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Abstract
We consider the popular matching problem in a graph G = (V, E) on n vertices with strict preferences.
A matching M is popular if there is no matching N in G such that vertices that prefer N to M

outnumber those that prefer M to N . It is known that it is NP-hard to decide if G has a popular
matching or not. There is no faster algorithm known for this problem than the brute force algorithm
that could take n! time. Here we show a simply exponential time algorithm for this problem, i.e.,
one that runs in O∗(kn) time, where k is a constant.

We use the recent breakthrough result on the maximum number of stable matchings possible in
such instances to analyze our algorithm for the popular matching problem. We identify a natural
(also, hard) subclass of popular matchings called truly popular matchings and show an O∗(2n) time
algorithm for the truly popular matching problem.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Roommates instance, Popular matching, Stable matching, Dual certificate

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2019.20

Acknowledgements Work done while visiting Max-Planck-Institut für Informatik, Saarland Inform-
atics Campus, Germany. Thanks to Neeldhara Misra for asking me about fast exponential time
algorithms for the popular roommates problem.

1 Introduction

Consider a matching problem in a graph G = (V,E) on n vertices where each vertex has a
strict ranking of its neighbors: such a graph is called a roommates instance. Matching M
in G is stable if M has no blocking edge, i.e., an edge (u, v) such that both u and v prefer
each other to their respective assignments in M . Stable matchings need not exist in G and a
classical problem here is the stable roommates problem, i.e., does G admit a stable matching?
There are several polynomial time algorithms [24, 30, 31] to solve this problem.

We consider a more relaxed notion of stability called popularity. A vertex u prefers
matching M to matching N if either (i) u is matched in M and unmatched in N or (ii) u
is matched in both M,N and prefers its partner in M to its partner in N . For any two
matchings M0 and M1, let φ(M0,M1) be the number of vertices that prefer M0 to M1.

I Definition 1. A matching M in G = (V,E) is popular if φ(M,N) ≥ φ(N,M) for every
matching N , i.e., ∆(N,M) ≤ 0 where ∆(N,M) = φ(N,M)− φ(M,N).

In an election betweenM and N where vertices cast votes, φ(M,N) is the number of votes
won by M and φ(N,M) is the number of votes won by N . By definition, a popular matching
never loses an election to another matching; thus it is a weak Condorcet winner [5, 6] in the
corresponding voting instance. Every stable matching in G is also popular [4, 17].

There are roommates instances with no stable matchings but with popular matchings, as
shown in Fig. 1. Vertex a prefers b to c while b prefers c to a, and c prefers a to b. The last
choice of a, b, c is d and d’s preference is a � b � c. This instance has no stable matching,
however it has 2 popular matchings M1 = {(a, d), (b, c)} and M2 = {(a, c), (b, d)}.
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Figure 1 An instance with no stable matching, however it has two popular matchings. Numbers
on edges indicate their preferences. The vertex d is the last choice of a, b, c and d’s last choice is c.

Popular matchings need not always exist in a roommates instance. Consider the above
instance without the vertex d. In any matching in the resulting instance, one of a, b, c (each
is a top choice neighbor for some vertex) has to be left unmatched. Hence for any matching
here, there is a more popular matching.

Popularity is a natural notion of “global stability” and popular matchings may exist in
roommates instances with no stable matchings. The popular roommates problem is to decide
if a given instance G = (V,E) admits a popular matching or not. Unlike stable matchings,
it is NP-hard to decide if a roommates instance admits a popular matching or not [13, 18].
There is no faster algorithm known for the popular roommates problem than the brute force
algorithm that goes through all matchings in G and tests each for popularity. This algorithm
could take n! time. Can a faster algorithm be shown for the popular roommates problem?

1.1 Our results
Our main result is a simply exponential time algorithm for the popular roommates problem.
Note that O∗(kn) denotes O(kn · poly(n)).

I Theorem 2. Given a roommates instance G = (V,E) on n vertices with strict preferences,
the popular roommates problem can be solved in O∗(kn) time, where k is a constant.

When there is a cost function on the edge set, our algorithm also solves the min-cost
popular matching problem. Regarding the constant k in the O∗(kn) running time, we show
that k ≤ 3c where c is the constant involved in the recent breakthrough result [25] that
showed an upper bound of cn on the maximum number of stable matchings in a bipartite
graph with n vertices on each side. It is known [25, 32] that c0 ≤ c ≤ 217 where c0 ≈ 2.28.

We also identify a natural subclass of popular matchings called truly popular matchings;
these are popular matchings that are also popular fractional matchings (defined in Section 2).
The NP-hardness proof of the popular roommates problem [13] shows that the problem of
deciding if a roommates instance admits a truly popular matching or not is NP-hard. We
show an algorithm with running time O∗(2n) for the truly popular matching problem in a
roommates instance G on n vertices.

I Theorem 3. Given a roommates instance G = (V,E) on n vertices with strict preferences,
the problem of deciding whether G admits a truly popular matching or not can be solved in
O∗(2n) time.

1.2 Background and related results
The notion of popularity was proposed by Gärdenfors [17] in 1975 in bipartite graphs. Popular
matchings always exist in bipartite graphs with strict preferences since stable matchings
always exist here [16]. During the last 10-15 years, algorithms for popular matchings in
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bipartite graphs have been well-studied [1, 7, 8, 20, 22, 23, 26, 27, 28]: some of these results
are in the domain of one-sided popularity, i.e., vertices on only one side of the bipartite
graph have preferences.

In comparison, there are not many positive results for popular matchings in non-bipartite
graphs. It was shown in [2] that given a matching M , it can be tested in polynomial time
whether M is popular or not, even when there are ties in preference lists. It was shown in
[21] that every roommates instance G admits a matching with unpopularity factor O(logn).

