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Abstract
For every finitary set functor F we demonstrate that free algebras carry a canonical partial order.
In case F is bicontinuous, we prove that the cpo obtained as the conservative completion of the free
algebra is the free completely iterative algebra. Moreover, the algebra structure of the latter is the
unique continuous extension of the algebra structure of the free algebra.

For general finitary functors the free algebra and the free completely iterative algebra are proved
to be posets sharing the same conservative completion. And for every recursive equation in the
free completely iterative algebra the solution is obtained as the join of an ω-chain of approximate
solutions in the free algebra.
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1 Introduction

Recursion and iteration belong to the crucial concepts of theoretical computer science. An
algebraic treatement was suggested by Elgot who introduced iterative algebraic theories
in [9]. The corresponding concept for algebras over a given endofunctor F was defined by
Milius [10]: an algebra is called completely iterative if every recursive equation has a unique
solution in it. We recall this in Section 5. The free completely iterative theory of Elgot is
then precisely the algebraic theory corresponding to the free completely iterative algebras.
Milius also described the free completely iterative algebra on a given object X: it is precisely
the terminal coalgebra for the endofunctor F (−) +X. This corresponds nicely to the fact
that the free algebra on X is precisely the initial algebra for F (−) +X.

In the present paper we study iterative algebras for a finitary set functor F (i.e., one
preserving filtered colimits). We first show that given a choice of an element of F∅, we obtain
a canonical partial order on the initial algebra µF and on the terminal coalgebra νF . To
illustrate this, consider the polynomial functor HΣ for a finitary signature Σ: here νHΣ is
the algebra of all Σ-trees and µHΣ the subalgebra of all finite Σ-trees. The ordering of νHΣ
is “by cutting”: for two Σ-trees s and s′ we put s < s′ if s is obtained from s′ by cutting,
for a certain height, all nodes of larger heights away. This makes νHΣ a cpo which is the
conservative completion of the subposet µHΣ. (The basic reason is that for every infinite
Σ-tree its cuttings ∂ns at level n ∈ N form an ω-chain with s = t∂ns.) Now every finitary
set functor can be presented as a quotient of a polynomial functor, see Section 4, and both
µF and νF inherit their orders from the order of Σ-trees by cutting. We prove that
(a) if F is bicontinuous, i.e., it also preserves limits of ωop-sequences, then νF is a cpo which

is the conservative completion (see Remark 8) of µF , and
(b) for finitary set functors in general νF and µF share the same conservative completion.
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7:2 On Free Completely Iterative Algebras

Moreover, the coalgebra structure of νF is the unique continuous extension of the inverted
algebra structure of µF . And for every coalgebra A the unique homomorphism into νF is a
join of an ω-chain of approximate homomorphisms hn : A → µF . All this depends on the
choice of an element in F∅.

We then apply this to a new description of the free completely iterative algebra on an
arbitrary set X 6= ∅. We choose a variable in X and obtain an order on ΦX, the free algebra
for F on X, and one on ΨX, the free completely iterative algebra on X. We prove that the
conservative completion of ΦX and ΨX coincide. And that in case that F is bicontinuous,
ΨX is the conservative completion of ΦX. In both cases, the algebra structure of ΨX is the
unique continuous extension of that of ΦX. Moreover, solutions of recursive equations in
ΨX can be obtained as joins of ω-chains of so-called approximate solutions in ΦX obtained
in a canonical manner.

Related Work. We can work with complete metrics in place of complete partial orders.
Barr proved that given a bicontinuous set functor F with F∅ 6= ∅, there is a canonical
complete metric on νF which is the Cauchy completion of µF , see [8]. This was extended
in [2] to finitary set functors with F∅ 6= ∅ : νF and µF have the same Cauchy completion,
and the coalgebra structure of νF is the unique continuous extension of the inverted algebra
structure of µF .

In the bicontinuous case a cpo structure of νF was presented in [4]. But the definition
was quite technical; we recall this in Section 3. One of the main results of the present paper
that the order of νF by cutting (inherited from Σ-trees) coincides with that of op. cit.

2 Polynomial Functors

We first illustrate our method on the special case: the polynomial functor HΣ associated
with a signature Σ = (Σn)n∈N. This is a set functor given by

HΣX =
∐
n∈N

Σn ×Xn ,

and we represent the elements of the above set as “flat” terms σ(x1, . . . , xn) where σ ∈ Σn
and (xi) ∈ Xn.
I Remark 1.
(1) A free algebra ΦΣX on a set is the algebra of all terms with variables in X. This can

be represented by finite trees as follows. A Σ-tree is an ordered tree labelled in Σ so
that every node labelled in Σn has precisely n successors. We consider Σ-trees up to
isomorphism. Now given a set X we form a new signature

ΣX = Σ +X

in which elements of X have arity 0. A ΣX -tree is called a Σ-tree over X; its leaves are
labelled by nullary symbols or variables from X. Then we get

ΦΣX = all finite Σ-trees over X.

The algebra structure

ϕ : HΣ
(
ΦΣX

)
→ ΦΣX

assigns to each member σ(t1, . . . , tn) (where ti are finite ΣX -trees) the ΣX -tree with root
labelled by σ and with n maximum proper subtrees t1, . . . , tn. Thus ϕ−1 is tree tupling.
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(2) The terminal coalgebra νHΣ can analogously be described as the coalgebra of all Σ-trees,
the coalgebra operation is tree-tupling. For every set X we denote by ΨX the terminal
coalgebra of HΣX (= HΣ(−) +X):

ΨΣX = νHΣX = ν(HΣ +X) .

It consists of all Σ-trees over X. The coalgebra structure

τ : ΨΣX → HΣ(ΨΣX)

assigns to a tree t ∈ ΨΣX either x ∈ X, if t is a root-only tree labelled in X, or
σ(t1, . . . , tn), if the root of t is labelled by σ ∈ Σn and its successor subtrees are t1, . . . , tn.
This is a free completely iterative algebra for HΣ, see Section 5.

I Example 2.
(1) If Σ consists of a set A of unary operation symbols, we have HΣX = A×X. A tree in

ΨΣX is either a finite unary tree over X corresponding to an element of A∗ ×X (a leaf
labelled in X, the other nodes labelled in A) or an infinite unary tree corresponding to a
word in Aω:

ΨΣX = A∗ ×X +Aω .

(2) Let Σ be a signature of one n-ary symbol for every n ∈ N. Thus HΣX = X∗. A tree in
ΨΣX does not need labels for inner nodes, and for leaves we either have a label in X or
we consider the leaf unlabelled:

ΨΣX = all finitely branching trees with leaves
partially labelled in X.

I Notation 3. Let us choose an element p ∈ X ∪ Σ0. Then every tree t in ΨΣX yields a
tree ∂nt of height at most n by cutting all nodes of larger heights away and relabelling all
leaves of height n by p.

I Definition 4. We consider ΨΣX as a poset where for distinct trees s, s′ we put

s < s′ iff s is a cutting of s′.

That is, s = ∂ns
′ for some n ∈ N.

I Example 5.
(1) For HΣX = A×X the subset Aω of ΨΣX is discretely ordered. Given (u, x) and (v, y)

in A∗ ×X then

(u, x) < (v, y) iff u is a proper prefix of v and x = p.

