that desired value ≤ m.

In the first case, m is added to L, and it also becomes min {L ∪ U}. In the second case,
min {L ∪ U} is left unchanged, and hence in L. Hence L never becomes the empty set. A
similar argument shows U 6= ∅. J

Moreover, thinking of C1 as a set of inconsistencies that prevents the oracle from finding an
answer that is a consensus among the different responses, we see that the number of these
inconsistencies is reduced by half after each round of the while loop.

I Lemma 6. Each round of the while loop reduces the length of C1 by at least half.
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Proof. Consider a given round of the while loop. Denote n = #C1 in this round. Note that
the addition of m to L or U after the call to OB cannot create any new elements of C1, as m
becomes either the smallest element of L or the largest element of U .

If n is odd, then n−1
2 elements in C1 are on either side of m. Hence at least this many

elements are eliminated, whichever way OB rules. Moreover, m itself is given as the median
of an upper bound ui to the left and a lower bound lj to the right. Depending on the ruling
of OB , either ui or lj is eliminated. So m is also removed from C1.

If n = 2k is even, then one of the two most central elements of C1 is used as m. Thus, on
one side of m there will be k − 1 elements of C1 and on the other k. Hence there are at least
k elements that are eliminated by the choice of OB, including m itself which again is also
removed from C1. J

Lemma 6 has the immediate consequence that:

I Corollary 7. Algorithm 1 halts.

In Section 6, we will consider more precise estimates on the complexity of Algorithm 1.

4 Incentivizing respondents to submit short intervals

In this section we will describe what payouts are made to respondents based on the results
of Algorithm 1. For the moment, as discussed in Section 3.2, we imagine that there is no
up-front cost paid by the party that sets up whatever application that requires the oracle of
Algorithm 1. Indeed, the cost of any initial round (excluding appeals) calls to OB that are
required in the execution of Algorithm 1 is paid by the respondents. While appeal costs may
be covered by other parties (such as the fee insurers imagined by Kleros [1]), one would expect
that most appeal fees would also be covered by respondents. Then, while some respondents
may make gains from paying fees for the position that is ultimately coherent and winning
stake from respondents who lose their deposits, the amount that must be paid to OB will
collectively mostly come from the respondents. Thus, in terms of the internal incentives of
Algorithm 1, the respondents are playing a negative sum game, and in particular are not,
on average, compensated for their efforts. In the event that there are many parties with an
interest in the result of the oracle, it is nonetheless not unreasonable to expect submissions
from respondents in this setting. Effective models for having an “Asker” that pays a fee
which can cover compensation for respondents is a potential subject for future work.

Recall, a respondent places a deposit D which he loses if the interval he submits (li, ui)
does not contain the output of Algorithm 1. A priori a user might then want to submit a
very large interval such as (−∞,∞) in order to be guaranteed to be correct. (Note again,
parties with an external financial interest in the result of the oracle may nonetheless want an
incentive to submit useful estimates). We will design the redistribution mechanism so that
respondents have an incentive to submit more precise estimates. To do this we will weight
their payouts by an inverse exponential of the length of the submitted intervals.

Consider a respondent USRi who submits an interval Ii = (li, ui). If S is a metric space,
such as R, one can take length(Ii) = ui − li (or more generally as the distance from li to ui).
Then, if the ultimate response to the oracle is not in Ii, the user loses his deposit D. If the
response is in Ii, the user receives

# incorrect responses ·D − cost of first round OB fees∑
j such that USRj correct α

−length(Ij) · α−length(Ii), (1)

where α > 1 is some fixed constant. Note that this quantity is positive by Proposition 1. If
S is not a metric space, then the payoff can be split equally between correct respondents.

Tokenomics 2019
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As such, the sum of the lost deposits from the incorrect users is equal to the sum of the
payouts to the correct respondents plus the amount required to pay the fees required by
OB in the first round of each call. Notice that if a respondent submits an infinite length
interval such as Ii = (−∞,∞), then α−length(Ii) = 0, for payoffs given by formula 1. So the
respondent obtains no reward but suffers no penalty. On the hand, respondents who submit
more precise intervals obtain higher rewards.

In Section 8 we will analyze respondent behavior under the incentives given by formula
1. We will show that, under hypotheses on α and certain heuristic assumptions about
the behavior of OB, that it is also not profitable for respondents to submit intervals that
are smaller than the precision with which a respondent could reasonably know the desired
value. In general, it would be an interesting subject for future experiments to determine
how tweaking the weighting of these payoffs, particularly the constant α, would change user
behavior to encourage them to submit precise answers for high payoffs, accepting the risk
that a very precise answer risks being ruled incorrect even if answered in good faith.

