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Abstract
Probabilistically checkable proofs (PCPs) can be verified based only on a constant amount of random
queries, such that any correct claim has a proof that is always accepted, and incorrect claims are
rejected with high probability (regardless of the given alleged proof). We consider two possible
features of PCPs:

A PCP is strong if it rejects an alleged proof of a correct claim with probability proportional to
its distance from some correct proof of that claim.
A PCP is smooth if each location in a proof is queried with equal probability.

We prove that all sets in NP have PCPs that are both smooth and strong, are of polynomial
length, and can be verified based on a constant number of queries. This is achieved by following the
proof of the PCP theorem of Arora, Lund, Motwani, Sudan and Szegedy (JACM, 1998), providing a
stronger analysis of the Hadamard and Reed–Muller based PCPs and a refined PCP composition
theorem. In fact, we show that any set in NP has a smooth strong canonical PCP of Proximity
(PCPP), meaning that there is an efficiently computable bijection of NP witnesses to correct proofs.
This improves on the recent construction of Dinur, Gur and Goldreich (ITCS, 2019) of PCPPs that
are strong canonical but inherently non-smooth.

Our result implies the hardness of approximating the satisfiability of “stable” 3CNF formulae
with bounded variable occurrence, where stable means that the number of clauses violated by an
assignment is proportional to its distance from a satisfying assignment (in the relative Hamming
metric). This proves a hypothesis used in the work of Friggstad, Khodamoradi and Salavatipour
(SODA, 2019), suggesting a connection between the hardness of these instances and other stable
optimization problems.
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1 Introduction

A probabilistically checkable proof system (PCP) offers verification based only on a tiny
amount of random locations in an alleged proof. It is complete and sound: correct claims
have a proof that is always accepted, and incorrect claims are rejected with high probability
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2:2 Smooth and Strong PCPs

regardless of the alleged proof. The study of these systems culminated in the PCP theorem
([3, 2]), stating that membership in any set in NP can be verified by reading a constant
number of random locations from a PCP of polynomial length.

While soundness guarantees that incorrect claims are rejected with high probability, what
about incorrect proofs for correct claims? By definition, a proof of a claim is incorrect if
it is not always accepted by the probabilistic verifier. But how often is it rejected? In a
strong PCP, an alleged proof is rejected with probability proportional to its distance from a
correct proof.

Strong PCPs are intuitively appealing: simply put, it is desirable to seek verification
procedures that are sensitive to the correctness of the given claim as well as the given proof.
From the perspective of property testing, the verifier of a strong PCP can be viewed as a
(proximity oblivious) tester for the property of being a correct proof. In addition, strong
PCPs have been used to construct better locally testable codes (see Section 1.3.1).

One immediately wonders if a strong PCP theorem holds as well; that is, whether any set
in NP admits a strong PCP of polynomial length and constant query complexity. Dinur et
al. answer this in the positive in a recent work [10],1 however, their construction is inherently
non-smooth, in the sense that certain locations in the proof are much more likely to be read
than others.

A PCP is smooth if each location in its proof is equally likely to be read by the verifier.
We expect natural PCPs to have smooth verifiers since, intuitively-speaking, we expect the
verifier to treat all parts of the proof equally. Concretely, smooth PCPs are tolerant of errors,
as a few corrupt locations in a correct proof still give high acceptance probability.2 Prior
works considered smoothness in the context of locally decodable codes (see Section 1.3.2).

Before moving on to the main result, let us motivate why smooth and strong PCPs
are particularly natural in tandem. Fix a correct claim and consider two innate measures
of the “incorrectness” of a proof: its probability of being rejected by the verifier and its
distance from a correct proof. Denoting the first by ρ and the second by δ, a strong PCP
guarantees that ρ = Ω(δ). On the other hand, the tolerance of a smooth, constant-query
PCP implies that ρ = O(δ). Thus, for a constant-query PCP that is both smooth and strong
these measures coincide (up to a constant).

This work presents a construction of simultaneously smooth and strong PCPs of poly-
nomial length for any set in NP, verifiable by reading a constant number of bits from the
proof. Specifically, we reanalyze and enhance the construction used in [3, 2] (with proof
composition as in [6]) to obtain smooth and strong PCPs. The enhancements include the
introduction of multi-piece PCPs, a smooth and strong-preserving transformation of these to
single-piece PCPs, and a new composition theorem for smooth and strong PCPs.

Our result implies the hardness of approximating the satisfiability of stable 3CNF formulae
with bounded variable occurrence, where stability means that the number of clauses violated
by an assignment is proportional to its distance from a satisfying assignment (in the relative
Hamming metric). We believe that the hardness of approximating 3SAT even under stability
guarantees is related to the hardness of other stable optimization problems. Friggstad et
al. provide evidence to this in [12], as they show that this result implies the hardness of
approximating perturbation-stable Euclidean k-means (see Section 1.3.3).

1 For technical reasons, their result is stated only for the class UP ⊆ NP, but can be easily adapted to
suit all of NP.

2 Indeed, tolerance is (oppositely) related to strong PCPs which guarantee detection of errors in a correct
proof. See next paragraph.
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1.1 Main notions
In this section we formally define strong PCPs and smooth PCPs. But first, a reminder of
standard PCPs and their basic properties.

I Definition 1.1 (PCP). A probabilistically checkable proof system (PCP) for a set S ⊆
{0, 1}∗ is a probabilistic polynomial-time oracle machine V , called a verifier and denoted V ,
that satisfies the following conditions:

Completeness: For all x ∈ S there exists a proof π ∈ {0, 1}∗ such that the verifier V
accepts explicit input x and proof oracle π with probability 1.
Soundness: For all x /∈ S and proof oracle π ∈ {0, 1}∗, the verifier V rejects explicit input
x and proof oracle π with probability at least 1/2.3

The maximal number of random coin tosses made by verifier V on inputs of length n is its
randomness complexity, denoted r(n). The maximal number of queries made by the verifier
V on inputs of length n is its query complexity, denoted q(n).

A PCP is nonadaptive if it determines all queries solely by its random coins and explicit
input. All PCPs in this work are nonadaptive, and furthermore, they query the same number
of bits regardless of the sampled coin sequence.

Notice that Definition 1.1 doesn’t mention the length of the proof itself. That is because
the number of possible locations the verifier might read in the proof can be upper-bounded
based on its randomness and query complexities: a nonadaptive PCP that tosses r random
coins and then makes q queries can query at most q · 2r different locations in the proof.
Thus, from here on we will ignore the proof length and focus on the randomness and query
complexities.

1.1.1 Strong PCPs
Strong PCPs are PCPs that reject incorrect proofs even for correct claims with probability
proportional to the distance of such proofs from correct ones. Throughout this work, distance
refers to the relative Hamming distance: For a fixed alphabet Σ (one can think of {0, 1}, but
we will use different alphabets later), the relative hamming distance between strings x, y ∈ Σn
equals the fraction of locations on which they differ, and is denoted δ(x, y). If δ(x, y) < d

then x is said to be d-close to y, and if δ(x, y) ≥ d then x is d-far from y. The distance of a
string x from a set T ⊆ {0, 1}∗ is defined to be δ(x, T ) := minx′∈T∩{0,1}|x| δ(x, x′), with the
minimum over the empty set defined to be 1.

I Definition 1.2 (Strong PCP). A strong PCP for membership in set S with strongness
parameter α ∈ (0, 1] is a probabilistic polynomial-time oracle machine, called a verifier and
denoted V , that satisfies the following conditions:

Completeness: For all x ∈ S there exists a proof π ∈ {0, 1}∗ such that the verifier V
accepts explicit input x and proof oracle π with probability 1. Such a proof π is called a
correct proof for x.
Strong soundness:

If x /∈ S then x has no correct proof.
Let P(x) denote the set of correct proofs for x. Then, the verifier rejects explicit input
x and proof oracle π with probability at least α · δ(π,P(x)).

3 The constant 1/2 can be replaced with any other constant α ∈ (0, 1).

ITCS 2020



2:4 Smooth and Strong PCPs

Note that strong soundness implies standard soundness, i.e. rejection of instances x /∈ S
with constant probability regardless of the given proof oracle, because for these instances the
verifier rejects with probability α · δ(x, ∅) = α.

1.1.2 Smooth PCPs
Smoothness is a straightforward notion and is defined for any oracle Turing machine. To us,
oracles always have finite domains, and we associate the oracle f : [n]→ {0, 1} with an n-bit
string f(1) · · · f(n).

I Definition 1.3 (Smooth oracle machine). A probabilistic oracle Turing machine M is
smooth if for any explicit input and oracle, the probability that M queries each location of its
oracle (in any of its queries) is equal. That is, given access to oracle f and letting Q(j) be the
event that M queries location j of f in any of its queries, it holds that P [Q(j)] = P [Q(j′)]
for every j, j′ ∈ [|f |], where |f | denotes the length of the oracle f .

Additional discussion on smoothness and a nearly-equivalent definition can be found in
Appendix B.

1.2 Contributions
1.2.1 Smooth and Strong PCPs for N P
The main contribution is a proof of the following result.

I Theorem 1.4 (Main result). Every set in NP has a smooth and strong PCP with logarithmic
randomness and constant query complexities.

At this point one might wonder: A strong PCP rejects incorrect proofs with probability
proportional to their distance from correct proofs – but who are these correct proofs? In the
case of Theorem 1.4, we can say that the correct proofs for any fixed instance are obtained
by a polynomial-time computable bijection of NP-witnesses to correct proofs.

I Theorem 1.5 (Main result, strengthened). Fix a set S ∈ NP, and let W (x) denote the
set of NP-witnesses for an instance x of S. Then, S has a PCP as in Theorem 1.4 with
a polynomial-time computable canonical proof strategy Π : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such
that for every x ∈ {0, 1}∗, Π(x, ·) is a bijection between the set W (x) and the set of correct
proofs P(x).

1.2.2 Hardness of approximation
Recall that the PCP theorem implies that for some ρ ∈ (0, 1), it is NP-hard to distinguish
3CNF formulas that are satisfiable from ones in which any assignment violates at least a
ρ fraction of the clauses. Theorem 1.4 yields a similar result for 3CNF formulas that are
“stable” and have each variable occurring in a bounded number of clauses. Here stability
means that the number of clauses violated by an assignment is (at least) proportional to its
distance from a correct assignment (in the relative Hamming metric). Formally,

I Definition 1.6 ((α, b)-stable3SAT). A 3CNF formula ϕ is α-stable if any assignment that
that is δ-far from a satisfying assignment violates at least an αδ fraction of clauses in ϕ. A
formula has b-bounded-occurrence if any variable occurs in at most b clauses. For constants
α and b, the promise problem (α, b)-stable3SAT is distinguishing b-bounded-occurrence 3CNF
formulas that are α-stable and satisfiable from ones in which any assignment violates at least
an α fraction of the clauses.
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One motivation for our interest in stable and bounded-occurrence formulas is that they
exhibit an interesting structural property. For a fixed satisfiable formula, we consider two
natural measures of the “cost” (i.e., “badness”) of an assignment. The first and most common
one is the fraction of clauses violated by the assignment. The second is the fraction of
variables on which the assignment disagrees with the closest satisfying assignment (i.e. the
relative Hamming distance of the assignment from the set of satisfying assignments). We
denote the first by δ and the second by ρ. Now, stable formulas have δ = Ω(ρ), while
bounded-occurrence formulas satisfy δ = O(ρ), since changing the value of a variable affects
a bounded number of clauses. Hence, these two measures coincide for stable and bounded-
occurrence formulas (up to a constant factor); the fraction of clauses unsatisfied by an
assignment approximately reflects its distance from a satisfying assignment. Theorem 1.5
implies a hardness of approximation result for such formulas.

I Corollary 1.7. There exist α ∈ (0, 1) and b ∈ N such that (α, b)-stable3SAT is NP-hard.
Furthermore, it is NP-hard under parsimonious Karp reductions.

The proof of Corollary 1.7 are deferred to Appendix A. We proceed with a discussion of
two of its implications.

Consider a distance oracle that, given a 3CNF formula ϕ and assignment σ, returns the
(relative Hamming) distance of σ from the set of satisfying assignments of ϕ if ϕ is satisfiable,
and answers arbitrarily otherwise. Efficiently finding a satisfying assignment given such an
oracle can be done by greedily minimizing the distance returned by the oracle. What if
instead we are given access to an approximate distance oracle, which returns the distance
of an assignment from the set of satisfying assignments up to some multiplicative constant?
Corollary 1.7 and the observation that precedes it imply that an approximate distance oracle
is not enough to find even an approximately satisfying assignment; that is, that for some
constant α ∈ (0, 1), finding an assignment that satisfies more than an α-fraction of clauses
is NP-hard even when given access to an approximate distance oracle. This is because,
as observed, the answers of an approximate distance oracle can be efficiently emulated for
stable and bounded-degree formulas, and Corollary 1.7 asserts NP-hardness of finding an
approximately satisfying assignment for such formulas.

In addition to the aforementioned intrinsic motivation for the study of stable and bounded
occurrence instances, Corollary 1.7 implies a hypothesis used in the recent work of Friggstad
et al. [12, Hypothesis 1], yielding the first hardness of approximation result for perturbation-
stable Euclidean k-means. More on this in Section 1.3.3.

1.2.3 Smooth and Strong Canonical PCPs of Proximity for
N P-relations

PCPs of Proximity (abbreviated PCPPs, aka assignment testers), introduced in [11, 6], are
PCPs placed on an even tighter budget, with access to their input accounted for in their query
complexity. Since PCPPs cannot read the entirety of their input oracle, they aren’t able to
distinguish inputs in the set from inputs close to being in the set. As such, PCPPs should
satisfy a relaxed notion of soundness that requires them to reject (with high probability)
only input oracles far from correct ones.

More generally, PCPPs verify membership of a pair (x; y) in a relation R ⊆ {0, 1}∗ ×
{0, 1}∗, when given explicit (i.e. unaccounted) access to x and oracle (i.e. accounted) access
to y, as well as access to a proof oracle.

ITCS 2020



2:6 Smooth and Strong PCPs

IDefinition 1.8 (PCP of Proximity (PCPP)). A PCP of Proximity system (PCPP) for relation
R ⊆ {0, 1}∗ × {0, 1}∗ with proximity parameter δ > 0 is a probabilistic polynomial-time
oracle machine, called a verifier and denoted V such that the following hold:

Completeness: If (x, y) ∈ R then there exists a proof π such that the verifier V accepts
explicit input x, input oracle y and proof oracle π with probability 1.
Soundness: If y is δ-far from {y′ : (x, y′) ∈ R}, then for any proof oracle π, the verifier
rejects explicit input x, input oracle y and proof oracle π with probability at least 1/2.

Strong canonical PCPPs

PCPP soundness is somewhat reminiscent of strong soundness, but note that in the former
rejection probability is related to the distance of the input oracle from being correct, rather
than the distance of the proof oracle from being correct (here we think of the explicit input
as fixed).4 Indeed, the adaptation of strong soundness to the setting of proximity verification,
i.e. strong PCPPs,5 combines these two requirements: a strong PCPP is required to reject
with probability proportional the maximum between the distance of the input oracle y to a
correct input oracle y′, and the proof oracle π to a correct proof oracle π′ for y′.

Actually, we won’t bother to formally define strong PCPPs, because we show the existence
of even stronger (pun intended) constructs. Our PCPPs have a canonical transformation
of correct inputs to correct proofs, meaning that for each correct input (x; y), our PCPPs
have a unique canonical proof Π(x; y) that is always accepted by the verifier, whereas all
other strings are rejected with nonzero probability.6 But with what probability? Right, the
maximum between the distance of the input oracle y to a correct input oracle y′, and the
proof oracle π to the canonical proof for x and y′ (i.e. δ(π,Π(x; y′))).

I Definition 1.9 (Strong canonical PCPP). A strong canonical PCPP for relation R with
strongness parameter α ∈ (0, 1] is a probabilistic polynomial-time oracle machine, called a
verifier and denoted V , coupled with a polynomial-time computable canonical proof strategy
denoted Π: {0, 1}∗ × {0, 1}∗ → {0, 1}∗, such that when the verifier is given explicit input x
and access to an input oracle y and a proof oracle π, the following hold:

Canonical completeness: The verifier accepts with probability 1 if and only if (x; y) ∈ R
and π is the corresponding canonical proof, i.e. π = Π(x; y).
Strong canonical soundness: Let R(x) := {y′ : (x; y′) ∈ R}. Then, the verifier rejects with
probability at least

α · min
y′∈R(x)

{max (δ(y, y′), δ(π,Π(x; y′)))}

In particular, if R(x) is empty then the verifier rejects with probability α.