Finally (u, x) < w, for w ∈ Aω, iff u is a finite prefix of w and x = p.

(2) For HΣX = X∗ the set ΨΣX is ordered by cutting.

I Remark 6.
(a) Every tree s in ΨΣX is a join of its cuttings:

s =
⊔
n∈N

∂ns .

CSL 2020



7:4 On Free Completely Iterative Algebras

(b) Every strictly increasing sequence (sn)n∈N in ΨΣX lies in ΦΣX, i.e., each sn is finite.
And this sequence has a unique upper bound. Indeed, define s ∈ ΦΣX as follows: for
every k ∈ N there exists n ∈ N such that all the trees sn, sn+1, sn+2, . . . agree up to
height k. Then this is how s is defined up to height k.
It is easy to verify that s is a well-defined Σ-tree over X. This is obviously an upper
bound: to verify sm < s for every m, one shows, for the height k of the finite tree sm,
that sm and s agree at that height, hence sm = ∂ks. Every other upper bound s′ agrees
with s on heights 0, 1, 2, . . . – thus, s = s′.

(c) Given a directed set A ⊆ ΨΣX, all strictly increasing ω-chains in A have the same upper
bound. Indeed, let (sn) and (s′n) be strictly increasing sequences in A, then since A is
directed, we can find a strictly increasing sequence (s′′n) in A such that each s′′n is an
upper bound of sn and s′n for every n. The unique upper bound of that sequence is also
an upper bound for (sn) and (s′n).

I Corollary 7. ΨΣX is a cpo, i.e., it has directed joins.

Indeed, if a directed set A ⊆ ΨΣX has a largest element, then this is tA. Assuming the
contrary, we can find a strictly increasing sequence sn ∈ A. If s is its upper bound, then
s = tA. In fact, given x ∈ A, we can find a strictly increasing sequence s′n ≥ sn in A with
x ≤ s′0 (since A is directed). Since ts′n is an upper bound of (sn), it follows that ts′n = s.
Thus, s in an upper bound of A, and it is clearly the smallest one.

I Remark 8.
(1) A monotone function between posets is called continuous if it preserves all existing

directed joins.

(2) Recall that a conservative completion of a poset P is a cpo P̄ containing P as a subposet
closed under existing directed joins with the following universal property:

For every continuous function f : P → Q, where Q is a cpo, there exists a unique
continuous extension f̄ : P̄ → Q.

See [7], Corollary 2, for the proof that P̄ exists.

(3) ΨΣX is a conservative completion of ΦΣX. Indeed, given a continuous function
f : ΦΣX → Q, define f̄ : ΨΣX → Q by f̄(s) = t

n∈N
f(∂ns) for every tree s in ΨΣX.

This extends f , and the proof of Corollary 7 demonstrates that f̄ is continuous. It is
unique: from s = t∂ns the formula for f̄ follows via continuity.

3 The limit F ω1 as a cpo

In this section F denotes a finitary set functor with F∅ 6= ∅. If we choose an element
p : 1→ F∅, then the limit Fω = lim

n∈N
Fn1 of the terminal-coalgebra chain carries a structure

of a cpo (a poset with directed joins). This cpo was presented in [4], we recall this structure
here and show in the next section a more intuitive description of that cpo ordering.

I Notation 9.
(1) The initial algebra is denoted by µF with the algebra structure ϕ : F (µF ) → F . The

terminal coalgebra is denoted by νF with the structure τ : νF → F (νF ).
(2) For the initial object 0 (empty set) the unique morphism i : 0→ F0 yields an ω-sequence

of objects Fn0 (n ∈ N) and connecting morphisms Fni called the initial-algebra ω-chain.
Its colimit is denoted by Fω0 with the colimit cocone in : Fn0 → Fω0. Since F is
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finitary, Fω0 is an initial algebra. The algebra structure ϕ : F (Fω0)→ Fω0 is the unique
morphism with ϕ · Fin = in+1 for n ∈ N. See [3].

(3) Dually, the unique morphism t : F1→ 1 yields an ωop-sequence of objects Fn1 (n ∈ N)
and connecting morphisms Fnt, called the terminal coalgebra ω-chain. Its limit is denoted
by Fω1 with the limit cone tn : Fω1→ Fn1.

(4) The unique morphism u : 0 → 1 defines morphisms Fnu : Fn0 → Fn1. There exists a
unique monomorphism ū : Fω0 → Fω1 with tn · ū · in = Fnu (n ∈ N), see [4, Lemma
2.4].

(5) Since p : 1→ F0 has been chosen, we get morphisms

en = ū · in+1 · Fnp : Fn1→ Fω0 ,

and we define

rn = en · tn : Fω1→ Fω1 .

The following theorem is Theorem 3.3 in [4]. The assumption, made in that paper, that
F is bicontinuous, was not used in the proof. Observe that the statement concerns the limit
Fω1 of which we do not claim it is νF .

I Theorem 10. Fω1 is a cpo w.r.t. the following ordering

x v y iff x = y or x = rn(y) for some n ∈ N.

Every strictly increasing ω-chain has a unique upper bound in Fω1.

I Example 11.
(1) For F = HΣ we have Fω1 = νHΣ, all Σ-trees. Recall our choice of p ∈ F0 = Σ0. The

ordering v above is precisely that by cutting, see Definition 4.
Indeed, ū : µHΣ → νHΣ is just the inclusion map. If we put 1 = {p}, then HΣ1 consists
of Σ-trees σ(p, . . . , p) or σ ∈ Σ0 of height at most 1 with leaves labelled by p. More
generally, Hn

Σ1 consists of Σ-trees of height at most n with leaves of height n labelled by
p. The function en : Hn

Σ1→ µHΣ is the inclusion map, hence, rn is the cutting function
∂n of Section 2.

(2) For the finite power-set functor Pf we have Pf0 = {∅}, thus the chosen element is
p = ∅. Recall that a non-ordered tree is called extensional if for every node all maximum
subtrees are pairwise distinct (i.e., non-isomorphic). Every tree has an extensional
quotient obtained by recursively identifying equal maximum subtrees of every node.
In the initial-algebra chain, Pnf 0 can be described as the set of all extensional trees of
height at most n (and Pnf i are the inclusion maps). Hence Pωf 0 =

⋃
n∈N
Pnf 0 is the set of

all finite extensional trees.
Worrell proved that Pωf 1 can be described as the set of all compactly branching strongly
extensional trees, see [11]. (Given a tree s, a relation R on its nodes is called a tree
bisimulation if (a) it only relates nodes of the same height and (b) given xRy, then
for every successor x′ of x there is a successor y′ of y with x′Ry′, and vice versa. A
tree is called strongly extensional if every tree bisimulation is contained in the diagonal
relation.)

CSL 2020



7:6 On Free Completely Iterative Algebras

I Remark 12. Observe that each rn factorizes through µF : we have morphisms

∂n : νF → µF with rn = ū · ∂n .

Indeed, put ∂n = in+1 · Fnp · tn.

