
Span Programs and Quantum Space Complexity
Stacey Jeffery
CWI, Amsterdam, The Netherlands
QuSoft, Amsterdam, The Netherlands
https://homepages.cwi.nl/~jeffery/
jeffery@cwi.nl

Abstract
While quantum computers hold the promise of significant computational speedups, the limited size
of early quantum machines motivates the study of space-bounded quantum computation. We relate
the quantum space complexity of computing a function f with one-sided error to the logarithm
of its span program size, a classical quantity that is well-studied in attempts to prove formula size
lower bounds.

In the more natural bounded error model, we show that the amount of space needed for a unitary
quantum algorithm to compute f with bounded (two-sided) error is lower bounded by the logarithm
of its approximate span program size. Approximate span programs were introduced in the field of
quantum algorithms but not studied classically. However, the approximate span program size of a
function is a natural generalization of its span program size.

While no non-trivial lower bound is known on the span program size (or approximate span
program size) of any concrete function, a number of lower bounds are known on the monotone span
program size. We show that the approximate monotone span program size of f is a lower bound on
the space needed by quantum algorithms of a particular form, called monotone phase estimation
algorithms, to compute f . We then give the first non-trivial lower bound on the approximate span
program size of an explicit function.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum space complexity, span programs

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.4

Related Version A full version of the paper is available at https://arxiv.org/abs/1908.04232.

Funding Supported by an NWO WISE Fellowship, an NWO Veni Innovational Research Grant
under project number 639.021.752, and QuantERA project QuantAlgo 680-91-03. SJ is a CIFAR
Fellow in the Quantum Information Science Program.

Acknowledgements I am grateful to Tsuyoshi Ito for discussions that led to the construction of
approximate span programs from two-sided error quantum algorithms presented in Section 3.2, and
to Alex B. Grilo and Mario Szegedy for insightful comments. I thank Robin Kothari for pointing
out the improved separation between certificate complexity and approximate degree in [5], which led
to an improvement in from (logn)7/6 (using [1]) to (logn)2−o(1) in Theorem 32.

1 Introduction

While quantum computers hold the promise of significant speedups for a number of problems,
building them is a serious technological challenge, and it is expected that early quantum
computers will have quantum memories of very limited size. This motivates the theoretical
question: what problems could we solve faster on a quantum computer with limited space?
Or similarly, what is the minimum number of qubits needed to solve a given problem (and
hopefully still get a speedup).

We take a modest step towards answering such questions, by relating the space complexity
of a function f to its span program size, which is a measure that has received significant
attention in theoretical computer science over the past few decades. Span programs are a

© Stacey Jeffery;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 4; pp. 4:1–4:37

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://homepages.cwi.nl/~jeffery/
mailto:jeffery@cwi.nl
https://doi.org/10.4230/LIPIcs.ITCS.2020.4
https://arxiv.org/abs/1908.04232
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Span Programs and Quantum Space Complexity

model of computation introduced by Karchmer and Wigderson [10] in an entirely classical
setting. They defined a span program for a Boolean function f : {0, 1}n → {0, 1} as a matrix
A with each of its columns labelled by an index i ∈ [n] and a bit b ∈ {0, 1}, and some fixed
target vector in the columnspace of A. The span program decides f if for all x such that
f(x) = 1, the target vector is in the span of the vectors labelled by (i, xi) for i ∈ [n]. The size
of the span program is the sum over i of the dimension of the span of the columns labelled
by (i, 0) or (i, 1) (see also Definition 12). The span program size of f is then the minimum
size of any span program deciding f , and was originally defined to lower bound the size of
counting branching programs.

Several decades after the introduction of span programs, Reichardt and Špalek [18] related
them to quantum algorithms, and introduced the new measure of span program complexity
(see Definition 13). The importance of span programs in quantum algorithms stems from the
ability to compile any span program for a function f into a bounded error quantum algorithm
for f [17]. In particular, there is a tight correspondence between the span program complexity
of f , and its quantum query complexity – a rather surprising and beautiful connection for
a model originally introduced outside the realm of quantum computing. In contrast, the
classical notion of span program size had received no attention in the quantum computing
literature before now.

Ref. [8] defined the notion of an approximate span program for a function f . Loosely
speaking, a span program approximates f if for every x such that f(x) = 1, the target is
close to the span of the columns labelled by {(i, xi)}i∈[n], and otherwise, the target is far
from this span. They showed that even an approximate span program for f can be compiled
into a bounded error quantum algorithm for f . In this work, we further relax the definition
of an approximate span program for f , making analysis of such algorithms significantly easier
(see Definition 15).

Let SU (f) denote the bounded error unitary space complexity of f , or the minimum
space needed by a unitary quantum algorithm1 that computes f with bounded error (see
Definition 7). For a function f : {0, 1}n → {0, 1}, we can assume that the input is accessed
by queries, so that we do not need to store the full n-bit input in working memory, but we
need at least logn bits of memory to store an index into the input. Thus, a lower bound of
ω(logn) on SU (f) for some f would be non-trivial.

Letting SP(f) denote the minimum size of a span program deciding f , and S̃P(f) the
minimum size of a span program approximating f (see Definition 16), we have the following
(see Theorem 24):

I Theorem 1 (Informal). For any Boolean function f , if SU (f) denotes its bounded error
unitary space complexity, and S̃P(f) its approximate span program size, then

SU (f) ≥ log S̃P(f).

Similarly, if S1
U (f) denotes its one-sided error unitary space complexity, and SP(f) its span

program size, then

S1
U (f) ≥ log SP(f).

1 A unitary quantum algorithm is a quantum algorithm in which all measurements are delayed until the
end. In contrast to time complexity, the space complexity of an algorithm may be significantly smaller
if we allow intermediate measurements. See [6] for a discussion of the distinction between unitary and
non-unitary quantum space.

S. Jeffery 4:3

The relationship between span program size and unitary quantum space complexity is rather
natural, as the span program size of f is known to lower bound the minimum size of a
symmetric branching program for f , and the logarithm of the branching program size of a
function f characterizes its classical deterministic space complexity.

The inequality S1
U (f) ≥ log SP(f), although not observed previously, follows straight-

forwardly from a construction of [17] for converting a one-sided error quantum algorithm
for f into a span program for f – one need only observe that the size of the resulting
span program is closely related to the space complexity of the algorithm. We adapt this
construction to show how to convert a bounded (two-sided) error quantum algorithm for f
with query complexity T and space complexity S ≥ log T into an approximate span program
for f with complexity Θ(T) and size 2Θ(S), proving SU (f) ≥ Ω(log S̃P(f)). The connection
between SU (f) and log S̃P(f) is tight up to an additive term of the logarithm of the minimum
complexity of any span program for f with optimal size. This follows from the fact that
an approximate span program can be compiled into a quantum algorithm in a way that
similarly preserves the correspondence between space complexity and (logarithm of) span
program size, as well as the correspondence between query complexity and span program
complexity (see Theorem 17). While the preservation of the correspondence between query
complexity and span program complexity (in both directions) is not necessary for our results,
it may be useful in future work for studying lower bounds on time and space simultaneously
– somewhat analogous to branching programs, which capture both the time and space of
classical algorithms.

The significance of Theorem 1 is that span program size has received extensive attention in
theoretical computer science. Using results from [3], the connection in Theorem 1 immediately
implies the following (Theorem 25):

I Theorem 2. For almost all Boolean functions f on n bits, S1
U (f) = Ω(n).

If we make a uniformity assumption that the quantum space complexity of an algorithm is
at least the logarithm of its time complexity, then Theorem 2 would follow from a lower
bound of Ω(2n) on the quantum time complexity of almost all n-bit Boolean functions.
Notwithstanding, the proof via span program size is evidence of the power of the technique.

In the pursuit of lower bounds on span program size of concrete functions, several nice
expressions lower bounding SP(f) have been derived. By adapting one such lower bound on
SP(f) to S̃P(f), we get the following (see Lemma 29):

I Theorem 3 (Informal). For any Boolean function f , and partial matrix M ∈ (R ∪
{?})f−1(0)×f−1(1) with ‖M‖∞ ≤ 1:

SU (f) ≥ Ω
(

log
(1

2 -rank(M)
maxi∈[n] rank(M ◦∆i)

))
,

where ◦ denotes the entrywise product, and ∆i[x, y] = 1 if xi 6= yi and 0 else.

Above, 1
2 -rank denotes the approximate rank, or the minimum rank of any matrix M̃ such

that |M [x, y] − M̃ [x, y]| ≤ 1
2 for each x, y such that M [x, y] 6= ?. If we replace 1

2 -rank(M)
with rank(M), we get the logarithm of an expression called the rank measure, introduced by
Razborov [15]. The rank measure was shown by Gàl to be a lower bound on span program
size, SP [7], and thus, our results imply that the log of the rank measure is a lower bound on
S1
U . It is straightforward to extend this proof to the approximate case to get Theorem 3.
Theorem 3 seems to give some hope of proving a non-trivial – that is, ω(logn) – lower

bound on the unitary space complexity of some explicit f , by exhibiting a matrix M for
which the (approximate) rank measure is 2ω(logn). In [15], Razborov showed that the rank

ITCS 2020

4:4 Span Programs and Quantum Space Complexity

measure is a lower bound on the Boolean formula size of f , motivating significant attempts
to prove lower bounds on the rank measure of explicit functions. The bad news is, circuit
lower bounds have been described as “Complexity theory’s Waterloo” [2]. Despite significant
effort, no non-trivial lower bound on span program size for any f is known.

Due to the difficulty of proving explicit lower bounds on span program size, earlier work
has considered the easier problem of lower bounding monotone span program size, mSP(f).
A monotone span program is a span program where the columns of A are labelled by (i, 1)
for i ∈ [n] (i.e. there are no columns associated with (i, 0)). For a monotone function f ,
the monotone span program size of f , mSP(f) is the minimum size of any monotone span
program for f . We can similarly define the approximate monotone span program size of f ,
mS̃P(f). Although log mS̃P(f) is not a lower bound on SU (f), even for monotone f , it is a
lower bound on the space complexity of any algorithm obtained by compiling a monotone
span program. We show that such algorithms are equivalent to a more natural class of
algorithms called monotone phase estimation algorithms. Informally, a phase estimation
algorithm is an algorithm that works by performing phase estimation of some unitary that
makes a single query to the input, and estimating the amplitude on a 0 in the phase register
(see Definition 41). Phase estimation algorithms are completely general, in the sense that
any unitary quantum algorithm can be transformed into a phase estimation in a way that
asymptotically preserves its space and query complexity. A monotone phase estimation
algorithm is a phase estimation algorithm where, loosely speaking, adding 0s to the input
can only make the algorithm more likely to reject (see Definition 42). We can then prove the
following (see Theorem 43):

I Theorem 4 (Informal). For any Boolean function f , any bounded error monotone phase
estimation algorithm for f has space complexity at least log mS̃P(f), and any one-sided error
monotone phase estimation algorithm for f has space complexity at least log mSP(f).