Again, strong canonical soundness implies standard PCPP soundness, e.g. rejection of
any input y that is 0.1-far from R(x) with constant probability, because in this case the
verifier rejects with probability at least α ·min {0.1, 1}, where α is the (constant) strongness
parameter.

4 Furthermore, Definition 1.9 is proximity-oblivious, in the sense that rejection probability grows with
the distance of the oracles from being correct, whereas Definition 1.8 offers rejection with constant
probability of inputs whose distance from being correct is farther than some constant.

5 Not to be confused with the related [17][Definition 5.7], which we will soon refer to as strong canonical
PCPPs. See also Footnote 7.

6 This is the bijection mentioned in Theorem 1.5.
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I Remark 1.10. Previously (e.g. [17, 15, 10]), strong canonical PCPPs were considered
only for unambiguous relations; that is, only for relations R ⊆ {0, 1}∗ × {0, 1}∗ for which
|R(x)| ≤ 1 for any x. Our definition is more general as it does not place a restriction on
the relation R.7 Furthermore, Definition 1.9 allows the verifier to take an explicit input
(as in [6]), whereas past works studied PCPPs that have access to input and proof oracles
but no (auxiliary) explicit input.

Smooth PCPPs

PCPP verifiers are oracle machines that have two oracles, and we say that a PCPP is smooth
if it is smooth on each of its oracle. Formally, we generalize Definition 1.3 to suit a t-oracle
Turing machine for any constant t ∈ N, which is a machine that has access to a t oracles
(where t is a constant).

I Definition 1.11 (Smooth multi-oracle machine). A probabilistic t-oracle Turing machine M
is smooth if for any explicit input and oracles, the probability that M queries each location
of each of its oracle (in any of its queries) is equal. That is, given access to oracles f1, . . . , ft
and letting Q`(i, j) be the event that the ith query of M is to location j of f`, it holds that
P [
⋃q
i=1Q`(i, j)] = P [

⋃q
i=1Q`(i, j′)] for each ` ∈ [t] and every j, j′ ∈ [|f`|], where |f`| denotes

the length of the `th oracle f`.

We prove the following theorem.

I Theorem 1.12. Every NP-relation has a smooth and strong canonical PCPP with loga-
rithmic randomness complexity and constant query complexities.

Notice that a PCPP for relation R yields a PCP for the set SR := {x : ∃y (x; y) ∈ R}: a
proof that x ∈ SR (in the PCP for SR) is composed of some y such that (x; y) ∈ R, followed
a proof (in the PCPP for R) that (x; y) ∈ R. Furthermore, the PCP for SR retains the
strongness of the PCPP for R and, under a reweighing of the input oracle (presented in
Section 2), smoothness is retained as well. Therefore, Theorem 1.5 follows from Theorem 1.12.

1.3 Related work
1.3.1 Strong (canonical) soundness
The term strong in the definition of strong PCPs is inspired by strong locally testable codes
(strong LTCs), which are codes whose local test rejects with probability proportional to the
distance of the input from the code. In fact, strong canonical PCPPs have seen numerous
uses in works on strong LTCs, as follows.

Goldreich and Sudan [17] defined strong canonical PCPPs in their work on strong
LTCs,8and constructed such PCPPs for certain linear codes. An extension of this initial
construction saw use by Gur and Rothblum [19] as they obtained strong LTCs that allow for a
relaxed notion of local decoding (of [6, Section 4.2]). Goldreich et al. [15] later improved these

7 In fact, our work is the first to make a semantic distinction between strong and strong canonical,
recognizing strong canonical PCPPs as special type of strong PCPPs in which there is an efficient
canonical transformation between NP-witnesses and proofs, in addition to strong soundness. In previous
works, the terms strong PCPP and strong canonical PCPP were used synonymously, which is consistent
with our distinction, given that these works considered PCPPs only for unambiguous relations. See
Section 1.3.1 for more on previous works using strong canonical PCPPs.

8 See Footnote 7 for a warning on the usage of the terms strong and strong canonical in previous works.

ITCS 2020



2:8 Smooth and Strong PCPs

codes, again utilizing strong canonical PCPPs. Gur et al. [18] employed strong canonical
PCPPs in their work on relaxed locally correctable codes. We stress that all these works
featured PCPPs for linear subspaces (e.g. linear codes).

As mentioned, Dinur et al. [10] characterized unambiguous NP (UP) in terms of strong
canonical PCPPs, under the original and more restricted definition of strong canonicality
generalized in this work (see Remark 1.10).

In [14, Section 13.2.2], strong PCPs are presented from the perspective of property testing
as locally testable proofs, in analogy to locally testable codes.

1.3.2 Smoothness
Like strongness, smoothness too has its roots in coding theory, with the work Katz and
Trevisan [21] examining smooth locally decodable codes. These are codes whose local decoding
algorithm reads each bit in an alleged codeword with approximately equal probability (cf.
Definition 1.3, which requires the probability to be exactly equal). Since its inception, this
property has appeared in numerous works relating to locally decodable codes, e.g. [16, 24, 13]).
Goldreich and Sudan [17, Definition 5.14] considered a similar feature for their Linear Inner
Proof Systems (LIPS), which are fundamentally different from PCPs.

To avoid possible confusion, it is worth pointing out that the smoothness referred to in
this work is as in the aforementioned works in coding theory, and not as in the smooth label
cover of Khot [22].

The PCPPs of Theorem 1.12 are used in the recent work of Alman and Chen [1] which
shows an explicit construction of rigid matrices using an NP oracle. They make use only of
the smoothness of these PCPPs, but not the additional strong canonicality feature.9

1.3.3 Hardness of perturbation-stable Euclidean k-means
The hardness of approximating bounded-degree stable3SAT (Corollary 1.7) is the starting
point of the first hardness of approximation result for perturbation-stable instances of
Euclidean k-means, due to Friggstad et al. [12]. This connection between stable3SAT and
perturbation-stable problems is an interesting direction for future research, so we provide a
brief description of their result.

The study of optimization on perturbation-stable instances was initiated by Bilu and
Linial [8] and Awasthi et al. [4] as a way of focusing on instances that can “occur in reality” (to
quote the former). We consider the Euclidean k-means problem and its perturbation-stable
instances, which are defined as follows:

An instance of the k-means problem consists of k ∈ N, dimension d ∈ N, a metric
µ : Rd ×Rd → [0,∞), data points X ⊆ Rd, and candidate centers C ⊆ Rd. The objective
is to choose centers S ⊆ C such that |S| = k so as to minimize Px∈X [minc∈S (µ(x, c))].
An instance is Euclidean if µ is the Euclidean metric.
Fix γ > 1 and metric µ. A γ-perturbation of µ is a function µ′ : Rd × Rd → [0,∞) such
that for any x 6= y ∈ Rd,

1 ≤ µ′(x, y)
µ(x, y) ≤ γ

Notice that µ′ is not necessarily a metric.

9 As opposed to [12] (see Section 1.3.3) which uses both features simultaneously.
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For some fixed γ > 1, an instance (k, d,X,C, µ) of k-means is γ-perturbation-stable if
it has a unique optimal solution S∗ ⊆ C, and for any γ-perturbation µ′ of µ, S∗ is
the optimal solution of the related instance (k, d,X,C, µ′). The γ-perturbation-stable
Euclidean k-means problem is the k-means problem as previously described, under the
promise that instances are Euclidean and are γ-perturbation-stable.

While solving (general, non-stable) Euclidean k-means is known to be NP-hard to
approximate [5], Awasthi et al. showed that introducing some perturbation-stability makes
the problem easy; namely, they show that (

√
2 + 3)-stable Euclidean k-means can be solved

exactly in polynomial time. Could the introduction of any amount of perturbation-stability
render Euclidean k-means easy, or even just easy to approximate? The answer is no, as
demonstrated by Friggstad et al. [12]. Their result is conditioned on an hypothesis asserting
hardness of approximation of bounded-occurrence and stable3SAT (see Section 1.2.2), which
is implied by Corollary 1.7.

I Theorem 1.13 ([12]). Assuming Corollary 1.7, there are γ > 1 and ε > 1 such that
γ-perturbation-stable Euclidean k-means cannot be approximated within factor ε, unless
RP = NP.

1.4 Proof outline

To prove Theorem 1.12 we construct a PCPP with the necessary properties for the circuit
valuation relation, denoted CircuitVal, which consists of all pairs (C; y) such that circuit
C accepts when given y as input. Then, any NP-relation R has a PCPP (with the same
properties) that, given explicit input x, efficiently computes a circuit Cx such that (x; y) ∈ R
if and only if Cx accepts y, and then runs the PCPP of CircuitVal on explicit input Cx
and the same input and proof oracles. Following are highlights of our smooth and strong
canonical PCPP for CircuitVal.

Multi-piece PCPPs (Section 2)

The PCPP for CircuitVal will be a variant of the PCPP presented in [3, 2, 6]. However,
even a high-level inspection of this construction reveals that it is not at all smooth: for
example, one building block (the Hadamard-based PCPP, mentioned below) consists of two
“pieces” from which the verifier samples uniformly random locations, with the first piece
substantially shorter than the second (so its bits are queried far more often). Indeed, this
PCPP is not smooth when viewed as a single proof, but when partitioned into two proof-pieces
(given as two proof-piece oracles), the verifier is smooth as a three-oracle machine (one input
oracle and two proof-piece oracles). We present a transformation of multi-piece PCPPs to
single-piece ones that simultaneously preserves smoothness and strong canonicality. This is
done by replacing each proof-piece with a list of copies, so that the length of each list of
copies is roughly the same.10

10To be clear, the Hadamard-based PCPP is but one example of non-smoothness (or rather, multi-piece
smoothness) in the construction of [3, 2, 6]; the Reed–Muller-based PCPP, as well as PCPP composition,
exhibit similar traits. Thus, our transformation of multi-piece PCPPs to single-piece PCPPs is used by
all components of our construction, not just by the Hadamard-based PCPP.

ITCS 2020
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Composing smooth strong canonical PCPPs (Section 3)

The run of a nonadaptive PCPP verifier can be viewed as a two-step process: first, it tosses
some random coins and generates a residual (decision) circuit and query locations based on
the coins it tossed, and then it queries its oracles and accepts or rejects according to the
residual circuit’s computation of their answers. A strong canonical and robust PCPP is such
that, in expectation, the distance of its oracles’ answers from satisfying the residual circuit
reflects the distance of the oracles (in their entirety) from correct ones (i.e. a correct input
oracle and a canonical proof oracle). Our composition theorem asserts that for a smooth
strong canonical and robust PCPP, replacing the residual circuit’s computation with an
additional probabilistic verification (by an inner smooth strong canonical PCPP) yields a
smooth strong canonical PCPP.

With a composition theorem at hand, we turn to the construction of smooth strong
canonical and robust PCPPs, whose composition gives the PCPP postulated by Theorem 1.12.

The Hadamard-based smooth strong canonical PCPP (Section 4)

This is the Hadamard-based PCPP presented in [2], used as the innermost PCPP of the
composition. Its proofs are based on the Hadamard encoding of the input oracle, and its
verifier checks that the proof oracle encodes the input oracle (a “consistency check”), and
uses the structure of the Hadamard code to check that the input oracle satisfies the (explicitly
given) circuit. To show strong canonicality, we consider three cases:
Case 1: Both the input and proof oracles are close to correct ones. That is, the input oracle

y is close to an input y′ that is accepted by the (explicitly given) circuit, and the proof
oracle π is close to its canonical proof oracle Π′ of y′. The verifier checks consistency by
performing a strong codeword test on the proof oracle, and checks that the decoding of
the proof oracle agrees with the input oracle on a random bit. Strong testability means
precisely that the first check rejects with probability Ω(π,Π′), and the local decoding of
a random location rejects with probability Ω(y, y′).

Case 2: The input oracle is far from any correct input oracle. Then, standard PCPP
soundness guarantees rejection with high probability.

Case 3: The proof oracle is far from the canonical proof of the input oracle. If the proof oracle
is close to the canonical proof for some input y′ 6= y then the consistency check between
the proof oracle and the input oracle rejects with probability Ω(δ(y, y′)). Otherwise the
proof oracle is far from any canonical proof, and is therefore rejected with high probability
by the strong codeword test.

Lastly, as mentioned above, we observe that it is smooth as a two-piece PCPP, and can
therefore be transformed to a single-piece strong canonical PCPP.

The Reed–Muller-based smooth strong canonical robust PCPP (Section 5)

This PCPP is used in the outer layers of the composition, so we must show that it is
smooth and robust strong canonical. Again, smoothness amounts to observing that it is
multi-piece smooth. The analysis of its strong canonicality follows the same lines of the
Hadamard-based PCPP, this time relying on a generalization of the strong Reed–Muller
codeword test (provided by Oded Goldreich and Madhu Sudan in Appendix C). We first
present a smooth strong canonical robust PCPP whose proofs are over a large alphabet,
and then show that alphabet reduction (encoding each letter in an error correcting code)
preserves smoothness and strong canonicality.
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2 Multi-piece PCPPs

As said in Section 1.4, several of the PCPPs in the [2] construction are not smooth per
se, but they spread their queries smoothly on each of a few significant proof-pieces. Such
multi-piece PCPPs are required to satisfy a stricter form of strong canonicality, in which
the rejection probability is related to the maximum between each proof-piece oracle to its
corresponding proof-piece in a correct proof (and, as usual, the distance of the input oracle y
to a satisfying input oracle y′). Motivated by this observation, we define multi-piece strong
canonical PCPPs.

I Definition 2.1. For a constant t, a t-piece strong canonical PCPP system for relation R
with strongness parameter α ∈ (0, 1] is a probabilistic polynomial-time oracle machine, called
a verifier and denoted V , coupled with a sequence of polynomial-time computable canonical
proof-piece strategies, denoted Π1, . . . ,Πt : {0, 1}∗ × {0, 1}∗ → {0, 1}∗, such that when the
verifier is given explicit input x and access to an input oracle y and a proof-piece oracles
π1, . . . , πt, the following hold:

Canonical completeness: The verifier accepts with probability 1 if and only if (x; y) ∈ R
and πi is the corresponding canonical proof-piece, i.e. πi = Πi(x; y), for each i ∈ [t].
Strong canonical soundness: Let R(x) := {y′ : (x; y′) ∈ R}. Then, the verifier rejects with
probability at least

α · min
y′∈R(x)

{max (δ(y, y′), δ(π1,Π1(x; y′)), . . . , δ(πt,Πt(x; y′)))}

In particular, if R(x) is empty, then the verifier rejects with probability α.
For each i ∈ [t], the ith proof-piece length complexity, denoted `i(n), is the length of the ith
proof piece. The ith proof-piece query complexity, denoted qi(n), is the number of queries
the verifier issues to the ith proof-piece given an input of length n.11

2.1 From multi-piece to single-piece
We present a smoothness-preserving transformation of strong canonical multi-piece PCPPs
to strong canonical PCPPs that use a single proof oracle. This transformation is not only
convenient (for example, composition of multi-piece PCPPs gives one a multi-headache), but
is also necessary for Theorem 1.12 which asserts the existence of single-piece smooth strong
canonical PCPPs for every NP relation.

I Lemma 2.2. Suppose that, for some constant t, a relation R has a t-piece smooth strong
canonical PCPP with strongness parameter α, randomness complexity r(n), and query
complexity q(n). Then, R has a single-piece smooth strong canonical PCPP with strongness
parameter α/3, randomness complexity O(r(n) + log q(n)) and query complexity O(q(n)).

Proof. Notice that if proof-piece lengths vary significantly, then simply concatenating the
proof-pieces will not do, because bits of shorter pieces are sampled with higher probability than
bits of longer pieces. Instead, each proof-piece is replaced with a list of copies such that each
list is of equal length (up to a factor related to the proof-piece’s query complexity). That is,
the number of copies in the ith list is proportional to qi/`i, which, by multi-piece smoothness,
equals the probability that a bit in the ith proof-piece is queried by the multi-piece verifier.

11Tedious comment: We require the number of queries that the verifier issues to each proof-piece to
depend only on the explicit input’s length. This requirement is met by the all PCPPs used in this work.
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The single-piece verifier emulates the multi-piece verifier on a random choice of proof-pieces
(each proof-piece sampled uniformly from its list of alleged copies), and checks consistency
of the copies in each list. Some care must be taken so that the consistency check does not
harm smoothness (for example, checking consistency against a fixed copy would result in its
bits being queried more often than others).