The popular roommates problem is NP-hard [13, 18]. In a complete graph on n vertices,
this problem can be efficiently solved when n is odd, however it is NP-hard for even n [9].
The max-size popular matching problem is NP-hard even in instances with stable matchings
(these are min-size popular matchings) [3]. The only known tractable subclasses of popular
matchings are the class of stable matchings and the class of strongly dominant matchings [13]
(a subclass of max-size popular matchings). When G has bounded treewidth, the min-cost
popular matching problem can be solved in polynomial time [13].

There is a vast literature on fast exponential time algorithms for NP-hard problems and
we refer to the book [15] on this subject. Fast exponential time algorithms for some hard
problems in matchings under preferences are known: one such problem is the sex-equal
stable marriage problem in bipartite graphs where the objective is to find a “fair” stable
matching. When the length of preference lists of vertices on one side of the bipartite graph
is bounded from above by a small value, a fast exponential time algorithm for finding a fair
stable matching is known [29].

1.3 Our techniques

Let G = (V,E) be the given roommates instance. It follows from LP-duality that every
popular matching M in G has a witness to its popularity (Section 2 has these details).
Witnesses have been used to show several results for popular matchings in bipartite graphs [13,
23, 27, 28]. Witnesses for popular matchings in non-bipartite graphs are more complicated
than those in bipartite graphs. In non-bipartite graphs, witnesses have been used in [3, 9, 13]
as certificates of popularity, i.e., to prove that certain matchings are popular.

In this paper we show a necessary condition for popularity in terms of witnesses. We
then use this necessary condition to show a decomposition result for popular matchings: we
show that every popular matching can be partitioned into a stable part and a truly popular
part. Truly popular matchings are a new subclass of popular matchings introduced here and
we characterize these matchings in terms of witnesses.

We use this characterization of truly popular matchings to show that every such matching
can be realized as a stable matching in one of 2n new roommates instances. In bipartite
graphs, a mapping from a subset of max-size popular matchings to the set of stable matchings
in a larger graph was shown in [8]. Our mapping from the set of truly popular matchings to
the union of sets of stable matchings in 2n graphs may be regarded as an extension of this.
Our mapping is more complicated than the one in [8].

Organization of the paper. Section 2 discusses preliminaries. Witnesses for popular
matchings and our main algorithmic result are in Section 3. Our fast exponential time
algorithm for truly popular matchings is in Section 4.

FSTTCS 2019
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2 Preliminaries

Our input is G = (V,E) on n vertices and m edges where every vertex has a strict preference
list ranking its neighbors. It would be convenient to regard every matching in G as a perfect
matching, hence we augment G with self-loops so that every vertex is its own last choice
neighbor. Thus any matching M in G becomes a perfect matching by including self-loops for
vertices left unmatched.

Given a (perfect) matching M , consider the following edge weight function. For any edge
(u, v) in E:

let wtM (u, v) =


2 if (u, v) is a blocking edge to M
−2 if u and v prefer their respective partners in M to each other
0 otherwise.

For any edge (u, v), note that wtM (u, v) = voteu(v,M(u)) + votev(u,M(v)), where for
any pair of adjacent vertices u and v, voteu(v,M(u)) is u’s vote for v versus M(u): it is 1 if
u prefers v to M(u), it is -1 if u prefers M(u) to v, and 0 otherwise, i.e., v = M(u).

For any vertex u, define wtM (u, u) = voteu(u,M(u)) where voteu(u,M(u)) = 0 if the
perfect matching M includes the self-loop (u, u), else wtM (u, u) = −1. For any perfect
matching N , we have:

wtM (N) =
∑

(u,v)∈N

wtM (u, v) =
∑
u∈V

voteu(N(u),M(u)) = φ(N,M)−φ(M,N) = ∆(N,M).

Matching M is popular if and only if ∆(N,M) = wtM (N) ≤ 0 for all matchings N , i.e., if
and only if every perfect matching in G with edge weight function wtM has weight at most 0.
Since wtM (M) = 0, a max-weight perfect matching has weight exactly 0. The max-weight
perfect matching LP in G is described below.

maximize
∑
e∈E′

wtM (e) · xe (LP1)

subject to∑
e∈δ′(u) xe = 1 ∀u ∈ V∑
e∈E[B]

xe ≤ b|B|/2c ∀B ∈ Ω and xe ≥ 0 ∀ e ∈ E′.

Here E′ is the set of edges in the graph G augmented with self-loops and δ′(u) =
δ(u) ∪ {(u, u)} is the set of edges incident to u. Also, Ω is the collection of all odd-sized sets
B ⊆ V with |B| ≥ 3. Note that E[B] is the set of edges in E with both endpoints in B and
self-loops do not belong to E[B]. Consider LP2: this is the dual LP corresponding to LP1.

minimize
∑
u∈V

αu +
∑
B∈Ω
b |B|/2 c · zB (LP2)

subject to

αu + αv +
∑

B∈Ω
u,v∈B

zB ≥ wtM (u, v) ∀ (u, v) ∈ E

αu ≥ wtM (u, u) ∀u ∈ V and zB ≥ 0 ∀B ∈ Ω.

Thus M is popular if and only if the optimal solution to LP2 is 0, i.e., if and only if there
exists a feasible solution (~α, ~z) to LP2 such that

∑
u∈V αu +

∑
B∈Ωb |B|/2 c · zB = 0.
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I Definition 4. For a popular matching M , an optimal solution (~α, ~z) to LP2 is called a
witness.

Popular fractional matchings. Recall that G is augmented with self-loops, so it has m+ n

edges. A vector ~p ∈ Rm+n
≥0 such that

∑
e∈δ′(u) pe = 1 for all vertices u is a (perfect) fractional

matching in G. The notion of popularity extends to fractional matchings as well. Here we
compare an integral matching M with a fractional matching ~p as follows:

∆(~p,M) =
∑
u∈V

voteu(~p,M) =
∑
u∈V

∑
v∈Nbr′(u)

p(u,v) · voteu(v,M(u)),

where Nbr′(u) = Nbr(u) ∪ {u}. Note that Nbr(u) is the set of u’s neighbors in the original
graph G (without self-loops).