Fortunately, non-trivial lower bounds for the monotone span program complexity are
known for explicit functions. In Ref. [3], Babai, Gàl and Wigderson showed a lower bound
of mSP(f) ≥ 2Ω(log2(n)/ log log(n)) for some explicit function f , which was later improved to
mSP(f) ≥ 2Ω(log2(n)) by Gàl [7]. In Ref. [19], a function f was exhibited with mSP(f) ≥ 2nε

for some constant ε ∈ (0, 1), and in the strongest known result, Pitassi and Robere exhibited a
function f with mSP(f) ≥ 2Ω(n) [14]. Combined with our results, each of these implies a lower
bound on the space complexity of one-sided error monotone phase estimation algorithms.
For example, the result of [14] implies a lower bound of Ω(n) on the space complexity of
one-sided error monotone phase estimation algorithms for a certain satisfiability problem f .
This lower bound, and also the one in [19], are proven by choosing f based on a constraint
satisfaction problem with high refutation width, which is a measure related to the space
complexity of certain classes of SAT solvers, so it is intuitively not surprising that these
problems should require a large amount of space to solve with one-sided error.

For the case of bounded error space complexity, we also prove the following (see The-
orem 32, Corollary 44):

I Theorem 5 (Informal). There exists a function f : {0, 1}n → {0, 1} such that any bounded
error monotone phase estimation algorithm for f has space complexity (logn)2−o(1).

This lower bound is non-trivial, although much less so than the best known lower bound of
Ω(n) for the one-sided case. Our result also implies a new lower bound of 2(logn)2−o(1) on the
monotone span program complexity of the function f in Theorem 5.

S. Jeffery 4:5

To prove the lower bound in Theorem 5, we apply a new technique that leverages the
best possible gap between the certificate complexity and approximate polynomial degree
of a function, employing a function g : {0, 1}m2+o(1) → {0, 1} from [5]2, whose certificate
complexity is m1+o(1), and whose approximate degree is m2−o(1). Following a strategy of
[19], we use this g to construct a pattern matrix [20] (see Definition 37) and use this matrix
in a monotone version of Theorem 3 (see Theorem 33). The fact that certificate complexity
and approximate degree of total functions are related by d̃eg1/3(g) ≤ C(g)2 for all g is a
barrier to proving a lower bound better than (logn)2 using this technique, but we also
give a generalization that has the potential to prove significantly better lower bounds (see
Lemma 40).

Discussion and open problems

The most conspicuous open problem of this work is to prove a lower bound of ω(logn) on
SU (f) or even S1

U (f) for some explicit decision function f . It is known that any space S
quantum Turing machine can be simulated by a deterministic classical algorithm in space S2

[21] so a lower bound of ω(log2 n) on classical space complexity would also give a non-trivial
lower bound on quantum space complexity. If anything, the relationship to span program
size is evidence that this task is extremely difficult.

We have shown a lower bound of 2(logn)2−o(1) on the approximate monotone span program
complexity of an explicit monotone function f , which gives a lower bound of (logn)2−o(1) on
the bounded error space complexity needed by a quantum algorithm of a very specific form:
a monotone phase estimation algorithm. This is much worse than the best bound we can get
in the one-sided case: a lower bound of Ω(n) for some explicit function. An obvious open
problem is to try to get a better lower bound on the approximate monotone span program
complexity of some explicit function.

Our lower bound of (logn)2−o(1) only applies to the space complexity of monotone phase
estimation algorithms and does not preclude the existence of a more space-efficient algorithm
for f of a different form. We do know that phase estimation algorithms are fully general,
in the sense that every problem has a space-optimal phase estimation algorithm. Does
something similar hold for monotone phase estimation algorithms? This would imply that
log mS̃P(f) is a lower bound on SU (f) for all monotone functions f .

In this work, we define an approximate version of the rank method, and monotone rank
method, and in case of the monotone rank method, give an explicit non-trivial lower bound.
The rank method is known to give lower bounds on formula size, and the monotone rank
method on monotone formula size. An interesting question is whether the approximate rank
method also gives lower bounds on some complexity theoretic quantity related to formulas.

Our results are a modest first step towards understanding unitary quantum space com-
plexity, but even if we could lower bound the unitary quantum space complexity of an explicit
function, there are several obstacles limiting the practical consequences of such a result. First,
while an early quantum computer will have a small quantum memory, it is simple to augment
it with a much larger classical memory. Thus, in order to achieve results with practical
implications, we would need to study computational models that make a distinction between
quantum and classical memories. We leave this as an important challenge for future work.

2 An earlier version of this work used a function described in [1] with a 7/6-separation between certificate
complexity and approximate degree. We thank Robin Kothari for pointing us to the improved result
of [5].

ITCS 2020

4:6 Span Programs and Quantum Space Complexity

Second, we are generally only interested in running quantum algorithms when we get
an advantage over classical computers in the time complexity, so results that give a lower
bound on the quantum space required if we wish to keep the time complexity small, such
as time-space lower bounds, are especially interesting. While we do not address time-space
lower bounds in this paper, one advantage of the proposed quantum space lower bound
technique, via span programs, is that span programs are also known to characterize quantum
query complexity, which is a lower bound on time complexity. We leave exploration of this
connection for future work.

We mention two previous characterizations of SU (f). Ref. [9] showed that SU (f) is equal
to the logarithm of the minimum width of a matchgate circuit computing f , and thus our
results imply that this minimum matchgate width is approximately equal to the approximate
span program size of f . Separately, in Ref. [6], Fefferman and Lin showed that for every
function k, inverting 2k(n) × 2k(n) matrices is complete for the class of problems f such
that SU (f) ≤ k(n). Our results imply that evaluating an approximate span program of
size 2k(n) (for some suitable definition of the problem) is similarly complete for this class.
Evaluating an approximate span program boils down to deciding if ‖A(x)+|w0〉‖ is below a
certain threshold, where A(x) is the span program matrix A restricted to the rows labeled
by {(i, xi)}i∈[n], and |w0〉 is some input-independent initial state; so these results are not
unrelated3. We leave exploring these connections as future work.

Organization

The remainder of this paper is organized as follows. In Section 2, we present the necessary
notation and quantum algorithmic preliminaries, and define quantum space complexity. In
Section 3, we define span programs, and describe how they correspond to quantum algorithms.
In particular, we describe how a span program can be “compiled” into a quantum algorithm,
and in Section 3.2, show how a quantum algorithm can be turned into a span program, with
both transformations moreorless preserving the relationships between span program size and
algorithmic space, and between span program complexity and query complexity. From this
correspondence, we obtain, in Section 4, expressions that lower bound the quantum space
complexity of a function. While we do not know how to instantiate any of these expressions
to get a non-trivial lower bound for a concrete function, in Section 5, we consider to what
extent monotone span program lower bounds are meaningful lower bounds on quantum space
complexity, and give the first non-trivial lower bound on the approximate monotone span
program size of a function.

2 Preliminaries

We begin with some miscellaneous notation. For a vector |v〉, we let ‖|v〉‖ denote its `2-norm.
In the following, let A be a matrix with i and j indexing its rows and columns. Define:

‖A‖∞ = max
i,j
|Ai,j |, and ‖A‖ = max{‖A|v〉‖ : ‖|v〉‖ = 1}.

3 In the notation of Definition 12, A(x) = AΠH(x), and |w0〉 = A+|τ〉 for |τ〉 the target. Then one can
verify that the positive witness size of x is w+(x) =

∥∥A(x)+|w0〉
∥∥2 (see Definition 13).

S. Jeffery 4:7

Define the ε-rank of a matrix A as the minimum rank of any matrix B such that ‖A−B‖∞ ≤
ε. For a matrix A with singular value decomposition A =

∑
k σk|vk〉〈uk|, define:

col(A) = span{|vk〉}k, row(A) = span{|uk〉}k, ker(A) = row(A)⊥, A+ =
∑
k

1
σk
|uk〉〈vk|.

The following lemma, from [12], is useful in the analysis of quantum algorithms.

I Lemma 6 (Effective spectral gap lemma). Fix orthogonal projectors ΠA and ΠB. Let
U = (2ΠA − I)(2ΠB − I), and let ΠΘ be the orthogonal projector onto the eiθ-eigenspaces of
U such that |θ| ≤ Θ. Then if ΠA|u〉 = 0, ‖ΠΘΠB |u〉‖ ≤ Θ

2 ‖|u〉‖.

In general, we will let ΠV denote the orthogonal projector onto V , for a subspace V .

Unitary quantum algorithms and space complexity

A unitary quantum algorithm A = {An}n∈N is a family (parametrized by n) of sequences
of 2s(n)-dimensional unitaries U (n)

1 , . . . , U
(n)
T (n), for some s(n) ≥ logn and T (n). (We will

generally dispense with the explicit parametrization by n). For x ∈ {0, 1}n, let Ox be the
unitary that acts as Ox|j〉 = (−1)xj |j〉 for j ∈ [n], and Ox|0〉 = |0〉. We let A(x) denote the
random variable obtained from measuring

UTOxUT−1 . . .OxU1|0〉

with some two-outcome measurement that should be clear from context. We call T (n) the
query complexity of the algorithm, and S(n) = s(n) + log T (n) the space complexity. By
including a log T (n) term in the space complexity, we are implicitly assuming that the
algorithm must maintain a counter to know which unitary to apply next. This is a fairly mild
uniformity assumption (that is, any uniformly generated algorithm uses Ω(log T) space), and
it will make the statement of our results much simpler. The requirement that s(n) ≥ logn is
to ensure that the algorithm has enough space to store an index i ∈ [n] into the input.

For a (partial) function f : D → {0, 1} for D ⊆ {0, 1}n, we say that A computes f with
bounded error if for all x ∈ D, A(x) = f(x) with probability at least 2/3. We say that A
computes f with one-sided error if in addition, for all x such that f(x) = 1, A(x) = f(x)
with probability 1.

I Definition 7 (Unitary Quantum Space). For a family of functions f : D → {0, 1} for
D ⊆ {0, 1}n, the unitary space complexity of f , SU (f), is the minimum S(n) such that there
is a family of unitary quantum algorithms with space complexity S(n) that computes f with
bounded error. Similarly, S1

U (f) is the minimum S(n) such that there is a family of unitary
quantum algorithms with space complexity S(n) that computes f with one-sided error.