Strong canonicality of the single-piece verifier then follows from examining two possible
cases: The first is that the given lists are noticeably inconsistent (i.e., there is a large
discrepancy between the alleged copies), in which case the consistency check rejects with
good probability. Otherwise, the lists are almost entirely consistent (i.e., each list of the
given proof essentially consists of copies of some proof-piece), and then strong canonicality
follows from strong canonicality of the multi-piece verifier.

Following is a detailed description and analysis of the construction. Let V be the
postulated t-piece smooth strong canonical PCPP verifier with canonical proof-piece strategies
Π1, . . . ,Πt : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. We construct a single-piece PCPP V and start by
describing its canonical proof strategy Π. Fixing (x, y) ∈ R, we use the following notation:

r denotes the number of random coins tossed by V when given x as explicit input.
qi denotes the number of queries V makes to the ith proof-piece oracle when given x
as explicit input. The total number of queries V makes to all proof-piece oracles is
q :=

∑t
i=1 qi

Πi := Πi(x; y) denotes the ith canonical proof-piece of (x; y), and `i := |Πi| denotes its
length.

Now, let Πi be a list of mi := (qi + 1)
∏
j 6=i `j copies of Πi.12 Indeed, mi is proportional to

the probability that a certain fixed bit of Πi is sampled, namely qi/`i.13 The canonical proof
of (x; y) in the single-piece PCPP V is then the concatenation of all Πi’s.

We describe the run of the new verifier V given explicit input x and access to input oracle
y and proof oracle π = (π1, . . . , πt), where πi = (π1

i , . . . , π
m(i)
i ) is a list of m(i) strings, each

of length `i:
1. Emulation: For each i ∈ [t], sample a uniformly random index ci ∈ [mi]. Next, emulate

V on explicit input x, input oracle y and proof-piece oracles πc1
1 , . . . , π

ct
t , rejecting if the

emulation rejected. Let Ji denote the set of locations that V queries in πci
i .

2. Consistency check: For each i ∈ [t], sample uniformly from the remaining copies c′i ∈
[mi] \ {ci} and a uniformly random ji ∈ Ji and check that πc

′
i
i [ji] = πci

i [ji]. That is, check
that πci

i and πc
′
i
i agree on a uniformly random location from the locations queried by the

emulated verifier V in Step 1.14

(Note that smoothness of V implies that ji is uniformly distributed in [`i] (as detailed in
Appendix B.2), and that only πc

′
i
i [ji] needs to be queried in this step.)

The single-piece verifier V uses t more queries than the emulated (multi-piece) verifier
V since the consistency check requires querying an additional location from each list. The
number of random coins is upper-bounded by O(t2 · (r + log q)) = O(r + log q).

12The value qi + 1 is used instead of qi to account for the additional query made by the consistency check
(Step 2 in the description of V ).

13Letting mi := (qi + 1)L/`i for any L that is a common multiple of {`i}i∈[t] would have worked as well.
14 Indeed, the consistency check can be implemented in several other ways, for example without reusing

the emulation copy ci in the consistency check (i.e. checking consistency between c′i and some c′′i ), or
by uniformly sampling ji from all of [`i] rather than from Ji. However, other implementations require
setting mi to other (less informative) values.
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Canonical completeness follows by observing that a proof is accepted with probability 1
if and only if it is formed of consistent lists (i.e. each list holds copies of some proof-piece),
such that the proof-pieces in each list form a canonical proof in the multi-piece PCPP. We
prove the remaining properties:

Smoothness

Fix a location in the proof oracle π, which is the jth location of πki
i for some i ∈ [t], ki ∈ [m(i)]

and j ∈ [`i]. This location is queried if and only if one of two disjoint events occur:
In Step 1, ki = ci and ji ∈ Ji, i.e. the jth location of πci

i was queried by the emulated
verifier. By multi-piece smoothness of the emulated verifier V , this event occurs with
probability 1

mi
· qi

`i
.

In Step 1, ki 6= ci and ji ∈ Ji. In addition, in Step 2, ki = c′i and the jth location is
chosen from Ji (i.e. from the set of all locations queried by the verifier). This event
occurs with probability (1− 1

mi
) · qi

`i
· 1
mi−1 ·

1
qi

= 1
mi
· 1
`i
.

All in all, we have that the probability that this location is queried is

1
mi
· qi
`i

+ 1
mi
· 1
`i

= qi + 1
mi · `i

= 1∏t
i=1 `i

Therefore, each bit in π is queried with equal probability.

Strong canonical soundness

Let α be the strongness parameter of the multi-piece verifier V . We show that the (single-
piece) PCPP V has strongness parameter α/3. Fix explicit input x, input oracle y and proof
oracle π = (π1, . . . , πt), where πi is purported to contain mi copies of the ith canonical proof-
piece for (x; y). If R(x) is empty, then the emulated verifier (and therefore the single-piece
verifier) rejects with probability α · 1 for any choice of (alleged) copies ci, so we may focus
on the case that R(x) 6= ∅. Let y′ ∈ R(x) be a minimizer of ρ, defined

ρ := max
(
δ(y, y′), δ

(
π1,Π1(x; y′)

)
, . . . , δ

(
πt,Πt(x; y′)

))
≥ max

(
δ(y, y′), δ

(
π,Π(x; y′)

))
(1)

It suffices to show that the verifier rejects with probability at least α
3 · ρ. Assume wlog

that the maximum in the left hand side of Equation (1) is obtained in the first proof-piece
oracle, so ρ = max (δ(y, y′), δ(π1,Π1(x; y′))). We proceed by examining the case that the first
proof-piece has noticeable inconsistency, and the case where it is almost entirely consistent.

Case 1: The first proof-piece list is noticeably inconsistent: Ec1 6=c′
1∈[m1] [δ(πc1

1 , π
c′

1
1 )] ≥ ρ/3.

Smoothness of the emulated verifier implies that a uniformly random location from the
set of locations queried in π1 is distributed uniformly in [`i] (as detailed in Appendix B.2).
Hence, the probability that the consistency check rejects equals the expected distance
between two distinct (alleged) copies sampled uniformly, which is assumed to be at
least ρ/3.

Case 2: The first proof-piece list is almost entirely consistent: Ec1 6=c′
1∈[m1] [δ(πc1

1 , π
c′

1
1 )] < ρ/3.

By an averaging argument, there exists a “typical” copy such that all other (alleged)
copies in first-proof piece list are close to it in expectation; namely, there is an a ∈ [m1]
such that Ec1∈[m1] [δ(πc1

1 , π
a
1 )] ≤ ρ/3. We argue that since the alleged copies are close to

the typical copy (in expectation), the multi-piece verifier rejects with probability similar
to that of the strong canonical single-piece verifier given the typical copy as proof.
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For each c1, let yc1 ∈ R(x) be a minimizer of max (δ(y, yc1), δ(πc1
1 ,Π

c1
1 )) where Πc1

1 :=
Π1(x; yc1). Using strong canonicality of the emulated verifier, we can lower-bound the
probability that the single-piece verifier rejects in the emulation check by

E
c1∈[m1]

[α ·max (δ(y, yc1), δ(πc1
1 ,Π

c1
1 ))]

≥ α · E
c1

[max (δ(y, yc1), δ(πa1 ,Π
c1
1 ))]− α · E

c1
[δ(πc1

1 , π
a
1 )]

≥ α ·max (δ(y, ya), δ(πa1 ,Πa
1))− α · ρ3 (2)

where the second inequality used the minimality of ya, which means that for any c1 it holds
that max (δ(y, yc1), δ(πa1 ,Π

c1
1 )) ≥ max (δ(y, ya), δ(πa1 ,Πa

1)). We can also lower-bound the
distance of the typical copy πa1 from its corresponding canonical proof piece Πa

1 by

δ(πa1 ,Πa
1) ≥ E

c1∈[m1]
[δ(πc1

1 ,Πa
1)]− E

c1∈[m1]
[δ(πc1

1 , π
a
1 )] (3)

≥ E
c1∈[m1]

[δ(πc1
1 ,Πa

1)]− ρ

3 = δ
(
π1,Π1(x; ya)

)
− ρ

3
Combining Equations (2) and (3), we have that the verifier rejects with probability at least

α ·max
(
δ(y, ya), δ

(
π1,Π1(x; ya)

)
− ρ

3

)
− α · ρ3 ≥ α · ρ− α ·

2ρ
3 = α · ρ3

where the inequality is because ya ∈ R(x) is not necessarily the minimizer of Equation (1),
i.e. it could be that ya 6= y′ (and then max (δ(y, ya), δ(π1,Π1(x; ya))) ≥ ρ). J

3 Composing smooth strong canonical PCPPs

In this section, we adapt the composition theorem of Ben-Sasson et al. [6] to the strong
canonical setting.

We can think of a run of nonadaptive PCPP verifier as a two-step process: first, it tosses
some random coins and generates a residual (decision) circuit and query locations based on
the coins it tossed, and then it queries its oracles and feeds their answers to the residual circuit,
accepting or rejecting accordingly. Hence, the verifier accepts if and only if the residual circuit
and oracle answers are in CircuitVal. PCPP composition replaces the naive verification of
this claim of membership (in CircuitVal) by a probabilistic verification. That is, an inner
verifier probabilistically checks that the oracles’ answers satisfy the outer verifier’s residual
decision circuit. The resulting composite verifier accepts or rejects according to the inner
verifier’s decision.

The strong inner verifier rejects with probability that is proportional to the distance of
the oracles’ answers from satisfying the outer residual circuit. As such, this distance should
reflect the distance of the outer oracles (in their entirety) from correct ones. In other words,
if the outer oracles are far from correct ones, the outer verifier’s queries should not only be
rejected, but be far from being accepted by its residual circuit. In such a case we say that
the outer verifier is robust.

As in the composition of [6], when it comes to randomness and query complexities, the
composite verifier enjoys the best of both worlds: broadly speaking, its query complexity is
inherited from the inner verifier, and its randomness complexity is (mostly) determined by
the outer verifier. So, composing an outer verifier of low randomness complexity with an
inner verifier that issues a few queries yields a composite verifier with low randomness and
query complexities. The contribution of this section is in showing that, in addition, such
composition can be made to preserve smoothness and strong canonicality.
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3.1 Strong canonical robust PCPPs
First, we describe the run of a nonadaptive verifier as a two-step process: first sampling
random coins, then querying its oracles and computing a decision. Formally,

I Definition 3.1 (PCPPs, restated). Given explicit input x and oracle access input y and
proof π, a (nonadaptive) PCPP verifier for relation R of randomness complexity r(n) and
query complexity q(n) runs as follows:
1. Sample. The verifier uniformly samples a coin sequence c ∈ {0, 1}r(|x|). Based on x and

c, the verifier generates query locations I := Ic := (i1, . . . , iq(|x|)) and residual circuit
D := Dc. Note that I contains the locations of queries to both y and π.

2. Query and compute. The verifier queries oracles y and π according to the query locations
I. Denoting the answers to these queries by yπ[I], the verifier then computes D(yπ[I])
and outputs 1 (“Yes”) if and only if yπ[I] satisfies D.

The event that the verifier V accepts, i.e. “V y,π(x) = 1”, is equal by definition to “yπ[Ic] ∈
Sat(Dc)”, where Sat(Dc) denotes the set of satisfying inputs of Dc, and the randomness in
both events being the coin sequence c. The decision complexity d(n) is the maximal size of a
residual circuit generated when the verifier is given explicit input of length n.

Strong canonical robustness guarantees that the expected distance of the oracles’ answers
from satisfying the residual circuit is proportional to the distance of these oracles from being
correct, and is formally defined as follows.

I Definition 3.2 (Strong canonical robust PCPPs). A strong canonical PCPP V for re-
lation R with canonical proof strategy Π: {0, 1}∗ → {0, 1}∗ is a strong canonical robust
PCPP (RPCPP) with strongness parameter α ∈ (0, 1] if, in addition to the conditions of
Definition 1.8, it satisfies strong canonical robust soundness:

For any (x; y) such that (x; y) /∈ R it holds that Π(x; y) = ∅. When given explicit input
x, input oracle y and proof oracle π, the expected distance of the bits queried by V from
being accepted by the residual circuit is at least

α · min
y′∈R(x)

{max (δ(y, y′), δ(π,Π(x; y′)))} (4)

That is,

E
c

[δ(yπ[Ic], Sat(Dc))] ≥
{
α ·miny′∈R(x) {max (δ(y, y′), δ(π,Π(x; y′)))} if R(x) 6= ∅
α if R(x) = ∅

I Remark 3.3. This definition differs from a natural adaptation of the original definition of
robustness ([6, Definition 2.6]) in that it requires the expected distance to be large, rather
than require the distance be large with high probability. Markov’s inequality implies that
Definition 3.2 is stronger.

3.2 The composition theorem
Following the two-step description of a run of a PCPP verifier in Definition 3.1, a PCPP
verifier accepts explicit input x, input oracle y and proof oracle π if and only if the answers
received from its proof oracle (denoted yπ[I]) satisfy its residual circuit D. In a nutshell,
PCPP composition is done by replacing the verification of the claim “yπ[I] satisfies D” with
a probabilistic verification by an inner PCPP verifier.

Before turning to the theorem and its proof, we define an additional property we require
from outer verifiers.
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I Definition 3.4 (Residual circuit distance). For some constant ∆ > 0, we say that a PCPP
verifier V has residual circuit distance ∆ if for any input x and coin sequence c, any two
distinct inputs satisfying the residual circuit Dc are at least ∆-far apart.

In later sections, we show that the outer PCPP whose composition yields Theorem 1.12
satisfies this additional property for some constant ∆ > 0. Hence, it suffices to prove the
composition theorem for PCPPs with constant residual circuit distance.

I Theorem 3.5. Assume there are αout, αin,∆ ∈ (0, 1] and rout, rin, dout, din, qin : N → N
such that the following holds:

The relation R has a smooth strong canonical RPCPP, denoted Vout, with residual circuit
distance ∆, strongness parameter αout and randomness and decision complexities rout
and dout respectively.
CircuitVal has a strong canonical PCPP, denoted Vin, with strongness parameter αin
and randomness, query and decision complexities rin, qin and din respectively.

Then, the relation R has a strong canonical PCPP, denoted Vcomp, with the following
properties:

Randomness complexity rout + rin ◦ dout.
Query complexity qin ◦ dout.
Decision complexity din ◦ dout
Strongness parameter αout · αin ·∆/4

Furthermore, if Vin is smooth then R has a smooth strong canonical PCPP with strongness
shrinking by a third (to αout ·αin ·∆/12). If Vin is robust (resp. has residual circuit distance)
then Vcomp is robust (resp. has residual circuit distance).

Notice that smoothness of the outer verifier is used for strong canonicality of the composite
verifier.

Proof of Theorem 3.5. We affix the term outer, inner or composite when discussing com-
ponents of the outer, inner or composite verifiers. For example, an inner canonical proof is a
proof obtained from the canonical proof strategy of the inner PCPP.

We start by describing the canonical proof strategy of the composite PCPP, which consists
of two proof-piece oracles: an outer proof-piece denoted Π, and an inner proof-piece denoted
T . For any explicit input x and input oracle y with (x; y) ∈ R, the outer proof-piece is the
outer canonical proof that (x; y) ∈ R (for Vout), and the inner proof-piece is the concatenation
(over all possible coin sequences c of the outer verifier) of the inner canonical proof that
yΠ[Ic] satisfies Dc (for Vin), which we denote by Tc. With these in mind, we proceed by
describing the composite verifier.

I Algorithm 3.5.1 (PCPP composition [6, Section 2.4]). The composite PCPP system has
verifier Vcomp that takes explicit input x, input oracle y, and two proof-piece oracles: an
outer proof-piece π, and an inner proof-piece τ = (τc)c, with c ranging over all possible coin
sequences of the outer verifier. It runs as follows:
1. Emulates the Sample step of the outer verifier, obtaining a coin sequence c, outer query

locations Ic and outer residual circuit Dc. (Vcomp does not issue any queries yet!)
2. Emulates the inner verifier with explicit input Dc, input oracle yπ[Ic] and proof oracle τc.

Vcomp accepts if and only if the inner verifier accepted.

