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Abstract
Shrub-depth is a graph invariant often considered as an extension of tree-depth to dense graphs.
We show that the model-checking problem of monadic second-order logic on a class of graphs of
bounded shrub-depth can be decided by AC0-circuits after a precomputation on the formula. This
generalizes a similar result on graphs of bounded tree-depth [3]. At the core of our proof is the
definability in first-order logic of tree-models for graphs of bounded shrub-depth.
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1 Introduction

In [15] Ganian et al. introduced the graph invariant shrub-depth with the goal to extend
the invariant tree-depth in a similar way as clique-width extends tree-width. Shrub-depth
turned out to be a quite robust notion as shown by the following result of [15].

For a class K of graphs the following are equivalent:
(i) K has bounded shrub-depth.
(ii) K has an MSO-interpretation (i.e., an interpretation definable in monadic second-

order logic MSO) of width one in a class of rooted labelled trees of bounded depth.
(iii) K has bounded SC-depth (subset-complementation depth).

Let p-MC(K ,MSO) denote the parameterized model-checking problem for MSO on the
class K parameterized by the length of the formula. In [3] we showed that p-MC(K ,MSO)
is in para-AC0 for every class K of graphs of bounded tree-depth. The parameterized
circuit complexity class para-AC0 is considered to be the parameterized analog of the circuit
complexity class (dlogtime-uniform) AC0. In fact, by definition, a parameterized problem is in
para-AC0 if it is in (dlogtime-uniform) AC0 after a precomputation on the parameter. Recall
that the class FPT (fixed-parameter-tractability) consists of the parameterized problems
that are solvable in polynomial time after a precomputation on the parameter.

As the main result of this paper we extend our result on the MSO-model-checking for
classes of bounded tree-depth to classes of bounded shrub-depth.

I Theorem 1. p-MC(K ,MSO) ∈ para-AC0 for every class of bounded shrub-depth.
© Yijia Chen and Jörg Flum;
licensed under Creative Commons License CC-BY

28th EACSL Annual Conference on Computer Science Logic (CSL 2020).
Editors: Maribel Fernández and Anca Muscholl; Article No. 15; pp. 15:1–15:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-7033-9593
mailto:yijiachen@fudan.edu.cn
mailto:flum@uni-freiburg.de
https://doi.org/10.4230/LIPIcs.CSL.2020.15
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 FO-Definability of Shrub-Depth

It is well known that p-MC(K ,MSO) ∈ FPT if K has bounded clique-width (a result due to
Courcelle et al. [5]). By [15] every class of bounded shrub-depth has bounded clique-width.
Hence, p-MC(K ,MSO) ∈ FPT for K of bounded shrub-depth. However, there exist graph
classes K of bounded clique-width with p-MC(K ,MSO) /∈ para-AC0, e.g., the class of all
graphs consisting of disjoint paths [3, Theorem 7.3]. Therefore, the algorithmic techniques
via clique-width cannot be adapted to para-AC0. Instead, we develop some combinatorial
machinery on graphs of bounded shrub-depth which can be defined in first-order logic (FO).

We briefly explain some ingredients of this combinatorial machinery. Central to the
definition of shrub-depth are tree-models of graphs. The tree-models are rooted trees of
constant depth with colored leaves, the leaves being the vertices of the corresponding graph.
Their FO-definability has presented some major challenges. To better understand tree-models,
we find it more convenient to work with the SC-depth instead of the shrub-depth. Roughly
speaking, the SC-depth SC(G) of a graph G is the minimum number of parallel subset
complementations required to construct G from graphs without any edges (i.e, from graphs
of isolated vertices). The equivalence between (i) and (iii) mentioned at the beginning tells us
that the boundedness of the SC-depth of a class of graphs is equivalent to the boundedness
of its shrub-depth. As a first step we prove that the complementation subsets (we call
them flipping sets) underlying SC(G) can be uniquely determined in FO if we are given
an unambiguous representative system of G (once having the flipping sets we can construct
a tree-model as in the proof of the implication (iii) ⇒ (i) in [15]). However the size of a
representative system cannot be bounded in terms of the depth of the graph. Hence we cannot
afford to guess such a system in FO. We show that every graph of bounded SC-depth has a
representation as a tiered graph. For such graphs we can guess appropriate representative
systems iteratively in FO. Once all the flipping subsets have been obtained, we can FO-define
a tree-model. More precisely,we show:

I Theorem 2. If K is a class of bounded shrub-depth (or of bounded SC-depth), there is an
FO-interpretation that assigns to every ordered graph (G,<) with G ∈ K a tree-model.

Barrington et al. [1] showed that the expressive power of FO with built-in arithmetic
coincides exactly with dlogtime-uniform AC0-computability. Using this fact we get Theorem 1
from Theorem 2 in the same way as we did for tree-depth in [3].

We obtain a further consequence of our proof of the FO-definability of tree-models. In
fact, we get that every MSO-sentence is equivalent to an FO-sentence on ordered graphs of
bounded shrub-depth. More precisely:

I Proposition 3. Let K be a class of graphs of bounded shrub-depth. Then for every
MSO-sentence ϕ there is an FO-sentence ψ such that for any ordered graph (G,<) with
G ∈ K,

G |= ϕ ⇐⇒ (G,<) |= ψ.

Observe that the above ϕ has no access to the order, while ψ does. So it is natural to ask
whether we can eliminate all occurrences of < in ψ, in other words, whether MSO = FO
on K . The result was already claimed by Gajarský and Hlinĕný [11]:

I Theorem 4. MSO = FO on every class of graphs of bounded shrub-depth.

We prove this result from Proposition 3 using Craig’s Interpolation Theorem. Craig’s
Interpolation Theorem [6] is a basic result in classical model theory. However it fails on finite
models [17]. To circumvent this problem, in a straightforward way we generalize the notion of
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SC-depth to infinite graphs and observe that our combinatorial characterization of bounded
SC-depth carries over to infinite graphs as well. The excursion to the infinite yields new
insights for finite graphs, e.g., we show the following effective version of [15, Corollary 5.6]:

I Theorem 5. There is an algorithm that applied to d eventually stops and outputs a finite
set Fd of graphs such that a graph has SC-depth ≤ d if and only if it excludes the graphs
in Fd as induced subgraphs.