I Notation 13 (See [3]). The initial-algebra chain for F beyond the above finitary iterations
is the following chain indexed by all ordinals n: on objects define Fn0 by F 00 = 0, Fn+10 =
F (Fn0) and F k0 = colimn<k F

n0 for limit ordinals k. The connecting morphisms are denoted
by in,k : Fn0→ F k0 (n ≤ k). We have i0,1 : 0→ F0 unique, in+1,k+1 = Fin,k, and for limit
ordinals k the cocone (in,k)n<k is a colimit cocone.

Dually, the terminal-coalgebra chain indexed by Ordop has objects Fn1 with F 01 = 1,
Fn+11 = F (Fn1) and F k1 = lim

k>n
Fn1. And it has connecting morphisms tn,k with t1,0

unique, tn+1,k+1 = Ftn,k and (tn,k)k>n the limit cone if k is a limit ordinal. In our notation
above we thus have t = t1,0, Ft = t2,1, etc.

I Lemma 14. Every natural transformation ε : H → F between endofunctors induces
(1) a unique natural transformation ε̂n : Hn1 → Fn1 (n ∈ Ord) between their terminal-

coalgebra chains satisfying

ε̂n+1 ≡ H(Hn1) εHn1−−−−→ F (Hn1) F ε̂n−−−−→ F (Fn1) ,

and
(2) a unique natural transformation ε̃n : Hn0→ Fn0 (n ∈ Ord) between their initial-algebra

chains satisfying

ε̃n+1 ≡ H(Hn0) εHn0−−−−→ F (Hn0) F ε̃n−−−−→ F (Fn0) .

Proof. We present the proof of (1), that of (2) is completely analogous.
Denote by tn,k and t′n,k the connecting morphisms of the terminal-coalgebra chains for F

and H, resp.
We have ε̂0 : 1→ 1 unique, and ε̂1 = ε1 : H1→ F1 is also unique. The first naturality

square

H1
t′1,0 //

ε̂1
��

1

ε̂0
��

F1
t1,0

// 1

trivially commutes.
Given ε̂n, then ε̂n+1 is uniquely determined by the above formula. And every naturality

square for n

Hn1
t′n,m //

ε̂n
��

Hm1

ε̂m
��

Fn1
tn,m

// Fm1

(m ≤ n)
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yields the following naturality square for n+ 1:

Hn+11
Ht′n,m //

ε̂n+1

��

εHn1

%%

Hm+11

ε̂m+1

��

εHm1

}}F (Hn1)
Ft′n,m //

F ε̂n

yy F ε̂m !!
Fn+11

Ftn,m

// Fm+11

Indeed, the upper part commutes since ε : H → F is natural, and for the lower one apply F
to the square above.

Thus, all we need proving is that given a limit ordinal k for which all the above squares
with m ≤ n < k commute, there is a unique ε̂k : Hk1→ F k1 making the following squares

Hk1
t′k,n //

ε̂k
��

Hn1

ε̂n

��
F k1

tk,n
// Fn1

(n < k)

commutative. The morphism ε̂n · t′k,n for all n < k form a cone of the k-chain with limit
F k1, i.e., we have, for each n > m, the following commutative triangle

Hk1

t′k,n

��

t′k,m

��
Hn1

ε̂n

��

t′n,m

// Hm1

ε̂m

��
Fn1

tn,m
// Fm1

Thus, ε̂k is uniquely determined by the above commutative squares. J

I Remark 15. ε̂ω : Hω1→ Fω1 is the unique morphism satisfying ε̂n · t′n = tn · ε̂ω for every
n ∈ N. Indeed, this follows from the above proof since tn = tω,n and t′n = t′ω,n. Analogously,
ε̃ω : Hω0→ Pω0 is the unique morphism satisfying ε̃ · i′n = in · ε̃n for every n ∈ N.

I Remark 16. Recall the description of the terminal coalgebra of a finitary set functor F due
to Worrell [11]:
(a) All connecting morphisms tn,ω with n ≥ ω are monic, thus, Fω+ω1 =

⋂
n∈N

Fω+n1;

(b) Fω+ω1 is the terminal coalgebra whose coalgebra structure is inverse to tω+ω+1,ω+ω.

I Example 17. For Pf (see 11(2)) the subset Pω+n1 of Pω1 consists of all strongly extensional
compactly branching trees which are finitely branching at all levels up to n − 1. Thus,⋂
n∈N
Pω+n1 is the set νPf of all finitely branching strongly extensional trees in Pωf 1. This

was proved in [11].

CSL 2020



7:8 On Free Completely Iterative Algebras

I Remark 18. Since µF can be viewed as a coalgebra for F (via ϕ−1), we have a unique
coalgebra homomorphism

m : µF → νF with τ ·m = Fm · ϕ−1 .

This is monic for every finitary set functor, see [2, Proposition 5.1].
We thus can consider µF as a subset of νF and m as the inclusion map.
Since both HΣ and F are finitary functors, we have the morphism ε̃ω : µHΣ → µF of

Lemma 14.

I Lemma 19. ε̃ω : (µHΣ, ϕ
′) → (µF, ϕ · εµF ) is a homomorphism of algebras for HΣ.

Consequently, ε̃ω is a restriction of k̂, i.e., we have k̂ ·m′ = m · ε̃ω : µHΣ → νF .

Proof.
(1) To verify that ε̃ω is a homomorphism, i.e., ε̃ω · ϕ′ = ϕ · εµF ·HΣε̃ω, we use the fact that

the colimit cocone (i′n)n∈N yields a colimit cocone (HΣi
′
n)n∈N. And each HΣi

′
n merges

the two sides of our equation:

ε̃ω · ϕ′ ·HΣi
′
n = ε̃ω · i′n+1 (definition of ϕ′)

= in+1 · ε̃n+1 (definition of ε̃ω)

= ϕ · Fin · ε̃n+1 (definition of ϕ)

= ϕ · F (in · ε̃n) · εFn0 (definition of ε̃n+1)

= ϕ · εµF ·HΣ(in · ε̃n) (ε natural)

= ϕ · εµF ·HΣε̃ω ·HΣi
′
n (definition of ε̃ω) .

(2) We observe that m and m′ are homomorphisms of algebras for HΣ. Indeed, τ ·m =
Fm · ϕ−1 in Remark 18 yields

m · (ϕ · εµF ) = τ−1 · Fm · εµF = (τ−1 · ενF ) ·HΣm,

analogously for m′. Due to (1) this shows that m · ε̃ω : (µHΣ, ϕ
′)→ (νF, τ−1 · ενF ) is a

homomorphism for HΣ. So is k̂ ·m′, thus the initiality of µF yields k̂ ·m′ = m · ε̃ω. J

4 The Order by Cutting

We have seen in Section 2 that for polynomial functors the terminal coalgebra νHΣ is a cpo
when ordered by cutting of the Σ-trees. In the present section we represent an arbitrary
finitary set functor F as a quotient of some HΣ. This will enable us to introduce an order by
cutting on νF and µF . We then prove the following, whenever F∅ 6= ∅:
(a) if F is bicontinuous, i.e., preserves also limits of ωop-chains, then νF is a cpo which is

the conservative completion of µF ,
and
(b) for F in general νF and µF share the same conservative completion.