Since Algorithm 3.5.1 is the same composition used in the proof of [6, Theorem 2.7], the
composite PCPP enjoys all properties described there, and in particular it is a PCPP with
the required complexities. Canonical completeness follows from the canonical completeness
of the outer and inner verifiers, and so we turn to prove strong canonical soundness. Then,
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if Vin is smooth then Vcomp is two-piece smooth, and we may apply Lemma 2.2 to obtain
a smooth strong canonical composite PCPP for R while losing an additional factor 1/3 in
strongness.

Fix an explicit input x, input oracle y, and alleged proof-piece oracles and π and τ , where
π corresponds to the outer proof-piece and τ := (τc)c corresponds to the inner proof-piece.
If R(x) is empty then we may refer to the standard soundness analysis of the composite
PCPP, so we focus on the case that R(x) is nonempty. Let y′ be a satisfying input that
minimizes the maximal distance between the given oracles and correct oracles; that is, the
maximum between δ(y, y′), δ(π,Π) and δ(τ, T ), where Π and T are the canonical outer and
inner proof-pieces for y′. Denote the distance between the given oracles and the correct
oracles by δy := δ(y, y′), δπ := δ(π,Π) and δτ := δ(τ, T ) = Ec [δ(τc, Tc)]. We shall show that
the verifier rejects with probability αout · αin ·∆ ·max (δy, δπ, δτ )/4. The analysis considers
two cases.

Case 1: max (δy, δπ) ≥ ∆
4 ·δτ . For any fixed outer coin sequence c, the strong canonical inner

verifier rejects the circuit Dc, input oracle yπ[Ic] and proof oracle τc with probability
αin · δ(yπ[Ic], Sat(Dc)). The rejection probability of the composite verifier equals the
expected rejection probability of the inner verifier (over random c), therefore the composite
verifier rejects with probability at least Ec [αin · δ(yπ[Ic], Sat(Dc))] which, by the robust
strong canonicality of the outer verifier, is at least αout · αin ·max (δy, δπ) ≥ αout · αin ·
∆
4 ·max (δy, δπ, δτ ).

Case 2: max (δy, δπ) < ∆
4 · δτ . As a warm-up, consider the case that δy = δπ = 0. In this

case, yπ[Ic] satisfies Dc for any outer coin sequence c. Recall that the outer verifier has
constant residual circuit distance, so all other inputs that satisfy Dc are far from yπ[Ic],
and therefore the inner verifier’s strong canonicality implies that the composite verifier
rejects with probability Ω(δ(τc, Tc)). Taking expectation over the coin sequence c, we
have that the composite verifier rejects with probability Ω(δτ ) = Ω(max (δy, δπ, δτ )).
In the actual analysis, δy and δπ are not necessarily zero, but the general ideas of the
warm-up are still applicable: using the smoothness of the outer verifier, we can relate
Ec [δ(yπ[Ic], δ(y′Π[Ic]))] with δy and δπ. Since δy and δπ are assumed to be O(δτ ), then
for sufficiently many c’s it holds that yπ[Ic] is close to y′Π[Ic]. Then, the constant residual
circuit distance of the verifier implies that for these c’s the inner verifier rejects with
probability proportional to δ(τc, Tc). Details follow.
We say that a fixed coin sequence c is good if yπ[Ic] is ∆/2-close to y′Π[Ic]. Strong
canonicality of the inner verifier means that the probability it rejects circuit Dc, input
oracle yπ[Ic] and proof oracle τc is at least

αin · min
s∈Sat(Dc)

{max (δ(yπ[Ic], s), δ(τc, Tc(Dc; s)))}

The outer verifier has residual circuit distance ∆, so for good coins c, δ(yπ[Ic], s) ≥ ∆/2
for all s ∈ Sat(Dc) \ {y′Π[Ic]}. Therefore, for good c’s, max (δ(yπ[Ic], s), δ(τc, Tc(Dc; s)))
is at least δ(τc, Tc) when taking s = y′Π[Ic], and is at least ∆/2 when s satisfies Dc but
differs from y′Π[Ic]. Hence,

P [V τc
in (Dc) = 0 | c good] ≥ αin ·min {∆/2, δ(τc, Tc)} ≥

αin ·∆
2 · δ(τc, Tc) (5)

Now, we show that since δy and δπ are O(δτ ), then the expected distance between
inner proofs over good c’s upper-bounds the distance between all inner proofs δτ (up
to constants). Smoothness of the outer verifier implies that sampling a random coin
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sequence c and location j in Ic is the same as uniformly sampling from [|yπ|] (as detailed
in Appendix B.2). Therefore,

δ(yπ, y′Π) := P
k

[yπ[k] 6= y′Π[k]] = P
j,c

[yπ[Ic][j] 6= y′Π[Ic][j]] = E
c

[δ(yπ[Ic], y′Π[Ic])]

Thus,

δ(yπ, y′Π) ≥ ∆
2 · Pc

[
δ(yπ[Ic], y′Π[Ic]) >

∆
2

]
= ∆

2 · Pc [c ¬good]

Note that max (δy, δπ) ≥ δ(yπ, y′Π), so by the assumption that max (δy, δπ) < ∆ · δτ/4
we have that δτ/2 ≥ P [c ¬good]. In addition,

δτ = E
c

[δ(τc, Tc)] ≤ E
c

[δ(τc, Tc) | c good] · P
c

[c good] + P
c

[c ¬good]

Which implies

E
c

[δ(τc, Tc) | c good] · P
c

[c good] ≥ δτ/2 (6)

Using Equations (5) and (6), the probability that the composite verifier rejects the given
input and proof is at least

E
c

[P [V τc
in (x) = 0] | c good]·P

c
[c good] ≥ αin ·∆

2 ·E
c

[δ(τc, Tc) | c good]·P
c

[c good] ≥ αin ·∆
4 ·δτ

If Vin is a strong canonical robust PCPP, then we note that the lower bounds on the
rejection probability hold for the expected distance of the bits read from (yπ[Ic], τc) from
satisfying Vcomp’s residual circuit.15 As for residual circuit distance: any two strings satisfying
the composite residual circuit satisfy the inner residual circuit, so the residual circuit distance
of the inner verifier is inherited by the composite verifier. J

3.3 Composing the construct of Theorem 1.12
Now that we know how to compose PCPPs, let’s talk about which PCPPs we compose. For
now, we postulate two smooth strong canonical (R)PCPPs of certain complexities and reckon
that their composition yields a PCPP of logarithmic randomness and constant queries (their
actual construction and analysis constitutes the rest of this work).

I Proposition 3.6 (Hadamard-based PCPP). There exists a smooth strong canonical PCPP
for CircuitVal of quadratic randomness and constant query complexities.

I Proposition 3.7 (Reed–Muller-based RPCPP). There exists a smooth strong canonical
robust PCPP for CircuitVal of logarithmic randomness complexity, polylogarithmic decision
complexity, and constant residual circuit distance.

As in [2, 6], the Reed–Muller-based RPCPP is composed with itself to obtain a smooth
strong canonical RPCPP of logarithmic randomness complexity, poly log log decision com-
plexity and constant residual circuit distance. The resulting RPCPP is then composed (as
an outer verifier) with an inner Hadamard-based PCPP to obtain a smooth strong canonical
PCPP of logarithmic randomness and constant query complexities, proving Theorem 1.12.

15To transform the multi-piece robust PCPP to a single-piece robust PCPP, we note that Lemma 2.2
holds for robust PCPPs as well: for strong canonicality, rather than analyzing the rejection probability
of the verifier, we can analyze the expected distance from being accepted by the verifier (using exactly
the same reasoning).
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4 The Hadamard-based smooth strong canonical PCPP

We now turn to the actual construction of smooth strong canonical PCPPs, starting with
the Hadamard-based PCPP of [2, Section 4] as presented in [20, Chapter 4].

4.1 Algebrization and the Hadamard code
A circuit and its input can be expressed as a system of quadratic equations and an assignment,
such that the input satisfies the circuit if and only if the assignment satisfies the equation
system. The Hadamard-based PCPP verifier capitalizes on this fact, with the proof for an
input consisting of the truth tables of evaluations of all (linear and) quadratic equations
on the assignment corresponding to the input. First, let’s take a more detailed look at this
correspondence, which is sometimes called an algebrization of the combinatorial problem of
circuit valuation to the algebraic problem of quadratic equation valuation.

I Definition 4.1 (Computational extension). Let C be a circuit of size n with n0 input gates
and let y ∈ {0, 1}n0 . The computational extension of y w.r.t C is the string corresponding to
the values output by each gate of C when computing y, and is denoted yC ∈ {0, 1}n. That is,
yC [i] is the output of the ith gate of C when computing input y. Assuming wlog that the first
n0 gates of C are its input gates, it holds that y = yC [1] · · · yC [n0].

I Definition 4.2 (Outer product). The outer product of vectors u, v ∈ {0, 1}n, denoted u⊗ v,
is the n2 dimensional vector obtained by “flattening” the n× n matrix whose entry in the ith
column and jth row is u[i] · v[j]. That is, u⊗ v[(i− 1)n+ j] := u[i] · v[j] for all i, j ∈ [n].

I Proposition 4.3. There exists a polynomial-time computable mapping that maps circuit C
of size n with m input bits to an n× n2 matrix AC and vector bC ∈ {0, 1}n such that input
y ∈ {0, 1}m satisfies C if and only if yC ∈ {0, 1}n satisfies AC(yC ⊗ yC) = bC .

Proof sketch. Let C be a circuit of size n that has n0 input gates. The reduction computes
b ∈ {0, 1}n and a1, . . . , an ∈ {0, 1}n

2 according to Table 1, and lets AC be the matrix whose
ith row is ai. J

Table 1 Mapping of gates to equations. ei,j ∈ {0, 1}n
2
is all zeroes except for coordinate

(i− 1)n+ j.

Gate First input gate Second input gate Gate type Reduction output

i
j

k
AND

ai := ei,i + ej,k

bi := 0

OR
ai := ei,i + ej,j + ek,k + ej,k

bi := 0

NOT
ai := ei,i + ej,j

bi := 1

OUTPUT
ai := ei,i

bi := 1

INPUT
ai := 0
bi := 0
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The Hadamard encoding of a string y ∈ {0, 1}n is the evaluation of all linear equations
(over F2) on n variables on the assignment y. Formally,

I Definition 4.4. The Hadamard encoding of a vector y ∈ {0, 1}n is the function
Hady : {0, 1}n → {0, 1} given by Hady(z) := y · z =

∑n
i=1 y[i]z[i] mod 2.

Recall some useful facts about this encoding:

I Fact 4.5. For all n ∈ N:
Distance. A function f : {0, 1}n → {0, 1} is linear if and only if there exists y ∈ {0, 1}n such

that f = Hady. For all y 6= y′ it holds that δ(Hady,Hady′) = 1/2, associating Hady with
its 2n-bit-long truth table. That is to say that the Hadamard code has relative distance
1/2.

Strong Testability. Consider a test that given f : {0, 1}n → {0, 1} uniformly samples x, x′ ∈
{0, 1}n and accepts if and only if

f(x) + f(x′) = f(x+ x′)

As shown in [9], if f is δ-far from all Hadamard codewords then the test rejects with
probability at least min (δ/2, 1/6). Note that the test makes three queries to f and tosses
2n random coins.

Self-correction. Consider a self-correction procedure that given f : {0, 1}n → {0, 1} and
x ∈ {0, 1}n, uniformly samples r ∈ {0, 1}n and outputs f(x+ r)− f(r). It holds that if
f is δ-close to the Hadamard codeword f̃ then for all x the procedure outputs f̃(x) with
probability at least 1− 2δ. Note that the procedure makes two queries to f and tosses n
random coins.

4.2 The PCPP and its analysis
I Algorithm 4.6 (The Hadamard-based PCPP [2]). The canonical proof-piece strategies
of circuit C and satisfying input y are the Hadamard encodings of yC and yC ⊗ yC (the
computational extension of y, and the outer product of the latter with itself, respectively).
That is, Π1(C; y) := HadyC

and Π2(C; y) := HadyC⊗yC
. The verifier takes explicit input C

and is given access to input oracle y and alleged proof-piece oracles π1 and π2. It performs
the following tests, and accepts if and only if all of them passed:
1. Strong codeword checks. Perform the strong codeword test of Fact 4.5 on both π1 and π2.
2. Oracle-oracle consistency check: Check that the assignment allegedly encoded by π2 is

the outer product of the assignment allegedly encoded by π1; that is, uniformly sample
u, v ∈ {0, 1}n and check that π1(u)π1(v) = π2(u⊗ v), using self-correction on π2.

3. Satisfaction check. Compute the quadratic equation system (AC , bC) corresponding to
circuit C via Proposition 4.3, and check that the assignment allegedly encoded by π2
satisfies the quadratic equation system (AC , bC) by checking that it satisfies a random
linear combination of equations; that is, uniformly sample w ∈ {0, 1}n and check that
π2(w>AC) = HadbC

(w), using self-correction on π2. Note that the verifier computes AC
and HadbC

based only on the circuit C, which is given explicitly.
4. Oracle-witness consistency check. Check that π1 encodes the computational extension of

y; that is, uniformly sample i ∈ [m] and check that y[i] = π1(ei) using self-correction on
π1, where ei ∈ {0, 1}m is the unit vector 0i−110n−i.

It is known that Algorithm 4.6 is a PCPP for CircuitVal with polynomial randomness
complexity and constant query complexity (see [2] or later reformulation in [20, Section 4.1]).
It is smooth (as a two-piece PCPP), as only a single uniformly random location of y is queried,
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and locations queried in π1 and π2 are all uniformly random. We show that it is strong
canonical, and can therefore be transformed into a single-piece smooth strong canonical
PCPP for CircuitVal using Lemma 2.2, thereby proving Proposition 3.6.

Proof. Fix circuit C, input oracle y and proof-piece oracles π1 and π2. We show that the
verifier rejects with probability at least

5
72 · min

y′∈Sat(C)
{max (δ(y, y′), δ(π1,Π1(C; y′)), δ(π2,Π2(C; y′)))} (7)

where Sat(C) denotes the set of satisfying inputs of C.
Let π̃1 and π̃2 be the Hadamard codewords closest to π1 and π2 respectively. Let

z̃ ∈ {0, 1}n and Z̃ ∈ {0, 1}n×n be the decodings of π̃1 and π̃2 respectively, so that π̃1 = Had
z̃

and π̃2 = Had
Z̃
. Fact 4.5 implies that if π1 or π2 are 1/12-far from π̃1 or π̃2 (respectively)

then one of the linearity tests reject with probability at least 1/24. Hence, we may assume
max (δ(π1, π̃1), δ(π2, π̃2)) ≤ 1/12. Let ỹ be the n0-bit-long prefix of z̃, which corresponds to
the values z̃ gives to the input gates of C.

We start by reckoning that if π̃1, π̃2 aren’t the canonical proof-pieces for (C; ỹ) then
rejection occurs with high probability, and then show that if they were the canonical proof-
pieces then the oracle-witness consistency check (resp. strong codeword check) rejects
the input oracle (resp. proof-piece oracles) with probability proportional to δ(y, ỹ) (resp.
max (δ(π1, π̃1), δ(π2, π̃2))).

Observe that π̃1, π̃2 are the canonical proof-pieces of (C; ỹ) if and only if the following
conditions hold:

ỹ satisfies the circuit C. (Otherwise, ỹ has no canonical proof.)
π̃1 is the Hadamard encoding of the computational extension of ỹ, denoted ỹC .
π̃2 is the Hadamard encoding of ỹC ⊗ ỹC .

By Proposition 4.3, we have that π̃1, π̃2 are the canonical proof-pieces of (C; ỹ) if and only if
Z̃ = z̃ ⊗ z̃ and z̃ satisfies the equation system (AC , bC). With this observation in mind, we
examine the following cases.

Case 1: π̃1, π̃2 are not the canonical proof-pieces of ỹ.
We claim that rejection occurs with high probability. Indeed, by the foregoing observation,
one of two sub-cases must hold:
Case 1.1: Z̃ 6= z̃ ⊗ z̃.

In this case, oracle-oracle consistency check rejects with high probability: The inequa-
tion π̃1(u)ṽ 6= π̃2(u⊗ v) holds for at least a quarter of possible u, v ∈ {0, 1}n,16 there-
fore π1(u)π1(u) 6= π̃2(u⊗ v) with probability at least 1/4−2·δ(π1, π̃1) ≥ 1/12. The self-
corrected query to π2 gives the value of π̃2 with probability 1−2·(δ(π2, π̃2)) ≥ 5/6, so we
have that π1(u)π(v) 6= π2(u⊗ v) occurs with probability at least (1/12) · (5/6) = 5/72.