Related work. Theorem 1 can be viewed as a part of the recent efforts to extend algorithmic
meta-theorem to dense graphs. Algorithmic meta-theorems unify many algorithmic results on
graph classes where the underlying computational problems can be defined in terms of logic.
Most existing such meta-theorems concern sparse graph classes, i.e., graph classes where the
number of edges is linearly bounded by the number of vertices. As examples we mention
Courcelle’s Theorem [4] that the p-MC(MSO,K) can be solved in fixed-parameter linear
time provided that K has bounded tree-width and the result due to Grohe et al. [16] stating
that p-MC(FO,K ) ∈ FPT if K is a nowhere dense class. The dependence of the parameter
in Courcelle’s Theorem is non-elementary as shown by Frick and Grohe [9]. Improvements of
the dependence of the parameter are known for various classes of graphs (see e.g., Gajarský
and Hlinĕný [10] and Lampis [19]). A similar better dependence of the parameter holds for
graph classes of bounded shrub-depth if every graph is given alongside with a tree-model
of corresponding depth [10]. As far as circuit complexity is concerned, Pilipczuk et. al
showed [20] that the model-checking problem for FO on graphs of bounded expansion can be
decided by circuits of size f(k) · nO(1) and of depth f(k) +O(logn), where k is the size of
the input formula and n the size of the graph.

Compared to sparse graph classes, much less is known for dense graphs. We have already
mentioned that p-MC(K ,MSO) ∈ FPT if K has bounded clique-width. Recall that the
class of cliques (i.e., complete graphs), which are obviously dense, has clique-width 1. For
first-order logic, algorithmic meta-theorems are known e.g., for interval graphs [14], partial
orders [12], and graphs FO-interpretable in bounded degree graphs [13].

In [8] Elberfeld et al. proved that MSO = FO on graphs of bounded tree-depth. Graphs
of bounded tree-depth has bounded shrub-depth as well. Thus Theorem 4 generalizes this
result. As already mentioned, Theorem 4 was first claimed in [11, Theorem 5.14]. One crucial
tool is based on the proof of [11, Theorem 5.2]. However, we could not verify this proof.
Besides that, our proof uses completely different techniques.

The MSO-sentence ψ in Proposition 3 contains a symbol for the order relation, however
its validity in a graph G (of the class K) does not depend on what order of the set of
vertices of G we choose. That is, by definition, the sentence ϕ is order-invariant on K . In a
recent paper Eickmeyer et al. [7] obtain FPT-tractability results for the set of order-invariant
MSO-sentences essentially for the same classes of graphs as in the unordered case. However
the model-checking problem for order-invariant MSO on graphs of bounded tree-depth (thus
on graphs of bounded shrub-depth) is not in para-AC0. In fact, consider graphs consisting
of disjoint triangles and isolated vertices. Then the parity of the number of the triangles can
be expressed by an order-invariant MSO-sentence. On the other hand, it is easy to see that
this property cannot be in AC0 by Parity /∈ AC0.

Organization of this paper. In Section 2 we fix some notations. In Section 3 and Section 4
we recall the definitions and some basic properties of shrub-depth and of SC-depth, respect-
ively, and show that the classes TMm(d) and SC(d) are MSO-axiomatizable. In Sections 5–7

CSL 2020



15:4 FO-Definability of Shrub-Depth

we stepwise develop the machinery which finally allows us to prove Theorem 2 (and hence,
Theorem 1) in Section 8. Theorem 4 and Theorem 5 are shown in Section 9 and Section 10,
respectively.

Due to space limitations we defer many proofs to the full version of this paper. Sometimes
we indicate this by writing “Proof: full paper” at the end of the statement of a theorem,
proposition,. . .

2 Preliminaries

We denote by N the set of natural numbers ≥ 0. For n ∈ N let [n] := {1, 2, . . . , n}.

First-order logic FO and monadic second-order logic MSO. A vocabulary τ is a finite set
of relation symbols. Each relation symbol has an arity. A structure A of vocabulary τ , or
τ -structure, consists of a nonempty set A, called the universe of A and of an interpretation
RA ⊆ Ar of each r-ary relation symbol R ∈ τ . In this paper all structures have a finite
universe with the exception of Section 9 and Section 10.

Formulas ϕ of first-order logic FO of vocabulary τ are built up from atomic formulas
x1 = x2 and Rx1 . . . xr (where R ∈ τ is of arity r and x1, x2, . . . , xr are variables) using
the boolean connectives ¬, ∧, and ∨ and the universal ∀ and existential ∃ quantifiers. By
the notation ϕ(x̄) with x̄ = x1, . . . , xe we indicate that the variables free in ϕ are among
x1, . . . , xe. In addition to the individual variables of FO, formulas of monadic second-order
logic MSO may also contain set variables. We use lowercase letters (usually x, y, z) to denote
individual variables and uppercase letters (usually X,Y, Z) to denote set variables. To obtain
MSO the syntax of FO is enhanced by new atomic formulas of the form Xy and quantification
is also allowed over set variables.

Graphs and trees. In this paper graphs are always simple and undirected. When considering
definability problems for graphs we view graphs as τ := {E}-structures where the edge
relation is an irreflexive and symmetric binary relation. Otherwise we use the notation G
for a graph and view it as a pair G = (V (G), E(G)), where V (G) is the set of vertices and
E(G) the set of edges. For graphs G and H with disjoint vertex sets we denote by G ∪̇ H
the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H).

We view rooted trees with m labels as τm := {P,L1, . . . , Lm}-structures T =
(
T, P T , LT1 ,

. . ., LTm
)
. Here P is a binary relation symbol and L1, . . . , Lm are unary. P T is the parent-child

relation of the tree. The root of the tree can be defined by the formula root(x) := ∀y¬Pyx.
The relations LT1 , . . . , LTm are the labels. Recall that the depth of T is the maximum length of
a path from the root to a leaf. We denote by leaves(T ) the set of leaves of T . For m, d ∈ N
we denote by Tree[m, d] the class of rooted trees with m labels and of depth d, where each
root-to-leaf path is of length exactly d.

3 Shrub-depth

We recall the notion of the shrub-depth of a graph (introduced in [15]) and show that the
classes TMm(d) (with m, d ∈ N) of bounded shrub-depth are axiomatizable in MSO.

I Definition 6. Let m, d ∈ N. A tree-model of m labels and depth d of a graph G is a pair
(T , D) with T ∈ Tree[m, d] and D ⊆ {1, 2, . . . ,m}2 × {1, 2, . . . , h} for some h ≥ d 1 (called

1 For technical reasons (in particular, for the proof of Proposition 12), we allow h to be greater than d.
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the signature of the tree-model) such that
V (G) = leaves(T ),
each leaf of T holds exactly one label from {P1, . . . , Pm} and no other node of T holds a
label, i.e., leaves(T ) = P T1 ∪̇ · · · ∪̇ P Tm ,
for any i, j ∈ [m] and s ∈ [d] if (i, j, s) ∈ D, then (j, i, s) ∈ D,
E(G) =

{
{u, v} | u, v ∈ V (G), u 6= v, u ∈ P Ti , v ∈ P Tj , and

(
i, j, distT (u ∧ v, u)

)
∈ D

}
.