I Remark 8. Since T is the number of queries made by the algorithm, we may be tempted
to assume that it is at most n, however, while every n-bit function can be computed in n
queries, this may not be the case when space is restricted. For example, it is difficult to
imagine an algorithm that uses O(logn) space and o(n3/2) quantum queries to solve the
following problem on [q]n ≡ {0, 1}n log q: Decide whether there exist distinct i, j, k ∈ [n] such
that xi + xj + xk = 0 mod q.

ITCS 2020

4:8 Span Programs and Quantum Space Complexity

Phase estimation

For a unitary U acting on H and a state |ψ〉 ∈ H, we will say we perform T steps of phase
estimation of U on |ψ〉 when we compute:

1√
T

T−1∑
t=0
|t〉U t|ψ〉,

and then perform a quantum Fourier transform over Z/TZ on the first register, called the
phase register. This procedure was introduced in [11]. It is easy to see that the complexity
(either query or time) of phase estimation is O(T) times the complexity of implementing a
controlled call to U . The space complexity of phase estimation is log T + log dim(H). We
will use the following properties:

I Lemma 9 (Phase Estimation). If U |ψ〉 = |ψ〉, then performing T steps of phase estimation
of U on |ψ〉 and measuring the phase register results in outcome 0 with probability 1. If
U |ψ〉 = eiθ|ψ〉 for |θ| ∈ (π/T, π], then performing T steps of phase estimation of U on |ψ〉
results in outcome 0 with probability at most π

Tθ .

We note that we can increase the success probability to any constant by adding some
constant number k of phase registers, and doing phase estimation k times in parallel, still
using a single register for U , and taking the majority. This still has space complexity
log dimH +O(log T).

Amplitude estimation

For a unitary U acting on H, a state |ψ0〉 ∈ H, and an orthogonal projector Π on H, we
will say we perform M steps of amplitude estimation of U on |ψ〉 with respect to Π when we
perform M steps of phase estimation of

U(2|ψ〉〈ψ| − I)U†(2Π− I)

on U |ψ〉, then, if the phase register contains some t ∈ {0, . . . ,M − 1}, compute p̃ = sin2 πt
2M ,

which is an estimate of ‖ΠU |ψ〉‖2 in a new register. The (time or query) complexity of this is
O(M) times the complexity of implementing a controlled call to U , implementing a controlled
call to 2Π− I, and generating |ψ〉. The space complexity is log T + log dimH +O(1). We
have the following guarantee [4]:

I Lemma 10. Let p = ‖ΠU |ψ〉‖2. There exists ∆ = Θ(1/M) such that when p̃ is obtained
as above from M steps of amplitude estimation, with probability at least 1/2, |p̃− p| ≤ ∆.

We will thus also refer to M steps of amplitude estimation as amplitude estimation to
precision 1/M .

3 Span Programs and Quantum Algorithms

In Section 3.1, we will define a span program, its size and complexity, and what it means for
a span program to approximate a function f . In Section 3.2, we prove the following theorem,
which implies Theorem 1:

I Theorem 11. Let f : D → {0, 1} for D ⊆ {0, 1}n and let A be a unitary quantum
algorithm using T queries, and space S to compute f with bounded error. Then for any
constant κ ∈ (0, 1), there is a span program PA with size s(PA) ≤ 2O(S) that κ-approximates
f with complexity Cκ ≤ O(T). If A decides f with one-sided error, then PA decides f .

S. Jeffery 4:9

3.1 Span Programs
Span programs were first introduced in the context of classical complexity theory in [10],
where they were used to study counting classes for nondeterministic logspace machines.
While span programs can be defined with respect to any field, we will consider span programs
over R (or equivalently, C, when convenient, see Remark 20). We use the following definition,
slightly modified from [10]:

I Definition 12 (Span Program and Size). A span program on {0, 1}n consists of:
Finite inner product spaces {Hj,b}j∈[n],b∈{0,1} ∪ {Htrue, Hfalse}. We then define H =⊕

j,bHj,b⊕Htrue⊕Hfalse, and for every x ∈ {0, 1}n, H(x) = H1,x1⊕· · ·⊕Hn,xn⊕Htrue.4
A vector space V .
A target vector |τ〉 ∈ V .
A linear map A : H → V .

We specify this span program by P = (H,V, |τ〉, A), and leave the decomposition of H implicit.
The size of the span program is s(P) = dimH.

To recover the classical definition from [10], we can view A =
∑
j,bAΠHj,b as a matrix,

with each of the columns of AΠHj,b labeled by (j, b).
Span programs were introduced to the study of quantum query complexity in [18]. In

the context of quantum query complexity, s(P) is no longer the relevant measure of the
complexity of a span program. Instead, [18] introduce the following measures:

I Definition 13 (Span Program Complexity and Witnesses). For P = (H,V, |τ〉, A) a span
program on {0, 1}n and input x ∈ {0, 1}n, we say x is accepted by the span program if there
exists |w〉 ∈ H(x) such that A|w〉 = |τ〉, and otherwise we say x is rejected by the span
program. Let P0 and P1 be respectively the set of rejected and accepted inputs to P . For
x ∈ P1, define the positive witness complexity of x as:

w+(x, P) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = |τ〉}.

Such a |w〉 is called a positive witness for x. For a domain D ⊆ {0, 1}n, we define the
positive complexity of P (with respect to D) as:

W+(P,D) = W+ = max
x∈P1∩D

w+(x, P).

For x ∈ P0, define the negative witness complexity of x as:

w−(x, P) = w−(x) = min{‖〈ω|A‖2 : 〈ω| ∈ L(V,R), 〈ω|τ〉 = 1, 〈ω|AΠH(x) = 0}.

Above, L(V,R) denotes the set of linear functions from V to R. Such an 〈ω| is called a
negative witness for x. We define the negative complexity of P (with respect to D) as:

W−(P,D) = W− = max
x∈P0∩D

w−(x, P).

Finally, we define the complexity of P (with respect to D) by C(P,D) =
√
W+W−.

For f : D → {0, 1}, we say a span program P decides f if f−1(0) ⊆ P0 and f−1(1) ⊆ P1.

4 We remark that while Htrue and Hfalse may be convenient in constructing a span program, they are not
necessary. We can always consider a partial function f ′ defined on (n+ 1)-bit strings of the form (x, 1)
for x in the domain of f , as f(x), and let Hn+1,1 = Htrue and Hn+1,0 = Hfalse.

ITCS 2020

4:10 Span Programs and Quantum Space Complexity

I Definition 14. We define the span program size of a function f , denoted SP(f), as the
minimum s(P) over families of span programs that decide f .

We note that originally, in [10], span program size was defined

s′(P) =
∑
j,b

dim(col(AΠHj,b)) =
∑
j,b

dim(row(AΠHj,b)).

This could differ from s(P) = dim(H) =
∑
j,b dim(Hj,b), because dim(Hj,b) might be much

larger than dim(row(AΠHj,b)). However, if dim(Hj,b) > dim(row(AΠHj,b)) for some j, b,
then it is a simple exercise to show that the dimension of dim(Hj,b) can be reduced without
altering the witness size of any x ∈ {0, 1}n, so the definition of SP(f) is the same as if we’d
used s′(P) instead of s(P). In any case, we will not be relying on previous results about
the span program size as a black-box, and will rather prove all required statements, so this
difference has no impact on our results.

While span program size has only previously been relevant outside the realm of quantum
algorithms, the complexity of a span program deciding f has a fundamental correspondence
with the quantum query complexity of f . Specifically, a span program P can be turned into
a quantum algorithm for f with query complexity C(P,D), and moreover, for every f , there
exists a span program such that the algorithm constructed in this way is optimal [17]. This
second direction is not constructive: there is no known method for converting a quantum
algorithm with query complexity T to a span program with complexity C(P,D) = Θ(T).
However, if we relax the definition of which functions are decided by a span program, then
this situation can be improved. The following is a slight relaxation of [8, Definition 2.6]5.

I Definition 15 (A Span Program that Approximately Decides a Function). Let f : D → {0, 1}
for D ⊆ {0, 1}n and κ ∈ (0, 1). We say that a span program P on {0, 1}n κ-approximates
f if f−1(0) ⊆ P0, and for every x ∈ f−1(1), there exists an approximate positive witness
|ŵ〉 such that A|ŵ〉 = |τ〉, and

∥∥ΠH(x)⊥ |ŵ〉
∥∥2 ≤ κ

W−
. We define the approximate positive

complexity as

Ŵ+ = Ŵκ
+(P,D) = max

x∈f−1(1)
min

{
‖|ŵ〉‖2 : A|ŵ〉 = |τ〉,

∥∥ΠH(x)⊥ |ŵ〉
∥∥2 ≤ κ

W−

}
.

If P κ-approximates f , we define the complexity of P (wrt. D and κ) as Cκ(P,D) =√
Ŵ+W−.

If κ = 0, the span program in Definition 15 decides f (exactly), and Ŵ+ = W+. By [8],
for any x,

min
{∥∥ΠH(x)⊥ |ŵ〉

∥∥2 : A|ŵ〉 = |τ〉
}

= 1
w−(x) .

Thus, since W− = maxx∈f−1(0) w−(x), for every x ∈ f−1(0), there does not exist an
approximate positive witness with

∥∥ΠH(x)⊥ |ŵ〉
∥∥2

< 1
W−

. Thus, when a span program
κ-approximates f , there is a gap of size 1−κ

W−
between the smallest positive witness error∥∥ΠH(x)⊥ |ŵ〉

∥∥2 of x ∈ f−1(1), the smallest positive witness error of x ∈ f−1(0).

5 Which was already a relaxation of the notion of a span program deciding a function.

S. Jeffery 4:11

I Definition 16. We define the κ-approximate span program size of a function f , denoted
S̃Pκ(f), as the minimum s(P) over families of span programs that κ-approximate f . We let
S̃P(f) = S̃P1/4(f).

Then we have the following theorem, whose proof is nearly identical to that of [8, Lemma
3.6]. The only difference between [8, Lemma 3.6] and Theorem 17 below is that here we
let an approximate positive witness for x be any witness with error

∥∥ΠH(x)⊥ |w〉
∥∥2 at most

κ/W−, whereas in [8], an approximate positive witness must have error as small as possible.
This relaxation has negligible effect on the proof.

I Theorem 17. Let f : D → {0, 1} for D ⊆ {0, 1}n, and let P be a span program that
κ-approximates f with size K and complexity C, for some constant κ ∈ (0, 1). Then
there exists a unitary quantum algorithm AP that decides f with bounded error in space
S = O(logK + logC) using T = O(C) queries to x.