Case 1.2: Z̃ = z̃ ⊗ z̃ but z̃ does not satisfy the quadratic equation system (AC , bC).
In this case, it is the satisfaction check that rejects with high probability: By Propo-
sition 4.3 it holds that ACZ̃ 6= bC , and notice that Had

Z̃
(w>AC)(w) = Had

AC Z̃
(w)

for all w ∈ {0, 1}n. Therefore, the inequation π̃2(w>AC)(w) 6= HadbC
(w) holds with

probability 1/2 over the choice of a uniformly random w, as the Hadamard code has
relative distance 1/2. Accounting for a single self-corrected query, the satisfaction test
rejects with probability at least (1/2) · (1− 2δ(π2, π̃2)) ≥ 5/12.

16This follows from the fact that for two distinct n× n matrices A and B, the inequation u>Av 6= u>Bv
for at least a quarter of all possible u, v ∈ {0, 1}n.
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Case 2: π̃1, π̃2 are the canonical proof-pieces of ỹ.
In particular, ỹ is a satisfying input for circuit C. By definition of the Hamming
distance and accounting for self-correction, the oracle-witness test rejects with probability
δ(y, ỹ)(1− 2δ(π1, π̃1)) ≥ 5δ(y, ỹ)/6. Additionally the linearity tests reject with probability
greater than both δ(π1, π̃1)/2 and δ(π2, π̃2)/2. All in all, in this case the verifier rejects
with probability at least

max
(

5
6 · δ(y, ỹ), 1

2 · δ(π1, π̃1), 1
2 · δ(π2, π̃2)

)
≥

5
72 · min

y′∈Sat(C)
{max (δ(y, y′), δ(π1,Π1(C; y′)), δ(π2,Π2C; y′))}

where the inequality is justified by the fact that ỹ satisfies circuit C (however it does not
necessarily minimize the expression on the right hand side). J

5 The Reed–Muller-based smooth strong canonical robust PCPP

The construction of the Reed–Muller-based RPCPP is more involved than that of the
Hadamard-based PCPP. We follow its presentation in [20, Part 1] (a reorganization of [6]),
noting that some components mentioned therein appeared in prior works (for example [3, 2]).
We find this presentation appealing as it breaks the construction down to four bite-sized steps.
Essentially, we prove that the first step yields a PCPP that is smooth and strong canonical,
and that the transition between each step preserves smoothness and strong canonicality.
Along the way, we will also keep track of the residual circuit distance (see Definition 3.4)
and observe that it is constant.

So how do we go about proving this? First, it’s worth noting that the intermediate PCPPs
are multi-piece and, more importantly, issue queries to oracles of larger, non-binary alphabets.
Don’t worry, eventually (Section 5.4) we show how to reduce alphabet size back to binary,
and of course our old friend Lemma 2.2 will reduce the number of pieces to one.17 Anyways,
the first step is constructing a smooth and strong canonical RPCPP for the algebraic problem
of determining whether a function is a low-degree polynomial that is identically zero on a
subcube (Section 5.1). This problem is closely related to circuit satisfiability: fixing a circuit,
inputs can be encoded in a way such that the input satisfies the circuit if and only if its
encoding is Zero on Subcube. Section 5.2 capitalizes on this to derive an RPCPP for the
problem of circuit satisfiability, which is then transformed to an RPCPP for CircuitVal by
adding a consistency test (Section 5.3).

PCPPs over larger alphabets

Though the final result of this section is a (Boolean) smooth and strong canonical RPCPP,
the PCPPs used along the way are non-Boolean, meaning that their queries are answered
not with bits but with elements of an alphabet of larger size. Furthermore, the intermediate
multi-piece PCPPs may have different alphabets for different pieces.

So far, we did not explicitly mention which alphabet was used (indeed, it was always
binary) so the previously introduced notions and definitions need not be changed, except for
replacing relative Hamming distance with the generalized relative Hamming distance.

17As in Section 3, to transform the multi-piece robust PCPP to a single-piece robust PCPP we note that
Lemma 2.2 holds for robust PCPPs as well: for strong canonicality, rather than analyzing the rejection
probability of the verifier, we can analyze the expected distance from being accepted by the verifier (using
exactly the same reasoning exactly).
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I Definition 5.1 (Generalized relative Hamming metric). Fix sets Σ1, . . . ,Σk and let x =
(x1, . . . , xk) and y = (y1, . . . , yk) such that xi, yi ∈ Σi for all i ∈ [k]. The generalized
(relative) Hamming distance between x and y is the fraction of locations in which x and y
differ, that is δ(x, y) := Pi [xi 6= yi] for a uniformly random i ∈ [k].

Note that some of the sets Σ1, . . . ,Σk may not be distinct. In particular, if Σ1 = · · · = Σk,
then the generalized relative Hamming distance coincides with the relative Hamming distance
as defined way back in Section 1.1.1.

I Remark 5.2. A letter in the alphabet Σi can be represented by log |Σi| bits. However,
the size of Σi is (deliberately) not accounted for in the generalized Hamming distance,
therefore the generalized Hamming distance between x and y is not necessarily the same as
the Hamming distance between the binary representation of x and y (in which xi and yi are
each replaced with log |Σi| bits for each i ∈ [k]).

All distances referred to in Section 5 are in the generalized Hamming metric.

5.1 A smooth strong canonical RPCPP for Zero on Subcube
In this section we follow [20, Section 5.3.2] in constructing an RPCPP for the algebraic
problem of determining whether a function is (close to) a low-degree polynomial that is
identically zero on a subcube (formalized in Definition 5.9). Before we turn to the main
construction, we present a generalization of a property tester for low-degree polynomials to
sequences (vectors) of functions, which will be used in the RPCPP construction. Specifically,
given oracle access to a function f : Fm → Fk, we test whether it is close to a sequence
(vector) of k low-degree polynomials (see Definition 5.3 quoted below).

I Definition 5.3 (Vector-valued low-degree polynomial). A function f : Fm → Fk is a vector-
valued multivariate polynomial of degree at most d if for all i ∈ [k] the projection of f to the
ith coordinate is a multivariate polynomial of (total) degree at most d, where the projection of
f to the ith coordinate is denoted fi : Fm → F and defined by fi(x) := f(x)i for all x ∈ Fm.

The distance between such vector-valued functions is measured according to the generalized
Hamming metric of Definition 5.1; that is, f : Fm → Fk is δ-far from being a low-degree
vector-valued polynomial if Px [f(x) 6= f̃(x)] > δ for any vector-valued polynomial f̃ of degree
at most d. We stress that f(x) 6= f̃(x) when there exists i such that fi(x) 6= f̃i(x).

Recall that the line L through Fm with intercept x ∈ Fm and slope h ∈ Fm is the set of
points L := {x+ ih : i ∈ F}. A uniformly random line (through Fm) is obtained by sampling
x, h ∈ Fm uniformly at random and letting L be the line with slope h and intercept x.
Throughout this section we will use f [L] to denote the restriction of f to the line L.

I Algorithm 5.4 (PL-VLDT). The point-line vector-valued low-degree test (PL-VLDT) is
given access to an oracle f : Fm → Fk and a “lines” proof oracle g that maps line L to
vector-valued univariate polynomial gL : L → Fk of degree at most d. It samples a uniformly
random line L through Fm and uniformly random point x ∈ L, and accepts if and only if
f(x) = gL(x).

PL-VLDT uses 2m log |F | random coins and makes a single query to each of its two
oracles. Its soundness proof is due to Oded Goldreich and Madhu Sudan and can be found
in Appendix C. We quote the relevant proposition:

I Proposition 5.5 (Proposition C.4). Assuming |F| > 25k, if the input oracle f : Fm → Fk is
δ-far from being a vector-valued polynomial of degree at most d then for any lines oracle g,
PL-VLDT rejects f and g with probability at least δ/40.
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We will use a variant of PL-VLDT that has higher query complexity, but does not require
an auxiliary “lines” oracle; instead, it queries f on an entire line. As shown in Proposition 5.7,
this test has robust soundness, meaning that the expected distance of answers to its queries
from agreeing with a univariate low-degree polynomial (and therefore being accepted by the
test) is proportional to the distance of the input function from being low-degree.

I Algorithm 5.6 (VLDT). The vector-valued low-degree test is given explicit inputs F, m
and d and access to an input oracle f : Fm → Fk. It samples a uniformly random line L
through Fm, queries f on all points in L, and accepts if and only if the obtained values
(describing the restriction of f to L) agree with a univariate vector-valued polynomial of
degree at most d.

Algorithm 5.6 uses 2m log |F| random coins and makes |F| queries to its input. Its robust
soundness is asserted in Proposition 5.7.

I Proposition 5.7. Assuming |F| > 25k, if the input f is δ-far from being a vector-valued
polynomial of degree at most d, then the expected distance of answers to the queries of VLDT
from agreeing with a univariate low-degree polynomial (and therefore being accepted by the
test) is at least β · δ, for β = 1/40.

Proof. Given a function f , we define a lines oracle g that assigns each line L the (univariate,
vector-valued) low-degree polynomial gL closest to f [L]. By definition, when line L is sampled
by VLDT, the distance of answers received from f (namely f [L]) from being accepted is
δ(f [L], gL). On the other hand, PL-VLDT rejects input oracle f and the lines oracle
g := (gL)L with probability EL [Px∈L [f(x) 6= gL(x)]] = EL [δ(f [L], gL)] which, invoking
Proposition 5.5, is at least δ/40. Therefore, the expected distance of the answers that VLDT
receives from being accepted is at least δ/40. J

Finally, we recall a basic and important property of low-degree polynomials.

I Fact 5.8 (The Schwartz-Zippel Lemma). For any finite field F and integers m and d, if
P : Fm → F is a nonzero polynomial of degree at most d, then Px [P (x) = 0] ≤ d/|F| for
x ∈ Fm sampled uniformly at random.

With these tools in hand, the construction can commence. We analyze the smoothness
and strongness of a robust PCPP for Zero on Subcube [20, Section 5.3.2], an algebraic
analogue of CircuitVal, starting with a formal definition of this property.

I Definition 5.9 (ZoS). Fix a finite field F, positive integers m and d and set H ⊆ F. A
degree d polynomial f : Fm → F is Zero on the Subcube Hm (Zero on Subcube for short) if its
restriction to Hm is identically 0. We denote the set of all Zero on the Subcube polynomials
by ZoS(F,m, d,H). When the parameters are obvious from context, the shorthand ZoS is
used instead.

We quote a useful characterization of Zero on Subcube polynomials that gives rise to a
natural robust PCPP for the set ZoS.

I Fact 5.10 ([20, Proposition 5.3.4]). For any field F, positive integers m and d and set
H ⊆ F, a polynomial f : Fm → F of degree at most d is zero on the subcube Hm if and only
if there exists a sequence of polynomials P1, . . . , Pm : Fm → F each of degree at most d, and
a sequence of polynomials Q1, . . . , Qm : Fm → F each of degree at most d− |H|, such that
for all x1, . . . , xm ∈ F and i ∈ [m]:

Pi−1(x1, . . . , xm) = η(xi) ·Qi(x1, . . . , xm) + Pi(x1, . . . , xm) (8)
Pm(x1, . . . , xm) = 0
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where P0 := f , and η is a univariate polynomial of degree |H| that vanishes on H which we
define by η(x) :=

∏
h∈H (x− h).

The vector-valued polynomials P = (P1, . . . , Pm) and Q = (Q1, . . . , Qm) are called the
division witnesses of f .18

I Algorithm 5.11 (ZoS-RPCPP). The canonical proof-pieces for f ∈ ZoS are the division
witnesses of f , denoted P (f) := (P1(f), . . . , Pm(f)) and Q(f) := (Q1(f), . . . , Qm(f)), as
guaranteed by Fact 5.10. For input field F, dimension m and degree d, given oracle access
to input f : Fm → F and proof-pieces p : Fm → Fm and q : Fm → Fm, the verifier samples
a random line L through Fm, queries f , p and q on each point in L, and performs the
following checks:
1. Low-degree checks. Check that the restrictions of f and p to the line L, denoted f [L] and

p[L], are vector-valued univariate polynomials of degree at most d.19 Check that q[L] is
a vector-valued univariate polynomial of degree at most d− |H|.

2. “Unbundle” the answers received from p and q to obtain pi(x) and qi(x) for each i ∈ [m]
and x ∈ L. Check the following:
a. Division checks. For each i ∈ [m] and (x1, . . . , xm) ∈ L, check that

pi−1(x1, . . . , xm) = η(xi) · qi(x1, . . . , xm) + pi(x1, . . . , xm)

where p0 := f , and η is a univariate polynomial of degree |H| that vanishes on H,
defined η(x) :=

∏
h∈H (x− h).

b. Identity check. For each (x1, . . . , xm) ∈ L, check that

pm(x1, . . . , xm) = 0

The verifier accepts if and only if all the above checks passed.

ZoS-RPCPP is piecwise-smooth, makes |F| queries to each of its three oracles and uses
2m log |F| random coins. Its residual circuit distance (Definition 3.4) is 1/2 as any satisfying
input to its residual circuit is composed of three univariate polynomials of degree at most d,
each occupying a third of the input. As such, any two different satisfying inputs agree on at
most a 2/3 · d/|F| ≤ 1/2 fraction of locations.

I Lemma 5.12. Suppose ZoS-RPCPP is given field F and degree d such that 1−β ≥ 4d/|F|,
and access to oracles f , p and q. Then the expected distance (over a random line) of the
answers to ZoS-RPCPP’s queries from being accepted is at least

β

12 · min
f ′∈ZoS(F,m,d,H)

{max (δ(f, f ′), δ(p, P (f ′)), δ(q,Q(f ′)))} (9)

where β is the constant of Proposition 5.7, and P (f ′) and Q(f ′) are the canonical proof-pieces
of f ′ as described in Algorithm 5.11.

Proof. Fix input oracle p0 := f : Fm → F and proof oracles p = (p1, . . . , pm) and q =
(q1, . . . , qm) with pi, qi : Fm → F. Let f̃ and p̃ be the vector-valued polynomials of degree at
most d closest to f and p, and q̃ be the polynomial of degree at most d− |H| closest to q.
Let p̃i and q̃i be the projections of p and q to their ith coordinate. Note that p0 := f and so
p̃0 := f̃ .

We start by showing that unless f̃ is Zero on Subcube and p̃, q̃ are its canonical proof-pieces,
then the expected distance is Ω(1).

18This ad-hoc term alludes to the proof of Fact 5.10: an iterative process that starts with the polynomial
f = P0, and in the ith iteration divides Pi−1 by η(xi) to obtain quotient Qi and remainder Pi.

19 Indeed the term “vector-valued” is degenerate for f : Fm → F as its range is one-dimensional.
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Case 1: Either f , p or q are 1/4-far from f̃ , p̃ or q̃. Assume wlog that p is 1/4-far from
p̃. By Proposition 5.7, the expected distance of p[L] from a univariate polynomial of
degree at most d is at least β/4. However the answers of p are just a third of the answers
received by all oracles, so the expected distance of (f [L], p[L], q[L]) from satisfying the
low-degree checks is at least 1

3 ·
β
4 .

Case 2: f , p and q are close to low-degree polynomials that do not satisfy Equation (8); that
is, f , p and q are 1/4-close to f̃ , p̃ and q̃ but for some i it holds that p̃i−1, p̃i and q̃i don’t
satisfy Equation (8). By Fact 5.8, either p̃i−1, p̃i or q̃i do not satisfy Equation (8) on at
least a fraction of 1− d/|F | of points in Fm. Since pi−1, pi and qi are 1/4-close to p̃i−1,
p̃i and q̃i respectively,20 then pi−1, pi and qi do not satisfy Equation (8) on at least a
fraction of 1− d/|F| − 3/4 = 1/4− d/|F| points in Fm. Therefore the expected distance of
(f [L], p[L], q[L]) from satisfying the division checks is at least 1/3 · (1/4− d/|F|) ≥ β/12.

Case 3: pm is 1/4-close to p̃m but p̃m 6≡ 0. By Fact 5.8, pm(x) 6= 0 on at least a fraction of
1/4− d/|F| of points x ∈ Fm. As the answers of p are a third of the answers received by
all oracles, the expected distance of (f [L], p[L], q[L]) from satisfying the identity check is
at least 1/3 · (1/4− d/|F|) ≥ β/12.