An integral matching M is a popular fractional matching if ∆(~p,M) ≤ 0 for all fractional
matchings ~p in G. Every popular matching in G need not be a popular fractional matching.
See the instance G in Fig. 2 where vertex preferences are indicated on edges.

Here a is the top choice of b, c, s while b and c are each other’s second choices. Vertex a’s
preference order is b � c � s. Vertex q’s order is r � s and r’s order is s � q, and s’s order
is a � q � r.
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Figure 2 The half-integral matching on the right with a value of 1/2 on the dashed edges is more
popular than M = {(a, s), (b, c), (q, r)}. Note that M is a popular matching.

B Claim 5. M = {(a, s), (b, c), (q, r)} is popular in G (see Fig. 2), however M is not a
popular fractional matching in G.

Proof. We prove the popularity ofM via the witness (~α, ~z) where αa = αr = 1 and αb = αc =
αq = αs = −1 along with z{a,b,c} = 2 and zB = 0 for all other odd sets B. It is easy to check
that (~α, ~z) satisfies the constraints in LP2. Also

∑
u αu +

∑
Bb|B|/2czB = 2− 4 + 2 = 0.

Thus M is popular in G.
However M is not a popular fractional matching in G. We will show a more popular

fractional matching. Consider the half-integral matching ~p indicated on the right in Fig. 2.
So pe = 1/2 for e ∈ {(a, b), (b, c), (c, a), (q, r), (r, s), (s, q)}. We have ∆(~p,M) = 5/2− 3/2 = 1
since ~p gets the vote of a and 1/2-votes of b, c, r while M gets the vote of s and 1/2-vote of
q. Thus ~p defeats M , so M is not a popular fractional matching in G. C

Hence a popular matching may lose an election against a fractional matching. We
introduce the following natural subclass of popular matchings.

I Definition 6. A matching M in G is truly popular if M is a popular fractional matching.

Thus M is a truly popular matching if ∆(~p,M) ≤ 0 for all fractional matchings ~p. The
NP-hardness proof of popular roommates problem in [13] implies that the problem of deciding
if a roommates instance G admits a truly popular matching or not is also NP-hard.

Note that a roommates instance may admit popular matchings but no truly popular
matching. For instance,M = {(a, s), (b, c), (q, r)} is the only popular matching in the instance
given in Fig. 2 and we know from Claim 5 that M is not truly popular.

FSTTCS 2019
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3 An algorithm for the popular roommates problem

In this section we show that every popular matching admits a witness with certain structure.
This will be used in a structural decomposition result and our algorithm for the popular
roommates problem is based on this decomposition.

3.1 Popular matchings and witnesses
In this section we study witnesses for popular matchings. Our first result is the following.

I Lemma 7. Let M be a popular matching in G. Then M has a witness (~α, ~z) such that
~α ∈ {0,±1}n and zB ∈ {0, 1, 2} for all B ∈ Ω.

Proof. Let M be a popular matching in G. Consider LP1 from Section 2: this is the LP
for max-weight perfect matching in the graph G augmented with self-loops and with edge
weights given by wtM . Since wtM (M) = ∆(M,M) = 0, the characteristic vector of M is an
optimal solution to LP1. The constraint system corresponding to LP1 is totally dual integral
(TDI) [10]. Thus there is an optimal integral solution (~α, ~z) to the dual LP, i.e., LP2.

We have αu ≥ wtM (u, u) ≥ −1 for all vertices u. Moreover, if (u, u) ∈M , this constraint
is tight by complementary slackness: so αu = wtM (u, u) = 0 for such a vertex u. Similarly,
for a vertex u matched to a non-trivial neighbor in M (say, (u, v) ∈ M), we have by
complementary slackness:

αu + αv +
∑
B∈Ω
u,v∈B

zB = wtM (u, v) = 0. (1)

Since zB ≥ 0 for all B, this means αu + αv ≤ 0, so αu ≤ −αv ≤ 1. Hence ~α ∈ {0,±1}n.
Let B ∈ Ω be such that zB > 0. Then complementary slackness on LP1 implies:∑

e∈E[B]

xe = b |B|/2 c. (2)

Since |B| ≥ 3, any B ∈ Ω with zB > 0 has at least 1 matched edge in it. Let (u, v) ∈
M ∩ E[B]. Then non-negativity of zB-values and (1) imply that zB ≤ −(αu + αv) ≤ 2.
Hence zB ∈ {0, 1, 2} for every B ∈ Ω. J

We now characterize truly popular matchings in terms of witnesses.

I Theorem 8. A matching M is truly popular iff M has a witness (~α, ~z) such that ~α ∈
{0,±1}n and ~z = ~0.

Proof. We assume G is augmented with self-loops, so any fractional matching ~p becomes a
perfect fractional matching by using self-loops. For any perfect fractional matching ~p in G:
(recall that E′ = E ∪ {(u, u) : u ∈ V })

wtM (~p) =
∑
e∈E′

pe · wtM (e) =
∑
u∈V

∑
v∈Nbr′(u)

p(u,v) · voteu(v,M(u)) = ∆(~p,M).

Thus M is a popular fractional matching if and only if wtM (~p) = ∆(~p,M) ≤ 0 for all
fractional matchings ~p. Consider LP3 given below. LP3 is the max-weight perfect fractional
matching LP in the graph G with edge weight function wtM . LP4 is the dual of LP3.

Suppose M is a matching in G with a witness (~α,~0) for some ~α ∈ {0,±1}n. So:
(i)
∑
u αu = 0, (ii) αv ≥ wtM (v, v) ∀ v ∈ V , and (iii) αu + αv ≥ wtM (u, v) ∀ (u, v) ∈ E.
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max
∑
e∈E′

wtM (e) · xe (LP3)

s.t.
∑

e∈δ′(u)

xe = 1 ∀u ∈ V

xe ≥ 0 ∀ e ∈ E′.

min
∑
u∈V

αu (LP4)

s.t. αu + αv ≥ wtM (u, v) ∀ (u, v) ∈ E
αu ≥ wtM (u, u) ∀u ∈ V

It follows from properties (ii) and (iii) stated above that ~α is a feasible solution to LP4.
It follows from property (i) that the optimal value of LP4 is at most 0. Thus the optimal
value of LP3 is at most 0. Since wtM (M) = ∆(M,M) = 0, this means that M is an optimal
solution to LP3. So wtM (~p) ≤ wtM (M) = 0 for all fractional matchings ~p. Thus ∆(~p,M) ≤ 0
for all fractional matchings ~p, i.e., M is a popular fractional matching.