We note that the choice of κ = 1/4 in S̃P(f) is arbitrary, as it is possible to modify a
span program to reduce any constant κ to any other constant without changing the size or
complexity asymptotically. This convenient observation is formalized in the following claim.

B Claim 18. Let P be a span program that κ-approximates f : D → {0, 1} for some constant
κ. For any constant κ′ ≤ κ, there exists a span program P ′ that κ′-approximates f with

s(P ′) = (s(P) + 2)
2

log 1
κ′

log 1
κ , and Cκ′(P ′, D) ≤ O (Cκ(P,D)).

We prove Claim 18 in Appendix A. We have the following corollary that will be useful
later, where mS̃Pκ is the monotone approximate span program size, defined in Definition 30:

I Corollary 19. For any κ, κ′ ∈ (0, 1) with κ′ < κ, and any Boolean function f ,

S̃Pκ(f) ≥ S̃Pκ′(f)
1
2

log 1
κ

log 1
κ′ − 2.

If f is monotone, we also have

mS̃Pκ(f) ≥ mS̃Pκ′(f)
1
2

log 1
κ

log 1
κ′ − 2.

Proof. Let P κ-approximate f with optimal size, so s(P) = S̃Pκ(f). Then by Claim 18,
there is a span program P ′ that κ′-approximates f with size

S̃Pκ′(f) ≤ s(P ′) =
(

S̃Pκ(f) + 2
)2

log 1
κ′

log 1
κ .

The first result follows. The second is similar, but also includes the observation that if P is
monotone, so is P ′. J

I Remark 20. It can sometimes be useful to construct a span program over C. However, for
any span program over C, P , there is a span program over R, P ′, such that for all x ∈ P0,
w−(x, P ′) ≤ w−(x, P), for all x ∈ P1, w+(x, P ′) ≤ w+(x, P), and s(P ′) ≤ 2s(P). Thus,
we will restrict our attention to real span programs, but still allow constructions of span
programs over C (in particular, in Section 3.2 and Section 5.2.1).

ITCS 2020

4:12 Span Programs and Quantum Space Complexity

3.2 From Quantum Algorithms to Span Programs
In this section, we will show how to turn a unitary quantum algorithm into a span program,
proving Theorem 11, which implies Theorem 1. The construction we use to prove Theorem 11
is based on a construction of Reichardt for turning any one-sided error quantum algorithm
into a span program whose complexity matches the algorithm’s query complexity [17, arXiv
version]. We observe that the logarithm of the span program’s size is closely related to the
algorithm’s space complexity. We also show that a similar construction works for two-sided
error algorithms, but the resulting span program only approximately decides f .

The algorithm

Fix a function f : D → {0, 1} for D ⊆ {0, 1}n, and a unitary quantum algorithm A such that
on input x ∈ f−1(0), Pr[A(x) = 1] ≤ 1

3 , and on input x ∈ f−1(1), Pr[A(x) = 1] ≥ 1− ε, for
ε ∈ {0, 1

3}, depending on whether we want to consider a one-sided error or a bounded error
algorithm. Let p0(x) = Pr[A(x) = 0], so if f(x) = 0, p0(x) ≥ 2/3, and if f(x) = 1, p0(x) ≤ ε.

We can suppose A acts on three registers: a query register span{|j〉 : j ∈ [n] ∪ {0}}; a
workspace register span{|z〉 : z ∈ Z} for some finite set of symbols Z that contains 0; and an
answer register span{|a〉 : a ∈ {0, 1}}. The query operator Ox acts on the query register as
Ox|j〉 = (−1)xj |j〉 if j ≥ 1, and Ox|0〉 = |0〉. If A makes T queries, the final state of A is:

|Ψ2T+1(x)〉 = U2T+1OxU2T−1 . . . U3OxU1|0, 0, 0〉

for some unitaries U2T+1, . . . , U1. The output bit of the algorithm, A(x), is obtained by
measuring the answer register of |Ψ2T+1(x)〉. We have given the input-independent unitaries
odd indicies so that we may refer to the t-th query as U2t.

Let |Ψ0(x)〉 = |Ψ0〉 = |0, 0, 0〉 denote the starting state, and for t ∈ {1, . . . , 2T + 1}, let
|Ψt(x)〉 = Ut . . . U1|Ψ0〉 denote the state after t steps.

The span program

We now define a span program PA from A. The space H will represent all three registers
of the algorithm, with an additional time counter register, and an additional register to
represent a query value b.

H = span{|t, b, j, z, a〉 : t ∈ {0, . . . , 2T + 1}, b ∈ {0, 1}, j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1}}.

We define V and A as follows, where c is some constant to be chosen later:

V = span{|t, j, z, a〉 : t ∈ {0, . . . , 2T + 1}, j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1}}

A|t, b, j, z, a〉 =

|t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉 if t ∈ {0, . . . , 2T} is even
|t, j, z, a〉 − (−1)b|t+ 1, j, z, a〉 if t ∈ {0, . . . , 2T} is odd
|t, j, z, a〉 if t = 2T + 1, a = 1, and b = 0√
cT |t, j, z, a〉 if t = 2T + 1, a = 0, and b = 0

0 if t = 2T + 1 and b = 1.

For t ≤ 2T , A|t, b, j, z, a〉 should be intuitively understood as applying Ut+1 to |j, z, a〉, and
incrementing the counter register from |t〉 to |t+ 1〉. When t is even, this correspondence is
clear (in that case, the value of b is ignored). When t is odd, so Ut+1 = Ox, then as long as
b = xj , (−1)b|t+ 1, j, z, a〉 = |t+ 1〉Ut+1|j, z, a〉. We thus define

Hj,b = span{|t, b, j, z, a〉 : t ∈ {0, . . . , 2T} is odd, z ∈ Z, a ∈ {0, 1}}.

S. Jeffery 4:13

For even t, applying Ut+1 is independent of the input, so we make the corresponding states
available to every input; along with states where the query register is set to j = 0, meaning
Ox acts input-independently; and accepting states, whose answer register is set to 1 at
time 2T + 1:

Htrue = span{|t, b, j, z, a〉 : t ∈ {0, . . . , 2T} is even, b ∈ {0, 1}, j ∈ [n], z ∈ Z, a ∈ {0, 1}}
⊕ span{|t, b, 0, z, a〉 : t ∈ {0, . . . , 2T}, b ∈ {0, 1}, z ∈ Z, a ∈ {0, 1}}
⊕ span{|2T + 1, b, j, z, 1〉 : b ∈ {0, 1}, j ∈ [n] ∪ {0}, z ∈ Z}.

The remaining part of H will be assigned to Hfalse:

Hfalse = span{|2T + 1, b, j, z, 0〉 : b ∈ {0, 1}, j ∈ [n] ∪ {0}, z ∈ Z}.

Note that in defining A, we have put a large factor of
√
cT in front of A|2T + 1, 0, j, z, 0〉,

making the vectors in Hfalse very “cheap” to use. These vectors are never in H(x), but
will be used as the error part of approximate positive witnesses, and the

√
cT ensures they

contribute relatively small error.
Finally, we define:

|τ〉 = |0, 0, 0, 0〉 = |0〉|Ψ0〉.

Intuitively, we can construct |τ〉, the initial state, using a final state that has 1 in the answer
register, and using the transitions |t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉 to move from the final state
to the initial state. In the following analysis, we make this idea precise.

Analysis of PA

We will first show that for every x there is an approximate positive witness with error
depending on its probability of being rejected by A, p0(x).

I Lemma 21. For any x ∈ {0, 1}n, there exists an approximate positive witness |w〉 for x in
PA such that:

‖|w〉‖2 ≤ 2T + 2, and
∥∥ΠH(x)⊥ |w〉

∥∥2 ≤ p0(x)
cT

.

In particular, if f(x) = 1,∥∥ΠH(x)⊥ |w〉
∥∥2 ≤ ε

cT
.

Proof. Let Qx be the linear isometry that acts as

Qx|j, z, a〉 = |xj , j, z, a〉 ∀j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1},

where we interpret x0 as 0. Note that for all |j, z, a〉, and t ∈ {0, . . . , 2T}, we have

A(|t〉Qx|j, z, a〉) = |t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉.

Let Πa =
∑
j∈[n]∪{0},z∈Z |j, z, a〉〈j, z, a| be the orthogonal projector onto states of the

algorithm with answer register set to a. We will construct a positive witness for x from the
states of the algorithm on input x, as follows:

ITCS 2020

4:14 Span Programs and Quantum Space Complexity

|w〉 =
2T∑
t=0
|t〉Qx|Ψt(x)〉+ |2T + 1〉|0〉Π1|Ψ2T+1(x)〉+ 1√

cT
|2T + 1〉|0〉Π0|Ψ2T+1(x)〉.

To see that this is a positive witness, we compute A|w〉, using the fact that Ut+1|Ψt(x)〉 =
|Ψt+1(x)〉:

A|w〉 =
2T∑
t=0

(|t〉|Ψt(x)〉 − |t+ 1〉Ut+1|Ψt(x)〉)

+ |2T + 1〉Π1|Ψ2T+1(x)〉+ |2T + 1〉Π0|Ψ2T+1(x)〉

=
2T∑
t=0
|t〉|Ψt(x)〉 −

2T∑
t=0
|t+ 1〉|Ψt+1(x)〉+ |2T + 1〉|Ψ2T+1(x)〉

=
2T+1∑
t=0
|t〉|Ψt(x)〉 −

2T+1∑
t=1
|t〉|Ψt(x)〉 = |0〉|Ψ0(x)〉 = |τ〉.

We next consider the error of |w〉 for x, given by
∥∥ΠH(x)⊥ |w〉

∥∥2. Since Qx|j, z, a〉 ∈
H(x) for all j, z, a, and |2T + 1, 0〉Π1|Ψ2T+1(x)〉 ∈ Htrue ⊂ H(x), ΠH(x)⊥ |w〉 = 1√

cT
|2T +

1〉|0〉Π0|Ψ2T+1(x)〉, so∥∥ΠH(x)⊥ |w〉
∥∥2 = 1

cT
‖Π0|Ψ2T+1(x)〉‖2 = p0(x)

cT
.

Finally, we compute the positive witness complexity of |w〉:

‖|w〉‖2 =
2T∑
t=0
‖Qx|Ψt(x)〉‖2 + ‖Π1|Ψ2T+1(x)〉‖2 + 1

cT
‖Π0|Ψ2T+1(x)〉‖2

≤
2T∑
t=0
‖|Ψt(x)〉‖2 + ‖|Ψ2T+1(x)〉‖2 = 2T + 2. J

Next, we upper bound w−(x) whenever f(x) = 0:

I Lemma 22. For any x that is rejected by A with probability p0(x) > 0,

w−(x) ≤ (c+ 4)T
p0(x) .