By distT (u ∧ v, u) we denote the distance from the least common ancestor u ∧ v of u and v
to v. Note that distT (u∧ v, u) = distT (u∧ v, v), as both u and v are leaves of T (of the same
depth). In the context of tree-models we also speak of the colors Pi and say that vertex v has
color Pi if v ∈ P Ti .

I Definition 7 ([15]). Let TMm(d) denote the class of graphs with a tree-model of m labels
and depth d. A class K of graphs has shrub-depth d if there exists m such that K ⊆ TMm(d),
while for all m′ ∈ N we have K 6⊆ TMm′(d− 1).

The class K has bounded shrub-depth if K ⊆ TMm(d) for some m, d ∈ N.

The following lemma shows that the shrub-depth is relevant only to infinite classes of graphs
and not to a single graph.

I Lemma 8. For every graph G we have G ∈ TM|V (G)|(1).

Proof. Assume V (G) = [m]. Then a tree T ∈ Tree[m, 1] with P Ti = {i} for i ∈ [m] together
with the signature D := {(i, j, 1) | i, j ∈ [m] and {i, j} ∈ E(G)} is a tree-model for G. J

The shrub-depth hierarchy is strict:

I Proposition 9. Let d ∈ N. The class of graphs underlying rooted trees in Tree[m, d] for
some (= all) m has shrub depth d. Proof: full paper.

The following facts are easy to verify.

I Lemma 10.
(a) TMm(d) ⊆ TMm′(d′) for m ≤ m′ and d ≤ d′.
(b) TMm(d) is closed under induced subgraphs.
(c) Every graph which is a clique is in TM1(1).

A proof of the next result can be found in [15].

I Proposition 11. There is a computable function ` : N2 → N such that for G ∈ TMm(d)
every two vertices, which are in the same connected component of G, have a distance ≤ `(m, d).
Hence, for fixed m, d ∈ N, we can express in FO that two vertices are in the same connected
component in graphs of TMm(d).

By this lemma we see that the class of paths is not of bounded shrub-depth. As every path
is a subgraph of some clique, Lemma 10(c) shows that the classes TMm(d) for m, d ≥ 1 are
not closed under subgraphs.

By [15, Corollary 5.6] we know that for m, d ∈ N there is a finite set Fm,d of graphs
such that a graph G is in TMm(d) if and only if “G excludes the graphs in Fm,d as induced
subgraphs”, i.e, no graph in Fm,d is isomorphic to an induced subgraph of G. Hence there
is an FO-sentence ρ(m, d) axiomatizing TMm(d). However the proof of [15, Corollary 5.6]
sheds no light on how to compute ρ(m, d) from (m, d). We need the corresponding result for
MSO in order to get such an effective FO-axiomatization of TMm(d) in Section 9.

I Proposition 12. We can effectively compute for m, d ∈ N an MSO-axiomatization of
TMm(d). Proof: full paper.

CSL 2020
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4 SC-depth

Classes of graphs of bounded shrub-depth coincide with classes of graphs of bounded SC-
depth. For our goal it is more convenient to work with the SC-depth. Let G be a graph
and S a subset of its vertex set V (G). Then GS denotes the graph obtained from G by
flipping the set S; that is, GS has the vertex set V (G) and edge set{

{u, v} ∈ E(G) | u /∈ S or v /∈ S
}
∪
{
{u, v} | u, v ∈ S, u 6= v, and {u, v} /∈ E(G)

}
.

Here, we deviate from the original notation ḠS , which might become cumbersome when
there are several flipping sets. For subsets S1, . . . , Sn of V (G) we write GS1...Sn for(
. . . ((GS1)S2) . . .

)Sn . The following lemma contains some simple facts about G 7→ GS .

I Lemma 13. Let S ⊆ V (G), T ⊆ V (G), and H be a further graph.
(a) If |S| ≤ 1, then GS = G;
(b) if GS = GT and |S| ≥ 2, then S = T ;
(c) GST = GTS;
(d) GSS = G;
(e) (GS ∪̇ H) = (G ∪̇ H)S (recall that S ⊆ V (G)).
We introduce the class SC(d) of graphs of complementation depth ≤ d (or, SC-depth ≤ d).

I Definition 14. Let d ∈ N. We define inductively the class SC(d).

SC(0) is the class of graphs whose vertex set is a singleton.

Assume that m ≥ 1 and the graphs G1, . . . , Gm ∈ SC(d) have pairwise disjoint vertex sets.
Then for S ⊆ V (G1) ∪ · · · ∪ V (Gm) we have(

G1 ∪̇ G2 ∪̇ · · · ∪̇ Gm
)S ∈ SC(d+ 1).

A class of graphs is of bounded SC-depth if it is contained in SC(d) for some d ∈ N.

As every clique has SC-depth ≤ 1 we see that the class of cliques has bounded SC-depth.
The following lemma shows that every graph is in some SC(d). We define the SC-depth
SC(G) of a graph G as the least d ∈ N such that G ∈ SC(d).

I Lemma 15. G ∈ SC(|V (G)| − 1) for every graph G.

Proof. The proof is a simple induction on |V (G)|. A graph with only one vertex is in SC(0)
by definition. Let d ≥ 1 and let u be any vertex of a graph G with exactly d+ 1 vertices.
Let H be the graph induced by G on V (G) \ {u} and set H1 := H{v∈V (H)|{u,v}∈E(G)}. By
induction hypothesis, H1 ∈ SC(d− 1) as H1 has d elements. Let U denote the graph with
V (U) = {u}. As G = (H1 ∪̇ U){u}∪{v∈V (H)|{u,v}∈E(G)}, we get G ∈ SC(d). J

If we write G ∪̇ H we tacitly assume that the graphs G and H have disjoint vertex sets
and if we write GS we assume that S ⊆ V (G).

The following basic properties of the classes SC(d) will be proven in the full paper.

I Lemma 16. Let d ∈ N.
(a) SC(d) ⊆ SC(d+ 1).
(b) SC(d) is closed under taking induced subgraphs.

(c) SC(d+ 1) =

(G1 ∪̇ G2 ∪̇ · · · ∪̇ Gm
)S∣∣∣∣∣ m ≥ 1, G1, . . . , Gm ∈ SC(d) are con-

nected and S ⊆ V (G1) ∪ · · · ∪ V (Gm)

.

Moreover, assume that H =
(
G1 ∪̇ G2 ∪̇ · · · ∪̇ Gm

)S with Gi ∈ SC(d). Then for the
connected components Hij of Gi we have Hij ∈ SC(d) and H =

(⋃̇
Hij

)S.



Y. Chen and J. Flum 15:7

Parts (a) and (b) of the following proposition show that a class of graph has bounded shrub-
depth if and only if it has bounded SC-depth. Then its part (c) follows by Proposition 11.

