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Abstract
We prove that the propositional logic of intuitionistic set theory IZF is intuitionistic propositional
logic IPC. More generally, we show that IZF has the de Jongh property with respect to every
intermediate logic that is complete with respect to a class of finite trees. The same results follow for
constructive set theory CZF.
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1 Introduction

Originally motivated by philosophical concerns about the meaning of logical symbols such
as ∨ and ∃, intuitionistic logic has been increasingly influential in computer science due to
its constructive nature: in contexts of implementation, the abstract existence of a solution
(roughly corresponding to the classical interpretation of ∃) is often less useful than the ability
to construct such a solution (roughly corresponding to the intuitionistic interpretation of ∃).

As a consequence, we can see that computational systems used as automated theorem
provers or proof assistants use constructive logic as their underlying logic (see, e.g., Wiedijk’s
discussion in [28, 127–129]).

However, you cannot just add mathematical axioms to a constructive logic and expect
that the resulting system remains constructive: the most famous example of this is the
fact that even in the context of intuitionistic logic, the Axiom of Choice proves the law of
excluded middle, thus giving full classical logic [6, 159–160].

It is therefore important to determine which axiomatic frameworks for mathematics
preserve which constructive logical systems. More formally, if T is any mathematical theory,
we let L(T ) be the propositional logic consisting of all propositional formulas ϕ such that
all substitution instances of ϕ with sentences of the appropriate language are theorems
of T (i.e., T ` ϕσ for all substitutions σ of propositional letters for T -sentences). We are
interested in determining for well-known constructive foundational systems T whether L(T ) is
intuitionistic propositional logic IPC or not. This property is known as de Jongh’s Theorem
for T .

The main result of this paper is that both intuitionistic Zermelo-Fraenkel set theory IZF
and constructive Zermelo-Fraenkel set theory CZF satisfy de Jongh’s Theorem.
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33:2 De Jongh’s Theorem for IZF and CZF

Background: de Jongh’s theorem and the de Jongh property. The questions and basic
concepts of this work originated in arithmetic; we give a brief historical overview. Heyting
arithmetic HA, the intuitionistic counterpart to Peano arithmetic, is constructed on the basis
of intuitionistic logic by adding certain arithmetical axioms and axiom schemes. Having
defined the theory in this way, it follows immediately that the propositional validities of HA
contain all of intuitionistic propositional logic IPC, i.e., IPC ⊆ L(HA). De Jongh [7] proved
that L(HA) = IPC, i.e., that adding the axioms of HA does not entail any logical principle
that goes beyond IPC.

That results like this are not obvious can be illustrated with an example of an arithmetical
theory that does not satisfy de Jongh’s theorem: Consider the theory HA + MP + ECT0, i.e.,
Heyting arithmetic extended with Markov’s Principle (MP) and Extended Church’s Thesis
(ECT0). Even though these principles are generally considered constructive, one can show
that the propositional logic of this theory contains principles that are not provable in IPC
but it can also not prove all of classical logic CPC, i.e., IPC ( L(HA+MP+ECT0) ( CPC
(this follows from results of Rose [22] and McCarty [17]; for details see the discussion at the
end of [9, Section 2]). The essence of this example is that – even though we construct the
theory HA + MP + ECT0 on the basis of intuitionistic logic – its propositional logic contains
principles that are not intuitionistically valid. Hence, the theory HA + MP + ECT0 does not
satisfy de Jongh’s theorem.

These arithmetical examples illustrate that de Jongh-style theorems are important as they
guarantee that the logics of constructive systems are not strengthened by the mathematical
axioms of the system. An in-depth history of de Jongh’s theorem can be found in the paper
[9] of de Jongh, Verbrugge and Visser.

Related Work. Starting with de Jongh’s classical result [7] that the propositional logic of
Heyting Arithmetic HA is intuitionistic logic IPC, there has been an intensive examination
of this phenomenon in arithmetic. Many authors (see, e.g., [5, 8, 23, 26, 27]) have refined
and generalised de Jongh’s original work for more logics or stronger arithmetical theories.

The de Jongh property was introduced and analysed for Heyting arithmetic by de Jongh,
Verbrugge and Visser [9]: It is an interesting generalisation of de Jongh’s theorem. Given
an intuitionistic theory T and a propositional logic J , we can obtain a strengthened system
T (J) by adding all substitution instances of the rules in J to T . We then say that T has the
de Jongh property with respect to the intermediate logic J whenever L(T (J)) = J . We can
think of the theory T (J) as being constructed on the basis of intuitionistic logic enriched
with the propositional principles from J .

In this article, we shall investigate the propositional logics of constructive set theory
CZF and intuitionistic set theory IZF. In particular Aczel’s constructive set theory CZF
[1, 2, 3] has the status of a standard theory for constructive mathematics, also due to its
type-theoretic interpretation (see [4]). The metamathematical properties of CZF have also
been investigated: Rathjen [21] proved that CZF possesses the disjunction property, the
numerical existence property and other common metamathematical properties, however Swan
[24] showed that CZF does not have the existence property (the definitions can be found in
the respective papers).

The blended Kripke models that we construct for the purpose of this article are inspired
by the constructions of Iemhoff [10] and Lubarsky [13, 14, 15, 16], and combine Kripke
semantics with classical models of set theory.

Bounded constructive set theory BCZF is obtained from CZF by restricting the collection
schemes to bounded formulas. The present author used Iemhoff’s construction to prove
that BCZF has the de Jongh property with respect to every Kripke-complete logic (see [20]).
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With the techniques used there, it was (provably) not possible to extend the result to CZF.
However, in the present work we will be able to derive a result for CZF as a corollary of the
result for IZF.