In particular, if f(x) = 0, w−(x) ≤ c+4
2/3 T , so W− ≤

c+4
2/3 T .

Proof. We will define a negative witness for x as follows. First, define

|Ψ0
2T+1(x)〉 = Π0|Ψ2T+1(x)〉,

the rejecting part of the final state. This is non-zero whenever p0(x) > 0. Then for
t ∈ {0, . . . , 2T}, define

|Ψ0
t (x)〉 = U†t+1 . . . U

†
2T+1|Ψ

0
2T+1(x)〉.

From this we can define

〈ω| =
2T+1∑
t=0
〈t|〈Ψ0

t (x)|.

S. Jeffery 4:15

We first observe that

〈ω|τ〉 = 〈Ψ0
0(x)|0, 0, 0〉 = 〈Ψ0

2T+1(x)|U2T+1 . . . U1|0, 0, 0〉 = 〈Ψ0
2T+1(x)|Ψ2T+1(x)〉 = p0(x).

Thus

〈ω̄| = 1
p0(x) 〈ω|

is a negative witness. Next, we show that 〈ω|AΠH(x) = 0. First, for |t, xj , j, z, a〉 ∈ Hj,xj (so
t < 2T is odd), we have

〈ω|A|t, xj , j, z, a〉 = 〈ω|(|t, j, z, a〉 − (−1)xj |t+ 1〉|j, z, a〉)
= 〈Ψ0

t (x)|j, z, a〉 − (−1)xj 〈Ψ0
t+1(x)|j, z, a〉

= 〈Ψ0
t+1(x)|Ut+1|j, z, a〉 − (−1)xj 〈Ψ0

t+1(x)|j, z, a〉
= 〈Ψ0

t+1(x)|Ox|j, z, a〉 − (−1)xj 〈Ψ0
t+1(x)|j, z, a〉 = 0.

The same argument holds for |t, 0, 0, j, z, a〉 ∈ Htrue. Similarly, for any |t, b, j, z, a〉 ∈ Htrue
with t ≤ 2T even, we have

〈ω|A|t, b, j, z, a〉 = 〈ω|(|t, j, z, a〉 − |t+ 1〉Ut+1|j, z, a〉)
= 〈Ψ0

t (x)|j, z, a〉 − 〈Ψ0
t+1(x)|Ut+1|j, z, a〉 = 0.

Finally, for any |2T + 1, b, j, z, 1〉 ∈ Htrue, we have

〈ω|A|2T + 1, b, j, z, 1〉 = 〈ω|2T + 1, j, z, 1〉 = 〈Ψ0
2T+1(x)|j, z, 1〉 = 0.

Thus 〈ω|AΠH(x) = 0 and so 〈ω̄|AΠH(x) = 0, and 〈ω̄| is a negative witness for x in P . To
compute its witness complexity, first observe that 〈ω|A = 〈ω|AΠH(x)⊥ , and

AΠH(x)⊥ =
T∑
s=1

∑
j∈[n]∪{0},
z∈Z,a∈{0,1}

(|2s− 1, j, z, a〉+ (−1)xj |2s, j, z, a〉)〈2s− 1, x̄j , j, z, a|

+
∑

j∈[n]∪{0},z∈Z

√
cT |2T + 1, j, z, 0〉〈2T + 1, 0, j, z, 0|

so, using 〈Ψ0
2s−1(x)|j, z, a〉 = 〈Ψ0

2s(x)|U2s|j, z, a〉 = (−1)xj 〈Ψ0
2s(x)|j, z, a〉, we have:

〈ω|AΠH(x)⊥

=
T∑
s=1

∑
j∈[n]∪{0},
z∈Z,a∈{0,1}

(〈Ψ0
2s−1(x)|j, z, a〉+ (−1)xj 〈Ψ0

2s(x)|j, z, a〉)〈2s− 1, x̄j , j, z, a|

+
∑

j∈[n]∪{0},z∈Z

√
cT 〈Ψ0

2T+1(x)|j, z, 0〉〈2T + 1, 0, j, z, 0|

=
T∑
s=1

∑
j∈[n]∪{0},z∈Z,a∈{0,1}

2(−1)xj 〈Ψ0
2s(x)|j, z, a〉)〈2s− 1, x̄j , j, z, a|

+
∑

j∈[n]∪{0},z∈Z

√
cT 〈Ψ0

2T+1(x)|j, z, 0〉〈2T + 1, 0, j, z, 0|.

ITCS 2020

4:16 Span Programs and Quantum Space Complexity

Thus, the complexity of 〈ω̄| is:

‖〈ω̄|A‖2 = 1
p0(x)2

∥∥〈ω|AΠH(x)⊥
∥∥2

= 1
p0(x)2

T∑
s=1

∑
j∈[n]∪{0},
z∈Z,
a∈{0,1}

4
∣∣〈Ψ0

2s(x)|j, z, a〉
∣∣2 + 1

p0(x)2

∑
j∈[n]∪{0},

z∈Z

cT
∣∣〈Ψ0

2T+1(x)|j, z, 0〉
∣∣2

= 4
p0(x)2

T∑
s=1

∥∥|Ψ0
2s(x)〉

∥∥2 + cT

p0(x)2

∥∥|Ψ0
2T+1(x)〉

∥∥2
.

Because each Ut is unitary, we have
∥∥|Ψ0

2s(x)〉
∥∥2 =

∥∥|Ψ0
2T+1(x)〉

∥∥2 = p0(x), thus:

‖〈ω̄|A‖2 = 4T
p0(x) + cT

p0(x) ≤
4 + c

2/3 T when f(x) = 0. J

We conclude the proof of Theorem 11 with the following corollary, from which Theorem 11
follows immediately, by appealing to Claim 18 with κ = 9

10 and κ′ any constant in (0, 1).

I Corollary 23. Let c = 5, in the definition of PA. Then:
s(PA) = 2S+O(1)

If A decides f with one-sided error, then PA decides f with complexity C ≤ O(T).
If A decides f with bounded error, then PA 9

10 -approximates f with complexity Cκ ≤ O(T).

Proof. We first compute s(PA) = dimH using the fact that the algorithm uses space

S = log dim span{|j, z, a〉 : j ∈ [n] ∪ {0}, z ∈ Z, a ∈ {0, 1}}+ log T :

dimH = (dim span{|t, b〉 : t ∈ {0, . . . , 2T + 1}, b ∈ {0, 1}})2S−logT = 2S+O(1).

We prove the third statement, as the second is similar. By Lemma 22, using c = 5, we
have

W− ≤
5 + 4
2/3 T = 27

2 T.

By Lemma 21, we can see that for every x such that f(x) = 1, there is an approximate
positive witness |w〉 for x with error at most:

ε

cT
= 1/3

5T ≤
1

15T

27
2 T

W−
= 9

10
1
W−

.

Furthermore, ‖|w〉‖2 ≤ 2T + 2, so Ŵ+ ≤ 2T + 2. Observing Cκ =
√
W−Ŵ+ ≤

√
27T (T + 1)

completes the proof. J

4 Span Programs and Space Complexity

Using the transformation from algorithms to span programs from Section 3.2, we immediately
have the following connections between span program size and space complexity.

I Theorem 24. For any f : D → {0, 1} for D ⊆ {0, 1}n, we have

SU (f) ≥ Ω
(

log S̃P(f)
)

and S1
U (f) ≥ Ω (log SP(f)) .

S. Jeffery 4:17

Theorem 24 is a corollary of Theorem 11. Theorem 17 shows that the lower bound for
SU (f) in Theorem 24 is part of a tight correspondence between space complexity and
log s(P) + logC(P).

Theorem 2.9 of [3] gives a lower bound of SP(f) ≥ Ω(2n/3/(n logn)1/3) for almost all
n-bit Boolean functions. Combined with Theorem 24, we immediately have:

I Theorem 25. For almost all Boolean functions f : {0, 1}n → {0, 1}, S1
U (f) = Ω(n).

Ideally, we would like to use the lower bound in Theorem 24 to prove a non-trivial
lower bound for SU (f) or S1

U (f) for some concrete f . Fortunately, there are somewhat nice
expressions lower bounding SP(f) [15, 7], which we extend to lower bounds of S̃P(f) in
the remainder of this section. However, on the unfortunate side, there has already been
significant motivation to instantiate these expressions to non-trivial lower bounds for concrete
f , with no success. There has been some success in monotone versions of these lower bounds,
which we discuss more in Section 5.

For a function f : D → {0, 1} for D ⊆ {0, 1}n, and an index j ∈ [n], we let ∆f,j ∈
{0, 1}f−1(0)×f−1(1) be defined by ∆f,j [y, x] = 1 if and only if xj 6= yj . When f is clear from
context, we simply denote this by ∆j . The following tight characterization of SP(f) may be
found in, for example, [13].

I Lemma 26. For any f : D → {0, 1} for D ⊆ {0, 1}n,

SP(f) = minimize
∑
j∈[n]

rank(Λj)

subject to ∀j ∈ [n],Λj ∈ Rf
−1(0)×f−1(1)∑

j∈[n]

Λj ◦∆j = J,

where J is the f−1(0)× f−1(1) all-ones matrix.

By Theorem 24, the logarithm of the above is a lower bound on S1
U (f). We modify Lemma 26

to get the following approximate version, whose logarithm lower bounds SU (f) when κ = 1
4 .

I Lemma 27. For any κ ∈ [0, 1), and f : D → {0, 1} for D ⊆ {0, 1}n,

S̃Pκ(f) ≥ minimize
∑
j∈[n]

rank(Λj) (1)

subject to ∀j ∈ [n],Λj ∈ Rf
−1(0)×f−1(1)∥∥∥∥∥∥

∑
j∈[n]

Λj ◦∆j − J

∥∥∥∥∥∥
∞

≤
√
κ.

Proof. Fix a span program that κ-approximates f with s(P) = S̃Pκ(f), and let {〈ωy| : y ∈
f−1(0)} be optimal negative witnesses, and {|wx〉 : x ∈ f−1(1)} be approximate positive
witnesses with

∥∥ΠH(x)|wx〉
∥∥2 ≤ κ

W−
. Letting Πj,b denote the projector onto Hj,b, define

Λj =
∑
y

|y〉〈ωy|AΠj,ȳj

∑
x

Πj,xj |wx〉〈x|,

so Λj has rank at most dimHj , and so
∑
j∈[n] rank(Λj) ≤ s(P) = S̃Pκ(f).