I Definition 20. By a presentation of a set functor F is meant a finitary signature Σ and a
natural transformation ε : HΣ � F with epic components.

I Proposition 21 (See [6]). A set functor has a presentation iff it is finitary. The category
of algebras for F is then equivalent to a variety of Σ-algebras.



J. Adámek 7:9

I Remark 22. The proof is not difficult: a possible signature for F is Σn = Fn for n ∈ N.
Yoneda Lemma yields a natural transformation from Σn × Set(n,−) to F for every n ∈ N,
and this defines ε : HΣ → F which is epic iff F is finitary.

Moreover, if elements of HΣX =
∐
n∈N

Σn×Xn are represented as flat terms σ(x1, . . . , xn),

then we define ε-equations as equations of the following form:

σ(x1, . . . , xn) = τ(y1, . . . , ym)

such that σ ∈ Σn, τ ∈ Σm, and εX merges the given elements of HΣX. (Here X =
{x1, . . . , xn, y1, . . . ym}.) The variety of Σ-algebras presented by all ε-equations is equivalent
to the category of F -algebras. This equivalence takes an algebra α : FA→ A to the Σ-algebra
α · εA : HΣA→ A.

I Corollary 23. The initial algebra µF is the quotient of the algebra µHΣ of finite Σ-trees
modulo the congruence ∼ merging trees s and s′ iff s can be obtained from s′ by a (finite)
application of ε-equations.

I Example 24. The finite power-set functor Pf has a presentation by the signature Σ with
a unique n-ary operation for every n ∈ N. Thus, HΣX = X∗. And we consider the natural
transformation εX : X∗ → PfX given by (x1 . . . xn) 7→ {x1, . . . , xn}.

µHΣ can be described as the algebra of all (unlabelled) finite trees. And two trees
are congruent iff they have the same extensional quotient, see Example 11. Consequently,
µPf = µHΣ

/
∼ is the set of all finite unordered extensional trees.

I Remark 25. Analogously to µF = µHΣ
/
∼ above, we can describe the terminal coalgebra

νF as a quotient of νHΣ, whenever a nullary symbol p ∈ Σ0 is chosen, as follows. In [5, 3.13],
the congruence ∼∗ on νHΣ of a possibly infinite application of ε-equations was defined as
follows:

s ∼∗ s′ iff ∂ns ∼ ∂ns′ (n ∈ N) .

I Theorem 26 ([5, 3.15]). The quotient coalgebra νHΣ
/
∼∗ is, when considered as an

F -coalgebra, the terminal coalgebra. Shortly,

νF = νHΣ

/
∼∗ .

I Remark 27. Let τ ′ : νHΣ → HΣ(νHΣ) and τ : νF → F (νH) denote the respective coalgebra
structures. The quotient map k̂ : νHΣ → νF is a homomorphism of coalgebras for F , i.e.,
the following square

νHΣ

k̂

��

τ ′ // HΣ(νHΣ)
ενHΣ // F (νHΣ)

Fk̂
��

νF
τ

// F (νF )

commutes. This was proved in [5], see the proof of Theorem 3.15 there (where k̂ was denoted
by ε̂).

I Lemma 28. The morphism k̂ : νHΣ → νF is a split epimorphism.

CSL 2020



7:10 On Free Completely Iterative Algebras

Proof. Choose b : F (νF )→ HΣ(νF ) with ενF ·b = id. For the coalgebra b ·τ : νF → HΣ(νF )
we have a unique homomorphism k∗ : νF → νHΣ with τ ′ · k∗ = HΣk

∗ · (b · τ). We prove
k̂ · k∗ = id by verifying that k̂ · k∗ is an endomorphism of the terminal coalgebra νF , i.e.,
τ · (k̂ · k∗) = F (k̂ · k∗) · τ :

τ · k̂ · k∗ = F k̂ · ενHΣ · τ ′ · k∗ (k̂ a homomorphism)
= Fk · ενHΣ ·HΣk

∗ · b · τ (k∗ a homomorphism)
= F (k · k∗) · ενF · b · τ (ε natural)
= F (k · k∗) · τ (ενF · b = id) J

I Definition 29. The following relation ≤ on νF is called order by cutting: given distinct
congruence classes [s] and [s′] of ∼∗, put

[s] < [s′] iff s ∼ ∂ns′ for some n ∈ N .

We obtain posets νF and µF (as a subposet via ū see Remark 18).

I Example 30. For the presentation of Pf of Example 24 we know that νHΣ is the algebra
of all finitely branching trees. We have s ∼∗ s′ iff the extensional quotients of ∂ns and ∂ns′
coincide for all n ∈ N. This way Barr described νPf in [8].

Consequently, for extensional trees we have s < s′ iff s is the extensional quotient of some
cutting of s′.

I Notation 31. In the rest of the present section we assume that F is a finitary set functor
with F∅ 6= ∅, and that a presentation ε is given. Since ε∅ : Σ0 → F∅ is epic, we can choose a
nullary symbol p′ in Σ0. This yields a choice of p = ε∅(p′) in F∅.

We use the notation τ , ϕ, rn etc. for F as in Section 3, and the corresponding notation
τ ′, ϕ′, r′n etc. for HΣ. Recall ε̂ω : νHΣ → Fω1 from Lemma 14.

I Remark 32.
(1) The homomorphism k̂ : νHΣ → νF of Remark 27 is clearly monotone and preserves the

least elements. Indeed, if p′ ∈ Σ0 is the chosen element, then the least element of νHΣ is
the singleton tree labelled by p′. And the least element of νF is [p′] = k̂(p′).

(2) Since ε̃ω is a domain-codomain restriction of k̂, see Lemma 19, it also is monotone and
preserves the least element.

I Proposition 33. The morphisms rn : Fω1 → Fω1 and r′n : Hω
Σ1 → Hω

Σ1 are related by
rn · ε̂ω = ε̂ω · r′n (n ∈ N).

Proof.
(1) We prove Fnu · ε̃n = ε̂n · Hn

Σu by induction on n ∈ N. The first step is trivial. The
induction step is computed as follows:

Fn+1u · ε̃n+1 = F (Fnu · ε̃n) · εHnΣ0 (definition of ε̃n)

= F (ε̂n ·Hn
Σu) · εHnΣ0 (induction hypothesis)

= F ε̂n · εHnΣ1 ·Hn+1
Σ u (ε natural)

= ε̂n+1 ·Hn+1
Σ u (definition of ε̂n) .
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(2) We next verify ū · ε̃ω = ε̂ω · ū′. For that it is sufficient to prove, for all n ∈ N, that
ū · ε̃ω · i′n = ε̂ω · ū′ · i′n. Indeed, (i′n) is a collectively epic cocone. Thus, we only need
to verify, by induction on k ∈ N, that tn+k merges the two sides of that equation:
tn+k · (ū · ε̃ω · i′n) = tn+k · (ε̂ω · ū′ · i′n). (Here we use the fact that (tn+k)k∈N is a collectively
monic cone for every n.)
This follows for k = 0 from the following computation:

tn · ū · ε̃ω · i′n = tn · ū · in · ε̃n see Remark 15
= Fnu · ε̃n (definition of ū)
= ε̂n ·Hn

Σu see (1)
= ε̂n · t′n · ū′ · i′n (definition of ū′)
= tn · ε̂ω · ū′ · i′n see Remark 15 .