Moreover, the author [19, Chapter 4] proved that the propositional logic of those of
Lubarsky’s models that are based on a Kripke frame with leaves contains the intermediate
logic KC (axiomatised by ¬ϕ ∨ ¬¬ϕ). Consequently, the Lubarsky models based on such a
frame cannot be used to prove de Jongh properties with respect to logics weaker than KC,
such as IPC.

The blended models have more flexibility than Lubarsky’s models and model a stronger
set theory than Iemhoff’s models, and can therefore be used to prove de Jongh’s theorem for
IZF and CZF. We will discuss the relation of Lubarsky’s models and the blended models at
the end of Section 3.1.

Organisation of the Article. The main result of this article are de Jongh theorems for
the set theories CZF and IZF. That is, L(IZF) = IPC and L(CZF) = IPC. To prove these
results, we introduce a new semantics for IZF, the so-called blended Kripke models, or blended
models for short, that allow for controlling the logic of the set-theoretic Kripke model in a
very precise way. To prove our results, it will be enough to refute one substitution instance
of every propositional formula that is not intuitionistically valid. We will do so by imitating
valuations on Kripke frames for propositional logic through set-theoretic sentences in a
corresponding blended model.

Using our blended Kripke models, we show that intuitionistic set theory IZF has the de
Jongh property with respect to every intermediate logic J that is characterised by a class of
finite trees (see Definition 10 and Theorem 31). Examples of such logics are intuitionistic
propositional logic IPC, Dummett’s logic LC, the Gabbay-de Jongh logics Tn and the logics
BDn of bounded depth n (see Example 7 for the definitions of these logics). As constructive
set theory CZF is a subtheory of IZF, all of these results also apply for CZF (see Corollary 35).

Section 2 discusses the preliminaries for our work. We introduce blended Kripke models
in Section 3 and prove that they satisfy intuitionistic set theory IZF. In Section 4, we consider
the propositional logic of blended Kripke models and prove de Jongh’s theorem for IZF. We
draw some conclusions and state a few questions for further research in Section 5.

2 Preliminaries

In this section, we will discuss the preliminaries for the later sections. After briefly discussing
notation and intermediate logics in Section 2.1 and Section 2.2, respectively, we will introduce
Kripke semantics for intuitionistic propositional logic in Section 2.3. We will then discuss
the de Jongh property in Section 2.4.

2.1 Notation and Meta-Theory
We adopt the following notational policy: The symbol 
 will be used for the forcing relation
of Kripke models. As usual, we will use � for the classical modelling relation, and ` for the
provability relation.

The meta-theory of this article is ZFC + “there is a countable transitive model of ZFC”,
a theory that is strictly in strength between ZFC + Cons(ZFC) and ZFC + “there is an
inaccessible cardinal”.

Note that a countable transitive model of ZFC is a countable set M � ZFC (where ∈ is
interpreted as usual set-membership) such that whenever y ∈ x ∈M , then y ∈M . The class
of ordinals OrdM of such a countable transitive model M of ZFC is a countable ordinal in
the meta-universe, i.e., OrdM ∈ Ord. We also refer to OrdM as the ordinal height of M .

CSL 2020



33:4 De Jongh’s Theorem for IZF and CZF

2.2 Intuitionistic and Intermediate Logics
We fix a countable set Prop of propositional variables for the scope of this article, and identify
propositional logics J with the set of formulas they prove (i.e., J ` ϕ if and only if ϕ ∈ J).
As usual, we denote intuitionistic propositional logic by IPC, and classical propositional
logic by CPC. We say that a logic J is an intermediate logic if IPC ⊆ J ⊆ CPC (in
particular, IPC and CPC are considered intermediate logics here). Intuitionistic predicate
logic is called IQC.

2.3 Kripke Frames and Kripke Models
We will now introduce Kripke frames for intuitionistic logic. In particular, we will focus on
Kripke frames that are trees.

I Definition 1. A Kripke frame (K,≤) is a partial order. We call a Kripke frame (K,≤) a
tree if for every v ∈ K, the set K≤v = {w ∈ K |w ≤ v} is well-ordered by ≤, and moreover,
if there is a node r ∈ K such that r ≤ v for all v ∈ K (i.e., K is rooted, and r is its root).
A Kripke frame is called finite whenever K is finite.

All finite trees can be constructed recursively according to the following rules: First,
every reflexive partial order with only one point is a finite tree. Second, given finitely many
finite trees Ti with roots ri, the partial order T obtained as the disjoint union of the Ti with
an additional element r such that r ≤ x for all x ∈ T , is a tree. This recursive definition
allows us to prove facts about trees by induction on construction complexity.

I Definition 2. Given a Kripke frame (K,≤), we say that a node e is a leaf if e is maximal
with respect to ≤. We denote the set of leaves of (K,≤) by EK . A Kripke frame (K,≤) with
leaves is a Kripke frame such that for every v ∈ K there is some e ∈ EK with v ≤ e. Given
a node v ∈ K, let Ev denote the set of all leaves e ∈ K such that v ≤ e.

The following combinatorial proposition will be useful later when we will determine the
propositional logic of certain Kripke models. An up-set X in a Kripke frame (K,≤) is a set
X ⊆ K such that v ∈ X and v ≤ w implies w ∈ X. Given a finite tree (K,≤) and a node
v ∈ K, let Uv be the number of up-sets X ⊆ K≥v, where K≥v = {w ∈ K |w ≥ v}.

I Proposition 3. In a finite tree (K,≤), every node v is uniquely determined by Uv and Ev.