Conversely, suppose M is a truly popular matching in G. So M is a popular fractional
matching in G. Hence ∆(~p,M) ≤ 0 for all perfect fractional matchings ~p, thus wtM (~p) =
∆(~p,M) ≤ 0. Since wtM (M) = 0, this means M is an optimal solution to LP3.

B Claim 9. LP4 has an optimal solution that is integral.

The proof of Claim 9 is given below. Let ~α be an optimal solution of LP4 that is integral.
We have αu ≥ wtM (u, u) from the constraints. Since wtM (u, u) ≥ −1, we have αu ≥ −1 for all
vertices u. It follows from complementary slackness conditions that αu +αv = wtM (u, v) = 0
for every edge (u, v) ∈M . Since αv ≥ −1, it follows that αu ≤ 1.

It also follows from complementary slackness conditions that αu = wtM (u, u) = 0 for
every vertex u matched in M along the self-loop (u, u). Thus M has a witness (~α,~0) such
that ~α ∈ {0,±1}n. J

Proof of Claim 9. Let ~α be any extreme point of the feasible region of LP4. So we have
A~α = b for some submatrix A of the constraint matrix of LP4. Some of the tight constraints
are of the type αu = wtM (u, u): this immediately implies αu is either 0 or −1, i.e., these
coordinates in ~α are integral. Let us remove these constraints from A~α = b, so we have
A′~α′ = b′ where all the constraints are of the type αu + αv = wtM (u, v) for (u, v) ∈ E. So
~α′ = A′−1 · b′.

It is easy to see that all entries in A′−1 are half-integral. This follows from the fact that
the fractional matching polytope of G is half-integral: this is due to the integrality of the
fractional matching polytope in bipartite graphs (Birkhoff-von Neumann theorem).

Since wtM (e) ∈ {0,±2} for every e ∈ E, every entry in b′ is an even integer. Hence
~α′ = A′−1 · b′ is an integral vector. Thus ~α is integral. C

Hence M is a truly popular matching if and only if M has a witness (~α,~0) such that
~α ∈ {0,±1}n. For the sake of brevity, we will say ~α is a witness of M .

3.2 A decomposition result for popular matchings
The following theorem shows that every popular matching in G can be partitioned into a
stable part and a truly popular part. This decomposition resembles a result from [8] that
shows that every popular matching M in a bipartite graph can be decomposed into a stable
part and a dominant1 part.

1 A popular matching N is dominant if N is more popular than any larger matching.

FSTTCS 2019
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I Theorem 10. Let M be a popular matching in G = (V,E). Then M = M0 ∪M1 such that
1. M0 is stable in the subgraph induced on some subset C ⊆ V ;
2. M1 is truly popular in the subgraph induced on V \ C.

Proof. We know from Lemma 7 that every integral witness (~α, ~z) of a popular matching M
satisfies ~α ∈ {0,±1}n and zB ∈ {0, 1, 2} for all B ∈ Ω. Let (~α, ~z) be an integral witness of
M such that the sets B with zB > 0 form a laminar family B. The primal-dual algorithm of
Edmonds [12] shows that M has such a witness.

Let B1, . . . , Bk be the maximal sets in B. We know from (2) that each Bi ∈ B has
b|Bi|/2c edges of M within it. For 1 ≤ i ≤ k, let bi be the lone vertex in Bi that is not
matched to a vertex inside Bi. That is, every vertex in Bi \ {bi} is matched in M to another
vertex in Bi \ {bi}. Let C denote the vertex set ∪ki=1(Bi \ {bi}).

Let M0 be the matching M restricted to the subgraph induced on C and let M1 be the
matching M restricted to the subgraph induced on V \ C. Observe that M = M0 ∪M1.
Claim 11 and Claim 12 show that M0 and M1 are what we seek.

B Claim 11. The matching M0 is stable in the subgraph induced on C.

B Claim 12. The matching M1 is truly popular in the subgraph induced on V \ C.

Claim 11 and Claim 12 are proved below. This finishes the proof of Theorem 10. J

Proof of Claim 11. We will prove the stability of M0 by showing that no edge with both
endpoints in C blocks M . Consider any edge (u, v) with u, v ∈ C. We know that αu + αv +∑

B∈B
u,v∈B

zB ≥ wtM (u, v).

B is a laminar family. Let B′ ⊆ B be the collection of sets with both u and v. We need
to bound

∑
B∈B′ zB . Let B′ be the minimal set in B′. It follows from (2) that the partner of

at least one of u, v (say, u) is in B′ and hence in every set in B′. So we can use (1) for the
pair u,M(u) to bound

∑
B∈B′ zB . Since αu, αM(u) ≥ −1, we have

∑
B∈B′ zB ≤ 2.

The definition of C implies that every vertex x ∈ C is matched in M to another vertex
M(x) in C. Moreover there is some Bi ∈ B such that x,M(x) ∈ Bi. Thus

∑
B∈B:x,M(x)∈B zB

is at least 1 and so αx + αM(x) ≤ −1 by (1). Hence αx is in {0,−1} for every x ∈ C.
Suppose αu = 0. Then αu + αM(u) +

∑
B:u,M(u)∈B zB = wtM (u,M(u)) = 0 along with

αu = 0 and αM(u) ≥ −1 implies that
∑
B:u,M(u)∈B zB ≤ 1. Since this sum is integral

and positive, it equals 1. So wtM (u, v) ≤ 1 in this case. Similarly, when αu = −1,
wtM (u, v) ≤ αu + αv +

∑
B∈B′ zB ≤ −1 + 0 + 2 = 1. Hence in both cases, wtM (u, v) ≤ 0

(since it is in {0,±2}).
So there is no blocking edge to M with both endpoints in C. Thus M0 is stable in the

subgraph induced on C. C

Proof of Claim 12. Let (~α, ~z) be M ’s witness using which C was defined. We claim (~α,~0) is a
witness for M1 in the subgraph induced on V \ C. So we need to show that

∑
u∈V \C αu = 0

and αu + αv ≥ wtM1(u, v) = wtM (u, v) for every edge (u, v) in this subgraph. We already
know that αu ≥ wtM1(u, u) = wtM (u, u) for all u ∈ V .