I Proposition 17 ([15]).
(a) Let m, d ∈ N. Then TMm(d) ⊆ SC(d ·m · (m+ 1)).
(b) Let d ∈ N. Then SC(d) ⊆ TM2d(d).
(c) There is a computable function `SC : N→ N such that for G ∈ SC(d) every two vertices,

which are in the same connected component of G, have a distance ≤ `SC(d).
Again using the existence of a characterization of SC(d) in terms of excluding a finite set of
induced subgraphs, one gets the FO-axiomatizability of SC(d). We will show the effective
FO-axiomatizability (see Corollary 43(a)). Here we get (see the full paper for a proof):

I Proposition 18. We can effectively compute for d ∈ N an MSO-axiomatization ρd of SC(d).

5 Towers and representative systems

For d ≥ 1 we denote by Tow(d) the class of towers ≤ d, i.e., the class of graphs which can
be written in the form

G =
(
I(V (G))

)S1...Sd . (1)

Here I(X) denotes the graph with vertex X and no edges. By Lemma 13(a) we have
Tow(d) ⊆ Tow(d+ 1) and by Lemma 13(e), every graph is in Tow(d) for some d. Note
that Tow(d) ⊆ SC(d) for d ≥ 1. However, already SC(2) is not contained in any class
Tow(d). In fact, the graphs Gn :=

(
{a1, . . . , an, b1, . . . , bn},

{
{ai, bi} | i ∈ N

})
for n ≥ 1

are all contained in SC(2). Note that every two vertices of the graph in (1), which are in the
same atom of the boolean algebra generated by S1, . . . , Sd, “behave in the same way.” Hence,
Gn /∈ Tow(d) for d < log2 n. Readers familiar with [19] will realize that a class of graphs
has bounded neighborhood diversity if and only if it is contained in Tow(k) for some k ∈ N.

In this section, as a first step towards the main results we show that the classes Tow(d)
are FO-axiomatizable, thereby getting familiar with some tools relevant to the general case.

We set S := S1 . . . Sd. For G as in (1) we associate with every v ∈ G a “color”

χS(v) := (b1, . . . , bd) ∈ {0, 1}d, where bi =
{

1 if v ∈ Si
0 otherwise.

For b = (b1, . . . , bd) ∈ {0, 1}d and b′ = (b′1, . . . , b′d) ∈ {0, 1}d we define

〈b, b′〉 :=
∑
i∈[d]

bi · b′i mod 2.

I Lemma 19. Let G =
(
I(X)

)S and v, w ∈ V (G) with v 6= w. Then

{v, w} ∈ EG ⇐⇒ 〈χS(v), χS(w)〉 = 1.

Note that the mapping χS : V (G) → {0, 1}d is not necessarily surjective. Assume that
χS(V (G)) = {b1, . . . , bm} with pairwise distinct bi’s in {0, 1}d. For i ∈ [m] choose a vertex
ui ∈ V (G) such that χS(ui) = bi. Then, (u1, . . . , um; b1, . . . , bm) is a d-representative system
for G in the sense of the following definition and χS is a corresponding coloring.

CSL 2020



15:8 FO-Definability of Shrub-Depth

I Definition 20. Let G be a graph and d ≥ 1. A d-representative system for G is a tuple

R :=
(
u1, . . . , um; b1, . . . , bm

)
with u1, . . . , um ∈ V (G) and with pairwise distinct elements b1, . . . , bm of {0, 1}d if there is a
“coloring” χ : V (G)→ {b1, . . . , bm} with (R1) and (R2).
(R1) For every i ∈ [m]: χ(ui) = bi.
(R2) For all v, w ∈ V (G) with v 6= w:

(
{v, w} ∈ EG ⇐⇒ 〈χ(v), χ(w)〉 = 1

)
.

The vertices u1, . . . , um are then called representatives.

I Proposition 21. A graph is in Tow(d) if and only if it has a d-representative system.

We prove this characterization of Tow(d) in the full paper. It does not yield an FO-
axiomatization of Tow(d) as we need the coloring χ. In general this coloring is not uniquely
determined (again see the full paper). This fact motivates the following definition.

I Definition 22.
(i) Let d ≥ 1 and B ⊆ {0, 1}d. The set B is unambiguous if for b1, b2 ∈ B, 〈b1, b〉 = 〈b2, b〉

for all b ∈ B implies b1 = b2.
(ii) Let G be a graph with G =

(
I(V (G))

)S1...Sd . Then S1, . . . , Sd is unambiguous if
χS1...Sd(V (G)) is unambiguous. A d-representative system (u1, . . . , um; b1, . . . , bm) for
G is unambiguous if {b1, . . . , bm} is unambiguous.

Every representative system contains an unambiguous representative system.

I Lemma 23. Let R :=
(
u1, . . . , um; b1, . . . , bm

)
be a d-representative system for a graph G.

Then there is an s ∈ [m] and 1 ≤ i1 < . . . < is ≤ m such that
(
ui1 , . . . , uis ; bi1 , . . . , bis

)
is an

unambiguous d-representative system for G. Proof: full paper.

Why is unambiguity an important property? The next result shows that for unambiguous
representative systems there is a unique coloring. Its value for a vertex is already determined
by its neighbors in the set of representatives.

I Proposition 24. Let G be a graph, R :=
(
u1, . . . , um; b1, . . . , bm

)
be an unambiguous d-

representative system for G, and χ a corresponding coloring. Then (by Definition 20 and
unambiguity) for v ∈ V (G) \ {u1, . . . , um} the color χ(v) is the unique bj with j ∈ [m] such
that for all i ∈ [m] we have

{v, ui} ∈ E(H) ⇐⇒ 〈bj , bi〉 = 1.

Then S1, . . . , Sd ⊆ V (G) with Si := {v ∈ V (G) | (χ(v))i = 1}
(
by (χ(v))i we denote the ith

component of χ(v)
)
is unambiguous and G = (I(V (G)))S1...Sd .

Proof. The second part follows from the fact that χS1...Sd = χ. J

Now we easily get the FO-axiomatizability of Tow(d) (for a proof see the full paper).

I Theorem 25. For d ≥ 1 the class Tow(d) is axiomatizable in FO.

6 Tiered graphs

We introduce (d, q)-tiered graphs, a technical tool we use to obtain our main results. Every
graph we considered in the previous section is (0, q)-tiered for some q ∈ N. So in the preceding
section we saw that for (0, q)-tiered graphs G we can FO-define flipping sets that applied
to V (G) yield G. (d, q)-tiered graphs G contain some distinguished sets of flipping sets
S0, . . . ,Sd. In this section we show that essentially we can FO-define flipping sets S′0, . . . ,S′d
with GS0,...,Sd = GS′0,...,S

′
d (see Corollary 32).
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I Definition 26. For a set X and S1, . . . , Sd ⊆ X we set

color(X,S1 . . . Sd) := {χS1...Sd(v) | v ∈ X},

the set of colors of elements of X w.r.t. S1, . . . , Sd.