Proof. This is an easy induction on the construction complexity of finite trees. J

A valuation on a Kripke frame (K,≤) is a function V : Prop→ P(K) that is persistent,
i.e., if w ∈ V (p) and w ≤ v, then v ∈ V (p). A Kripke model for IPC is a triple (K,≤, V )
such that (K,≤) is a Kripke frame. We can now define, by induction on propositional
formulas, the forcing relation 
 for propositional logic at a node v ∈ K in the following way:

1. K,V, v 
 p if and only if v ∈ V (p),
2. K,V, v 
 ϕ ∧ ψ if and only if K,V, v 
 ϕ and K,V, v 
 ψ,
3. K,V, v 
 ϕ ∨ ψ if and only if K,V, v 
 ϕ or K,V, v 
 ψ,
4. K,V, v 
 ϕ→ ψ if and only if for all w ≥ v, K,V,w 
 ϕ implies K,V,w 
 ψ,
5. K,V, v 
 ⊥ never holds.

Sometimes we will write v 
 ϕ instead of K,V, v 
 ϕ, and K,V 
 ϕ if K,V, v 
 ϕ holds
for all v ∈ K. A formula ϕ is valid in K if K,V, v 
 ϕ holds for all valuations V on K and
v ∈ K, and ϕ is valid if it is valid in every Kripke frame K.
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I Proposition 4 (Persistence). Let (K,≤, V ) be a Kripke model for IPC, v ∈ K, and ϕ be
a propositional formula such that K, v 
 ϕ holds. Then K,w 
 ϕ holds for all w ≥ v.

Proof. By induction on formulas. The base case follows from the definition of a valuation,
and the other cases follow easily. J

We can now define the logic of a Kripke frame and of a class of Kripke frames.

I Definition 5. If (K,≤) is a Kripke frame for IPC, we define the propositional logic
L(K,≤) to be the set of all propositional formulas that are valid in K. For a class K of
Kripke frames, we define the propositional logic L(K) to be the set of all propositional
formulas that are valid in all Kripke frames (K,≤) in K. Given an intermediate logic J , we
say that K characterises J if L(K) = J .

If ≤ is clear from the context, we shall write L(K) for L(K,≤). Let us conclude this
section with a few examples of intermediate logics and some classes of Kripke frames that
characterise them. For proofs we refer to the literature. The following important proposition
is well-known.

I Proposition 6 (e.g., [25, Theorem 6.12]). Intuitionistic propositional logic IPC is charac-
terised by the class of all finite trees.

I Example 7. We present some examples of logics from the paper of de Jongh, Verbrugge
and Visser [9] that are characterised by classes of finite trees.

Dummett’s logic The logic LC is obtained by extending IPC with the axiom

(p→ q) ∨ (q → p).

The logic LC is characterised by the class of finite linear orders.
Gabbay-de Jongh Logics The logics Tn, for n ∈ N, are characterised by the class of finite

trees which have splittings of exactly n, i.e., every node is either a leaf or has exactly n
successors. T1 coincides with LC, and the logics Tn are axiomatised by the following
formulas:

∧
k≤n+1

ϕk → ∧
j 6=k

ϕj

→ ∧
j 6=k

ϕj

→ ∧
k≤n+1

ϕk.

Logics of Bounded Depth n The logics BDn, for n ∈ N, are characterised by the finite
trees of depth n. The logic of depth 1, BD1 is classical logic CPC axiomatised by Peirce’s
law,

β1 = ((ϕ1 → ψ)→ ϕ1)→ ϕ1.

For every n ∈ N, the logic BDn is axiomatised by βn as obtained recursively via:

βn+1 = ((ϕn+1 → βn)→ ϕn+1)→ ϕn+1.

2.4 The de Jongh Property
Let ϕ be a propositional formula and let σ : Prop → Lsent an assignment of propositional
variables to sentences in a language L. By ϕσ we denote the L-sentence obtained from ϕ by
replacing each propositional variable p with the sentence σ(p).

CSL 2020



33:6 De Jongh’s Theorem for IZF and CZF

I Theorem 8 (de Jongh, [7]). Let ϕ be a formula of propositional logic. Then HA ` ϕσ for
all σ : Prop→ Lsent

HA if and only if IPC ` ϕ.

Given a theory based on intuitionistic logic, we may consider its propositional logic, i.e.,
the set of propositional formulas that are derivable after substituting the propositional letters
by arbitrary sentences in the language of the theory.

I Definition 9. Let T be a theory in intuitionistic predicate logic, formulated in a language L.
A propositional formula ϕ will be called T -valid if and only if T ` ϕσ for all σ : Prop→ Lsent.
The propositional logic L(T ) is the set of all T -valid formulas.

Given a theory T and an intermediate logic J , we denote by T (J) the theory obtained by
closing T under J .

I Definition 10. We say that a theory T has the de Jongh property if L(T ) = IPC. The
theory T has the de Jongh property with respect to an intermediate logic J if L(T (J)) = J .

De Jongh’s theorem is equivalent to the assertion that Heyting arithmetic has the de
Jongh property. As explained in the introduction, the theory HA + MP + ECT0 does not
have the de Jongh property.

3 Blended Models

This section introduces the new model construction for intuitionistic set theory IZF: the
blended models. We will now construct blended Kripke models in Section 3.1, observe some of
their basic properties in Section 3.2 and show that they satisfy intuitionistic Zermelo-Fraenkel
set theory IZF in Section 3.3. Finally, Section 3.4 contains a simple example of a blended
model.

3.1 Constructing Blended Models
For the sake of this construction, we fix a Kripke frame (K,≤) with leaves. Transitive models
of ZFC have an ordinal height Ω; in our construction all models assigned will have the same
ordinal height. To each leaf e ∈ K, we assign a transitive model Me � ZFC of height Ω. Note
that Ω denotes the same ordinal in the meta-universe for all e ∈ EK ; we can therefore refer
to this ordinal by Ω without specifying a particular e ∈ EK .