We have αu + αv +
∑
B:u,v∈B zB ≥ wtM (u, v) for every edge (u, v) in G. There is no

B ∈ B that contains two vertices in V \ C. Thus
∑
B:u,v∈B zB = 0 and so we have the

desired constraint αu + αv ≥ wtM (u, v) for every edge (u, v) in this subgraph.
For any vertex u ∈ V \C that is matched in M , its partner M(u) = v is also in V \C and
we have αu + αv = wtM (u, v) = 0 by complementary slackness (see (1)). For any vertex
u matched in M along its self-loop, αu = wtM (u, u) = 0. Thus

∑
u∈V \C αu = 0. C
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The proof of Theorem 10 allows us to show a more structured partition of popular
matchings as stated in Lemma 13 below. Call a truly popular matching M special if M
admits a witness ~α ∈ {±1}n.

I Lemma 13. Let M be a popular matching in G = (V,E). Then M = M ′0 ∪M ′1 where
M ′0 is a stable matching in the subgraph induced on some U ⊆ V and M ′1 is a special truly
popular matching in the subgraph induced on V \ U .

Proof. We will use Theorem 10 here. Let B ⊆ Ω, C ⊆ V , and ~α ∈ {0,±1}n be as defined in
the proof of Theorem 10. Let U = C ∪ {u ∈ V \ C : αu = 0}.

Let M ′0 be the matching M restricted to the subgraph induced on U . Since U ⊇ C, we
haveM ′0 ⊇M0, whereM0 was defined in Theorem 10. We claimM ′0 is stable in the subgraph
induced on U . It follows from the proofs of Claim 11 and Claim 12 that there is no blocking
edge (u, v) to M ′0 where both u, v ∈ C or both u, v ∈ U \ C (in this case αu = αv = 0). So
what we need to show now is that there is no blocking edge (u, v) to M ′0 where u ∈ C and
v ∈ U \ C.

If there is no B ∈ B such that u, v ∈ B then wtM (u, v) ≤ αu + αv ≤ 0. Suppose there is
some B ∈ B with u, v ∈ B. It follows from (2) and the definition of C that u and its partner
M(u) are in B. We know from the proof of Claim 11 that either (i) αu = −1 or (ii) αu = 0
and

∑
B:u,M(u)∈B zB ≤ 1. Since αv = 0, this means that αu + αv +

∑
B:u,v∈B zB ≤ 1. So

wtM (u, v) ≤ 1, i.e., wtM (u, v) ≤ 0 (since it is even). Thus (u, v) does not block M .
So M ′0 is stable in the subgraph induced on U . Let M ′1 be the matching M restricted to

the subgraph induced on V \ U . It follows from the definition of U that M ′1 has a witness ~α
where αu ∈ {±1} for all u ∈ V \ U . Hence M ′1 is a special truly popular matching in the
subgraph induced on V \ U . J

3.3 Our algorithm
We present our algorithm for the popular roommates problem. The input is G = (V,E).
1. For each U ⊆ V do:

a. For each stable matching S in the subgraph induced on U do:
b. For each special truly popular matching T in the subgraph induced on V \ U do:

If S ∪ T is popular in G then return S ∪ T .
2. Return “G has no popular matching”.

A matching M can be tested for popularity via LP1 (see Section 2). There are also
combinatorial algorithms [2, 22] to check if a given matching in a roommates instance is
popular or not. Lemma 13 shows that every popular matching M admits a decomposition as
M = S ∪ T where S is stable in some subgraph and T is a special truly popular matching in
the remaining part of G. Thus if no matching of the form S ∪ T is popular then G has no
popular matching. This proves the correctness of our algorithm.

Implementation. All stable matchings in the graph GU = (U,E′) induced on U can be
listed by enumerating all stable matchings in the bipartite graph G′U = (U ′ ∪ U ′′, E′′) [11]
where U ′ = {u′ : u ∈ U} and U ′′ = {u′′ : u ∈ U}; for every edge (u, v) in GU , there are 2
edges (u′, v′′) and (v′, u′′) in G′U . Preferences in G′U are inherited from GU . Every matching
in the bipartite graph G′U becomes a half-integral matching in the given graph GU .

It is known how to enumerate all stable matchings in a bipartite graph in O∗(s) time
where s is the number of stable matchings in this bipartite graph [19]. It was recently
shown [25] that the maximum number of stable matchings possible in a bipartite graph with
n vertices on each side is cn for some constant c. Thus in O∗(cn) time we can enumerate all
stable matchings in a roommates instance on n vertices.
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We bound the running time of our algorithm via the following bound on the number of
“special truly popular” matchings present in a roommates instance. Here c is the constant
from [25] that was used in the paragraph above.

I Lemma 14. A roommates instance H on t vertices has at most (2c)t special truly popular
matchings.

The proof of Lemma 14 shows that every special truly popular matching in H can be
realized as a stable matching in one of 2t roommates instances, each on t vertices. This proof
is given in Section 4.1.

Running time of our algorithm. The total number of candidate matchings tested by our
algorithm is at most:

n∑
i=0

(
n

i

)
· ci · (2c)n−i = cn ·

n∑
i=0

(
n

i

)
2n−i = (3c)n.

In the summation above, ci is the bound on the number of stable matchings in the
subgraph GU induced on U (where |U | = i) and the second term, which is (2c)n−i, is the
bound on the number of special truly popular matchings in the subgraph GW induced on
W = V \ U (note that |V \ U | = n− i). This proves Theorem 2 stated in Section 1.