And if the above equation holds for k, then we can write tn+(k+1) as t(n+1)+k and apply
the above equation to k and n+ 1. From that we obtain the induction step:

tn+(k+1) · ū · ε̃ω · i′n = t(n+1)+k · ū · ε̃ω · i′n+1 ·Hn
Σi (i′n compatible)

= t(n+1)+k · ε̂ω · ū′ · i′n+1 ·Hn
Σi (induction hypothesis)

= tn+(k+1) · ε̂ω · ū′ · i′n (i′n compatible) .

(3) Now we prove for the given point p = ε∅ · p′ : 1→ F0 that Fnp · ε̂n = ε̃n+1 ·Hn
Σp
′. This

is trivial for n = 0, and the induction step is as follows:

Fn+1p · ε̂n+1 = Fn+1p · F ε̂n · εHn1 (definition of ε̂n)
= F

(
ε̃n+1 ·Hn

Σp
′) · εHn1 (induction hypothesis)

= F ε̃n+1 · εHn+1
Σ 1 ·H

n+1
Σ p′ (ε natural)

= ε̃n+2 ·Hn+1
Σ p′ (definition of ε̃n) .

(4) The proof of our proposition follows. Recall that rn is defined by

rn = en · tn = ū · in+1 · Fnp · tn

and analogously r′n. Thus

rn · ε̂ω = ū · in+1 · Fnp · tn · ε̂ω
= ū · in+1 · Fnp · ε̂n · t′n see Remark 15
= ū · in+1 · ε̃n+1 ·Hn

Σp
′ · t′n see (3)

= ū · ε̃ω · i′n+1 ·Hn
Σp
′ · t′n see Remark 15

= ε̂ω · ū′ · i′n+1 ·Hn
Σp
′ · t′n see (2)

= ε̂ω · r′n . J

In the following theorem µF is considered as a subset of νF via the monomorphism m,
see Remark 18. Thus (µF )A, ordered component-wise, is a subposet of (νF )A. Moreover,
F (µF ) is considered as a poset via the bijection ϕ, and analogously for F (νF ).

I Theorem 34. Let F be a finitary set functor with F∅ 6= ∅. The order of νF by cutting
coincides with that of Theorem 10. And the poset νF has the same conservative completion
as its subposet µF . The coalgebra structure τ is the unique continuous extension of ϕ−1.
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7:12 On Free Completely Iterative Algebras

Proof.
(1) Recall that tn = tω,n and Ftn = tω+1,n+1, thus

tn+1 · tω+ω,ω = tω+ω,n+1 = Ftn · tω+ω,ω+1 .

Moreover, observe that since τ−1 = tω+ω+1,ω+ω, we have tω+ω,ω+1 · τ−1 = Ftω+ω,ω.

(2) We prove that the homomorphism k̂ : νHΣ → νF of Remark 27 fulfils

ε̂ω = tω+ω,ω · k̂ : νHΣ → Fω1 .

Following Remark 15 we need to prove the following equalities

tn · (tω+ω,ω · k̂) = ε̂n · t′n (n ∈ N) .

The case n = 0 is trivial. The induction step is as follows:

ε̂n+1 · t′n+1 = F ε̂n · εHnΣ1 · t′n+1 (definition of ε̂n)

= F ε̂n · εHnΣ1 ·HΣt
′
n · τ ′ (τ ′ = (t′ω+1,ω)−1

and t′n = t′ω,n)
= F (ε̂n · t′n) · ενHΣ · τ ′ (ε natural)

= Ftn · Ftω+ω,ω · F k̂ · ενHΣ · τ ′ (induction hypothesis)

= Ftn · tω+ω,ω+1 · τ−1 · F k̂ · ενHΣ · τ ′ by (1)

= Ftn · tω+ω,ω+1 · k̂ (k̂ a homomorphism)

= tn+1 · tω+ω,ω · k̂ by (1) .

(3) The congruence ∼∗ is the kernel equivalence of k̂, see Remark 27. Since tω+ω,ω is monic,
it follows from (1) that this is also the kernel equivalence of ε̂ω.

(4) The ordering of Fω1 defined in Theorem 10 coincides, when restricted to νF (via the
embedding tω+ω,ω), with the ordering by cutting. To prove this, we verify that, given
elements x = [t] and y = [s] of νF , the following equivalence holds for every n ∈ N:

t ∼∗ ∂ns iff tω+ω,ω(x) = rn · tω+ω,ω(y) .

That is, we are to prove for all n ∈ N that

ε̂ω(t) = ε̂ω · r′n(s) iff tω+ω,ω(x) = rn · tω+ω,ω(y) .

Due to (2), this translates to the following equivalence

ε̂ω(t) = ε̂ω · r′n(s) iff ε̂ω(t) = rn · ε̂ω(s) ,

which follows from Proposition 33.

(5) For the morphism ū : µF → Fω1 of 3.1(4) we prove that

ū = tω+1,ω · Fū · ϕ−1 .

It is sufficient to prove that the equality holds when precomposed by in+1 : Fn+10→ µF

for every n ∈ N. Since in+1 = in+1,ω and ϕ−1 = iω,ω+1, we have ϕ−1 · in = in+1,ω+1 =
Fin. Thus we want to verify

ū · in+1 = tω+1,ω · F (ū · in) .
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For that, we postcompose by tn+1+k for all k ∈ N (and use that given any n this cone is
collectively monic):

tn+1+k · ū · in+1 = tω+1,n+1+k · F (ū · in) .

This equation holds for k = 0 since the left-hand side is Fn+1u, see 3.1(4), and the
right-hand one is

tω+1,n+1 · F (ū · in) = Ftn · Fū · Fin = F (Fnu) .

The induction step from k to k + 1 (for n arbitrary) is easy: just re-write n+ 1 + k + 1
as n+ 2 + k and use the induction hypothesis on n+ 1 in place of n.

(6) For every element x ∈ Fω1, all elements rn(x) are compact. That is, given a directed set
D ⊆ Fω1, then rn(x) v

⊔
D implies rn(x) v y for some y ∈ D. This clearly holds for

F = HΣ. Due to Proposition 33 and (4) above, it also follows for F .

(7) Fω1 is the conservative completion of µF . More precisely, we prove that the embedding
ū : µF → Fω1 has the universal property w.r.t. to continuous maps from µF to cpo’s.
(Observe that µF is trivially closed under existing directed joins due to Theorem 10.)
First, observe that the image of each rn is a subset of the image of ū, see Remark 12.
Every element x ∈ Fω1 yields a sequence rn(x) in µF , and for the order of Theorem 10
we clearly have x =

⊔
n∈N

rn(x). Given a monotone function f : µF → B where B is a cpo,

we define f̄ : Fω1→ B by f̄(x) =
⊔
n∈N

f
(
rn(x)

)
. This is a continuous function. Indeed,

given a directed set D ⊆ Fω1 we know from Theorem 10 that x =
⊔
D exists. Then D

is mutually cofinal with {rn(x);n ∈ N}. This is clear if x ∈ D. Otherwise, (6) implies
that each rn(x) is, due to rn(x) v x, under some element of D. And for each y ∈ D the
fact that y v x implies that we have n with y = rn(x). Consequently, f [D] is mutually
cofinal with {f

(
rn(x)

)
}in B, thus, f(tD) = f(x) = tf [D].