5 Bounds on time griefing in terms of attacker resources

In this section, we estimate an attacker’s ability to delay the oracle as a function of her
resources. First note,

I Proposition 8. If all intervals submitted by the respondents are correct, that is to say the
true value v ∈ Ii for all i, then no calls to OB are required.

Proof. If v ∈ Ii = (li, ui) for all i, then li < v for all v. Similarly v < uj for all j. Hence
#C0 = ∅ and no calls to OB are made. J

Now we consider situations where we have an attacker. All of the calls of OB of the for
loop are performed in parallel, however an attacker can attempt to delay the result of the
oracle by appealing one or more of these decisions. As discussed in Section 3.1, each appeal
round of OB takes t time and all other operations take negligible time. Again, we take that
the fees for an initial round ruling of OB to be A.

Suppose that appeal fees are such that

min


i∑

j=1
fA,j ,

i∑
j=1

fB,j

 ≥ K ·A · 2i,
for all i, where K > 0 is a constant that depends only on what algorithm is used for the
underlying binary oracle. This is particularly the case if one uses either Kleros [15] or Augur
[17] as the binary oracle.1 Denote by R the attacker’s financial resources.

I Proposition 9. Suppose that all responses submitted other than the attacker’s are ruled
correct, namely the output value is in the submitted interval, and suppose that fA,i and fB,i
are as above. Then, the maximum number of appeals required is OA(log2(R)), and hence the
maximum amount of time an attacker can delay a result is OA(t · log2(R)), where the implicit
constants are allowed to depend on A.

1 This is explicitly the case for Kleros [1]. In Augur [17], applied to a binary decision between A and B,
the dispute bond required to dispute a pending outcome of B is 2S(B, n)−S(A, n) ≥ S(B, n) ≥ S(A, n),
where S(∗, n) denotes the total amount of REP staked on choice ∗ prior to the nth round. Hence,
fA,i ≥

∑i−1
j=1 fA,j ∀i. Then the bound follows from a standard induction argument.
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Proof. If the attacker repeatedly appeals a given decision, then the appeal fees through the
mth appeal are at least K · A · 2m. Then, even if the attacker uses all of her resources in
appealing a single decision, we have

K ·A · 2m ≤ money spent by Attacker ≤ R⇒ m ≤ log2

(
R

K ·A

)
= OA(log2 R).

(Note that as OB is assumed to be always correct, the attacker will ultimately lose her appeal
so she these resources will, in fact, be consumed.) J

6 Running time and number of calls to binary oracle

In Section 5, we examined an attacker’s ability to delay the execution of the oracle by forcing
additional appeals. In this section, we will examine the effect of one or more incoherent
respondents on the running times of the for and while loops. This is particularly relevant in
evaluating the gas costs of Algorithm 1.

Recall, the cost of submitting an incorrect response (lattack, uattack) is D, via a lost
deposit when it is eventually determined that the ultimate answer to the oracle is not in
the submitted interval. Once again, we denote by R the collective financial resources of
respondents who submit intervals that are ultimately ruled to be incoherent, which without
loss of generality we can assume to all be controlled by a single attacker.

I Proposition 10. Suppose that all responses submitted other than the attackers are ruled
correct, namely the output value is in each of these intervals. Then there are at most R

D

many calls to OB that must be resolved during the for loop. Consequently, the while loop
requires at most max {log2 (#C0) + 1, 0} ≤ max

{
log2

(
R
D

)
+ 1, 0

}
rounds.

Proof. The attacker can only place at most R
D incorrect solutions. So, by Proposition 1,

# rulings required = #C0 ≤ R/D.

Then, by Lemma 6, it is sufficient to have k many rounds of the while loop such that( 1
2
)k #C0 ≤

( 1
2
)k R

D < 1. Hence, it is sufficient to have k = max
{

log2
(
R
D

)
+ 1, 0

}
rounds. J

Then, if Algorithm 1 is implemented in such a way that L and U are pre-sorted (by
submitters including the indices of their entry in the lists), the total on-chain running time of
Algorithm 1 is O

(
#submissions ·

(
1 + max

{
log2

(
R
D

)
+ 1, 0

}))
, plus at most R

D calls to OB .

7 User-calibrated precision

In this section, under idealized assumptions about the results produced by OB , we study the
precision of the output of Algorithm 1. Particularly, we see that it depends on the lengths of
the intervals submitted by the respondents.