4 Truly popular matchings

In this section we use the characterization of truly popular matchings from Theorem 8 to
show a fast exponential time algorithm for the problem of deciding if G admits a truly
popular matching or not. Our algorithm goes through all S ⊆ V and checks if there is a
popular matching in G with a witness ~α such that αv = 0 for all v ∈ S and αv ∈ {±1} for
all v ∈ V \ S. So the problem we look to efficiently solve is:

∗ given S ⊆ V , is there a truly popular matching in G with a witness ~α ∈ {0,±1}n such
that αv = 0 if and only if v ∈ S.

We will now show an efficient algorithm for the above problem. We solve this problem
by posing it as a stable roommates problem with forbidden edges, which can be solved in
linear time [14]. Given any subset S ⊆ V , we will construct a new roommates instance
GS = (VS , ES) as follows. The vertex set VS = {u0 : u ∈ S} ∪ {u−, u+, `(u) : u ∈ V \ S}.

The vertex `(u) will be called a dummy vertex as its purpose is to ensure that only one of
u+, u− can be matched to a non-dummy neighbor, i.e., an element in {v+, v0, v− : v ∈ Nbr(u)}.
The edge set ES consists of the following edges:

For every (u, v) ∈ E where u, v ∈ S: the edge (u0, v0) ∈ ES .
For every (u, v) ∈ E where u ∈ V \ S and v ∈ S: the edge (u+, v0) ∈ ES .
For every (u, v) ∈ E where u, v ∈ V \ S: if u prefers v to every neighbor in S then
(u−, v+) ∈ ES .

Also, for every vertex u ∈ V \ S: the edges (u+, `(u)) and (u−, `(u)) are in ES . The
preference order of vertices in VS is as follows.
1. For any dummy vertex `(u): the order is u+ � u−.
2. For any subscript 0 vertex u0: the order among its neighbors is as per u’s original

preference order in G. Suppose u’s preference order in G is: a � b � c � d where a, c ∈ S
and b, d ∈ V \ S, then u0’s neighbors in GS are a0, b+, c0, d+ and u0’s preference order is:
a0 � b+ � c0 � d+.
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3. For any subscript + vertex u+: the order among its neighbors in GS is as per u’s
preference order in G with `(u) as its least preferred vertex.

4. For any subscript − vertex u−: the order among its neighbors is `(u) as its top choice
followed by its other neighbors in GS as per u’s preference order in G.

The following theorem shows the equivalence we need.

I Theorem 15. The instance G admits a truly popular matching with a witness ~α where
αu = 0 for u ∈ S and αv ∈ {±1} for v ∈ V \ S iff GS has a stable matching MS with the
following properties:
1. MS avoids all edges between a subscript 0 vertex and a subscript + vertex;
2. MS matches all subscript − vertices.

Proof. Suppose G admits a truly popular matching TS with such a witness ~α. We will show
a desired stable matching MS in GS . For any vertex u, let su = +/−/0 corresponding to
αu = +1/−1/0, respectively. For any vertex u ∈ V \ S, we have αu ∈ {±1} and so su ∈ {±};
if su = + then let tu = −, else let tu = +.

Let MS = {(usu
, vsv

) : (u, v) ∈ TS} ∪ {(utu , `(u)) : u ∈ V \ S}.

B Claim 16. MS ⊆ ES , i.e., for every (u, v) in TS , the edge (usu
, vsv

) is present in GS .

Proof. Since TS is truly popular, the characteristic vector of TS is an optimal solution of LP3.
We also know that ~α is an optimal solution of LP4. It follows from complementary slackness
conditions on LP3 and LP4 that for every edge (u, v) ∈ TS , αu + αv = wtTS

(u, v). Since
wtTS

(u, v) = 0 for any edge (u, v) ∈ TS , either αu = αv = 0 or {αu, αv} = {−1, 1}. So every
edge in MS that is not incident to any `-vertex is of the type either (u0, v0) or (u+, v−).

For every edge (u, v) in G where αu = αv = 0, the edge (u0, v0) is in GS . Consider an
edge (u, v) in TS where αu = −1. We need to show that (u−, v+) is in GS . Since ~α is a
witness of TS , we have wtTS

(u, r) ≤ αu + αr = −1 + 0 = −1 for every neighbor r ∈ S. Since
wtTS

(e) ∈ {0,±2} for all e ∈ E, this means wtTS
(u, r) = −2, i.e., u prefers its partner in

TS (this is v) to r. Since this constraint holds for every r ∈ S ∩ Nbr(u), it follows from the
definition of ES that (u−, v+) ∈ ES . C

We next show that MS obeys properties (1) and (2) given in the lemma statement.
(1) Since every edge in MS that is not incident to any `-vertex is of the type either (u+, v−)

or (u0, v0), MS avoids all edges between a subscript 0 vertex and a subscript + vertex.
(2) For any vertex u unmatched in TS , we have (by complementary slackness) αu = wtTS

(u, u)
= 0, i.e., u ∈ S. Thus for every u ∈ V \ S, we have (u, v) ∈ TS for some v ∈ Nbr(u); if
αu = −1 then (u−, v+) ∈MS else (u−, `(u)) ∈MS . Thus all vertices in {u− : u ∈ V \S}
are matched in MS .

In order to show MS is a desired stable matching in GS , we need to show this claim.

B Claim 17. MS is a stable matching in GS .