Before giving the technical details of the construction, let us spark the readers intuition.
We need to define a collection Dv of v-sets at every node v ∈ K of the Kripke model. A
v-set x will be a function that assigns to every node w ≥ v a collection of previously defined
w-sets; x(w) is the extension of x at the node w. Note that these assignments shall not be
random but must happen in a coherent way: at every leaf e, the extension x(e) must be a set
of the transitive model Me associated to the leaf e. Moreover, the extensions of x should be
monotone along the ≤-relation of the Kripke frame to account for the persistence required in
Kripke models for intuitionistic theories – once a member of x, always a member of x. More
formally, we shall require for any y ∈ x(v) that y � K≥w ∈ x(w). The truncation of y to
y � K≥w is necessary to obtain the w-set y � K≥w from the v-set y.

The formal construction of blended models is conducted in three steps. We begin by
constructing the collection of domains 〈Dv | v ∈ K〉: first the domains for the leaves and,
secondly, for all remaining nodes of the Kripke frame. The third step is to define the
semantics.
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Step 1. Domains for leaves. Let e ∈ EK be a leaf, and Me be the transitive model asso-
ciated to it. Instead of directly assigning the transitive model Me as the domain at
the node e, we will transform this model into a domain De of functions that is iso-
morphic to the original model. We define a function fe : Me → ran(f) by ∈-recursion via
fe(x) = (e, fe[x]).
Then define De = fe[Me]. Hence, each De is a set of functions x : K≥e → ran(x) (where
K≥e = {e}). Moreover, for α ∈ OrdM , let Dαe = fe[(Vα)Me ]. Then D0

e = ∅ and it holds
that ⋃

α∈OrdM

Dαe = De.

In Proposition 14 below, we will see that the domains of the leaves of a blended model
are isomorphic to the classical model of set theory associated to the node (with respect
to the equality and membership relations).

Step 2. Domains for all nodes. Now we are ready to define the domains at the remaining
nodes. We do this simultaneously for all v ∈ K \ EK by induction on α ∈ Ω. Let Dαv
consist of the functions x : K≥v → ran(x) such that the following properties hold:

(i) for all leaves e ≥ v, we have x � {e} ∈ Dαe ,
(ii) for all non-leaves w ≥ v, we have x(w) ⊆

⋃
β<αDβw, and

(iii) for all nodes u ≥ w ≥ v we have that {y � K≥u | y ∈ x(w)} ⊆ x(u).

We define the domain Dv at the node v to be the set

Dv =
⋃

α∈OrdM

Dαv .

For completing the definition of the domains of our model, we still require transition
functions fvw : Dv → Dw such that fwu ◦ fvw = fvu. The transition functions explain
how the elements at a node v should be interpreted at a later node w ≥ v (see also step
3). For this purpose, we use the restriction maps fvw with x 7→ x � K≥w as transition
functions. Note that these maps are well-defined by the definition of the domains.
Moreover, by the definition of the maps fvw, it is clear that condition (i) is just a special
case of condition (iii). We state it separately as it requires special attention when working
with blended models.

Step 3. Defining the semantics. We define, by induction on L∈-formulas, the forcing rela-
tion at every node of the Kripke model in the following way, where ϕ and ψ are formulas
with all free variables shown, and, moreover, ȳ = y0, . . . , yn−1 are elements of Dv for the
node v considered on the left side:

1. (K,≤,D), v 
 ⊥ never holds,
2. (K,≤,D), v 
 ϕ(ȳ) ∧ ψ(ȳ) if and only if (K,≤,D), v 
 ϕ(ȳ) and (K,≤,D), v 
 ψ(ȳ),
3. (K,≤,D), v 
 ϕ(ȳ) ∨ ψ(ȳ) if and only if (K,≤,D), v 
 ϕ(ȳ) or (K,≤,D), v 
 ψ(ȳ),
4. (K,≤,D), v 
 ϕ(ȳ) → ψ(ȳ) if and only if for all w ≥ v, (K,≤,D), w 
 ϕ(fvw(ȳ))

implies (K,≤,D), w 
 ψ(fvw(ȳ)),
5. (K,≤,D), v 
 x ∈ y if and only if x ∈ y(v),
6. (K,≤,D), v 
 a = b if and only if a = b,
7. (K,≤,D), v 
 ∃xϕ(x, ȳ) if and only if there is some a ∈ Dv with (K,≤,D), v 
 ϕ(a, ȳ),
8. (K,≤,D), v 
 ∀xϕ(x, ȳ) if and only if for all w ≥ v and a ∈ Dw, w 
 ϕ(a, fvw(ȳ)).

CSL 2020



33:8 De Jongh’s Theorem for IZF and CZF

The negation ¬ϕ is an abbreviation for ϕ→ ⊥.

I Definition 11. We call (K,≤,D) the blended Kripke model obtained from 〈Me | e ∈ EK〉.

This finishes the definition of the blended models. If the collection 〈Me | e ∈ EK〉 is either
clear from the context, or if it does not matter, we will also say that (K,≤,D) is a blended
Kripke model. We will usually say blended model instead of blended Kripke model. Moreover,
we might refer to an element x ∈ Dv as a v-set, and to x(w) as the extension of x at w.

An L∈-formula ϕ is valid in (K,≤,D) if v 
 ϕ holds for all v ∈ K, and ϕ is valid if it is
valid in every Kripke frame K. We will call (K,≤) the underlying Kripke frame of (K,≤,D),
or the frame that (K,≤,D) is based on. Moreover, let us call JϕK(K,≤,D) = {v ∈ K | v 
 ϕ}
the truth set of a sentence ϕ in the language of set theory in a blended model (K,≤, D).
When the model is clear from the context, we will also write JϕKK or just JϕK.