(8) We prove that ū factorizes through tω+ω,ω =
⋂
n∈N

tω+n,ω, see Remark 16. We verify by

induction a factorization through tω+n,ω. For n = 1, see (5). For n = 2 we apply (5)
twice: since Ftω+1,ω = tω+2,ω+1, we get

ū = tω+1,ω · F (tω+1,ω · Fū · ϕ−1)
= tω+2,ω · F (Fū · ϕ−1) .

Analogously for n = 3, 4, . . . .

(9) The proof of the theorem follows. First, Fω1 is the conservative completion of νF , the
argument is as in (7). It follows that ϕ−1 : µF → F (µF ), which is a poset isomorphism
(by our definition of the order of F (µF )) has at most one continuous extension to νF .
And τ is continuous (indeed, a poset isomorphism, too). Thus, we just need proving that
τ extends ϕ−1. In other words, the inclusion map m of Remark 18 fulfils τ ·m = Fm ·ϕ−1,
and Fm is also the inclusion map.
The latter is clear in case F preserves inclusion maps. Next let F be arbitrary. By
Theorem III.4.5 in [6] there exists a set functor F̄ preserving inclusion which agrees
with F on all nonempty sets and functions and fulfils F̄∅ 6= ∅ (since F∅ 6= ∅). Then the
categories of algebras for F and F̄ also coincide, thus µF = µF̄ . And the categories of
nonempty coalgebras for F and F̄ also coincide, hence, νF = νF̄ . Since the theorem
holds for F̄ , it also holds for F . J
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7:14 On Free Completely Iterative Algebras

I Corollary 35. A bicontinuous set functor with F∅ 6= ∅ has a terminal coalgebra which
is the conservative completion of its initial algebra. Its coalgebra structure is the unique
continuous extension of the inverted algebra structure of µF .

This follows from the above proof: we have seen that the conservative completion of µF
is Fω1 which, for F bicontinuous, is νF .

I Remark 36. In the proof of the above theorem we have seen that k̂ is a domain restriction
of ε̂ω: we have ε̂ω = tω+ω,ω · k̂. And the homomorphism ε̃ω is a domain-codomain restriction
of k̂, see Lemma 19. Consequently, Proposition 33 yields

∂n · k̂ = ε̃ω · ∂′n : νHΣ → µF (n ∈ N) .

Here ∂′n is the domain-restriction of r′n and ∂n that of rn, see Remark 12.

5 Free Iterative Algebras

I Assumption 37. Throughout this section F is a finitary set functor with a given presenta-
tion ε : HΣ � F , see Definition 20.

I Remark 38. Let X be a nonempty set.
(1) The initial algebra of F (−) + X is precisely the free algebra for F on X: notation

ΦX = µF (−)+X. Indeed, the components of the algebra structure ϕ : F (ΦX)+X → ΦX
yield an algebra ΦX for F and a morphism η : X → ΦX, respectively. That F -algebra
clearly has the universal property w.r.t. η.

(2) Let us choose an element p′ ∈ Σ0 +X. The finitary functor F (−) +X has the following
presentation: the signature is ΣX of Remark 1. And the natural transformation can,
since HΣX = HΣ(−) +X, be chosen to be

ε+ idX : HΣX � F (−) +X .

This yields an element p ∈ F∅+X which is ε∅(p′) in case p′ ∈ Σ0, else p′ = p.

I Notation 39. ΦX denotes the poset forming the free algebra on X for F ordered by
cutting w.r.t ε+ idX . And ∼ is the congruence on ΦΣX (the algebra of finite Σ-trees on X)
of applying ε-equations, see Corollary 23.

I Remark 40. We do not speak about (ε + idX)-equations, since we do not have to: the
function

εZ + idX : HΣZ +X → FZ +X

does not merge flat terms with variables from X, hence, every (ε+ idX)-equation is simply
an ε-equation.

I Corollary 41. Free algebras for F are free Σ-algebras modulo ε-equations: ΦX = ΦΣX/ ∼.

I Examples 42.
(1) For F = Id we choose p ∈ X and obtain ΦX = N×X ordered as follows:

(n, x) < (m, y) iff n < m and x = p .
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(2) The functor FX = A×X yields

ΦX = A∗ ×X

ordered by

(u, x) < (v, y) iff u is a prefix of v and x = p.

(3) The functor FX = XI × {0, 1} (corresponding to deterministic automata with a finite
input set I) is naturally equivalent to HΣ, where Σ consists of two operations a, b of arity
n = card I. Thus ΦX is the algebra of all finite n-ary trees with inner nodes labelled by
{a, b} and leaves labelled in X. The order is by tree cutting.

(4) Let Pk denote the subfunctor of the power-set functor given by all subsets of at most
k elements. We can describe ΦX as the algebra of all non-ordered, finite extensional
k-branching trees (i.e. every node has at most k children) with leaves labelled in X + {p}.
Here we use a signature Σ having, for every n ≤ k, precisely one n-ary operation; the
nullary one is called p. Then ΦΣX is the algebra of all k–branching finite trees with
leaves labelled in X + {p}. It is ordered by tree cutting. And given k-branching trees s
and s′ we have s ∼ s′ iff they have the same extensional quotient, see 11(2). This yields
the above description of ΦX.
To describe the order of ΦX, let us call the extensional quotient of ∂ns (cutting s at
height n) the n-th extensional cutting. Then for distinct s, s′ in ΦX we have s < s′ iff s
is an extensional cutting of s′.

I Remark 43. Whereas the initial algebra for F (−)+X is the free algebra for F , the terminal
coalgebra

ΨX = νF (−) +X

is the free completely iterative algebra for F , as we recall below. The concept of a recursive
equation in an algebra α : FA→ A is given by a set X of recursive variables and a morphism
e : X → FX +A.

I Definition 44. A solution of recursive equation e : X → FX +A in an algebra (A,α) is a
morphism e† : X → A making the following square

X
e† //

e

��

A

FX +A
Fe†+id

// FA+A

[α,id]

OO

commutative. The algebra (A,α) is called completely iterative if every recursive equation has
a unique solution.

I Example 45. If F = HΣ, we can think of e as a system of recursive equations of the form

x = σ(x1, . . . , xn) or x = a (a ∈ A),

one for every variable x ∈ X (depending on e(x) lying in the left-hand or right-hand
summand of HΣX + A). And then the solution e† makes an assignment of elements of A
to variables from X satisfying those recursive equations: from x = σ(x1, . . . , xn) we get
e†(x) = σA

(
e†(x1), . . . , e†(xn)

)
, and from x = a we get e†(x) = a.
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7:16 On Free Completely Iterative Algebras

The algebra νHΣ of Σ-trees (with the algebra structure τ−1 of tree-tupling) is completely
iterative. For every recursive equation e : X → HΣX + νHΣ the solution e† : X → νHΣ can
be defined as follows: given n ∈ N we describe the cut trees ∂′ne†(x) for all variables x ∈ X
simultaneously by induction on n ∈ N:
(1) ∂′0e†(x) is the singleton tree labelled by p.
(2) Given ∂′ne†(x) for all x ∈ X, then for every x ∈ X with e(x) = σ(x1, . . . , xn) in the left-

hand summand HΣX we define ∂′n+1e
†(x) to be the tree with root labelled by σ and with

n subtrees ∂′ne†(xi), i = 1, . . . , n. Whereas if e(x) = s ∈ νHΣ, then ∂′n+1e
†(x) = ∂′n+1s.