If all three previous cases are are false, then the input oracle is close to a Zero on Subcube
polynomial, and the given proof-piece oracles are close to the canonical proof-pieces for that
polynomial. These proof-pieces are low-degree polynomials, therefore the distance of the
given oracles from proving that the input is Zero on Subcube is exactly their distance from
being low-degree polynomials (similarly, the distance of the input from being Zero on Subcube
is its distance from being low-degree), and VLDT rejects with probability proportional to
this distance. Details follow.

As we said, in this case f̃ is zero on the subcube Hm, and p̃, q̃ are its canonical proof-
pieces. Since δ(f, f̃) < 1/4 then f̃ is the only low-degree polynomial 1/4-close to f , and since
f̃ ∈ ZoS it must be that f̃ is function from ZoS(F,m, d,H) closest to f . We conclude the
proof by showing that the expected distance of all answers from satisfying is greater than
Expression 9: Assume that δ(q, q̃) maximizes Expression 9. The expected distance of answers
to queries made by VLDT to oracle q from satisfying is at least β · δ(q, q̃). But as the answers
of q account for a third of the all answers received, we have that the expected distance of all
answers on a random line from satisfying is at least β · δ(q, q̃)/3 = β · δ(q,Q(f̃))/3. If f or p
maximized Expression 9 then similar arguing gives the required result. J

5.2 A smooth strong canonical RPCP for CircuitSat
To construct a robust PCP for CircuitSat, we first recall an algebrization (i.e. algebraic
description) of circuits and their inputs such that an input satisfies the circuit if and only if
an encoding of the input is zero on a certain (fixed) subcube.

I Definition 5.13 (Low-degree extension). Let z : Hm → F. The low-degree extension of z to
Fm is the unique polynomial ẑ : Fm → F of degree at most m|H| that agrees with z on Hm.21

20 Indeed, notice that δ(pi, p̃i) ≤ δ(p, p̃) for all i ∈ [m] and similarly for q and q̃.
21We will only use the uniqueness and low-degree properties of the extension, but if you insist, know that

it is given by

ẑ(x) :=
∑
h∈Hm

z(h) ·
∏
i∈[m]

h′∈H\{hi}

xi − h′

hi − h′
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We loosely summarize the algebrization of [20, Section 5.4.1]. A circuit C of size n is
associated with a function C ′ : [n]3 × {0, 1}3 → {0, 1} such that C ′(i1, i2, i3, b1, b2, b3) = 1 if
and only if assigning gates i1, i2 and i3 the values ¬b1, ¬b2 and ¬b3 necessarily results in
an invalid or unsatisfying computation of the circuit. The interested reader is referred to
[20] for a formal definition of these,22 and we will describe them by example: if gate 5 is the
output gate of C then C ′(5, 1, 2, 1, 0, 0) = 1 because (by definition) a satisfying computation
does not have the output gate outputting the value 0. As another example, suppose that the
7th gate is an OR gate taking input from gates 2 and 4, then C ′(2, 4, 7, 1, 1, 0) = 1 because in
a valid computation an OR gate taking two 0 inputs cannot output 1.

So, C ′ indicates when an assignment to C’s gates results in an invalid or unsatisfying
computation. Thus for any alleged computational extension z (see Definition 4.1), the product
F ′ = C ′(i1, i2, i3, b1, b2, b3) · (z[i1]− b1)(z[i2]− b2)(z[i3]− b3) will be zero if and only if z is
a computational extension of a satisfying input. Another key observation is that replacing
C ′ by its low-degree extension Ĉ and z by its low-degree extension ẑ results in a product F
that has low-degree. Conversely, F is Zero on Subcube (and in particular low-degree) only if
z was a satisfying assignment.

We refer the reader to [20, Section 5.4.1] for a deeper discussion, which is summarized in
the following statement.

I Fact 5.14 (Algebrization of CircuitSat). There exists a polynomial reduction that maps
a circuit C of size n to a polynomial Ĉ : F3m+3 → F of degree at most d where m :=
logn/ log logn, H := [n1/m], d = (3m+ 3)|H| and |F| = O((d+ 3m|H|)3), such that Ĉ
satisfies the following:

For any e : Fm → F, let FC,e : F3m+3 → F be given by

FC;e(x1, . . . , x3m+3) :=Ĉ(x1, . . . , x3m+3) · (e(x1, . . . , xm)− x3m+1)
· (e(xm+1, . . . , x2m)− x3m+2) · (e(x2m+1, . . . , x3m)− x3m+3)

Then, for any polynomial e : Fm → F of degree at most m|H|, the function FC;e is
identically zero on H3m+3 if and only if e is the low-degree extension of a computational
extension of an assignment that satisfies C.

I Algorithm 5.15 (CircuitSat-RPCP). For any circuit C and satisfying input y the
canonical proof consists of four pieces: the low-degree extension of the computational
extension of y denoted ŷC , the polynomial F

C;ŷC
as defined in Fact 5.14, followed by the

proof-pieces (for ZoS-RPCPP) that F
C;ŷC

is zero on the subcube H3m+3, namely its division
witnesses (of Fact 5.10) denoted P (C; y) and Q(C; y). Given explicit access to circuit C of
size n, and oracle access to e : Fm → F, f : Fm′ → F, p : Fm′ → Fm′ and q : Fm′ → Fm′

where |F| = O((d+ 1m|H|)3) and m′ := 3m + 3, the verifier samples a uniformly random
line L′ through Fm′ and performs the following checks:
1. Zero on Subcube check. Check that f is a polynomial of degree at most d′ that is zero on

the subcube Hm′ using ZoS-RPCPP with the random line L′, p and q as its proof-piece
oracles, and with d′ := m′|H| and H = [n1/m].

2. Low-degree check. Check that e is a polynomial of degree at most d using VLDT where
d = m|H|, with the projection of L′ onto its first m coordinates used as the random line.
That is, check that {e(x1, . . . , xm) : (x1, . . . , xm, . . . , xm′) ∈ L′} agrees with a univariate
polynomial of degree at most d.

22 In [20] these notions are both referred to as invalid configurations.
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3. Satisfaction check. For each x = (x1, . . . , xm′) ∈ L′, check that

f(x1, . . . , x3m+3) :=Ĉ(x1, . . . , x3m+3) · (e(x1, . . . , xm)− x3m+1) (10)
· (e(xm+1, . . . , x2m)− x3m+2) · (e(x2m+1, . . . , x3m)− x3m+3)

where Ĉ is as guaranteed by the algebrization of CircuitSat (Fact 5.14).
The verifier accepts if and only if all the above checks passed.

CircuitSat-RPCP tosses m′ log |F| = O(m log |F|) random coins. It issues a total of
6|F| queries to all of its oracles. Namely, for each x ∈ L′ it issues the following queries:

f(x), p(x), q(x), e(x1, . . . , xm), e(xm+1, . . . , x2m), e(x2m+1, . . . , x3m)

It has constant residual circuit distance (Definition 3.4), as any answer string that satisfies
its decision circuit consists of 6 univariate low-degree polynomials, each composing a sixth of
the entire string. Thus, two different strings satisfying its decision circuit agree on at most a
5
6 ·

d
|F| ≤ 1/2 fraction of locations.

I Lemma 5.16. Suppose CircuitSat-RPCP is given satisfiable circuit C and access to
proof-piece oracles e : Fm → F, f : Fm′ → F, and p, q : Fm′ → Fm′ , with 1 − β ≥ 5d′/|F|
where β is the constant of Proposition 5.7. Then the expected distance of the answers to
CircuitSat-RPCP’s queries from satisfying is at least

β

30 · min
y′∈Sat(C)

{
max

(
δ
(
e, ŷ′C

)
, δ
(
f, F

C;ŷ′
C

)
, δ(p, P (C; y′)), δ(q,Q(C; y′))

)}
(11)

where Sat(C) denotes the set of satisfying inputs of C, and ŷ′C , FC;ŷ′
C

, P (C; y′) and Q(C; y′)
are the canonical proof-pieces of y′ as described in Algorithm 5.15.

Proof. Fix circuit C and oracles e, f , p and q. Let ẽ be the closest polynomial to e of degree
at most d, and let f̃ , p̃, q̃, p̃i and q̃i be the closest low-degree polynomials (as in Lemma 5.12).
Consider the following cases:

Case 1: Either of the oracles are 1/5-far from their closest low-degree polynomial. By
Proposition 5.7, at least β/5 of the points read on a random line must be changed in
order to satisfy VLDT. The answers to queries made by the low-degree checks (either of
Step 2 or Step 1) make up for at least a sixth of the all answers received, therefore the
expected distance of all received answers from satisfying is at least β/30.

Case 2: All oracles are 1/5-close to low-degree polynomials, but p̃, q̃ are not the canonical
proof-pieces (for ZoS-RPCPP) that f̃ is Zero on Subcube. Just like in the proof of
Lemma 5.12, the answers to queries made in Step 1 are β/5-far from satisfying. These
answers are a half of answers to all queries, therefore the expected distance of all received
answers from satisfying is at least β/10.

Case 3: All oracles are 1/5-close to low-degree polynomials, but ẽ and f̃ do not satisfy
Equation (10). Then the expected number of points (on a random line) on which e and f
violate Equation (10) is at least 1− d′/F− 4 · 1/5 = 1/5− d′/F, which is larger than β/5.
Since the answers to queries made in Step 3 make up for at least two-thirds of answers to
all queries, the expected distance of all answers from satisfying is at least 2β/15.

If all of the above are false, then the given oracles are close to proof-pieces proving that C is
satisfiable. These proof-pieces are low-degree polynomials, therefore the distance of the given
oracles from proving that C is satisfiable is exactly their distance from being low-degree, and
VLDT rejects with probability proportional to this distance. Details follow.
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In this case, ẽ is a low-degree extension of a computational extension of a satisfying
assignment to C, and f̃ , p̃ and q̃ are its canonical proof-pieces. Since δ(e, ẽ) < 1/5 then
ẽ is the only low-degree polynomial 1/5-close to e, so it must be that ẽ = ŷ′C (where y′ is
the minimizer of Expression 11). Assume that q maximizes Expression 11. The expected
distance of answers to queries made by VLDT to q from satisfying is at least β · δ(q, q̃). But
as the answers of q account for a sixth of all answers received, the expected distance of all
answers from satisfying is at least βδ(q, q̃)/6. If the maximizers were e, f or p the claim
follows using similar reasoning. J

5.3 A smooth strong canonical RPCPP for CircuitVal
In this section we transform CircuitSat-RPCP to an RPCP of proximity for CircuitVal.
The RPCPP is constructed by (additionally) testing consistency of the input oracle (an
allegedly satisfying input to the circuit) with the proof-piece oracle corresponding to the
alleged low-degree extension of its computational extension (see Definition 4.1). Low degree
extension is systematic, in the sense that the extended function is embedded in its extension,
so consistency may be checked by testing that the input oracle agrees with the systematic
part of its alleged low-degree extension on a uniformly random location. However, the
systematic part of the proof-piece oracle is only a tiny fraction of it (as n = o(|Fm|)), so a
particularly nasty proof-piece oracle could be close to an arbitrary low-degree polynomial
(therefore passing the low-degree check), whose systematic part was changed to match the
input oracle (therefore passing the consistency check) – causing the verifier to accept a
proof that’s extremely far from the canonical one. This is resolved via self-correction: the
verifier checks that the proof-piece oracle is a low-degree univariate polynomial on a random
(punctured, see below) line through the location queried in the systematic part.

Unlike previous steps in this construction, some care must be taken so that the consistency
check does not harm smoothness. If the verifier reads the entire line, locations in the systematic
part would be queried more often than others. Indeed, the verifier does not need to read
the systematic point on the line and can interpolate it from the others. But if the verifier
always avoids reading the systematic part, its locations would be queried less often than
others. Thus, the verifier chooses the puncture (i.e. point on the line not to be read) to be
the location in the systematic part with probability 1−Θ(1/|F |m−1), and to be a different
point on the line with the remaining probability.

I Algorithm 5.17 (CircuitVal-RPCPP). The canonical proof of a circuit and its satisfying
input consists of the same four proof-pieces as in Algorithm 5.15. Given explicit access
to circuit C of size n with n0 input gates, and oracle access to input y : [n0] → {0, 1} and
proof-pieces e : Fm → F, f : Fm′ → F, p : Fm′ → Fm′ and q : Fm′ → Fm′ where m′ := 3m+3,
the verifier performs the following checks:
1. Satisfiability check. Check that C is satisfiable using CircuitSat-RPCP with e, f , p

and q as proof-piece oracles.
2. Consistency check. Sample a location in the input oracle by uniformly sampling x ∈

[n0] ≡ Hm. Sample a random line L with intercept x by sampling h ∈ Fm and letting L :=
(x+ ih : i ∈ F). Let the puncture z be z := x with probability 1− (|F| − 1)/(|F|m + 1),
and z := x+ h with the remaining probability.
Query e on the line L punctured at z, i.e. e[L \ {z}]. Query y(x), giving the query a
weight of |L| = |F|.23. Do the following:

23Reweighting is achieved by repeating the input gate corresponding to y(x) in the verifier’s residual
circuit.
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a. Check that e[L \ {x}] agrees with a univariate polynomial of degree at most d. If the
check passed, let eL : L → F be the unique low-degree polynomial that agrees with
e[L \ {z}].

b. Check that y(x) = eL(x): If z = x, obtain eL(x) using interpolation (not by querying
e(x)). If z = x+ h then eL(x) = e(x) has already been queried and is known to the
verifier.

The verifier accepts if and only if the above checks passed.

CircuitVal-RPCPP tosses (m+m′) log |F| = O(m log |F|) random coins. It issues
a total of 8|F| − 1 (weighted) queries to its oracles: in addition to the 6|F| queries of
CircuitSat-RPCP, it queries e on L \ {z} in Step 2a, and issues a query of weight |F| to w.
It has constant residual circuit distance (Definition 3.4), which is shown by an application of
Fact 5.8, just as with ZoS-RPCPP and CircuitSat-RPCP.

Smoothness of CircuitVal-RPCPP

We explain how the randomized choice of puncture in Step 2 preserves smoothness. Let α
denote the probability that the puncture z is at x (i.e., verifier reads e[L \ {x}]), and 1− α
be the probability that the puncture is at x+ h. We show that each point in Fm is queried
with equal probability.

The non-systematic part: A point from the non-systematic part, i.e. Fm \ [n0], is read
only if it lies on the line L and does not equal the puncture. This occurs with probability

|F| − 2
|F|m

+ 1
|F|m

· α (12)

The systematic part: Consider a point from the systematic part, i.e. [n0]. If it is chosen
to be the intercept x of line L, then it is read only if the puncture is not at x but at
x + h – which occurs with probability 1 − α. If it is not chosen to be the intercept x,
then it is queried with probability equal to that of points in the non-systematic part, as
analyzed above. Thus, points in the systematic part are queried with probability

1
n0
· (1− α) +

(
1− 1

n0

)
·
(
|F| − 2
|F|m

+ 1
|F|m

· α
)

(13)

Indeed, choosing α = 1− (|F | − 1)/(|F|m + 1) equalizes Expressions 12 and 13.

Soundness of CircuitVal-RPCPP

Robust strong canonical soundness of CircuitVal-RPCPP follows from the following lemma.

I Lemma 5.18. Suppose CircuitVal-RPCPP is given a satisfiable circuit C, input oracle
y : [n0]→ {0, 1} and proof-piece oracles e : Fm → F, f : Fm′ → F, and p, q : Fm′ → Fm′ , with
1− β ≥ d/|F|. Then the expected distance of the answers to CircuitVal-RPCPP’s queries
from satisfying is at least

β

64 · min
y′∈Sat(C)

{
max

(
δ(y, y′), δ

(
e, ŷ′C

)
, δ
(
f, F

C;ŷ′

)
, δ(p, P (C; y′)), δ(q,Q(C; y′))

)}
(14)

where Sat(C) denotes the set of satisfying inputs of C, β is the constant of Proposition 5.7,
and ŷ′C , FC;ŷ′

C

, P (C; y′) and Q(C; y′) are the canonical proof-pieces of y′ as described in
Algorithm 5.15.
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Proof. Fix input C and oracles y, e, f , p and q. Let ẽ, f̃ , p̃, q̃, p̃i and q̃i as in the proof of
Lemma 5.16, and let y′ be the minimizer of Expression 14.

Following the analysis of CircuitSat-RPCP, if f̃ , p̃ and q̃ are not the canonical proof-
pieces of ẽ proving that it is the low-degree extension of a satisfying assignment to C, then
the expected distance of answers to queries issued to e ,f , p and q from satisfying is at
least β/30. Since these answers account for more than 6/8 of all answers, then the expected
distance of answers to queries issued to all oracles is at least 6/8 · β/30.