I Definition 27. Let q, d ∈ N.
(a) If G =

(
I(V (G))

)S with |S| ≤ q, then G is a (0, q)-tiered graph.
(b) Assume d ≥ 1 and let G0, . . . , Gd = G be graphs. If

(i) G0 =
(
I(X))S0 for some set X and some S0 with |S0| ≤ q,

(ii) for every t ∈ [d] we have Gt =
(
Gt−1 ∪̇

⋃̇
δ∈∆t, e∈FδHte

)St
for some St with

|St| ≤ q, for some finite ∆t and Fδ for δ ∈ ∆t, and for some graphs Hte for e ∈ Fδ
with δ ∈ ∆t,

(iii) for every t ∈ [d] and every δ ∈ ∆t we have |Fδ| ≥ 3 and for all e, e′ ∈ Fδ,

c(δ) := color(V (Hte),St . . .Sd) = color(V (Hte′),St . . .Sd),

then G is a (d, q)-tiered graph.

Note that part (b)(iii) is the only restriction on the graphs Hte even though in our applications
these graphs will be “simpler” than G. In part (b)(ii) we allow that on the right hand side
of the equality at most one of the terms is missing. That is, it can be that either the term
Gt−1 is not present (Gt−1 is the “empty” graph) or that ∆t = ∅

((⋃̇
δ∈∆t, e∈FδHte

)St is the
“empty” graph

)
. If for t = 1 the term G0 is not present, then X is empty in (b)(i).

In this section and the next one terms may represent the “empty” graph by similar reasons.

For G as in Definition 27(b)(ii) and t ∈ {0, 1, . . . , d} we define the tth tier Tt by

T0 = X and Tt =
⋃

δ∈∆t, e∈Fδ

V (Hte) for all t ∈ [d].

I Lemma 28. Let v ∈ Tt with t ∈ {0, . . . , d}. Then χS0...St−1(v) = 0̄.

By Definition 27 we have

G =
(
· · ·
(
I(T0)S0 ∪̇

⋃̇
δ∈∆1, e∈Fδ

H1e
)S1 ∪̇ · · · ∪̇

⋃̇
δ∈∆d, e∈Fδ

Hde

)Sd

=
(
I(T0) ∪̇

⋃̇
t∈[d], δ∈∆t, e∈Fδ

Hte

)S0S1...Sd
(by Lemma 13 (e)). (2)

Our goal is to show that in G we can FO-define flipping sets “equivalent to” S0,S1, . . . ,Sd.
To that end, we introduce an auxiliary graph

L :=
(
. . .
(

(I(T0))S0 ∪̇ I(T1)
)S1
∪̇ · · · ∪̇ I(Td)

)Sd
=
(
I(V (G))

)S0S1...Sd . (3)

We want to apply to L =
(
I(V (G))

)S0S1...Sd the results developed in the preceding section.
First we show that relevant information on E(L) can be FO-defined in G.

Let t ∈ [d]. For δ ∈ ∆t we fix pairwise distinct e1, e2, e3 ∈ Fδ. As for i ∈ [3],
c(δ) = color(V (Htei),St . . .Sd), we choose for I(V (Htei))St...Sd a representative system(
uδi1, . . . , u

δ
i|c(δ)|;χSt...Sd(uδi1), . . . , χSt...Sd(uδi|c(δ)|)

)
such that for i, j ∈ [3] and ` ∈

[
|c(δ)|

]
,

χSt...Sd(uδi`) = χSt...Sd(uδj`). (4)
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Then V Vt :=
{
uδi` | δ ∈ ∆t, i ∈ [3], and ` ∈

[
|c(δ)|

]}
is the set of voting vertices in Tt.

Let c(0) := color(T0,S0 . . .Sd) and let
(
u1, . . . , u|c(0)|;χS0...Sd(u0), . . . , χS0...Sd(u|c(0)|)

)
be a

representative system for
(
I(T0)

)S0...Sd . We define the set V V of all voting vertices by

V V :=
{
u1, . . . , u|c(0)|

}
∪
⋃
t∈[d]

V Vt.

One easily shows:

I Lemma 29.
(a) χS0...Sd({u | u ∈ V V }) = χS0...Sd(V (L)).
(b) The size of V V can be bounded in terms of d, q, and

∑
t∈[d] |∆t|.

Part (a) of the next lemma shows that we can decide in G whether {u, v} ∈ E(L) between
a voting vertex u and any other vertex v (see the full paper for a proof). Essentially, the
majority opinion of the voting vertices decides. Part (b) is an immediate consequence of (a).

I Lemma 30.
(a) Let v ∈ V (G) and u ∈ V Vt for some t ≥ 1, say u = uδi` where δ ∈ ∆t, i ∈ [3], and

` ∈
[
|c(δ)|

]
. If v 6= u, then

{v, u} ∈ E(L) ⇐⇒ there are 1 ≤ i1 < i2 ≤ 3 such that {v, uδi1`}, {v, u
δ
i2`} ∈ E(G).

For u ∈ {u1, . . . , u|c(0)|} with v 6= u we have
(
{v, u} ∈ E(L) ⇐⇒ {v, u} ∈ E(G)

)
.

(b) In G we can express in FO with parameters for the elements of V V whether {v, u} ∈ E(L)
for v ∈ V (L) and u ∈ V V .

However the information of part (a) doesn’t allow us to compute χS0...Sd(v) for all v ∈ V (L).
Again we have the problem of ambiguity. We turn to this problem. By Lemma 29(a) we can
choose vertices u1, . . . , um ∈ V V such that

R :=
(
u1, . . . , um;χS0...Sd(u1), . . . , χS0...Sd(um)

)
is a representative system for L =

(
I(V (G))

)S0S1...Sd . In the preceding section we have seen
how to obtain unambiguous S′0, . . . ,S′d with L =

(
I(V (G))

)S′0S′1...S
′
d . Let us recall how we

did this. So assume R is not unambiguous. Then there are distinct j1, j2 ∈ [m] such that

for all i ∈ [m]: χS0...Sd(uj1)⊕ χS0...Sd(ui) = χS0...Sd(uj2)⊕ χS0...Sd(ui).