Before we continue with some basic properties of the blended models, let us briefly
discuss this construction in comparison to Lubarsky’s Kripke models [13, 14, 15, 16], which
are constructed in a similar way. The crucial difference, however, is that our models are
constructed in a top-down manner that allows to choose any (finite) collection of classical
models of set theory of the same ordinal height at the leaves, whereas Lubarsky’s bottom-up
construction requires elementary equivalence of the models involved.

3.2 Basic Properties
We will now observe some basic properties of the blended models.

I Proposition 12 (Persistence). Let (K,≤,D) be a blended model and ϕ a formula in the lan-
guage of set theory. If v 
 ϕ(a0, . . . , an−1) and w ≥ v, then w 
 ϕ(fvw(a0), . . . , fvw(an−1)).

Proof. This is proved by induction on L∈-formulas. J

I Proposition 13. The blended models are sound with respect to IQC.

Proof. This follows from the more general soundness result for Kripke models for predicate
logics with respect to IQC. See, for example, [25, Theorem 6.6]. J

We will now make the essential observation that the domains at the leaves are isomorphic
to the models they were obtained from.

I Proposition 14. Let (K,≤,D) be a blended model, and e ∈ EK a leaf. Then (K,≤,D), e 

ϕ(fe(a0), . . . , fe(an−1)) if and only if Me � ϕ(a0, . . . , an−1) for all elements a0, . . . , an−1 ∈
Me.

Proof. Let us first argue that the function fe : Me → De as introduced in Step 1 is a bijection.
Define g by ∈-recursion with (e, x) 7→ g[x]. It follows by induction that g ◦ fe = idMe and
fe ◦ g = idDe

. Hence, fe is a bijection.
It suffices to prove the claim for the atomic cases: equality and set-membership. The case

for equality follows from the definition of the semantics and the fact that f is bijective. For set-
membership observe that if Me � x ∈ y, then fe(x) ∈ fe(y)(e) and hence e 
 fe(x) ∈ fe(y).
Conversely, if e 
 fe(x) ∈ fe(y), then fe(x) ∈ fe(y)(e) and hence x = g(fe(x)) ∈ g(fe(y)) = y.
The other cases follow trivially as the intuitionistic interpretation of the logical symbols in a
leaf coincides with the classical interpretation in the model Me. J
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Extensionality ∀a∀b (∀x (x ∈ a↔ x ∈ b)→ a = b)
Empty set ∃a ∀x ∈ a⊥
Pairing ∀a ∀b∃y ∀x (x ∈ y ↔ (x = a ∨ x = b))
Union ∀a∃y ∀x (x ∈ y ↔ ∃u(u ∈ a ∧ x ∈ u))
Power set ∀a ∃y ∀x (x ∈ y ↔ x ⊆ a)
Infinity ∃a (∃xx ∈ a ∧ ∀x ∈ a∃y ∈ a x ∈ y)
Set Induction ∀a (∀x ∈ aϕ(x)→ ϕ(a))→ ∀aϕ(a), for all formulas ϕ(x).
Separation ∀a ∃y ∀x (x ∈ y ↔ (x ∈ a ∧ ϕ(x))), for all formulas ϕ(x).
Collection ∀a (∀x ∈ a ∃y ϕ(x, y)→ ∃b∀x ∈ a ∃y ∈ b ϕ(x, y)), for all formulas ϕ(x, y), where

b is not free in ϕ(x, y).

Figure 1 The axioms of IZF. Note that the formulas ϕ(x) appearing in the axiom schemes are
allowed to have parameters.

3.3 Intuitionistic Set Theory Holds in Blended Models
In this section, we will show that the axioms of IZF (see Figure 1) hold in blended models.
For the sake of this section, let (K,≤,D) be a blended model obtained from 〈Me | e ∈ EK〉.

Intuitionistic set theory IZF is classically equivalent to ZF set theory. With Proposition 14
we note that IZF holds true at every leaf because the models associated with the leaves are
models of ZF set theory and classical logic holds in the leaves.

B Claim 15. The model (K,≤,D) satisfies the axiom of extensionality.

Proof. Let v ∈ K and a, b ∈ Dv. We have to show that

v 
 ∀x(x ∈ a↔ x ∈ b)→ a = b.

So assume that w 
 ∀x(x ∈ a↔ x ∈ b) for all w ≥ v, i.e., a(w) = b(w) for all w ≥ v. Hence,
a and b are equal as functions with domain K≥v, and so they are equal. C

B Claim 16. The model (K,≤,D) satisfies the axiom of pairing.

Proof. Let v ∈ K and a, b ∈ Dv. Let c be the function with c(w) = {fvw(a), fvw(b)} for all
w ≥ v.

Let us first show that c ∈ Dv. For condition (i), let e ≥ v be a leaf. As a, b ∈ Dv it
follows from the definition that fve(a), fve(b) ∈ De. Hence, by pairing in Me, we have that
c � {e} ∈ De, where c(e) = {fve(a), fve(b)}. Conditions (ii) and (iii) of the definition of Dv
follow directly from the definition of c.

Now it is straightforward to check that c constitutes a witness for the axiom of pairing
for a and b at the node v. C

B Claim 17. The model (K,≤,D) satisfies the axiom of union.

Proof. Let v ∈ K and a ∈ Dv. Define a function b with domainK≥v with b(w) =
⋃
c∈a(w) c(w)

for all w ≥ v.
Again, we need to show that b ∈ Dv. For condition (i), observe that fve(a) ∈ De for every

leaf e ≥ v. As the axiom of union holds in Me, it follows that there is a witness b′ ∈ De. By
transitivity of Me, it must then hold that b � {e} = b′ ∈ De. As in the previous proposition,
conditions (ii) and (iii) follow directly from the definition of b. Then b witnesses the axiom
of union for a. C
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B Claim 18. The model (K,≤,D) satisfies the axiom of empty set.