Otherwise f̃ , p̃ and q̃ are the canonical proofs proving that ẽ encodes a satisfying
assignment denoted ỹ. Again using the analysis of CircuitSat-RPCP we have that the
expected distance of answers to queries issued to all oracles is at least

6
8 ·

β

30 ·max
(
δ
(
e, ŷ′C

)
, δ
(
f, F

C;ŷ′
C

)
, δ(p, P (C; y′)), δ(q,Q(C; y′))

)
We now argue that the expected distance is proportional also to δ(y, y′). With probability

Ω(δ(y, y′)), either the query from y must be changed (and it has a constant fraction of the
weight of all queries), or e must be changed on a constant fraction of locations on the line L
(due to self-correction). Details follow.

Notice that if e is 1/4-far from ẽ then by Proposition 5.7 and a similar weighting argument,
the distance of all answers from satisfying is at least 1/4 · β · (1/8− 1/|F|),24 so what’s left is
to show that the expected distance is proportional to δ(y, ỹ). Indeed, if the sampled location
x in Step 2 is one on which y and ỹ differ, i.e. such that y(x) 6= ẽ(x), then either the value
of y(x) must be changed or e[L \ {z}] must be changed to agree with a univariate degree d
polynomial whose value at x is y(x). Even with x fixed, all points in L \ {x} are marginally
uniform, so by linearity of expectation,

E
Random L with intercept x

[δ(e[L \ {x}], ẽ[L \ {x}])] = δ(e, ẽ) ≤ 1/4

By Markov’s inequality, for any x ∈ Fm and random line L with intercept x, with probability
at least 1/2 it holds that e[L \ {x}] is 1/2-close to ẽ[L \ {x}] and therefore e[L \ {z}] is
2/3-close to ẽ[L \ {z}] (this accounts for the case that z = x+ h in Step 2. Conditioned on
this event, e[L \ {z}] must be changed on at least 1− d/|F| − 2/3 ≥ 1/4 fraction of locations
to make the consistency check of Step 2 pass.

All in all, we have that with probability at least δ(y, ỹ)/2, at least a quarter of the
answers received either from y or from e (in Step 2) must be changed so that Step 2 does
not reject. As these account for at least a (1/8− 1/|F|) of all answers received, we have that
the expected distance is at least δ(y, ỹ)/64. J

5.4 Alphabet Reduction
So we have an RPCPP for CircuitVal, but we aren’t done just yet: CircuitVal-RPCPP
is non-Boolean, meaning that it’s proofs are written using non-binary symbols. It’s time to
show how to transform it to a Boolean RPCPP. Actually, we will show how to transform any
non-Boolean RPCPP to a Boolean one of comparable complexities – provided its symbols
are not much larger than the number of queries it issues. Most importantly, we prove that
this transformation preserves smoothness and strong canonicality.

We show this even for multi-piece RPCPPs that have different-sized alphabets for different
pieces. That is, letting the ith proof-piece oracle answers its queries with symbols in the
alphabet Σi = {0, 1}σi it could be that not all σi’s are equal. We call σi the ith proof-piece
answer-length complexity of the RPCPP.

24Due to Step 2, but in fact low-degree tests occur in Step 1 as well.
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I Lemma 5.19. Suppose CircuitVal has a smooth and strong canonical multi-piece RPCPP
with constant residual circuit distance, ith answer complexity σi and query complexity q, and
the additional property that the verifier makes the same amount of queries to each of its
oracles up to a constant multiplicative factor ρ.25 Then, CircuitVal has a Boolean smooth
and strong canonical multi-piece RPCPP with query complexity O(q ·maxi∈[k] σi), decision
complexity growing by an additive factor of Õ(q ·maxi∈[k] σi), and strongness parameter
shrinking by a constant factor.

Following [20, Section 5.4.3], the Boolean PCP is obtained by replacing each letter of the
non-Boolean PCP with its encoding in an error correcting code of constant relative distance.
Since each proof-piece may have different answer complexity, we choose a different code for
each proof-piece. Starting with a good code (i.e., of constant relative distance and rate) for
the proof-piece with maximal answer-length complexity, we take the other codes to have
equal distance and block length, increasing the rate if necessary using code repetition. Equal
block length is necessary so that the generalized Hamming distance between two non-Boolean
proofs is reflected accurately by their corresponding Boolean proofs (and is not scaled with
differences in answer complexities as in Remark 5.2).

The Boolean verifier emulates the non-Boolean one: for each symbol the non-Boolean
verifier queries, the Boolean verifier queries all bits in the corresponding block and answers
the emulated verifier with their decoding (rejecting if the block was not decodable). We then
prove that any Boolean proof is either far from being composed of codewords (therefore far
from being accepted by the Boolean verifier in expectation), or its expected distance from
satisfying the Boolean verifier is similar to the expected distance of its decoding from satisfying
the non-Boolean verifier, where its decoding refers to the non-Boolean string obtained by
decoding each of its blocks. Since the distance of the Boolean proof from the canonical
proof (for the Boolean verifier) is proportional to the distance of the decoded proof from the
canonical proof (for the non-Boolean verifier), strong canonicality of the non-Boolean verifier
implies strong canonicality of the Boolean one. A formal proof follows.

Proof of Lemma 5.19. Let V̂ be the smooth strong canonical RPCPP for CircuitVal with
corresponding proof-piece strategies Π1, . . . ,Πt, with Πi answering its queries with symbols
in the alphabet Σi = {0, 1}σi . For each i ∈ [t] let `i denote the length complexity of the ith
proof-piece oracle, and let ECCi : Σi → {0, 1}b with b = O(maxi∈[t] σi) be an error correcting
code of constant minimal distance 2c > 0, decodable using circuits of size Õ(b). The ith
canonical proof-piece of circuit C and input y is Γi(C; y), where Γi(C; y)[j] := ECCi(Πi(C; y))
is a binary string of length b.26

The Boolean RPCPP verifier, denoted V , expects circuit C, input oracle y and proof-piece
oracles γ1, . . . , γt. It emulates V̂ on circuit C and input oracle y as follows:

When V̂ queries the jth location of the ith proof-piece oracle, issue b queries to γi to
receive a binary string γi[j] of length b. Decode γi[j] using the decoding algorithm of
ECCi. If decoding failed then reject, and otherwise answer V̂ ’s query with the decoded
string.
When V̂ queries its input oracle, answer it according to the input oracle y, giving the
query weight b.

25That is, for any two oracles, the ratio between the number of queries that the verifier makes to each
oracle is at least ρ.

26To be clear, Πi(C; y) is a string of length `i over alphabet Σi = {0, 1}σi , and Γi(C; y) is a string of
length `i · b over the binary alphabet.
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Smoothness of V follows immediately from the smoothness of V̂ : for each proof-piece, a bit
is queried if and only if the emulated verifier queried the location which it allegedly encodes,
and the the probability that the latter is queried is the same for all locations.

We show that V is a strong canonical RPCPP for CircuitVal. Fix circuit C, input
oracle y and alleged proof-piece oracles γ1, . . . , γt. For each i ∈ [t] and j ∈ [`i], let π̂i[j] ∈ Σi
be the “best decoding” of γi[j], namely, the string x ∈ Σi that minimizes the expression
δ(ECCi(x), γi[j]). Let γ̂i[j] be the encoding of π̂i[j], that is γ̂i[j] := ECCi(π̂i[j]).

B Claim 5.19.1. For all i ∈ [t], the expected distance of answers to V ’s queries from being
accepted is greater than

ρ

t+ 1 · δ(γi, γ̂i)

Proof of Claim 5.19.1. Fix i ∈ [t] and denote by J the locations that V queries in γi. To
satisfy V , the answers of γi to V ’s queries (denoted γi[J ]) must be codewords, therefore
the expected distance of γi[J ] from satisfying V (over J generated according to V ’s random
coins) is at least the expected distance of γi[J ] from being codewords; that is, at least

E
J

[δ(γi[J ], γ̂i[J ])] = E
J, j∈J

[δ(γi[j], γ̂i[j])] (15)

Smoothness of V implies that a uniformly random element of j ∈ J is distributed uniformly
at random in [`i] (as detailed in Appendix B.2). Thus,

Equation (15) = E
k∈[`i]

[γi[k], γ̂i[k]] = δ(γi, γ̂i)

The distance shrinks by ρ/(t+ 1) because γi[J ] make up for only (at least) a ρ/(t+ 1)
fraction of all bits read by V . C

B Claim 5.19.2. Fix a random coin sequence and suppose that the Boolean verifier V received
answers s = s1 · · · sq from the oracles y, γ1, . . . , γt. Let ŝ = ŝ1 · · · ŝ1 denote the answers that
the non-Boolean verifier V̂ received from oracles y, π̂1, . . . , π̂t when it samples the same coin
sequence; in other words, letting sk = γi[j] for some i and j, we denote ŝk = π̂i[j].

Let D and D̂ be the residual circuits generated by V and V̂ upon sampling the fixed
random coin sequence. It holds that δ(s, Sat(D)) ≥ c ·δ(ŝ, Sat(D̂)), where Sat(·) denotes the
set of satisfying inputs of a circuit, and 2c is the distance of the error correcting codes ECCi.

Proof of Claim 5.19.2. The proof follows from the Markov bound and a triangle inequality.
Suppose there is s′ = s′1 · · · s′q that satisfies D such that δ(s, s′) = ∆. For at least a 1−∆/c
fraction of k ∈ [q] it holds that sk is c-close to s′k. For these k’s, s′k is the closest codeword
to sk, because distinct codewords are 2c-far apart, and s′k is a codeword for it satisfies D.
Therefore, for a 1−∆/c fraction of k’s it holds that s′k encodes ŝk, and it follows that ŝ is
∆/c-close to satisfying V̂ . C

Concluding the proof of Lemma 5.19

Fix y′ ∈ Sat(C) such that maxi∈[t] {δ(y, y′), δ(π̂i,Πi(C; y′))} is minimal, and let Π′i :=
Πi(C; y′) and Γ′i := Γi(C; y′). Suppose we give V̂ oracle access to y, π̂1, . . . , π̂t. Robust
strong canonicality means that the expected distance of locations it reads from satisfying its
residual circuit is at least

α ·max
i∈[t]

(δ(y, y′), δ(π̂i,Π′i))
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By Claim 5.19.2, this implies that when the Boolean verifier V is given y, γ1, . . . , γt, the
expected distance of locations it reads from satisfying its residual circuit is at least

α · c ·max
i∈[t]

(δ(y, y′), δ(π̂i,Π′i))

Noticing that δ(π̂i,Π′i) = 2c · δ(γ̂i,Γ′i), this is at least

αc · 2c ·max
i∈[t]

(δ(y, y′), δ(γ̂i,Γ′i)) (16)

Claim 5.19.1 means that the expected distance of answers to V from satisfying is lower
bounded not merely by Expression 16, but by

2αc2 ·max
i∈[t]

(
δ(y, y′), δ(γ̂i,Γ′i),

ρ

t+ 1 · δ(γi, γ̂i)
)

(17)

For each i ∈ [t], if δ(γi, γ̂i) ≤ δ(γ̂i,Γ′i)/2 then by the triangle inequality δ(γ̂i,Γ′i) ≥ δ(γi,Γ′i)/2,
and otherwise δ(γi, γ̂i) > δ(γ̂i,Γ′i)/2, so Expression 17 is at least

2αc2 · ρ

2(t+ 1) ·max
i∈[t]

(δ(y, y′), δ(γi,Γ′i)) ≥
αρc2

(t+ 1) · min
y′′∈Sat(C)

{
max
i∈[t]

(δ(y, y′′), δ(γi,Γi(x; y′′)))
}

where the inequality is because y′ is a satisfying input for C, but not necessarily a minimizer
of the above quantity. Thus, V is robust strongly canonical.

If V̂ has residual circuit distance c′ (Definition 3.4), then V has residual circuit distance
c · c′, because an answer string that satisfies the decision circuit of V must be formed of
encodings of an answer string that satisfies V̂ . J

5.5 Putting it all together
Because CircuitVal-RPCPP is the Reed–Muller-based RPCPP of [20, Section 5.4], it
enjoys the (standard) soundness analysis presented in that work. Paired with the strong
canonical soundness of Lemma 5.18, we have a non-Boolean smooth strong canonical RPCPP
for CircuitVal of logarithmic randomness complexity, polylogarithmic query complexity
and constant residual circuit distance. Decision complexity is also polylogarithmic (though
we did not keep track of it explicitly). Using Lemma 5.19 we get a Boolean RPCPP for
CircuitVal of similar properties, and a final application of Lemma 2.2 reduces the number
of oracles to one – proving Proposition 3.7.
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A Hardness of approximating bounded-occurrence stable3SAT

To see the connection between our PCP result (i.e. Theorem 1.5) and the hardness of
approximating bounded-occurrence stable3SAT (i.e. Corollary 1.7), first recall the connection
between standard PCPs and constraint satisfaction problems (CSPs).27 At its heart stands
a correspondence between the probability that a nonadaptive PCP verifier V for a set S
accepts an input x and proof π, and the fraction of simultaneously satisfiable constraints
in a CSP ΦV,x over |π| variables. Consider the CSP ΦV,x of 2r constraints that express the
verifier’s decision after tossing r random coins and querying its proof oracle in q locations.
These are constraints over |π| variables, with each constraint depending on the q variables
corresponding to locations that the verifier queries (i.e., ΦV,x is a qCSP). A proof π is an
assignment to these variables; completeness means that if x ∈ S then there is an assignment
that satisfies all constraints in ΦV,x, and soundness means that if x /∈ S then no assignment
satisfies more than half of the constraints in ΦV,x simultaneously.

Now, what can be said about the CSP ΦV,x if the PCP verifier V was also strong and
smooth?

A strong PCP verifier with strongness parameter α yields a stable CSP ΦV,x, in the sense
that an assignment that is δ-far from all satisfying assignments violates an α · δ fraction
of constraints. Like strong soundness, this property holds both when ΦV,x is satisfiable
(i.e. when inputs x ∈ S) and when ΦV,x is unsatisfiable (i.e. when x /∈ S). We note
that in the latter case, ΦV,x cannot have more than an α fraction of constraints satisfied
simultaneously.
A smooth PCP verifier yields a CSP such that each variable occurs in the same number
of constraints.

Thus, Theorem 1.5 implies that for any set S ∈ NP there is an efficient parsimonious
reduction from S to α-stable bounded-arity qCSPs with equal variable occurrence. To prove
Corollary 1.7, we show a polynomial-time computable parsimonious reduction of α-stable
qCSPs with equal variable occurrence to Ω(α)-stable qCNFs with bounded variable occurrence
(Proposition A.1), and then reduce the latter to Ω(α)-stable 3CNFs with bounded variable
occurrence (Proposition A.2).

Recall that a formula has b-bounded-occurrence if any variable appears in at most b clauses,
and that the promise problem (α, b)-stableqSAT is distinguishing b-bounded-occurrence
qCNF formulas that are α-stable and satisfiable from ones in which any assignment violates
at least an α fraction of the clauses.
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depends on variable v then we say that v occurs in Ci.

https://doi.org/10.1109/SFCS.2002.1181879
https://doi.org/10.1109/SFCS.2002.1181879
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1561/0400000030


O. Paradise 2:37

I Proposition A.1. For any q ∈ N there is b ∈ N such that there is a polynomial-time
computable parsimonious reduction from α-stable qCSPs with equal variable occurrence to
(α/qb, b)-stableqSAT.

Proof. We will show a reduction to α/qb′-stable qCSPs with b′-bounded variable occurrence
for some constant b′ ∈ N (independent of q, actually). Then, q-arity of the resulting CSP
implies that each of its constraints can be expressed as the conjunction of at most 2q disjunctive
clauses, and conjuncting all these clauses gives a CNF formula that is α/qb′2q-stable and
b′2q-bounded variable occurrence. Setting b := b′2q gives the required result.

The reduction, taken from [23], replaces the occurrence of each variable in a constraint
with a copy of that variable, and adds consistency (i.e. equality) constraints between copies
based on an expander graph of constant degree. We stress that the stability of the obtained
CNF crucially relies on the equal variable occurrence of the reduced CSP so that each variable
is replaced with the same number of consistency checks, and that the new instance is not
necessarily stable without this property (see [12, Appendix D]).

Fix an α-stable CSP Φ consisting of m constraints over ` variables, such that each
constraint depends on exactly q variables and each variable occurs in exactlymq/` constraints.