I Theorem 11. Suppose that the true value that Algorithm 1 is trying to determine is v,
and that the underlying binary oracle OB is always correct in determining whether a value is
greater or less than v. Suppose that some respondent submits the interval I = (l∗0, u∗0) such
that v ∈ I. Furthermore, suppose that this respondent is willing to pay any required appeal
fees in at most 2 max {log2 (#C0) + 1, 0} specifically chosen calls of OB on behalf of claims
that would be implied by v ∈ I. Then the response output by the oracle is in I.
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Proof. Consider the calls of OB with respect to the values mi that are considered through
the various rounds of the while loop. Suppose for the moment that the respondent pays any
appeal fees required when mi 6∈ I for rulings consistent with v ∈ I. Then, suppose we have
passed through the while loop k times. We will iteratively define an interval Ik such that

ultimate response ∈ Ik ⊆ I.

We define these intervals as either of the form Ik = (l∗k, u∗k) or the form Ik = (l∗k, u∗k]. We
take I0 = I = (l∗0, u∗0) and then for k > 0:

Ik =



(l∗k−1,mk] : if OB rules that v ≤ mk, mk < u∗k−1

Ik−1 : if OB rules v ≤ mk, mk ≥ u∗k−1

(mk, u
∗
k−1) : if OB rules that v > mk, mk ≥ l∗k−1, I∗k−1 = (l∗k−1, u

∗
k−1)

(mk, u
∗
k−1] : if OB rules that v > mk, mk ≥ l∗k−1, I∗k−1 = (l∗k−1, u

∗
k−1]

Ik−1 : if OB rules that v > mk, mk ≤ l∗k−1

We note that in the first case, we must, in fact, have l∗k−1 ≤ mk, so Ik is well-defined. If l∗k−1
was a previous round mi, then it must be a lower bound on L ∪ U in the kth round. Hence
l∗k−1 ≤ mk. Otherwise, if mk < l∗k−1 = l∗0, this dispute is one in which we have assumed
that the respondent is willing to pay appeal fees on behalf of mk < l∗0 < v. However, this
is incoherent with OB ruling that v ≤ mk by our assumptions on the correctness of OB.
Similarly, we see Ik is, in fact, a non-empty interval in all cases, whose endpoints consist of
elements of L and U in the kth round. Moreover, each Ik ⊆ Ik−1 ⊆ I by construction.

As the algorithm halts by Corollary 7, eventually, after w rounds of the while loop, all
lower bounds in L will be (strictly) less than all upper bounds in U with output satisfying

lj < ultimate response < ui, for all i, j.

In particular, the response is (strictly) between l∗w and u∗w, so

ultimate response ∈ Iw ⊆ I.

Finally, we show that there is at most one value in C0 which can arise as an mk ≤ l∗0
for which the respondent would need to pay appeal fees in the kth round of the while loop.
Instead suppose that ck,1, ck,2 ∈ C0 with ck,1, ck,2 ≤ l∗0 that could each arise as mk in different
executions. Suppose without loss of generality ck,1 ≤ ck,2. Take cj to be the last common
ancestor of these values in the binary search tree, then ck,1 ≤ cj ≤ ck,2 ≤ l∗0. As ck,1 and
ck,2 can arise as mk, cj can arise as mj in its round. Then as the respondent is assumed to
pay appeal fees for calls regarding cj ≤ l∗0 < v, OB must rule that v > cj . Hence ck,1 cannot
arise as a value of mk. By Proposition 10 and repeating this argument for values mk > u∗0,
the respondent need only pay appeal fees in at most 2 max {log2 (#C0) + 1, 0} calls. J

A consequence of Theorem 11 is that if users require that the oracle output very precise
values, they need only submit very precise interval estimates as respondents in which they
are nonetheless confident that the true answer lies. Another consequence of Theorem 11, is
that, again under idealized assumptions on OB , honest respondents will never be penalized.

I Corollary 12. Suppose that the true value that Algorithm 1 is trying to determine is v, and
that OB is always correct in determining whether a value is greater or less than v. Suppose
that a respondent submits the interval I = (l∗0, u∗0) such that v ∈ I. Furthermore, suppose
that this respondent is willing to pay all required appeal fees in 2 max {log2 (#C0) + 1, 0}
specifically chosen calls of OB on behalf of claims that would be implied by v ∈ I. Then the
user will not lose any appeal fees or deposits.
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Proof. By Theorem 11, the eventual value output by the procedure will be in I, hence the
respondent will not lose his deposit. As discussed in the proof of Theorem 11, in the cases in
which the respondent is assumed to contribute appeal fees (if necessary), he takes positions
consistent with a true value of v and hence is always on the winning side. J

8 Equilibria in the respondent game

A key challenge of price oracles is that it is often unreasonable to speak about the price
of an asset as being defined beyond a certain precision. An asset can be traded in many
marketplaces simultaneously and while one might average together some weighted version of
the prices in these different marketplaces, this will inevitably only give an approximation of
the price. As a result, one might argue that there is some interval (v − ε, v + ε) such that
any element of this interval could be argued to be the price. Considering the transcendental
nature of R, one can expect this phenomenon to hold for other R or S valued oracles as well.