I Theorem 46 (See [10]). Let τX : ΨX → F (ΨX)+X be the terminal coalgebra for F (−)+X.
The components of τ−1

X make ΨX an F -algebra with a morphism η : X → ΨX. This is the
free completely iterative algebra for F w.r.t. the universal morphism η.

In particular, (νF, τ−1) is the initial completely iterative algebra.

I Notation 47. ΨX denotes the poset forming the free completely iterative algebra on X
for F ordered by cutting w.r.t. ε+ idX . And ∼∗ is the congruence on ΨΣX (the algebra of
Σ trees over X) of a possibly infinite application of ε-equations, see Remark 25.

I Corollary 48. Let F be a bicontinuous set functor. The free completely iterative algebra
ΨX on a set X 6= ∅ is a cpo which is the conservative completion of the free algebra ΦX.

The algebra structure of ΨX is the unique continuous extension of the algebra structure
of ΦX.

This is an application of Corollary 35 to F (−) +X.

I Example 49.
(1) For F = Id the conservative completion of ΦX = N×X adds just one maximum element

as
⊔
n∈N

(n, p). Thus ΨX = N×X + 1.

(2) For FX = A × X the conservative completion of A∗ × X adds joins to all sequences
(u0, p) < (u1, p) < (u2, p) < · · · where each un is a prefix of un+1 (n ∈ N). That join is
expressed by the infinite word in Aω whose prefixes are all un. We thus get

ΨX = A∗ ×X +Aω .

(3) For the bicontinuous functor F = Pk we can describe ΨX as the algebra of all extensional
k-branching trees with leaves labelled in X + {p}.
Indeed, this algebra with the order by extensional cutting (see Example 42), is the
completion of its subalgebra ΦX of finite trees. To see this, observe that every strictly
increasing sequence s0 < s1 < s2 · · · in ΨX has a unique upper bound: the tree s defined
level by level so that, given n, its extensional cutting at n is the same as that of sk for
all but finitely many k ∈ N. Therefore, given a continuous function f : ΦX → B where
B is a cpo, the unique continuous extension f̄ : ΨX → B is given by f̄(s) =

⊔
n∈N

f(sn)

where sn is the extensional cutting of s at level n.
(4) For the functor FX = XI × {0, 1} we have ΨX = n-ary trees with leaves labelled in X

and inner nodes labelled in {a, b}. The order is by cutting.

(5) Aczel and Mendler introduced in [1] the functor (−)3
2 defined by

X3
2 =

{
(x1, x2, x3) ∈ X3;xi = xj for some i 6= j

}
.



J. Adámek 7:17

This is a bicontinuous functor with a presentation using Σ = {σ1, σ2, σ3}, all operations
binary, and the following ε-equations

σ1(x, x) = σ2(x, x) = σ3(x, x) .

Here ε : HΣ → (−)3
2 is given by σ1(x, y) 7→ (x, x, y), σ2(x, y) 7→ (x, y, y) and σ3(x, y) 7→

(x, y, x).
The free algebra ΦX = ΦΣX/ ∼ is described as follows: ΦΣX consists of finite binary
trees with leaves labelled in X and inner nodes labelled in Σ. And s ∼ s′ means that
we can obtain s from s′ be relabelling arbitrarily inner nodes whose left and right child
yield the same tree. The order is by cutting.
The free completely iterative algebra is ΨX = ΨΣx

/
∼∗, where ΨΣX are binary trees

with leaves labelled in X and inner nodes labelled in Σ. And ∼∗ allows infinite relabelling
of the type above. ΨX is a cpo which is the conservative completion of ΦX.

I Corollary 50. For every finitary set functor the free algebra on a set X 6= ∅ has the same
conservative completion as the iterative algebra on X. The algebra structure of ΨX is, again,
the unique continuous extension of the algebra structure of ΦX.

This is an application of Theorem 34 to F (−) +X.

I Example 51. For the finite power-set functor Pf the algebra ΨX can be described as
the quotient ΨΣX

/
∼∗, where ΨΣX are the finitely branching trees with leaves labelled in

X + {p}. And s ∼∗ s′ means that the extensional cuttings of s and s′ are the same for every
level n.

A better description: ΨX is the set of all finitely branching strongly extensional trees
(see Example 11(2)), with leaves labelled in X + {p}. The proof is completely analogous to
that for νPf in Worrell’s paper [11].

ΨX is ordered by extensional cutting. This is not a cpo. To see this, consider an arbitrary
strongly extensional tree s which is not finitely branching. Thus, s /∈ ΨX. Each extensional
cutting is finite (since for every n we only have a finite number of extensional trees of height
n) and this yields an increasing ω-sequence in ΦX that has no join in ΨX.

The common conservative completion of ΦX and ΨX is the algebra of all compactly
branching strongly extensional trees with leaves labelled in X + {p}. The proof is, again,
analogous to that for νPf in [11].

6 Approximate Solutions

In this section we prove that solutions of iterative equations in free iterative algebras are
obtainable as joins of ω-chains of approximate solutions. This is true for every finitary set
functor F and every nonempty set of recursion variables. We first prove the corresponding
result for the terminal coalgebra considered as an algebra τ−1 : F (νF )→ νF .

Throughout this section a presentation ε : HΣ → F is assumed and a choice of an element
p ∈ F∅+X where X is a fixed set of “recursion” variables. In particular at the begining we
set X = ∅ and choose p ∈ F∅, i.e., we work with a finitary functor with F∅ 6= ∅.

We continue to use τ , ϕ, ∂n, . . . for F and τ ′, ϕ′, ∂′n, . . . for HΣ (as in Section 4). We
know that νF is the initial completely iterative algebra. We are going to describe solutions
e† : X → νF of recursive equations e : X → FX + νF as joins of ω-chains

e†0 v e
†
1 v e

†
2 . . . : X → µF
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of approximate solutions in the initial algebra. Here we work with the poset (νF )X ordered
pointwise and its subposet (µF )X .

Recall ∂n from Remark 12.

I Definition 52. The k-th approximate solution e†k : X → νF of a recursive equation
e : X → FX + νF is defined by induction on k ∈ N as follows:

e†0 : X → µF is the least element of the poset (µF )X ,

and given e†k, then the following square defines e†k+1:

X
e†
k+1 //

e

��

µF

FX + νF

id +∂k
��

FX + µF
Fe†

k
+id

// F (µF ) + µF

[ϕ,id]

OO

We are going to prove that the unique solution e† of e in νF is the join of the ω-chain e†k
considered in (νF )X . Or, more precisely, for the inclusion m : µF → νF of Remark 18 we
have

e† =
⊔
k∈N

m · e†k .