ITCS 2020

4:18 Span Programs and Quantum Space Complexity

We now show that {Λj}j is a feasible solution. Let |err(x)〉 be the positive witness error
of |wx〉, |err(x)〉 = ΠH(x)⊥ |wx〉 =

∑n
j=1 Πj,x̄j |wx〉. Then we have:

〈y|
n∑
j=1

Λj ◦∆j |x〉 = 〈ωy|A
∑

j:xj 6=yj

Πj,xj |wx〉

= 〈ωy|A

|wx〉 − ∑
j:xj=yj

Πj,xj |wx〉 − |err(x)〉

= 〈ωy|τ〉 − 〈ωy|A

∑
j:xj=yj

ΠH(y)Πj,xj |wx〉 − 〈ωy|A|err(x)〉

= 1− 0− 〈ωy|A|err(x)〉∣∣∣∣∣∣1− 〈y|
n∑
j=1

Λj ◦∆j |x〉

∣∣∣∣∣∣ ≤ ‖〈ωy|A‖ ‖|err(x)〉‖ =
√
w−(y) κ

W−
≤
√
κ.

Above we used the fact that 〈ωy|AΠH(y) = 0. Thus, {Λj}j is a feasible solution with objective
value ≤ S̃Pκ(f), so the result follows. J

As a corollary of the above, and the connection between span program size and unitary
quantum space complexity stated in Theorem 24, the logarithm of the expression in (1) with
κ = 1

4 is a lower bound on SU (f), and with κ = 0, it is a lower bound on S1
U (f). However,

as stated, it is difficult to use this expression to prove an explicit lower bound, because it
is a minimization problem. We will shortly give a lower bound in terms of a maximization
problem, making it possible to obtain explicit lower bounds by exhibiting a feasible solution.

A partial matrix is a matrix M ∈ (R ∪ {?})f−1(0)×f−1(1). A completion of M is any
M ∈ Rf−1(0)×f−1(1) such that M [y, x] = M [y, x] whenever M [y, x] 6= ?. For a partial matrix
M , define rank(M) to be the smallest rank of any completion of M , and ε-rank(M) to be the
smallest rank of any M̃ such that |M [y, x]− M̃ [y, x]| ≤ ε for all y, x such that M [y, x] 6= ?.
Let M ◦∆i to be the partial matrix defined:

M ◦∆i[y, x] =
{
M [y, x] if ∆i[y, x] = 1
0 if ∆i[y, x] = 0.

Then we have the following:

I Lemma 28. For all Boolean functions f : D → {0, 1}, with D ⊆ {0, 1}n, and all partial
matrices M ∈ (R ∪ {?})f−1(0)×f−1(1) such that max{|M [y, x]| : M [y, x] 6= ?} ≤ 1:

S1
U (f) ≥ Ω

(
log
(

rank(M)
maxi∈[n] rank(M ◦∆i)

))
.

In [15], Razborov showed that the expression on the right-hand side in Lemma 28 is a lower
bound on the logarithm of the formula size of f (Ref. [7] related this to SP(f)). Later,
in [16], Razborov noted that when restricted to non-partial matrices, this can never give
a better bound than n. Thus, to prove a non-trivial lower bound on S1

U (f) using this
method, one would need to use a partial matrix. We prove the following generalization to
the approximate case.

I Lemma 29. For all Boolean functions f : D → {0, 1}, with D ⊆ {0, 1}n, and all partial
matrices M ∈ (R ∪ {?})f−1(0)×f−1(1) such that max{|M [y, x]| : M [y, x] 6= ?} ≤ 1:

SU (f) ≥ Ω
(

log
(1

2 -rank(M)
maxi∈[n] rank(M ◦∆i)

))
.

S. Jeffery 4:19

Proof. Let {Λj}j be an optimal feasible solution for the expression from Lemma 27, so

S̃Pκ(f) ≥
∑
j∈[n]

rank(Λj), and

∥∥∥∥∥∥
∑
j∈[n]

Λj ◦∆j − J

∥∥∥∥∥∥
∞

≤
√
κ.

Let M j be a completion of M ◦∆j with rank(M ◦∆j) = rank(M j). Then for any x, y such
that M [y, x] 6= ?:∣∣∣∣∣∣

∑
j∈[n]

M j ◦ Λj

 [y, x]−M [y, x]

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
j∈[n]

M [y, x]∆j [y, x]Λj [y, x]−M [y, x]

∣∣∣∣∣∣
≤ |M [y, x]|

∥∥∥∥∥∥
∑
j∈[n]

∆j ◦ Λj − J

∥∥∥∥∥∥
∞

≤
√
κ.

Thus

√
κ-rank(M) ≤ rank

∑
j∈[n]

M j ◦ Λj

 ≤ ∑
j∈[n]

rank(M j ◦ Λj).

Using the fact that for any matrices B and C, rank(B ◦ C) ≤ rank(B)rank(C), we have
√
κ-rank(M) ≤

∑
j∈[n]

rank(Λj)rank(M j) ≤ S̃Pκ(f) max
j∈[n]

rank(M ◦∆j).

Setting κ = 1
4 , and noting that by Theorem 24, SU (f) ≥ log S̃P(f) = log S̃P1/4(f) completes

the proof. J

Unfortunately, as far as we are aware, nobody has used this lower bound to successfully
prove any concrete formula size lower bound of 2ω(logn), so it seems to be quite difficult.
However, there has been some success proving lower bounds in the monotone span program
case, even without resorting to partial matrices, which we discuss in the next section.

5 Monotone Span Programs and Monotone Algorithms

A monotone function is a Boolean function in which y ≤ x implies f(y) ≤ f(x), where y ≤ x
should be interpreted bitwise. In other words, flipping 0s to 1s in the input either keeps the
function value the same, or changes it from 0 to 1. A monotone span program is a span
program in which Hi,0 = {0} for all i, so only 1-valued queries contribute to H(x), and
H(y) ⊆ H(x) whenever y ≤ x. A monotone span program can only decide or approximate a
monotone function.

I Definition 30. For a monotone function f , define the monotone span program size,
denoted mSP(f), as the minimum s(P) over (families of) monotone span programs P such
that P decides f ; and the approximate monotone span program size, denoted mS̃Pκ(f), as
the minimum s(P) over (families of) monotone span programs P such that P κ-approximates
f . We let mS̃P(f) = mS̃P1/4(f).

In contrast to SP(f), there are non-trivial lower bounds for mSP(f) for explicit monotone
functions f . However, this does not necessarily give a lower bound on SP(f), and in particular,
may not be a lower bound on the one-sided error quantum space complexity of f . However,

ITCS 2020

4:20 Span Programs and Quantum Space Complexity

lower bounds on log mSP(f) or log mS̃P(f) do give lower bounds on the space complexity
of quantum algorithms obtained from monotone span programs, and as we will soon see,
log mSP(f) and log mS̃P(f) are lower bounds on the space complexity of monotone phase
estimation algorithms, described in Section 5.2. The strongest known lower bound on mSP(f)
is the following:

I Theorem 31 ([14]). There is an explicit Boolean function f : D → {0, 1} for D ⊆ {0, 1}n
such that

log mSP(f) ≥ Ω(n).

We will adapt some of the techniques used in existing lower bounds on mSP to show a
lower bound on mS̃P(f) for some explicit f :

I Theorem 32. There is an explicit Boolean function f : D → {0, 1} for D ⊆ {0, 1}n such
that for any constant κ,

log mS̃Pκ(f) ≥ (logn)2−o(1).

In particular, this implies a lower bound of 2(logn)2−o(1) on mSP(f) for the function f in
Theorem 32. We prove Theorem 32 in Section 5.1. Theorem 32 implies that any quantum
algorithm for f obtained from a monotone span program must have space complexity
(logn)2−o(1), which is slightly better than the trivial lower bound of Ω(logn). In Section 5.2,
we describe a more natural class of algorithms called monotone phase estimation algorithms
such that log mS̃P(f) is a lower bound on the quantum space complexity of any such algorithm
computing f with bounded error. Then for the specific function f from Theorem 32, any
monotone phase estimation algorithm for f must use space (logn)2−o(1).

5.1 Monotone Span Program Lower Bounds
Our main tool in proving Theorem 32 will be the following.

I Theorem 33. For any Boolean function f : D → {0, 1}, D ⊆ {0, 1}n, and any constant
κ ∈ [0, 1):

mS̃Pκ(f) ≥ max
M∈Rf−1(0)×f−1(1):‖M‖∞≤1

√
κ-rank(M)

maxj∈[n] rank(M ◦∆j,1) ,

where ∆j,1[y, x] = 1 if yi = 0 and xi = 1, and 0 else.

When, κ = 0, the right-hand side of the equation in Theorem 33 is the (monotone) rank
measure, defined in [15], and shown in [7] to lower bound monotone span program size. We
extend the proof for the κ = 0 case to get a lower bound on approximate span program
size. We could also allow for partial matrices M , as in the non-monotone case (Lemma 29)
but unlike the non-monotone case, it is not necessary to consider partial matrices to get
non-trivial lower bounds.

Proof. Fix a monotone span program that κ-approximates f with size mS̃Pκ(f). Let
{〈ωy| : y ∈ f−1(0)} be optimal negative witnesses, and let {|wx〉 : x ∈ f−1(1)} be approximate
positive witnesses with

∥∥ΠH(x)⊥ |wx〉
∥∥2 ≤ κ

W−
. Letting Πj,b denote the projector onto

Hj,b, define

S. Jeffery 4:21

Λj =
∑

y∈f−1(0)

|y〉〈ωy|AΠj,ȳj

∑
x∈f−1(1)

Πj,xj |wx〉〈x|

=
∑

y∈f−1(0):
yj=0

|y〉〈ωy|AΠj,1
∑

x∈f−1(1):
xj=1

Πj,1|wx〉〈x|,

so Λj has rank at most dimHj , and so
∑
j∈[n] rank(Λj) ≤ s(P) = mS̃Pκ(f). Furthermore,

Λj is only supported on (y, x) such that yj = 0 and xj = 1, so Λj ◦∆j,1 = Λj . Denoting the
error of |wx〉 as |err(x)〉 = ΠH(x)⊥ |wx〉 =

∑
j:xj=0 Πj,1|wx〉, we have

〈y|
∑
j∈[n]

Λj |x〉 =
∑

j:yj=0,xj=1
〈ωy|AΠj,1|wx〉 = 〈ωy|A

∑
j:yj=0

Πj,1
∑
j:xj=1

Πj,1|wx〉

= 〈ωy|A(|wx〉 − |err(x)〉) = 〈ωy|A|wx〉 − 〈ωy|A|err(x)〉∣∣∣∣∣∣1− 〈y|
∑
j∈[n]

Λj |x〉

∣∣∣∣∣∣ ≤ 1− 1 + ‖〈ωy|A‖ ‖|err(x)〉‖ ≤
√
W−

√
κ

W−
=
√
κ.