Proof. By the definition of MS , the vertices `(u) for all u ∈ V \ S are matched in MS . Thus
for any u ∈ V \ S, all of u+, u−, `(u) are matched in MS , so neither (u+, `(u)) nor (u−, `(u))
blocks MS . Other than edges incident to dummy vertices, the graph GS consists of edges of
the type (u+, v−), (u0, v0), (u+, v0), i.e., {αu, αv} is one of {1,−1}, {0, 0}, {1, 0}.
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So for every (u, v) ∈ E such that (usu , vsv ) is in GS , we have αu+αv ≤ 1, i.e., wtTS
(u, v) ≤

1 which means wtTS
(u, v) ≤ 0. The constraint wtTS

(u, v) ≤ 0 implies one of the 3 possibilities:
(i) (u, v) ∈ TS , (ii) u prefers TS(u) to v, (iii) v prefers TS(v) to u. In case (i), we have
(usu , vsv ) ∈ MS and in cases (ii) and (iii), one of usu , vsv is matched in MS to a more
preferred neighbor in GS . Thus MS is a stable matching in GS . C

Conversely, suppose GS admits such a stable matching MS . We will show a truly popular
matching TS in G with a desired witness ~α. The matching TS is easy to define:

TS = {(u, v) : (u0, v0) ∈MS or (u+, v−) ∈MS}.

We now need to show that TS is a truly popular matching in G. For this, we will show a
witness ~α ∈ {0,±1}n. Define αu = 0 for all u ∈ S. We will now define αu for each u ∈ V \ S.

For each u ∈ V , note that `(u) is top choice for u−: hence `(u) always has to be matched
in any stable matching in GS . For each u ∈ V \ S:

let αu =
{
−1 if (u+, `(u)) ∈MS

1 if (u−, `(u)) ∈MS .

Observe that all edges in MS not involving any `-vertex are of the form either (u+, v−)
or (u0, v0). This is because MS avoids all edges of the type (u+, v0) by property (1) of a
desired stable matching. Thus αu + αv = 0 for all (u, v) ∈ TS .

B Claim 18. For any vertex u left unmatched in TS , we have u ∈ S, i.e., αu = 0.

Proof. Every vertex of the form u+ (being the top choice vertex of `(u)) has to be matched
in every stable matching in GS ; also, all vertices in {u− : u ∈ V \ S} are matched in MS

by property (2). Hence MS matches u+, u− for all u ∈ V \ S; thus one of u+, u− has to be
matched to a non-dummy neighbor, i.e., a vertex other than `(u). Hence for any vertex u
left unmatched in TS , we have u ∈ S. C

We have
∑
u∈V αu =

∑
(u,v)∈TS

(αu + αv) from Claim 18 and by definition, αu + αv = 0
for each (u, v) ∈ TS . Hence

∑
u∈V αu = 0. Every vertex in V \ S is matched in TS (by

Claim 18) and so we have αu ≥ −1 = wtTS
(u, u) for u ∈ V \ S. For any vertex u ∈ S, we

have αu = 0 ≥ wtTS
(u, u). Thus αu ≥ wtTS

(u, u) for every vertex u.
It can also be shown that αu + αv ≥ wtTS

(u, v) for every edge (u, v) in G. Thus TS is a
truly popular matching in G and the theorem follows. J

All stable matchings in a roommates instance match the same subset of vertices [19]. Call
these vertices stable. Our algorithm for deciding if G admits a truly popular matching (and
returning one, if so) is as follows:
1. For each set S ⊆ V do:

Build the graph GS and check if (i) all subscript − vertices are stable in GS and
(ii) GS admits a stable matching MS that satisfies property 1 given in Theorem 15; if
so, then return the corresponding matching TS in G.

2. Return “no”.

If our algorithm returns a matching TS in Step 1, then TS is truly popular (by Theorem 15).
Suppose the algorithm reaches Step 2: so there is no S ⊆ V such that GS admits a stable
matching that satisfies property 1. Then G has no truly popular matching (by Theorem 15).
Thus the correctness of our algorithm follows from Theorem 15.
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Step 1, part (i) is implemented by running a stable matching algorithm (say, [24]) in GS .
Step 1, part (ii) is implemented by running the algorithm for finding a stable matching in a
roommates instance with forbidden edges [14]. Since there are 2n sets S ⊆ V , the running
time of our algorithm is O∗(2n). Thus we have shown Theorem 3 stated in Section 1.

4.1 Proof of Lemma 14
We bound the number of special truly popular matchings in a graph H by bounding the
number of stable matchings in some related graphs that we construct below. Let Sα be the
set of special truly popular matchings in H with a specific witness ~α ∈ {±1}t, where t is the
number of vertices in H. Define σ ∈ {±}t as follows: σu = sign(αu) for all vertices u in H
where sign(αu) = + if αu = 1, else sign(αu) = −.

Corresponding to σ ∈ {±}t, we build the graph Hσ as follows. The vertex set of Hσ is
{uσu

: u is a vertex in H}. For each edge (u, v) in H where σu = − and σv = + do:
if u prefers v to all its neighbors w in H with σw = − then add the edge (u−, v+) to Hσ.

For any vertex uσu
inHσ: uσu

’s preference order of neighbors inHσ is as per u’s preference
order in H. Note that for any neighbor vσv of uσu in Hσ, we have σv = + if σu = − and
vice-versa. This is because the edge set of Hσ consists only of edges of the type (a−, b+).

For each M ∈ Sα, define fα(M) = {(uσu , vσv ) : (u, v) ∈M}. We show in Claim 19 below
that for every (u, v) ∈ M , the edge (uσu

, vσv
) is in Hσ. Thus fα(M) is a matching in Hσ.

Moreover, fα(M) is a stable matching in Hσ (see Claim 20). Note that fα is one-to-one.
Hence the total number of special truly popular matchings in H is at most the the maximum
number of stable matchings in Hσ summed up over all σ ∈ {±}t, or equivalently, over all
~α ∈ {±1}t. This sum is at most ct · 2t = (2c)t. J

B Claim 19. For every (u, v) ∈M , the edge (uσu , vσv ) is in Hσ.

Proof. We have αu + αv = wtM (u, v) = 0 (by complementary slackness) and so {αu, αv} =
{−1, 1}. Assume without loss of generality that αu = −1 and αv = 1. So σu = − and σv = +.
For any neighbor w of u with σw = −, we have wtM (u,w) ≤ αu + αw = −1− 1 = −2, i.e.,
both u and w prefer their partners in M to each other. Thus u prefers v to all its neighbors
w in H with σw = −. Hence (u−, v+) is in Hσ. C

B Claim 20. fα(M) is a stable matching in Hσ.