Proof. For every v ∈ K consider the function 0v with domain K≥v such that 0v(w) = ∅ for
all w ≥ v. This is an element of Dv and witnesses the axiom of empty set. C

B Claim 19. The model (K,≤,D) satisfies the axiom of infinity.

Proof. By recursion on natural numbers, we will define elements nv ∈ Dv simultaneously for
every v ∈ K. Let 0v be the empty set as defined in the proof of Claim 18. Then, if mv has
been defined for all m < n, let nv be the function with nv(w) = {0w, . . . , (n− 1)w} for all
w ≥ v. This finishes the recursive definition. It follows inductively that every nv ∈ Dv, again
paying special attention at the leaves: the sets ne correspond to the finite ordinal n ∈Me.

Finally, let ωv(w) = {nw |n < ω} for all w ≥ v. To see that ωv ∈ Dv note that, for every
leaf e ≥ v, fve(ωv) = ωe ∈ De as Me satisfies the axiom of infinity.

It follows that ωv is a witness for the axiom of infinity at the node v. C

B Claim 20. The model (K,≤,D) satisfies the axiom scheme of separation.

Proof. Let ϕ(x, y0, . . . , yn) be a formula with all free variables shown. Let v ∈ K, a ∈ Dv
and b0, . . . , bn ∈ Dv. Define c to be the function with domain K≥v such that

c(w) = {d ∈ a(w) |w 
 ϕ(d, b0, . . . , bn)}

holds for all w ≥ v. We have that c ∈ Dv by the definition of the domains Dv. Again,
property (i) follows from the fact that separation holds in Me for every leaf model Me.
Moreover, property (iii) follows by persistence. Finally, c witnesses separation from a by ϕ
with parameters bi. C

B Claim 21. If K is finite, then the model (K,≤,D) satisfies the axiom scheme of collection.

Proof. Let v ∈ K, ϕ(x, y) be a formula (possibly with parameters), and a ∈ Dv. We need to
show that:

v 
 ∀x ∈ a∃y ϕ(x, y)→ ∃b∀x ∈ a∃y ∈ b ϕ(x, y).

Without loss of generality, assume that v 
 ∀x ∈ a∃yϕ(x, y). In particular, by persistence,
for every w ≥ v and every x ∈ a(w) there exists some y ∈ Dw such that w 
 ϕ(x, y). Let α
be the minimal ordinal such that for every w ≥ v and x ∈ a(w), there is some y ∈ Dαw with
w 
 ϕ(x, y). Note that α < Ω as K is finite. Define b to be the function with domain K≥v
such that b(w) = Dαw. It follows that b ∈ Dv, where the case for leaves e follows from the
fact that (Vα)Me is a set in Me. Hence, b is a witness for the above instance of the collection
scheme. C

B Claim 22. The model (K,≤,D) satisfies the powerset axiom.

Proof. Let v ∈ K and a ∈ Dv. Define a function b with domain K≥v such that

b(w) = {c ∈ Dw |w 
 c ⊆ fvw(a)}

for all w ≥ v. We have to show that b ∈ Dv. Observe that for every leaf e ≥ v, fve(b)
corresponds to (P(a))Me , and hence condition (i) is satisfied. Conditions (ii) and (iii) follow
easily. C

B Claim 23. The model (K,≤,D) satisfies the axiom scheme of set induction.
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Proof. We shall show that the set-induction scheme holds for all v ∈ K, i.e., that

v 
 ∀a (∀x ∈ aϕ(x)→ ϕ(a))→ ∀aϕ(a),

holds for all formulas ϕ(x) and v ∈ K. So assume that v 
 ∀a (∀x ∈ aϕ(x) → ϕ(a)). We
have to show that v 
 ∀aϕ(a), i.e., for all a ∈ Dv we have that v 
 ϕ(a). To do so, we will
proceed by a simultaneous induction for all v ∈ K on the rank of a ∈ Dv, i.e., the minimal
α < Ω such that a ∈ Dα+1

v \ Dαv .
The only v-set of rank 0 is the function x that assigns the empty set to every node

w ≥ v, so the assumption of set-induction applies and we have v 
 ϕ(x). For the induction
step, observe that the members of a v-set x of rank α are w-sets (for some w ≥ v) of lower
rank. Hence, the induction hypothesis applies and it follows by using the assumption of
set-induction that v 
 ϕ(x). This finishes the induction, and the proof of the claim. C

Let us summarise the results of this section in the following theorem.

I Theorem 24. If K is finite, then the model (K,≤,D) satisfies IZF. For arbitrary K, the
model (K,≤,D) satisfies IZF− Collection.

We do not know whether there is an example of an infinite Kripke frame K and a model
(K,≤,D) based on K that does not satisfy the collection scheme.

3.4 An Example
To illustrate our construction above, we will construct a Kripke model (K,≤,D) such that
(K,≤,D) 6
 CH ∨ ¬CH, where CH is the continuum hypothesis. Take (K,≤) to be the three
element Kripke frame (K,≤) with K = {v, e0, e1} with ≤ being the reflexive closure of the
relation defined by v ≤ e0 and v ≤ e1.

Now, let M be any countable transitive model of ZFC + CH, and take G to be generic
for Cohen forcing over M . Then we associate the model M with node e0, and M [G] with
e1, i.e., Me0 = M and Me1 = M [G]. By our construction above and Proposition 14, we
know that (K,≤,D), e0 
 CH and (K,≤,D), e1 
 ¬CH. Hence, persistence implies that
(K,≤,D), v 6
 CH ∨ ¬CH.

In particular, observe that JCHK = {e0}, J¬CHK = {e1}, JCH ∨ ¬CHK = {e0, e1} and
J>K = K. Hence, every up-set and therefore any valuation on K can be imitated with
sentences in the language of set-theory evaluated in the blended model.