Then for any M ∈ Rf−1(0)×f−1(1) with ‖M‖∞ ≤ 1, we have:∥∥∥∥∥∥M −M ◦
∑
j∈[n]

Λj

∥∥∥∥∥∥
∞

≤ ‖M‖∞

∥∥∥∥∥∥J −
∑
j∈[n]

Λj

∥∥∥∥∥∥
∞

≤
√
κ.

Thus

√
κ-rank(M) ≤ rank

M ◦∑
j∈[n]

Λj

 ≤ ∑
j∈[n]

rank(M ◦ Λj) =
∑
j∈[n]

rank(M ◦∆j,1 ◦ Λj)

≤
∑
j∈[n]

rank(M ◦∆j,1)rank(Λj) ≤ mS̃Pκ(f) max
j∈[n]

rank(M ◦∆j,1). J

To show a lower bound on mS̃P(f) for some explicit f : {0, 1}n → {0, 1}, it turns out to
be sufficient to find some high approximate rank matrix M ∈ RY×X for finite sets X and Y ,
and a rectangle cover of M , ∆1, . . . ,∆n, where each ∆i ◦M has low rank. Specifically, we
have the following lemma, which, with rank in place of approximate rank, has been used
extensively in previous monotone span program lower bounds.

I Lemma 34. Let M ∈ RY×X with ‖M‖∞ ≤ 1, for some finite sets X and Y and
X1, . . . , Xn ⊆ X, Y1, . . . , Yn ⊆ Y be such that for all (x, y) ∈ X×Y , there exists j ∈ [n] such
that (x, y) ∈ Xj × Yj . Define ∆j ∈ {0, 1}Y×X by ∆j [y, x] = 1 if and only if (y, x) ∈ Yj ×Xj .
There exists a monotone function f : D → {0, 1} for D ⊆ {0, 1}n such that for any constant
κ ∈ [0, 1):

mS̃Pκ(f) ≥
√
κ-rank(M)

maxj∈[n] rank(M ◦∆j)
.

Proof. For each y ∈ Y , define ty ∈ {0, 1}n by:

tyj =
{

0 if y ∈ Yj
1 else.

ITCS 2020

4:22 Span Programs and Quantum Space Complexity

Similarly, for each x ∈ X, define sx ∈ {0, 1}n by:

sxj =
{

1 if x ∈ Xj

0 else.

For every (y, x) ∈ Y ×X, there is some j such that yj ∈ Yj and xj ∈ Xj , so it can’t be the
case that sx ≤ ty. Thus, we can define f as the unique monotone function such that f(s) = 1
for every s ∈ {0, 1}n such that sx ≤ s for some x ∈ X, and f(t) = 0 for all t ∈ {0, 1}n
such that t ≤ ty for some y ∈ Y . Then we can define a matrix M ′ ∈ Rf−1(0)×f−1(1) by
M ′[ty, sx] = M [y, x] for all (y, x) ∈ Y ×X, and 0 elsewhere. We have ε-rank(M ′) = ε-rank(M)
for all ε, and rank(M ′ ◦ ∆j,1) = rank(M ◦ ∆j) for all j. The result then follows from
Theorem 33. J

We will prove Theorem 32 by constructing an M with high approximate rank, and a good
rectangle cover {Xj × Yj}j . Following [19] and [14], we will make use of a technique due to
Sherstov for proving communication lower bounds, called the pattern matrix method [20].
We begin with some definitions.

I Definition 35 (Fourier spectrum). For a real-valued function p : {0, 1}m → R, its Fourier
coefficients are defined, for each S ⊆ [m]:

p̂(S) = 1
2m

∑
z∈{0,1}m

p(z)χS(z),

where χS(z) = (−1)
∑

i∈S
zi . It is easily verified that p =

∑
S⊆[m] p̂(S)χS.

I Definition 36 (Degree and approximate degree). The degree of a function p : {0, 1}m → R is
defined deg(p) = max{|S| : p̂(S) 6= 0}. For any ε ≥ 0, d̃egε(p) = min{deg(p̃) : ‖p− p̃‖∞ ≤ ε}.

Pattern matrices, defined by Sherstov in [20], are useful for proving lower bounds in
communication complexity, because their rank and approximate rank are relatively easy to
lower bound. In [19], Robere, Pitassi, Rossman and Cook first used this analysis to give
lower bounds on mSP(f) for some f . We now state the definition, using the notation from
[14], which differs slightly from [20].

I Definition 37 (Pattern matrix). For a real-valued function p : {0, 1}m → R, and a positive
integer λ, the (m,λ, p)-pattern matrix is defined as F ∈ R{0,1}λm×([λ]m×{0,1}m) where for
y ∈ {0, 1}λm, x ∈ [λ]m, and w ∈ {0, 1}m,

F [y, (x,w)] = f(y|x ⊕ w),

where by y|x, we mean the m-bit string containing one bit from each λ-sized block of y as
specified by the entries of x: (y(1)

x1 , y
(2)
x2 , . . . , y

(m)
xm), where y(i) ∈ {0, 1}λ is the i-th block of y.

For comparison, what [20] calls an (n, t, p)-pattern matrix would be a (t, n/t, p)-pattern
matrix in our notation. As previously mentioned, a pattern matrix has the nice property
that its rank (or even approximate rank) can be lower bounded in terms of properties of the
Fourier spectrum of p. In particular, the following is proven in [20]:

I Lemma 38. Let F be the (m,λ, p)-pattern matrix for p : {0, 1}m → {−1,+1}. Then for
any ε ∈ [0, 1] and δ ∈ [0, ε], we have:

rank(F) =
∑

S⊆[m]:p̂(S)6=0

λ|S| and δ-rank(F) ≥ λd̃egε(p) (ε− δ)2

(1 + δ)2 .

S. Jeffery 4:23

This shows that we can use functions p of high approximate degree to construct pattern
matrices F ∈ R{0,1}λm×([λ]m×{0,1}m) of high approximate rank. To apply Lemma 34, we also
need to find a good rectangle cover of some F .

A b-certificate for a function p on {0, 1}m is an assignment α : S → {0, 1} for some
S ⊆ [m] such that for any x ∈ {0, 1}m such that xj = α(j) for all j ∈ S, f(x) = b. The size
of a certificate is |S|. The following shows how to use the certificates of p to construct a
rectangle cover of its pattern matrix.

I Lemma 39. Let p : {0, 1}m → {−1,+1}, and suppose there is a set of ` certificates for
p of size at most C such that every input satisfies at least one certificate. Then for any
positive integer λ, there exists a function f : {0, 1}n → {0, 1} for n = `(2λ)C such that for
any κ ∈ (0, 1) and ε ∈ [

√
κ, 1]:

mS̃Pκ(f) ≥ Ω
(

(ε−
√
κ)2λd̃egε(p)

)
.

Proof. For i = 1, . . . , `, let αi : Si → {0, 1} for Si ⊂ [m] of size |Si| ≤ C be one of the `
certificates. That is, for each i, there is some vi ∈ {−1,+1} such that for any x ∈ {0, 1}m, if
xj = αi(j) for all j ∈ Si, then p(x) = vi (so αi is a vi-certificate).

We let F be the (m,λ, p)-pattern matrix, which has ‖F‖∞ = 1 since p has range {−1,+1}.
We will define a rectangle cover as follows. For every i ∈ [`], k ∈ [λ]Si , and b ∈ {0, 1}Si ,
define:

Xi,k,b = {(x,w) ∈ [λ]m × {0, 1}m : ∀j ∈ Si, wj = bj , xj = kj}

Yi,k,b = {y ∈ {0, 1}λm : ∀j ∈ Si, y(j)
kj

= bj ⊕ αi(j)}.

We first note that this is a rectangle cover. Fix any y ∈ {0, 1}λm, x ∈ [λ]m and w ∈ {0, 1}m.
First note that for any i, if we let b be the restriction of w to Si, and k the restriction of x
to Si, we have (x,w) ∈ Xi,k,b. This holds in particular for i such that αi is a certificate for
y|x⊕w, and by assumption there is at least one such i. For such an i, we have y(j)

xj ⊕wj = α(j)
for all j ∈ Si, so y ∈ Yi,k,b. Thus, we can apply Lemma 34.

Note that if (x,w) ∈ Xi,k,b, and y ∈ Yi,k,b, then (y|x ⊕ w)[j] = y
(j)
xj ⊕ wj = αi(j) for all

j ∈ Si, so p(y|x ⊕ w) = vi. Letting ∆i,k,b[y, (x,w)] = 1 if y ∈ Yi,k,b and (x,w) ∈ Xi,k,b, and
0 else, we have that if y ∈ Yi,k,b and (x,w) ∈ Xi,k,b, (F ◦∆i,k,b)[y, (x,w)] = p(y|x ⊕ w) = vi,
and otherwise, (F ◦∆i,k,b)[y, (x,w)] = 0. Thus rank(F ◦∆i,k,b) = rank(vi∆i,k,b) = 1. Then
by Lemma 34, there exists f : {0, 1}n → {0, 1} where n =

∑`
i=1(2λ)|Si| ≤ `(2λ)C such that:

mS̃Pκ(f) ≥
√
κ-rank(F) ≥ λd̃egε(p) (ε−

√
κ)2

(1 +
√
κ)2 , by Lemma 38. J

We now prove Theorem 32, restated below:

I Theorem 32. There is an explicit Boolean function f : D → {0, 1} for D ⊆ {0, 1}n such
that for any constant κ,

log mS̃Pκ(f) ≥ Ω((logn)2−o(1)).

Proof. By [5, Theorem 38], there is a function p with d̃eg1/3(p) ≥ C(p)2−o(1), which is, up
to the o(1) in the exponent, the best possible separation between these two quantities. In
particular, this function has d̃eg1/3(p) ≥M2−o(1), and C(p) ≤M1+o(1), where C(p) is the
certificate complexity of p, for some parameter M (see [5] equations (64) and (65), where

ITCS 2020

4:24 Span Programs and Quantum Space Complexity

p is referred to as F), and p is a function on M2+o(1) variables (see [5], discussion above
equation (64)). Thus, there are at most

(
M2+o(1)

M1+o(1)

)
possible certificates of size M1+o(1) such

that each input satisfies at least one of them.
Then by Lemma 39 there exists a function f : {0, 1}n → {0, 1} for some n such that

n ≤
(
M2+o(1)

M1+o(1)

)
(2λ)M1+o(1) such that for constant κ < 1/36 and constant λ:

log mS̃Pκ(f) ≥ Ω(d̃eg1/3(p) log λ) ≥M2−o(1).