Then we gave all vertices of color χS0...Sd(uj2) the color χS0...Sd(uj1). This could be prob-
lematic as we also want to preserve (2), that is, we also aim at:

G =
(
I(T0) ∪̇

⋃̇
t∈[d], δ∈∆t, e∈Fδ

Hte

)S′0S′1...S
′
d

. (5)

If e.g. the vertex uj2 is in H5e and uj1 is in H3e′ and we give uj2 the color of uj1 , then
already S3 (more precisely, S′3) could introduce edges between uj2 and vertices in H3e′ that
destroy the validity of (5). In fact, the first equality of (2) implies that S3 cannot contain
any vertex from H5e. In the proof of our goal (the following proposition) in the full version
we take care of this problem. In essence, we will always keep a vertex in its original tier.

I Proposition 31. Let the (d, q)-tiered graph G and L be as above. There exist sequences of
subsets S′0, . . . ,S′d of V (G) = V (L) such that:
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(a) G =
(
· · ·
(
I(T0)S′0 ∪̇

⋃̇
δ∈∆1, e∈FδH1e

)S′1 ∪̇ · · · ∪̇
⋃̇
δ∈∆d, e∈FdHde

)S′d
and thus,

G =
(
I(T0) ∪̇

⋃̇
t∈[d], δ∈∆, e∈Fδ

Hte

)S′0S′1...S
′
d

.

In particular, all ∆t’s, Fδ’s, and Hte’s are the same as in (2) and for t ∈ [d], δ ∈ ∆t,
and e, e′ ∈ Fδ we have color(V (Hte),S′t . . .S′d) = color(V (Hte′),S′t . . .S′d). Hence, also
the first equality for G witnesses that G is a (d, q)-tiered graph.

(b) L :=
(
. . .
(

(I(T0))S′0 ∪̇ I(T1)
)S′1
∪̇ · · · ∪̇ I(Td)

)S′d
=
(
I(V (G))

)S′0S′1...S
′
d . Moreover,

S′0S′1 . . .S′d is unambiguous with respect to L.
By (2) and Lemma 13(c), (d) we get the following immediate consequence of part (a).

I Corollary 32. GS′0S′1...S
′
d = I(T0) ∪̇

⋃̇
t∈[d], δ∈∆t, e∈FδHte = GS0,...,Sd .

The main message of this section is the following: For (d, q)-tiered graphs once we have
guessed the correct unambiguous representative system we can FO-define the edge relation
of the graph GS′0...S

′
d .

7 From graphs of bounded SC-depth to tiered graphs

Here we reduce graphs of bounded SC-depth to tiered graphs (see Proposition 36). For
this purpose it is useful to consider the generalized SC-depth of graphs obtained from the
SC-depth by allowing “at the end” a bounded number of flipping sets.

I Definition 33. Let d, q ∈ N. By GSC(d, q) we denote the class of graphs of q-generalized
SC-depth ≤ d (here q refers to the bound for the number of flipping sets in the last step).
The classes GSC(d, q) are defined as follows.
(i) If the vertex set V (G) of the graph G is a singleton, then G ∈ GSC(0, q).
(ii) Assume d ≥ 1 and G =

(⋃̇
e∈FGe

)S with |S| ≤ q and Ge ∈ SC(d− 1) for every e ∈ F .
Then G ∈ GSC(d, q).

I Lemma 34.
(a) SC(d) = GSC(d, 1).
(b) If G ∈ GSC(1, q), then G is a (0, q)-tiered graph.
Let d ≥ 2 and q ≥ 1 and G ∈ GSC(d, q). Hence G =

(⋃̇
e∈FGe

)S, where |S| ≤ q and
Ge ∈ SC(d− 1) for every e ∈ F . We let F0 be the set of e ∈ F such that there is at most
one e′ ∈ F with e′ 6= e and color(V (Ge′),S) = color(V (Ge),S). We partition F \ F0 into
sets (Fδ)δ∈∆ such that for every δ ∈ ∆ there is a color c(δ) such that for all e ∈ Fδ we
have c(δ) = color(V (Ge),S) and for distinct δ, δ′ ∈ ∆ we have c(δ) 6= c(δ′). By definition,
|∆| ≤ 22q and |Fδ| ≥ 3 for all δ ∈ ∆ (note that ∆ may be empty). Observe that

|F0| ≤ 2 · 22|S| = 22q+1. (6)

As d ≥ 2, for every e ∈ F0 the graph Ge can be written in the form Ge =
(⋃̇

f∈FeGef

)Se
,

where all Gef are in SC(d− 2) and Se ⊆ V (Ge). Let T be the sequence of all sets Se with
e ∈ F0. By (6), |T| ≤ 22q+1. We define the graph G′ by (note that F0 may be empty)

G′ :=
(⋃̇

e∈F0, f∈Fe
Gef

)T
.

The following statements result directly from the definitions.
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I Lemma 35.
(a) G′ ∈ GSC(d− 1, 22q+1).

(b) G =
(
G′ ∪̇

⋃̇
δ∈∆, e∈FδGe

)S
with |∆| ≤ 22q , Ge ∈ SC(d− 1) for e ∈ Fδ and δ ∈ ∆.

We define the function h by: h(0, q) := 0, h(1, q) := q, and h(d+ 1, q) := h(d, 22q+1)
for d ≥ 1. Now a simple induction shows (for a proof see the full paper):

I Proposition 36. Let d ≥ 1 and G ∈ GSC(d, q). Then G is a (d− 1, h(d, q))-tiered graph,
i.e., G can be written in the form

G =
(
. . .
((
I(T0)

)S1 ∪̇
⋃̇

δ∈∆1, e∈Fδ
H1e

)S2
∪̇ . . . ∪̇

⋃̇
δ∈∆d−1, e∈Fδ

Hd−1 e

)Sd
,

where |St| ≤ h(d, q) for t ∈ [d] and where |∆t| ≤ h(d, q) for t ∈ [d− 1]. In addition, for d ≥ 2
we have Hte ∈ SC(t− 1) for t ∈ [d− 1], δ ∈ ∆t, and e ∈ Fδ.

8 FO-definition of tree-models for graphs of bounded shrub-depth

Using the results of the preceding sections we first prove that there is a computable function
d 7→ ϕd where ϕd is an FO-sentence whose class of models has bounded shrub-depth and
contains SC(d). Then we show how using ideas from [15] we can refine this proof to obtain
Theorem 2, i.e., the FO-definability of tree-models for graphs of bounded shrub-depth.

I Proposition 37. Let d ∈ N and Γ := h(d, 1). There is an FO-sentence ϕd with (a) and (b).
(a) If G ∈ SC(d), then G |= ϕd.
(b) If G |= ϕd, then SC(G) ≤ d·(d+1)·Γ

2 .
For later purposes we assume that ϕd also expresses that E is irreflexive and symmetric.