Moreover, this example also shows that IZF 6` CH ∨ ¬CH, i.e., the law of excluded middle
does not hold for assertions regarding the continuum. One can easily generalise the above
argument to obtain the following proposition.

I Proposition 25. If ϕ is a sentence in the language of set theory such that there are models
M and N of ZFC with the same ordinals such that M � ϕ and N � ¬ϕ, then IZF 6` ϕ ∨ ¬ϕ.

Of course, this result also follows from the fact that IZF is a subtheory of ZFC having the
disjunction property (see [18, Corollary 1]).

4 The Propositional Logic of Blended Models

In this section, we will analyse the propositional logic of blended models and prove the de
Jongh property for IZF with respect to intermediate logics that are characterised by a class
of finite trees.
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4.1 Faithful Blended Models
The aim of this section is to show that we can find a blended model based on every finite
tree Kripke frame (K,≤) that allows us to imitate every valuation on (K,≤). Let us begin
with a definition and several useful observations.

I Definition 26. A blended model (K,≤,D) is called faithful if for every valuation V on
the Kripke frame (K,≤) and every propositional letter p ∈ Prop, there is an L∈-formula ϕp
such that JϕpK(K,≤,D) = V (p).

This notion was first introduced in [19]. For further discussion and connections to the de
Jongh property, see also [20].

Given a natural number n, let Γn be the following sentence1 in the language of set theory:

∀x0, . . . , xn−1

 ∧
i<n

(∀y ∈ xi∀z ∈ y⊥)→
∨

i<j<n

xi = xj

 .

Informally, this sentence asserts that given n subsets of 1 = {∅}, at least 2 of them are
equal. The power set of 1 is crucial for distinguishing models of non-classical set theories; it
is consistent with CZF that the power set of 1 is a proper class (see [13]). Note that Γ1 is
inconsistent and Γ2 is a theorem of ZF set theory. If Γ2 is not a theorem, then classical logic
does not hold.

Recall that we defined Uv in Section 2.3 to be the number of up-sets X ⊆ K≥v. The
following proposition holds for all Kripke frames with leaves and not only for finite trees.
We also do not need to assume that Uv is finite.

I Proposition 27. Let (K,≤) be a Kripke frame with leaves, (K,≤,D) be a blended model,
and v ∈ K. For every natural number n, we have that v 
 Γn+1 if and only if n ≥ Uv.

Proof. Given any up-set X ⊆ K≥v, we define the element 1vX to be the function

K≥v →
⋃
w≥v

Dw, w 7→

{
{0w}, if w ∈ X,
∅, otherwise.

Observe that 1vX ∈ Dv as it is monotone because X is an up-set. Further, we have 1vX 6= 1vY
for up-sets X 6= Y and therefore, v 6
 1vX = 1vY . It follows that v 
 ∀y ∈ 1vX∀z ∈ y⊥ for all
up-sets X because 1vX(w) is either empty or contains the empty set for w ≥ v. We conclude
that v 6
 Γn+1 for n < Uv taking the 1vX as witnesses.

Conversely, assume that n ≥ Uv. We will first show that whenever v 
 ∀y ∈ x∀z ∈ y⊥ for
some x ∈ Dv, then x is actually of the form 1vX for some up-set X ⊆ K≥v. For contradiction,
assume that x was not of the form 1vX for some up-set X. Then there is a node w ≥ v such
that x(w) contains an element y different from 0w. But then there must be a node u ≥ w
such that y(w) is non-empty. This is a contradiction to v 
 ∀y ∈ x∀z ∈ y⊥, and hence,
every element x ∈ Dv satisfying the above formula must be of the form 1vX . As there are
only Uv-many elements 1vX , we know that the conclusion of Γn+1 must be true at the node v.
Hence, v 
 Γn+1. J

1 The sentences Γn were also used in yet unpublished joint work with Lorenzo Galeotti and Benedikt
Löwe on the logics of algebra-valued models of set theory; see also the discussion after Theorem 13 of
[12]. We adapt them here for the case of Kripke semantics.
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The following proposition is a special case of a more general proposition for Kripke models
of predicate logic.

I Proposition 28. Let (K,≤) be a Kripke frame with leaves, (K,≤,D) be a blended model
and v ∈ K. If e 6
 ϕ for all leaves e ≥ v, then v 
 ¬ϕ.

Proof. By the definition of our semantics, we know that v 
 ¬ϕ if and only if w 6
 ϕ for
all w ≥ v. Assume that there was a node w ≥ v such that w 
 ϕ. By persistence we can
conclude that e 
 ϕ for every leaf e ≥ w. Hence, w 6
 ϕ for all w ≥ v, so v 
 ¬ϕ. J

I Theorem 29. Let (K,≤,D) be a blended model based on a finite tree (K,≤) with leaves
e0, . . . , en−1. If there is a collection of ∈-sentences ϕi for i < n such that ej 
 ϕi if and only
if i = j, then (K,≤,D) is faithful.

Proof. Let (K,≤,D) be a blended model based on a finite tree (K,≤) with leaves e0, . . . , en−1
such that there is a collection of ∈-sentences ϕi for i < n such that ej 
 ϕi if and only if
i = j.

As (K,≤) is a finite tree, we know by Proposition 3 that every node v ∈ K is uniquely
determined by Uv and the set of leaves e ≥ v.

Let V be a valuation on (K,≤). For every p ∈ Prop, we need to find a sentence ρp in the
language of set theory such that JρpK(K,≤,D) = V (p). Due to the finiteness of K, it suffices to
consider up-sets of the form K≥v for some v ∈ K because general up-sets can be constructed
by finitely many disjunctions.