Proof. Every edge in Hσ is of the form (a−, b+) for some adjacent pair of vertices a, b in H
and αa = −1, αb = 1. Since ~α is a witness of M , we have wtM (a, b) ≤ αa + αb = 0. Thus
either (a−, b+) ∈ fα(M) or at least one of a, b is matched in M to a more preferred neighbor.
So (a−, b+) does not block fα(M). Thus fα(M) has no blocking edge in Hσ. C

References
1 D. J. Abraham, R. W. Irving, T. Kavitha, and K. Mehlhorn. Popular Matchings. SIAM

Journal on Computing, 37(4):1030–1045, 2007.
2 P. Biró, R. W. Irving, and D. F. Manlove. Popular matchings in the marriage and roommates

problems. In Proceedings of the 7th International Conference on Algorithms and Complexity
(CIAC), pages 97–108, 2010.

3 F. Brandl and T. Kavitha. Two Problems in Max-Size Popular Matchings. Algorithmica,
81(7):2738–2764, 2019.

4 K.S. Chung. On the Existence of Stable Roommate Matchings. Games and Economic Behavior,
33(2):206–230, 2000.

FSTTCS 2019



20:14 Popular Roommates in Simply Exponential Time

5 M.-J.-A.-N. de C. (Marquis de) Condorcet. Essai sur l’application de l’analyse à la probabilité
des décisions rendues à la pluralité des voix. L’Imprimerie Royale, 1785.

6 Condorcet method. https://en.wikipedia.org/wiki/Condorcet_method.
7 Á. Cseh, C.-C. Huang, and T. Kavitha. Popular matchings with two-sided preferences and

one-sided ties. SIAM Journal on Discrete Mathematics, 31(4):2348–2377, 2017.
8 Á. Cseh and T. Kavitha. Popular edges and dominant matchings. Mathematical Programming,

172(1):209–229, 2018.
9 Á. Cseh and T. Kavitha. Popular Matchings in Complete Graphs. In Proceedings of the 38th

Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS), pages 17:1–17:14, 2018.

10 W. H. Cunningham and A. B. Marsh. A primal algorithm for optimal matching. Mathematical
Programming, 8:50–72, 1978.

11 B. C. Dean and S. Munshi. Faster algorithms for stable allocation problems. Algorithmica,
58(1):59–81, 2010.

12 J. Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Research of
the National Bureau of Standards B, 69B:125–130, 1965.

13 Y. Faenza, T. Kavitha, V. Powers, and X. Zhang. Popular Matchings and Limits to Tractability.
In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2790–2809, 2019.

14 T. Fleiner, R. W. Irving, and D. F. Manlove. Efficient algorithms for generalised stable
marriage and roommates problems. Theoretical Computer Scienc, 381:162–176, 2007.

15 F. V. Fomin and D. Kratsch. Exact exponential algorithms. Springer-Verlag New York, Inc.,
New York, 2010.

16 D. Gale and L.S. Shapley. College admissions and the stability of marriage. American
Mathematical Monthly, 69(1):9–15, 1962.

17 P. Gärdenfors. Match making: assignments based on bilateral preferences. Behavioural Science,
20(3):166–173, 1975.

18 S. Gupta, P. Misra, S. Saurabh, and M. Zehavi. Popular matching in roommates setting is
NP-hard. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 2810–2822, 2019.

19 D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algorithms. MIT
Press, Boston, MA, 1989.

20 M. Hirakawa, Y. Yamauchi, S. Kijima, and M. Yamashita. On The Structure of Popular
Matchings in The Stable Marriage Problem - Who Can Join a Popular Matching? In the 3rd
International Workshop on Matching Under Preferences (MATCH-UP), 2015.

21 C.-C. Huang and T. Kavitha. Near-popular matchings in the Roommates problem. SIAM
Journal on Discrete Mathematics, 27(1):43–62, 2013.

22 C.-C. Huang and T. Kavitha. Popular matchings in the stable marriage problem. Information
and Computation, 222:180–194, 2013.

23 C.-C. Huang and T. Kavitha. Popularity, mixed matchings, and self-duality. In Proceedings
of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2294–2310,
2017.

24 R.W. Irving. An efficient algorithm for the stable roommates problem. Journal of Algorithms,
6:577–595, 1985.

25 A. R. Karlin, S. Oveis Gharan, and R. Weber. A simply exponential upper bound on the
maximum number of stable matchings. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 920–925, 2018.

26 T. Kavitha. A size-popularity tradeoff in the stable marriage problem. SIAM Journal on
Computing, 43(1):52–71, 2014.

27 T. Kavitha. Popular half-integral matchings. In Proceedings of the 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP), pages 22.1–22.13, 2016.

https://en.wikipedia.org/wiki/Condorcet_method


T. Kavitha 20:15

28 T. Kavitha, J. Mestre, and M. Nasre. Popular Mixed Matchings. Theoretical Computer
Science, 412(24):2679–2690, 2011.

29 E. McDermid and R. W. Irving. Sex-equal stable matchings: Complexity and exact algorithms.
Algorithmica, 68:545–570, 2014.

30 A. Subramanian. A New Approach to Stable Matching Problems. SIAM Journal on Computing,
23(4):671–700, 1994.

31 C.-P. Teo and J. Sethuraman. The geometry of fractional stable matchings and its applications.
Mathematics of Operations Research, 23(4):874–891, 1998.

32 E. G. Thurber. Concerning the maximum number of stable matchings in the stable marriage
problem. Discrete Mathematics, 248(1-3):195–219, 2002.

FSTTCS 2019


	Introduction
	Our results
	Background and related results
	Our techniques

	Preliminaries
	An algorithm for the popular roommates problem
	Popular matchings and witnesses
	A decomposition result for popular matchings
	Our algorithm

	Truly popular matchings
	Proof of Lemma 14