Proof. We set ϕ0 := ∀x∀y(x = y ∧ ¬Exy). Let d ≥ 1 and G be a graph with SC(G) = d.
Hence G ∈ GSC(d, 1) by Lemma 34(a). By Proposition 36 the graph G is (d− 1,Γ)-tiered,
thus G can be written in the form

G =
(
. . .
((
I(T0)

)S1 ∪̇
⋃̇

δ∈∆1, e∈Fδ
H1e

)S2
∪̇ . . . ∪̇

⋃̇
δ∈∆d−1, e∈Fδ

Hd−1 e

)Sd
,

where in particular, |St| ≤ Γ for t ∈ [d] and Hte ∈ SC(t− 1) for every t ∈ [d− 1], δ ∈ ∆t and
e ∈ Fδ. By Proposition 31 we can assume that for

L :=
(
. . .
(

(I(T0))S1 ∪̇ I(T1)
)S2
∪̇ · · · ∪̇ I(Td−1)

)Sd
=
(
IV (G)

)S1...Sd

S1 . . .Sd is unambiguous (with respect to L). Here Ti =
⋃̇
δ∈∆i, e∈FδV (Hie) for i ∈ [d− 1].

By Lemma 29(b) the size of voting vertices can be bounded in terms of d. Thus as ϕd we
can take an FO-sentence which (existentially) guesses voting vertices for such an unambiguous
S1 . . .Sd and guesses a subset of these vertices which togethr with their χS1...Sd -colors (which
are also guessed) yield a representative system for L. Then it defines the S1, . . . ,Sd and
expresses that every connected component of GS1...Sd satisfies ϕd−1. Now the validity of (a)
should be clear.

We prove (b) by induction on d. Of course, (b) holds for d = 0. So assume that d ≥ 1 and
that the statement (b) is true for d− 1. Let G |= ϕd. Then there are S1, . . . ,Sd such that
every connected component H of G1 := GS1...Sd satisfies ϕd−1. Hence, SC(H) ≤ (d−1)·d·Γ

2 by

induction hypothesis. As G =
(⋃̇

H connected component of G1
H
)S1...Sd

by Lemma 16(c), we get

SC(G) ≤ d · Γ+ max{SC(H) | H connected component of G1}

≤ d · Γ + (d− 1) · d · Γ
2 ≤ d · (d+ 1) · Γ

2 . J
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We turn to a proof of Theorem 2. It suffices to show the following result (cf. Proposition 17).

I Theorem 38. Let d ∈ N. There is an FO-interpretation that assigns to every ordered
graph (G,<) with G ∈ SC(d) a tree-model.

Proof. We know that SC(d) ⊆ TM2d(d) (see Proposition 17(b)). We recall the proof of this
result from [15, Theorem 3.6]. For an SC-derivation W witnessing G ∈ SC(d) it constructs
a tree T (W ) ∈ Tree[2d, d] (see page 4 for the definition of Tree[m, d]), which together
with a signature D will be a tree-model of G. We denote the labels by Lb with b ∈ {0, 1}d.
Essentially the tree T (W ) is the “tree of the SC-derivation”: The leaves of T (W ) are the
vertices of G. Each internal node t of T (W ) is associated with a flipping set St. By adding
nodes with the empty flipping set we can assume that every path from the root to a leaf
has length d. Let v ∈ V (G) and let t0 = r, t1, . . . , td = v be the path from the root r of
T (W ) to v. Then v gets the color (= label) Lb if for i ∈ [d] we have (bi = 1 ⇐⇒ v ∈ Sti).
The pair {u, v} is an edge of G if and only if u and v are simultaneously contained in an
odd number of flipping sets St, where t ranges over all internal nodes. This can easily be
determined from the colors of u and v, and from the depth of their least common ancestor
u∧ v. So it yields the definition of the corresponding signature D(d) (note that D(d) doesn’t
depend on the concrete SC-derivation but only on d).

Now let <G be an arbitrary order of V (G). As G ∈ SC(d), the graph G is a model
of the sentence ϕd of Proposition 37. The process described in ϕd shows how one gets an
SC-derivation witnessing SC(G) ≤ g(d) := d·(d+1)·Γ

2 . Using <G we can describe in FO such a
derivationW (<G): According to ϕd first we guess voting vertices with certain properties, now
we choose the lexicographically <G-first voting vertices with these properties. Then by ϕd
we guess a subset of these vertices together with their colors as representative system. Now
we choose the lexicographically <G-smallest such subset and the “smallest” colors which do
the job. Then by ϕd we get S1, . . . ,Sd with |Si| ≤ Γ for i ∈ [d]. W.l.o.g. we may assume that
|Si| = Γ. The root of the tree T (W (<G)) starts with a path of length d · Γ− 1 ending with
a node t0. The nodes of the path are associated with the flipping sets in S1, . . . ,Sd. Then
for every v ∈ V (G), which in GS1...Sd is not in the connected component of an <G-smaller
element, we add an derivation for this component according to ϕd−1 as one child of t0. By
this procedure we get a tree in T (W (<G)) ∈ Tree[2g(d), g(d)], where g(d) := d·(d+1)·Γ

2 .
In this way we get an FO-interpretation I defining in (G,<G) with G |= ϕd the tree-

model T (W (<G)) of G. That is, we can present (it is tedious but straightforward) a tuple
of FO-formulas I =

(
ϕuni(x̄), ϕP (x̄, ȳ), (ϕLb(x̄))b∈{0,1}g(d)

)
, where x̄ = x0, . . . , xg(d) and

ȳ = y0, . . . , yg(d) such that (G,<G)I :=
(
ϕ

(G,<G)
uni , ϕ

(G,<G)
P , (ϕ(G,<G)

Lb
)b∈{0,1}g(d)

)
is isomorphic

to the tree-model T (W (<G)). For example, ϕ(G,<G)
uni :=

{
(v0, . . . , vg(d)) ∈ Gg(d) | (G,<G ) |=

ϕuni(v̄)
}
is the universe of (G,<G)I and ϕ

(G,<G)
P :=

{
(v̄, w̄) | v̄, w̄ ∈ ϕ(G,<G)

uni , (G,<G) |=
ϕP (v̄, w̄)

}
is the parent-child relation of (G,<G)I . J

As already mentioned in the Introduction we get Theorem 1 from the preceding result in
the same way as we did for tree-depth in [3]. For the sake of completeness let us recall that
for a class K of graphs the parameterized model-checking p-MC(K ,MSO) for MSO on K is
defined by

Instance: A graph G ∈ K and an MSO-sentence ϕ.
Parameter: k ∈ N.

Problem: Decide if k = |ϕ| and A |= ϕ.

In the next section we will apply a further consequence of Theorem 38, an improvement of
Proposition 3, which again can be obtained as the corresponding result for tree-depth in [3]:
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I Proposition 39. Let d ∈ N. There is an algorithm that assigns to every MSO[{E}]-sentence
ϕ an FO

[
{E,<}

]
-sentence ϕ+ such that for every ordered graph (G,<) with G |= ϕd,

G |= ϕ ⇐⇒ (G,<G) |= ϕ+.