Fix a d-regular, explicit28 graph G over mq/` vertices, with an expansion property
guaranteeing that for any set of vertices T that consists of at most a half of the vertices,
there are 2|T | edges crossing from T to its complement (for example, the expanders of [7]).
The variables of Φ′ are {vC} for each variable v of Φ and each constraint C ∈ Φ in which v
occurs. There are two types of constraints in Φ′:

For each constraint C ∈ Φ, a primal constraint C ′ is added, which is simply C but
with variables replaced by their corresponding (alleged) copies. For example, if C =
(x ∨ y ∨ z ∨ w) ∧ (w ∨ x ∨ u), then C ′ = (xC ∨ yC ∨ zC ∨ wC) ∧ (wC ∨ xC ∨ uC).
For each variable v of Φ, mq

` ·
d
2 consistency constraints are added to Φ′: letting

{C1, . . . , Cmq/`} be the set of constraints in which v occurs, for each edge {i, j} in
G we add a constraint that is satisfied if and only if vCi equals vCj .

All in all, Φ′ has ` ·mq/` = mq variables and m+ ` · mq` ·
d
2 = (1 + qd/2)m constraints.

Each variable of Φ′ occurs in d+ 1 constraints, and the reduction is indeed parsimonious
since any assignment that satisfies Φ′ must be consistent and therefore gives a satisfying
assignment to Φ (and vice-versa). We show that Φ′ is α

qd -stable. The case that Φ is
unsatisfiable follows from [23], so we focus on the case that Φ is satisfiable (and then so is
Φ′). Let A′ be an assignment to Φ′ that violates a γ′ fraction of its constraints. Let AMaj be
an assignment to Φ that gives each variable a value according to the majority value that A′
gives to its (alleged) copies; that is, for each variable v, AMaj(v) := MajC(A′(vC)). Let A′Maj
be the extension of AMaj back to the variables of Φ′; that is, A′Maj(vC) := AMaj(v) for each
variable v and constraint C that depends on v. Let γMaj denote the fraction of constraints
in Φ unsatisfied by AMaj.

B Claim A.1.1.

γ′ ≥
γMaj + δ(A′, A′Maj)

qd

28 I.e. there is an algorithm that constructs G in polynomial time when given mq/` as input.
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Proof of Claim A.1.1. To prove the claim, we show that whatever primal constraints may be
satisfied by A′ but not by A′Maj (which works against the lower bound we need) are “made
up for” in consistency clauses unsatisfied by A′. It will be nicer to deal with whole numbers
rather than fractions, so we let a′ (resp. aMaj) denote the number of constraints of Φ′ (resp.
Φ) unsatisfied by A′ (resp. AMaj), and notice that the claim follows from showing that

a′ ≥ aMaj +
∣∣{vC : A′(vC) 6= A′Maj(vC)

}∣∣
Fix a variable v, and let k be the number of constraints C such that A′ disagrees with

A′Maj on the value assigned to vC . Then v occurs in at most k constraints of Φ that are
unsatisfied by AMaj but whose corresponding primal constraint is satisfied by A′. But by
the expansion property of the graph G, each of the k inconsistencies result in 2k consistency
constraints unsatisfied by A′. C

Now, let B be the closest satisfying assignment to AMaj. Note that the extension of B
to the variables of Φ′, denoted B′, is a satisfying assignment to Φ′, and that δ(AMaj, B) =
δ(A′Maj, B

′). Using Claim A.1.1 and stability of Φ, we have

γ′ ≥
γMaj + δ(A′, A′Maj)

qd
≥
αδ(AMaj, B) + δ(A′Maj, B

′)
qd

≥ α

qd
· δ(A′, B′) J

I Proposition A.2. For any α ∈ (0, 1] and b, q ∈ N there is α′ ∈ (0, 1] such that there is a
polynomial-time parsimonious reduction from (α, b)-stableqSAT to (α′, b)-stable3SAT.

Friggstad et al. show a similar reduction in [12][Section 4]. Furthermore, their reduction
yields CNFs that have exactly three literals per clause.

Proof. We use the standard parsimonious reduction of qSAT to 3SAT to transform a formula
ϕ to a formula ϕ′. The reduction operates clause-by-clause according to the following
recurrence relation: for each clause C := (x1 ∨ · · · ∨ xk) in ϕ (where k ≤ q),

If k < 4, add the clause C to ϕ′ and halt.
Otherwise, introduce a “fresh” auxiliary variable z, add the clauses (x1 ∨ x2 ∨ z), (x1 ∨ z)
and (x2 ∨ z) to ϕ′, and then recurse on C ′ := (z ∨ x3 ∨ · · · ∨ xk).

If ϕ is not satisfiable then no assignment satisfies more than an α/3q fraction of the
clauses of ϕ′ (by the standard soundness of this reduction), so we focus on the case that ϕ
(and therefore ϕ′) is satisfiable. Let A be some assignment for ϕ′, given as an assignment
X to the original variables (i.e. to ϕ) and an assignment Z to the auxiliary variables. Let
X∗ be a satisfying assignment to ϕ closest to X. By parsimony of the reduction, there is
a unique assignment Z∗ to the auxiliary variables such that A∗ := (X∗, Z∗) is a satisfying
assignment.

Again, it would be more convenient for us to deal with absolute quantities rather than
relative quantities, so let VA denote the number of clauses violated by A, and ∆(A,A∗)
denote the number of variables on which A and A∗ disagree. Similarly define VX , ∆(X,X∗)
and ∆(Z,Z∗). Since ϕ′ has b-bounded variable occurrence then the ratio between its
number of variables and number of clauses is at least 1/b, therefore it suffices to show that
VA = Ω(α ·∆(A,A∗)).

Now, on the one hand, α-stability of ϕmeans that VX ≥ α
b ∆(X,X∗) (using the assumption

that ϕ has b-bounded variable occurrence to transition from fractional to absolute quantities,
just like in the previous paragraph). Additionally, VA ≥ VX/3q because if X doesn’t satisfy a
clause in ϕ then A doesn’t satisfy at least one of the corresponding clauses in ϕ′. Therefore,

VA ≥
α

3qb ·∆(X,X∗) (18)
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On the other hand, the parsimony of the reduction implies that, for any clause C of ϕ, if
X and X∗ agree on all q variables occurring in C, and A satisfies all clauses introduced by C
(in ϕ′), then it must be that Z and Z∗ agree on all of the auxiliary variables introduced by C.
That is, for any clause C, if Z and Z∗ disagree on any of the auxiliary variables introduced
by C, then either X and X∗ disagree on some of the q variables occurring in C, or A violates
some of the clauses introduced by C. Therefore,

q ·∆(X,X∗) + VA ≥ ∆(Z,Z∗) (19)

Combining Equations (18) and (19), we have that VA ≥ α
4qb ·max (∆(X,X∗),∆(Z,Z∗)), and

since ∆(A,A∗) = ∆(X,X∗) + ∆(Z,Z∗) we have VA ≥ α
8qb∆(A,A∗). J

B Tedious notes regarding smoothness

B.1 On uniform sampling
Recall that probabilistic Turing machines (and PCP verifiers in particular) obtain their
randomness by tossing random coins. It is clear how this ability enables uniform sampling
from sets of size that is a power of 2, but throughout this work we allow verifiers to
sample uniformly random elements from sets of arbitrary (finite) size. Since the technical
implementation of such sampling may affect the smoothness of the verifier, a clarification on
this matter is due.

To implement a PCP verifier that uses its randomness only to sample a uniformly random
element from a set [N ], rejection sampling may be employed while losing a constant factor
in soundness: the verifier samples a uniformly random element i ∈ [2dlogNe]; if i > N the
verifier immediately accepts, and otherwise it proceeds as intended. Soundness is halved
because the sampled i is in [N ] with probability N/2dlogNe ≥ 1/2.

PCP verifiers in this work use their randomness only to sample uniformly random
elements from a constant number of sets, and are implemented using rejection sampling
on the product of sets from which they sample. Namely, a verifier that uniformly samples
from sets Ω1, . . . ,Ωk is implemented using rejection sampling on the set Ω1 × · · · × Ωk. Still,
this (only) halves soundness, and adds at most k random coin tosses (as the randomness
complexity r :=

∑k
i=1 log |Ωi| grows to

∑k
i=1 dlog |Ωi|e ≤ r + k).

B.2 Smoothness and uniformity
Without loss of generality, we may require that PCP verifiers query each bit in their proof
with some positive probability and never query the same location more than once. Any
verifier that doesn’t satisfy these simplifying assumptions can be transformed into one that
does: we add a single uniformly random query, and then modify the verifier so that whenever
it attempts to query the same location twice, it uniformly samples from the remaining
unqueried locations in the proof instead.

Now here’s a thought: Suppose we have a smooth verifier that issues q queries to a proof
oracle of length `. We claim that if we look at a set of query locations I ⊆ [`] generated
by this verifier (based on its random coins), and subsequently choose a uniformly random
element i ∈ I from this set, then i is uniformly distributed in [`]. Why? Well, smoothness
means that the probability that the verifier queries a certain location in the proof oracle in
any of its q queries is equal for any certain location (it’s equal to q/`, if you must know). By
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the previous paragraph, we can assume all queries of the verifier are distinct, so if a certain
location is queried by the verifier it’s queried exactly once. Therefore, a uniformly random
element from the set of query locations is distributed uniformly in the proof.

Smoothness and marginal uniformity

It may seem natural to define smooth PCPs to be those whose queries are marginally
uniform.29 That is, that the first query of the verifier is distributed uniformly in the proof,
and so is the second, third, and so on. We claim that there’s almost no difference between
this notion and ours (Definition 1.3): by the observation made in the previous paragraph,
any nonadaptive PCP satisfying Definition 1.3 can be transformed into one that satisfies
marginal uniformity by randomly permuting the order of its queries. Actually, even a random
cyclic shift would suffice, and only incurs a log q additive overhead in randomness complexity
– exponentially smaller than the original randomness complexity in the constructions used
throughout this work.

C The vector-valued low-degree polynomial test

This section was kindly contributed by Oded Goldreich and Madhu Sudan. It sees the
generalization of the Point-line low-degree polynomial test ([2, Section 7.2]) to the vector-
valued setting.

I Definition C.1 (Definition 5.3 restated). A function f : Fm → Fk is a vector-valued
multivariate polynomial of degree at most d if for all i ∈ [k] the projection of f to the ith
coordinate is a multivariate polynomial of (total) degree at most d, where the projection of f
to the ith coordinate, denoted fi : Fm → F, is defined fi(x) := f(x)i for all x ∈ Fm.

I Algorithm C.2 (Algorithm 5.4 restated). The point-line vector-valued low-degree test
(PL-VLDT) is given access to an oracle f : Fm → Fk and a “lines” proof oracle g that maps
line L to vector-valued univariate polynomial gL : L → Fk of degree at most d. It samples a
uniformly random line L through Fm and uniformly random point x ∈ L, and accepts if and
only if f(x) = gL(x).

I Fact C.3. For k = 1, PL-VLDT is the low degree test of [2, Theorem 65], therefore if
input oracle f : Fm → F is δ-far from being a polynomial of degree at most d then PL-VLDT
rejects with probability at least δ/2 for any lines oracle g.

I Proposition C.4 (Proposition 5.5 restated). Assuming |F| > 25k, if input oracle f : Fm → Fk
is δ-far from being a vector-valued polynomial of degree at most d then for any lines oracle g,
PL-VLDT rejects f and g with probability at least δ/40.

The proof follows three main cases. If a projection of the input is far from being a
(scalar-valued) low-degree polynomial then we are done due to Fact C.3. If δ = Ω(1/|F|) then
the distance of the restriction f [L] from being a univariate low-degree univariate polynomial
is proportional to the distance of f from being a low-degree polynomial (i.e. δ) with high
probability, and assuming gL is the closest low-degree polynomial to f [L], rejection occurs
with this very probability. The third case is when δ = O(1/|F|), and then we capitalize on
δ being very small to show that with probability Θ(|F|δ) the restriction f [L] is low-degree
except for exactly one point, which is sampled with probability 1/|F|. A formal proof follows.

29For example, as used in [1].



O. Paradise 2:41

Proof. Throughout this proof, low-degree means of degree at most d. For each i ∈ [k] let
fi : Fm → F be the projection of f onto its ith coordinate, and let gi be a mapping of lines
through Fm to low-degree univariate polynomials given by gL,i(x) := gL(x)i ∈ F for each
line L and point x ∈ L. Let f̃i : Fm → F be a low-degree polynomial closest to fi, and notice
that f̃ := (f̃1, . . . , f̃k) is a vector-valued low-degree polynomial closest to f . Let δ and δi be
the distances of f from f̃ and fi from f̃i respectively.

First, note that if fi(x) 6= gL,i(x) for the sampled L and x then the test rejects, therefore
the probability that PL-VLDT rejects f and g is greater than the probability that it rejects
input oracle fi and lines oracle (gL,i)L. Hence, if there exists i such that δi ≥ 1/5 then by
Fact C.3 rejection occurs with probability at least 1/10. Therefore, we may assume that
δi < 1/5 for all i ∈ [k]. We proceed with a partial analysis that assumes that δ ≤ 2/5, and
later show how the remaining possibilities follow.

Case 1: δ > 5/|F|. Points on a randomly sampled line L are pairwise independent and
marginally uniform, so the Chebyshev inequality implies that the relative distance
between f [L] and f̃ [L] is at least δ/2 and at most 3δ/2 with probability greater than
1− δ(1−δ)

(δ/2)2|F| ≥ 1/5. Conditioned on this event, one of two cases must hold:
Case 1.1: There is i such that gL,i 6= f̃i[L]. Note that gL,i and f̃i[L] are distinct

(univariate) polynomials of degree at most d so they agree on at most d points in L.
Since fi[L] disagrees with f̃i[L] on at most 3δ|F|/2 ≤ 3|F|/5 points, it holds that f [L]
and gL agree on at most d+ 3|F|/5 ≤ 4|F|/5 points. Therefore rejection occurs with
probability at least 4/5 ≥ δ/2.

Case 1.2: For all i it holds that gL,i = f̃i[L]. Then rejection occurs if and only if f [L]
and f̃ [L] disagree on the sampled x ∈ L, which occurs with probability at least δ/2.

All in all, rejection occurs with probability at least 1
5 ·

δ
2 = δ

10 .
Case 2: δ < 1/2|F|. We claim that f [L] and f̃ [L] agree on exactly 1 point with probability

at least |F|δ/2. Again we use pairwise independence and marginal uniformity of points
on a random line, this time served with a side of inclusion-exclusion. Let each line L have
a fixed ordering L = {x1, . . . , x|F|}. Then,

P
L

[
∃! x ∈ L f(x) 6= f̃(x)

]
≥
∑
i∈[|F|]

P
xi

[
f(xi) 6= f̃(xi)

]
−

∑
j∈[|F|\{i}]

P
xi,xj

[
f(xi) 6= f̃(xi), f(xj) 6= f̃(xj)

]
≥ |F|

(
δ − |F|δ2) = |F|δ(1− |F|δ) ≥ |F|δ/2

As in Case 1, conditioned on this event rejection occurs with probability at least 4/5 ≥
1/|F| or 1/|F|, depending on whether g and f̃ agree on the random line L. All in all,
rejection occurs with probability at least |F|δ2 ·

1
|F| = δ

2 .

Now, if δ > 2/5 we show that there exists k′ < k such that the distance of f[k′] :=
(f1, . . . , fk′) from being a vector-valued low-degree polynomial, denoted δ[k′], is greater than
1/5 ≥ 5/|F| and less than 2/5, and since the rejection probability of f and g is greater
than that of f[k′] and g[k′] := (g1, . . . , gk′) we may then apply Case 1 to f[k′]. Indeed,
δ[k′] − δ[k′−1] ≤ δk′ ≤ 1/5 and δ[k] = δ ≥ 2/5, so by a greedy argument there must exist
k′ ≤ k such that δ[k′] ∈ [1/5, 2/5].

Finally, we tend to the case that δ ∈ [1/2|F|, 5/|F|]. If there exists i such that δi ≥ 1/4|F|
then by Fact C.3 rejection occurs with probability at least 1/8|F| ≥ δ/40. Otherwise, by a
greedy argument there exists k′ ≤ k such that δ[k′] ∈ [1/4|F|, 1/2|F|]. Applying Case 2 to
f[k′], we have that rejection occurs with probability at least δ[k′]/2 ≥ 1/8|F| ≥ δ/40. J
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