I Example 53. If F = HΣ then e†n is precisely the cutting ∂′ne† of Example 45. This is
obvious for n = 0, and the induction step is easy.

I Theorem 54. Let F be a finitary set functor with F∅ 6= ∅. For every recursive equation
e : X → FX + νF the unique solution in νF is the join of the ω-chain of approximate
solutions e†n (n ∈ N) in the poset (νF )X .

Proof. We know from Example 45 that the theorem holds for HΣ. We apply this to the
following recursive equation w.r.t. HΣ:

e′ ≡ X e−−−→ FX + νF
b+k∗−−−−−−→ HΣX + νHΣ

where b is a splitting of εX and k∗ splits k̂, see Lemma 28. Thus, e = (εX + k̂) · e′. We know
that (e′)† is the join (e′)† =

⊔
n∈N

m′ · (e′)† for the inclusion m′ : µHΣ → νHΣ. From that we

derive e† =
⊔
n∈N

m · e†n by proving that (1) e† = k̂ · (e′)† and (2) e†n = ε̃ω · (e′)†n for n ∈ N (see

Remark 15). Indeed, we then have

e† = k̂ ·
⊔
n∈N

m′ · (e′)†n =
⊔
n∈N

k̂ ·m′ · (e′)†n

since post-composition with k̂ preserves the order and all joins that exist in (µHΣ)X : recall
from Remark 32 that k̂ : νHΣ → (νHΣ)

/
∼∗ is the quotient map inducing the order by

cutting on νF . We get from Lemma 19

e† =
⊔
n∈N

m · ε̃ω · (e′)†n =
⊔
n∈N

m · e†n

as required.
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(1) Proof of e† = k̂ ·(e′)†. It is sufficient to prove that k̂ ·(e′)† solves e in the algebra (νF, τ−1),
i.e., it is equal to [τ−1, id] ·

(
F [k̂ · (e′)†] + id

)
· e. This follows from the commutative

diagram below, since e = (εX + k̂) · e′:

X
(e′)† //

e′

��

νHΣ
k̂ // νF

HΣX+νHΣ
HΣ(e′)†+id//

HΣ[k̂·(e′)†]+id ((
εX+k̂

��

HΣ(νHΣ)+νHΣ
ενHΣ+id

//

[(τ ′)−1,id]

OO

HΣk̂+id
��

F (νHΣ)+ νHΣ

(N)

Fk̂+k̂

!!

HΣ(νF )+νHΣ
ενF+k̂

,,
FX+νF

(N)

F [k̂·(e′)†]+id
// F (νF )+νF

[τ−1,id]

OO

The upper left-hand part expresses that (e′)† solves e′. For all the other inner parts
consider the components of the corresponding coproducts separately. The right-hand
components commute in each case trivially. The left-hand components of the parts
denoted by (N) commute since ε is natural. For the upper right-hand part recall that k̂
is a homomorphism, i.e., τ · k̂ = F k̂ · ενHΣ .

(2) The proof of e†n = k̃ · (e′)†n is performed by induction on n ∈ N . The case n = 0 is trivial
since ε̃ω preserves the least element (see Remark 32) and (e′)†0 is the constant map of
that value. The induction step follows from the commutative diagram below:

X

e

ww
e′

��

(e′)†n+1 // µHΣ
ε̃ω // µF

FX+νF

id +∂n

��

HΣX+νHΣ
εX+k̂oo

id +∂′n
��

HΣX+µHΣ

εX+ε̃ω

��

HΣ(e′)†n+id
// HΣ(µHΣ)+µHΣ

[ϕ′,id]

OO

εµHΣ+ε̃ω
��

F (µHΣ)+µF
F ε̃ω+id

((
FX+µF

F (e′)†n+id
33

Fe†n+id
// F (µF )+µF

[ϕ,id]

OO

The lower triangle commutes since e†n = ε̃ω · (e′)†n by induction hypothesis. The upper
square is the definition of (e′)†n+1 and the part right of it commutes due to ε̃ω being a
homomorphism, see Lemma 19. The middle part commutes by naturality of ε. For the
lower left-hand part see Remark 36.

(3) It remain s
⊔

(e†n) to verify that (en)n∈N is an ω-chain in (νF )X . For (e′)†n this follows
from (e′)†n = ∂n ·(e′)†, see Example 45. Thus, we only need to observe that (e′)†n ≤ (e′)†n+1
implies ε̃ω · (e′)†n ≤ ε̃ω · (e′)

†
n+1. Indeed, see Remark 32. J
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I Definition 55. For every coalgebra α : X → FX we define approximate homomorphisms
hn : X → µF by induction on n ∈ N as follows: h0 is the least element of (µF )X , and given
hn we put

hn+1 ≡ X
α−−→ FX

Fhn−−−−→ F (µF ) ϕ−−→ µF .

I Corollary 56. For every coalgebra (X,α) the unique homomorphism to νF is the join of
the ω-chain of approximate homomorphisms in (νF )X .

Proof. Let h : (X,α)→ (νF, τ) be the unique homomorphism. Form the recursive equation

e ≡ X α−−→ FX
inl−−−→ FX + νF .

Then e†n = hn for every n ∈ N. This is clear for n = 0. The induction step follows from the
square in Definition 52: observe that (id +∂n) · e = (id +∂n) · inl ·α = inl ·α.

Moreover, h is a solution of e: from τ · h = Fh · α we get h = τ−1 · Fh · α = τ−1 · (Fh+
id) · inl ·α, as required. Thus, our corollary follows from the preceding theorem. J

I Corollary 57. Let F be a finitary set functor. For every nonempty set Y the solutions of
recursive equations in the free iterative algebra ΨY are obtained as joins of ω-chains of the
approximate solutions in the free algebra ΦY .

This is just an application of the above theorem to the functor F (−) + Y and a choice
p ∈ Y making ΨY a poset by cutting.

7 Conclusions and Open problems

Terminal coalgebras of finitary set functors F carry a canonical partial order which is a cpo
whenever F is bicontinuous. This was observed by the author a long time ago. The present
paper describes this order in a completely new manner, using the cutting of Σ-trees for a
signature Σ presenting F . In the bicontinuous case the terminal coalgebra is the conservative
completion of the initial algebra of F . Moreover the algebra structure of µF determines the
coalgebra structure of νF as the unique continuous extension of the inverted map.

The above results are applied to free completely iterative algebras ΨX for F on all
nonempty sets X. In the bicontinuous case ΨX is the conservative completion of the free
algebra ΦX on X, and the algebra structure of ΨX is the unique continuous extension of
that of ΦX. For finitary set functors in general, ΦX and ΨX have the same conservative
completions. We have demonstrated this on several examples of “everyday” finitary functors.
Our main result is that solutions of recursive equations in ΨX can be obtained as joins of
ω-chains of (canonically defined) approximate solutions in ΦX.

It is an open problem whether an analogous result can be proved for accessible set functors
in general. Another important question is whether there is a reasonable class of locally
finitely presentable categories such that a similar order of free iterative algebras can be
presented for every finitary endofunctor.
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