We will now prove for every v ∈ K that there is a sentence χv in the language of set
theory such that (K,≤,D), w 
 χv if and only if w ≥ v (i.e., w ∈ K≥v). Let χv be the
following sentence, where n = Uv + 1:

Γn ∧
∧
v 6≤ei

¬ϕi

By Proposition 27 and Proposition 28 it is clear that w 
 χv for all w ≥ v. For the converse
direction, let w ∈ K such that w 6≥ v. There are two cases.

First, if w < v, then Uw > Uv = n and hence w 6
 Γn by Proposition 27. Hence, it follows
that w 6
 χv.

Second, if w 6< v, then there must be a leaf ei ≥ w such that ei 6≥ v. By assumption
ei 
 ϕi and hence, w 6
 ¬ϕi. But this means that w 6
 χv.

This concludes the proof of the theorem. J

I Theorem 30. Let (K,≤) be a finite tree. Then there is a faithful blended model (K,≤,D)
based on (K,≤).

Proof. Let e0, . . . , en−1 be the set of leaves of (K,≤). Let M be a countable transitive
model of ZFC set theory. By set-theoretic forcing, we can obtain generic extensions M [Gi] of
M such that M [Gi] � 2ℵ0 = ℵi+1 for every i < n (see, e.g., [11, Theorem 6.17] for details).
Let Mei

= M [Gi], and (K,≤,D) be the blended model obtained from 〈Mi | i < n〉. Clearly,
Mei
� 2ℵ0 = ℵj+1 if and only if i = j. This implies, by Proposition 14, that ei 
 2ℵ0 = ℵj+1

if and only if i = j. In this situation, we can apply Theorem 29 to conclude that (K,≤,D) is
faithful. J
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4.2 The de Jongh Property for IZF and CZF
In this section, we will draw conclusions regarding the de Jongh property for IZF and CZF
from the main result of the previous section.

I Theorem 31. Intuitionistic set theory IZF has the de Jongh property with respect to every
intermediate logic J that is characterised by a class of finite trees.

Proof. Let J be an intermediate logic with L(K) = J , where K is a class of finite trees. We
have to show that L(IZF(J)) = J , i.e., for every propositional formula, we have that:

J ` ϕ if and only if IZF(J) ` ϕσ for all substitutions σ : Prop→ Lsent
∈ .

The direction from left to right is immediate from the definition of IZF(J). We will prove
the converse direction by contraposition.

Assume that there is ϕ such that J 6` ϕ. As J is characterised by K, there is a frame
(K,≤) ∈ K and a valuation V such that (K,≤), V 6
 ϕ. By Theorem 30 and the assumption
that K consists of finite trees, we can find a faithful blended model (K,≤,D) based on (K,≤).
For every propositional letter p ∈ Prop, let ψp be a sentence in the language of set theory
such that JψpK(K,≤,D) = V (p). Define an assignment σ : Prop→ Lsent

∈ by σ(p) = ψp.
We prove by induction on propositional formulas χ, simultaneously for all v ∈ K that:

(K,≤), v 
 χ if and only if (K,≤,D), v 
 χσ.

The base case for propositional letters follows directly from the definition of σ. Further-
more, the induction cases for the connectives →, ∧ and ∨ follow directly from the fact that
their semantics coincide in Kripke models for IPC and in blended models. This finishes the
induction.

Hence, it follows from the induction that (K,≤,D) 6
 ϕσ, and therefore, ϕ /∈ L(IZF(J)).
This finishes the proof of the theorem. J

I Corollary 32. Intuitionistic set theory IZF has the de Jongh property.

Proof. By Proposition 6, we know that IPC is complete with respect to the class of all finite
trees, i.e., this class characterises IPC. By the previous Theorem 31, this implies that IZF
has the de Jongh property. J

More examples of logics that are characterised by classes of finite trees are Gödel-
Dummett logic LC, the Gabbay-de Jongh logics Tn, and the logics of bounded depth BDn

(see Example 7).

I Corollary 33. Intuitionistic set theory IZF has the de Jongh property with respect to the
logics LC, Tn and BDn.

I Lemma 34. If a theory T has the de Jongh property with respect to a logic J , then any
theory S ⊆ T has the de Jongh property with respect to J .

Proof. We have to show that J ` ϕ if and only if S(J) ` ϕσ for all σ : Prop→ Lsent
∈ . The

implication from left to right is trivial. We prove the other direction by contraposition. So
assume that J 6` ϕ. By assumption, T has the de Jongh property with respect to J and
hence there is some σ such that T (J) 6` ϕσ. As S ⊆ T , it follows that S(J) 6` ϕσ. J

I Corollary 35. Constructive set theory CZF has the de Jongh property with respect to every
intermediate logic J that is characterised by a class of finite trees. In particular, CZF has the
de Jongh property with respect to the logics IPC, LC, Tn and BDn.
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In fact, Lemma 34 implies that Corollary 35 holds for any set theory T ⊆ IZF based
on intuitionistic logic. Indeed, any set theory T that is weaker than IZF has the de Jongh
property with respect to every intermediate logic J that is characterised by a class of finite
trees.

5 Open Questions

In this paper, we defined a class of Kripke models for intuitionistic set theory IZF, the blended
Kripke models. We then used these models to prove a range of de Jongh properties for
IZF and CZF. It would certainly be interesting to find a constructive proof of the results
presented in this paper.

I Question 36. Does intuitionistic set theory IZF have the de Jongh property with respect to
every intermediate logic?

Lubarsky used his Kripke models for independence results for CZF and IZF. For example,
he proved that it is consistent with CZF that the power set of 1 is a proper class (see [13];
for more results in this area see, e.g., [14, 15, 16]). We wonder whether our blended models
can be used for similar purposes.

I Question 37. Can we obtain independence results for IZF with blended models?

I Question 38. Is it possible to vary the construction of blended models to provide proper
models of CZF (i.e., models of CZF that are not also models of IZF)?
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