In previous sections, we have sometimes taken the idealized hypothesis that OB rules
“honestly” with respect to whether a given x is higher or lower than some single “true value.”
This might be a realistic (if optimistic) assumption when x 6∈ (v − ε, v + ε). However, when
presented with x ∈ (v − ε, v + ε), it is more realistic to consider the choice made by OB as
being inevitably random, even when OB is “honest.”

In this section, we will consider a simplified model where the output of Algorithm 1 is
distributed uniformly over (v−ε, v+ε), and we will analyze respondent payoffs and incentives.
Similar analysis using other distributions may be a subject for future work; however, already
this simple model is not completely unreasonable. Heuristically, imagine that OB responds
“yes” and “no” with equal probability if posed the question “is x greater than the true value”
for any x ∈ (v − ε, v + ε). Further, suppose respondents placed intervals in such a way that
C0 ∩ (v − ε, v + ε) consists of equally spaced points. Then, as the number of such points
increases, the output’s distribution becomes well approximated as uniform on (v − ε, v + ε).

In this model, we examine conditions under which there is no economic incentive in terms
of the payouts to coherent respondents for them to submit intervals smaller than 2ε. Of
course, respondents may have some external interest in the output of Algorithm 1 such that
they are incentivized to submit smaller intervals.

I Proposition 13. Consider a model as described above, where the output value of Algorithm
1 is drawn uniformly from (v− ε, v+ ε) and payouts to correct respondents are given according
to formula 1. There is an equilibrium where all respondents submit responses containing
(v− ε, v+ ε); hence the game played by the respondents is Bayesian-Nash incentive-compatible.
Moreover, suppose α2ε < e ≈ 2.718 and suppose that all respondents other than USRi submit
intervals that either include or do not intersect (v − ε, v + ε). Then the respondent USRi
maximizes his expected payoff by submitting the interval Ii = (v − ε, v + ε).

Proof. The first claim is clear from the fact that rewards for respondents are paid from the
lost deposits of other respondents. Now assume α2ε < e. Suppose that a respondent USRi
submits an interval Ii such that length(Ii) = δi and Ii ⊆ (v − ε, v + ε). Then, he has a δi

2ε
chance of being ruled correct and a 1− δi

2ε chance of being ruled incorrect. Note that, as we
assume that all other respondents submit intervals that either include or do not intersect
(v − ε, v + ε), the payoff for a response depends only on δi and whether voutput ∈ Ii. Hence,

E[submit Ii] = # incorrect responses ·D − cost of first round OB fees
α−δi +

∑
j such that USRj correct,j 6=i α

−length(Ij ) ·α−δi · δi2ε −D ·
(

1− δi
2ε

)
.
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However, the payoff for the honest strategy of submitting Ii = (v − ε, v + ε) is given by

E[honest] = # incorrect responses ·D − cost of first round OB fees
α−2ε +

∑
j such that USRj correct,j 6=i α

−length(Ij) · α−2ε.

Denote

A =
∑

j such that USRj correct,j 6=i
α−length(Ij) ≥ 0.

Then if we have

1
α−δi +A

· α−δi · δi2ε −
1

α−2ε +A
· α−2ε ≤ 0

⇔
(
1 +Aα2ε) · δi2ε − (1 +Aαδi) ≤ 0,

that is sufficient to see that the honest strategy yields a higher expected payout.
However, δi

2ε ∈ [0, 1], so we define

f(x) = xAα2ε + x−Aα2εx − 1

for x ∈ [0, 1]. Then

f ′(x) = Aα2ε + 1−Aα2εx · ln
(
α2ε) ≥ Aα2ε + 1−Aα2ε · ln

(
α2ε) > 0

by the assumption that α2ε < e. Then as f(1) = 0, one has that f(x) ≤ 0 for all x ∈ [0, 1]. J

9 Conclusion

We have presented a completely crowd-sourced oracle for values in smart contracts from
dense totally ordered sets that we expect to be particularly applicable as a price oracle. This
proposal takes as an ingredient an oracle that can make binary decisions, for which one could
use, in particular, the existing systems of Kleros, Augur, or ASTRAEA, then extending
the influx of knowledge about the real world that they provide to a wider setting. The
number of times the binary oracle must be called is limited to a reasonable bound in terms
of the resources of parties who propose incoherent answers, not calling the system at all if all
respondents submit mutually consistent answers. Hence the time required to compute this
oracle should be suitable for many applications. Furthermore, the precision with which our
proposed oracle returns its final answer is tuned to the precision of the most precise correct
respondent so that the system can be as precise as its users require it to be.
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