9 MSO = FO on classes of bounded shrub-depth

The goal of this section is to show that in models of ϕd every MSO[{E}]-sentence is equivalent
to an FO[{E}]-sentence, i.e, that the we can omit the order relation used in Proposition 39.
To get this result we use Craig’s interpolation which is known to be true only if we consider
finite and infinite models. However, we have introduced the notion of SC-depth for finite
graphs only. So let us extend this concept to infinite graphs. If not stated otherwise explicitly,
in the following “graph” always means a finite or infinite graph.

Let G be a graph and S ⊆ V (G), then GS is defined as in the finite case.

I Definition 40. The class SC(d) (extending the “old” SC(d)) is defined by induction on d:

SC(0) is the class of graphs whose vertex set is a singleton.

Assume that I is a set with |I| ≥ 1 and that for i ∈ I the graphs Gi are in SC(d) and have
pairwise disjoint vertex sets. Then

(⋃̇
i∈IGi

)S ∈ SC(d+ 1) for every S ⊆
⋃
i∈I V (Gi).

The SC-depth of a graph is the least d ∈ N such that G ∈ SC(d).

Not every graph has an SC-depth, that is, the analogue of Lemma 15 fails. For example,
an infinite path has no SC-depth. We leave it to the reader to generalize the notion of
shrub-depth and to realize that Lemma 8, the analogue of Lemma 15 for shrub-depth, fails.
But all other results in Section 3–Section 7 and Proposition 37 of Section 8 are true for
graphs in the way stated (or with obvious changes). One exception: In the definition of
tiered graph we have to require that the Hte’s have an SC-depth.

Let us look what happens with Theorem 38 of Section 8. On page 13 for the first time
we considered orders on graphs. Once we have an order <G in a finite model G of the
sentence ϕd we got a canonical SC-derivation W (<G) of G, which could be described by an
interpretation I. When defining the derivation W (<G) we used a few times the property that
every nonempty subset of V (G) contains a <G-least element or the same property for subsets
of V (G)r for some r ≥ 1 with respect to the lexicographic order <Glex of r-tuples induced
by <G. All these subsets were definable by an FO[{E}]-formula ψ(x̄, ȳ), where |x̄| = r and
the variables in ȳ are parameters. Then we used the fact that the following sentence is true
in every finite (G,<G):

least-element(ψ) := ∀ȳ
(
∃x̄ψ(x̄, ȳ)→ ∃x̄

(
ψ(x̄, ȳ) ∧ ∀x̄′(ψ(x̄′, ȳ)→ x̄ ≤lex x̄

′)
))
.

Here |x̄′| = |x̄|. Let

LE(<) :=
{
least-element(ψ) | ψ = ψ(x̄, ȳ) ∈ FO[{E}] and |x̄| ≥ 1

}
be the set of least-element sentences for all FO[{E}]-formulas. Furthermore set

LE∗(<) := LE(<) ∪
{
“E is irreflexive and symmetric”

}
∪
{
“< is an order”

}
.

Then we can reformulate Proposition 39 and extend it to arbitrary graphs:

I Proposition 41. For every MSO[{E}]-sentence ϕ there exists an FO[{E,<}]-sentence ϕ+

such that LE∗(<) ∪ {ϕd} |= (ϕ↔ ϕ+).
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Now we turn to the main result of this section, which extends Theorem 4.

I Theorem 42. Let d ≥ 1. In models of ϕd (hence, in particular, in graphs in SC(d))
every MSO[{E}]-sentence ϕ is equivalent to an FO[{E}]-sentence ψ. Moreover, there is an
algorithm that on input ϕ yields ψ. Proof: full paper.

I Corollary 43.
(a) There is a computable function d 7→ ψd, where ψd ∈ FO[{E}] axiomatizes SC(d).
(b) There is a computable function (m, d) 7→ ψm,d, where ψm,d ∈ FO[{E}] axiomatizes

TMm(d).

Proof.
(a) We know from Proposition 18 that there is a computable function d 7→ ρd, where

ρd ∈ MSO[{E}] axiomatizes SC(d). By the preceding theorem we effectively get a
ψd ∈ FO[{E}] equivalent to ρd in models of ϕd. Then ψd := ϕd ∧ ψd axiomatizes SC(d).

(b) As by Proposition 17 (a) we have TMm(d) ⊆ SC(d·m·(m+1)), we can argue for TMm(d)
similarly, now using Proposition 12. J

10 The excursion to the infinite yields further results

The following result is an effective version of the result [15, Corollary 5.6] mentioned on
page 5 and on page 7.

I Theorem 44. There is an algorithm that applied to (m, d) eventually stops and outputs a
finite set Fm,d of finite graphs such that a graph is in TMm(d) if and only if it excludes the
graphs in Fm,d as induced subgraphs. The anloguous result holds for SC(d).

Proof. As TMm(d) is closed under induced subgraphs, by the Łoś-Tarski Theorem of classical
model theory (cf. [2, 18]) we effectively find (from ψm,d of Corollary 43) a universal FO-
sentence νm,d axiomatizing TMm(d) (recall that a universal FO-sentence is a sentence of the
form ∀x1 . . . ∀xnχ with quantifier-free χ). Every universal sentence just expresses that there
is a finite set of finite graphs that are excluded as induced subgraphs. J

Various applications of the same flavour may be obtained using the following lemma. We
will prove this lemma and present various applications in the full version of this paper.

I Lemma 45. Let d ≥ 1 and K ⊆ SC(d) be a class closed under induced subgraphs. For every
MSO-sentence ϕ, if the class of finite models of ϕ in K is closed under induced subgraphs,
so is the class of models of ϕ in K.

For the class of finite graphs Rossman [21] has proved the analogue of the result of classical
model theory that a sentence preserved under homomorphisms is equivalent to an existential-
positive FO-sentence (a sentence is positive if it does not contain the negation symbol).
Along the previous lines one can show that this preservation theorem holds for TMm(d): A
sentence preserved under homomorphisms between finite graphs in TMm(d) is equivalent to
an existential-positive FO-sentence.
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12 J. Gajarský, P. Hlinĕný, D. Lokshtanov, J. Obdrzálek, S. Ordyniak, M. S. Ramanujan, and
S. Saurabh. FO model checking on posets of bounded width. In IEEE 56th Annual Symposium
on Foundations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015,
pages 963–974, 2015.

13 J. Gajarský, P. Hlinĕný, J. Obdrzálek, D. Lokshtanov, and M. S. Ramanujan. A New
Perspective on FO Model Checking of Dense Graph Classes. In Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS’16, New York, NY, USA, July
5-8, 2016, pages 176–184, 2016.
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