Then we have:

logn ≤ log
(
M2+o(1)

M1+o(1)

)
+M1+o(1) log(2λ) = O(M1+o(1) logM) = M1+o(1).

Thus, log mS̃Pκ(f) ≥ (logn)2−o(1), and the result for any κ follows using Corollary 19. J

Since for all total functions p, d̃eg1/3(p) ≤ C(p)2, where C(p) is the certificate complexity
of p, Lemma 39 can’t prove a lower bound better than log mS̃P(p) ≥ (logn)2 for any n-bit
function. We state a more general version of Lemma 39 that might have the potential to
prove a better bound, but we leave this as future work.

I Lemma 40. Fix p : {0, 1}m → {−1,+1}. For i = 1, . . . , `, let αi : Si → {0, 1} for Si ⊆ [m]
be a partial assignment such that every z ∈ {0, 1}m satisfies at least one of the assignments.
Let pi denote the restriction of p to strings z satisfying the assignment αi. Then for every
positive integer λ, there exists a function f : {0, 1}n → {0, 1}, where n =

∑`
i=1(2λ)|Si| such

that for any κ ∈ (0, 1) and ε ∈ [
√
κ, 1]:

mS̃Pκ(f) ≥ Ω
(

(ε−
√
κ)2λd̃egε(p)

maxi∈[`]
∑
S⊆[m]\Si:p̂i(S)6=0 λ

|S|

)
.

To make use of this lemma, one needs a function p of high approximate degree, such that for
every input, there is a small assignment that lowers the degree to something small. This
generalizes Lemma 39 because a certificate is an assignment that lowers the degree of the
remaining sub-function to constant. However, we note that a p with these conditions is
necessary but may not be sufficient for proving a non-trivial lower bound, because while∑
S:p̂i(S)6=0 λ

|S| ≥ λdeg(pi), it may also be much larger if pi has a dense Fourier spectrum.

Proof. Let F be the (m,λ, p)-pattern matrix. Let {Xi,k,b× Yi,k,b}i,k,b be the same rectangle
covered defined in the proof of Lemma 39, with the difference that since the αi are no longer
certificates, the resulting submatrices of F may not have constant rank.

Let ∆i,k,b =
∑
y∈Yi,k,b |y〉

∑
(x,w)∈Xi,k,b 〈x,w|. Then

F ◦∆i,k,b =
∑

y∈Yi,k,b,(x,w)∈Xi,k,b

p(y|x ⊕ w)|y〉〈x,w|.

Note that when y ∈ Yi,k,b and (x,w) ∈ Xi,b,k, y|x⊕w satisfies αi, so p(y|x⊕w) = pi(y′|x′⊕w′),
where y′, x′ and w′ are restrictions of y ∈ ({0, 1}λ)m, x ∈ [λ]m and w ∈ {0, 1}m to [m] \ Si.
Thus, continuing from above, and rearranging registers, we have:

F ◦∆i,k,b =
∑

y′∈({0,1}λ)[m]\Si

∑
x′∈[λ][m]\Si ,

w′∈{0,1}[m]\Si

pi(y′|x′ ⊕ w′)|y′〉〈x′, w′| ⊗
∑

ȳ∈({0,1}λ)Si :
ȳ|k=b⊕αi

|ȳ〉〈k, b|

= Fi ⊗ J2(λ−1)|Si|,1

S. Jeffery 4:25

where Fi is the (m,λ, pi)-pattern matrix, and Ja,b is the all-ones matrix of dimension a by b,
which always has rank 1 for a, b > 0. Thus

rank(F ◦∆i,k,b) = rank(Fi)rank(J2(λ−1)|Si|,1) = rank(Fi) =
∑

S⊆[m]\Si:p̂i(S)6=0

λ|S|,

by [20]. This part of the proof follows [19, Lemma IV.6].
Then by Lemma 34 and Lemma 38, we have:

mS̃Pκ(f) ≥ Ω
(√

κ-rank(F)
maxi,k,b rank(F ◦∆i,k,b)

)
≥ Ω

(
ε−
√
κ

1+
√
κ

)2
λdegε(p)

maxi
∑
S⊆[m]\Si:p̂j(S) 6=0 λ

|S|

 . J

5.2 Monotone Algorithms
In Theorem 32, we showed a non-trivial lower bound on log mS̃P(f) for some explicit monotone
function f . Unlike lower bounds on log S̃P(f), this does not give us a lower bound on the
quantum space complexity of f , however, at the very least it gives us a lower bound on
the quantum space complexity of a certain type of quantum algorithm. Of course, this is
naturally the case, since a lower bound on mS̃P(f) gives us a lower bound on the quantum
space complexity of any algorithm for f that is obtained from a monotone span program.
However, this is not the most satisfying characterization, as it is difficult to imagine what
this class of algorithms looks like.

In this section, we will consider a more natural class of algorithms whose space complexity
is lower bounded by mS̃P(f), and in some cases mSP(f). We will call a quantum query
algorithm a phase estimation algorithm if it works by estimating the amplitude on |0〉 in
the phase register after running phase estimation of a unitary that makes one query. We
assume that the unitary for which we perform phase estimation is of the form UOx. This
is without loss of generality, because the most general form is a unitary U2OxU1, but we
have (U2OxU1)t|ψ0〉 = U†1 (UOx)t|ψ′0〉 where |ψ′0〉 = U1|ψ0〉, and U = U1U2. The weight on
a phase of |0〉 is not affected by this global (t-independent) U†1 . Thus, we define a phase
estimation algorithm as follows:

I Definition 41. A phase estimation algorithm A = (U, |ψ0〉, δ, T,M) for f : D → {0, 1},
D ⊆ {0, 1}n, is defined by (families of):

a unitary U acting on H = span{|j, z〉 : j ∈ [n], z ∈ Z} for some finite set Z;
an initial state |ψ0〉 ∈ H;
a bound δ ∈ [0, 1/2);
positive integers T and M ≤ 1√

δ
;

such that for any M ′ ≥ M and T ′ ≥ T , the following procedure computes f with bounded
error:
1. Let Φ(x) be the algorithm that runs phase estimation of UOx on |ψ0〉 for T ′ steps, and

then computes a bit |b〉A in a new register A, such that b = 0 if and only if the phase
estimate is 0.

2. Run M ′ steps of amplitude estimation to estimate the amplitude on |0〉A after application
of Φ(x). Output 0 if the amplitude is > δ.

The query complexity of the algorithm is O(MT), and, the space complexity of the algorithm
is log dimH+ log T + logM + 1.

We insist that the algorithm work not only for M and T but for any larger integers as
well, because we want to ensure that the algorithm is successful because M and T are large
enough, and not by some quirk of the particular chosen values. When δ = 0, the algorithm
has one-sided error (see Lemma 46).

ITCS 2020

4:26 Span Programs and Quantum Space Complexity

We remark on the generality of this form of algorithm. Any algorithm can be put into
this form by first converting it to a span program, and then compiling that into an algorithm,
preserving both the time and space complexity, asymptotically. However, we will consider a
special case of this type of algorithm that is not fully general.

I Definition 42. A monotone phase estimation algorithm is a phase estimation algorithm
such that if Π0(x) denotes the orthogonal projector onto the (+1)-eigenspace of UOx, then
for any x ∈ {0, 1}n, Π0(x)|ψ0〉 is in the (+1)-eigenspace of Ox.

Let us consider what is “monotone” about this definition. The algorithm rejects if |ψ0〉
has high overlap with the (+1)-eigenspace of UOx, i.e., Π0(x)|ψ0〉 is large. In a monotone
phase estimation algorithm, we know that the only contribution to Π0(x)|ψ0〉 is in the
(+1)-eigenspace of Ox, which is exactly the span of |j, z〉 such that xj = 0. Thus, only
0-queries can contribute to the algorithm rejecting.

As a simple example, Grover’s algorithm is a monotone phase estimation algorithm.
Specifically, let |ψ0〉 = 1√

n

∑n
j=1 |j〉 and U = (2|ψ0〉〈ψ0| − I). Then UOx is the standard

Grover iterate, and |ψ0〉 is in the span of eiθ-eigenvectors of UOx with sin |θ| =
√
|x|/n, so

phase estimation can be used to distinguish the case |x| = 0 from |x| ≥ 1. So Π0(x)|ψ0〉 is
either 0, when |x| 6= 0, or |ψ0〉, when |x| = 0. In both cases, it is in the (+1)-eigenspace of Ox.

It is clear that a monotone phase estimation algorithm can only decide a monotone
function. However, while any quantum algorithm can be converted to a phase estimation
algorithm, it is not necessarily the case that any quantum algorithm for a monotone function
can be turned into a monotone phase estimation algorithm. Thus lower bounds on the
quantum space complexity of any monotone phase estimation algorithm for f do not imply
lower bounds on SU (f). Nevertheless, if we let mSU (f) represent the minimum quantum
space complexity of any monotone phase estimation algorithm for f , then a lower bound on
mSU (f) at least tells us that if we want to compute f with space less than said bound, we
must use a non-monotone phase estimation algorithm.

Similarly, we let mS1
U (f) denote the minimum quantum space complexity of any monotone

phase estimation algorithm with δ = 0 that computes f (with one-sided error).
The main theorem of this section states that any monotone phase estimation algorithm for

f with space S can be converted to a monotone span program of size 2Θ(S) that approximates
f , so that lower bounds on mS̃P(f) imply lower bounds on mSU (f); and that any monotone
phase estimation algorithm with δ = 0 and space S can be converted to a monotone span
program of size 2Θ(S) that decides f (exactly) so that lower bounds on mSP(f) imply lower
bounds on mS1

U (f). These conversions also preserve the query complexity. We now formally
state this main result.

I Theorem 43. Let A = (U, |ψ0〉, δ, T,M) be a monotone phase estimation algorithm for
f with space complexity S = log dimH + log T + logM + 1 and query complexity O(TM).
Then there is a monotone span program with complexity O(TM) and size 2 dimH ≤ 2S that
approximates f . If δ = 0, then this span program decides f (exactly). Thus

mSU (f) ≥ log mS̃P(f) and mS1
U (f) ≥ log mSP(f).

We prove this theorem in Section 5.2.1. As a corollary, lower bounds on mSP(f), such as the
one from [14], imply lower bounds on mS1

U (f); and lower bounds on mS̃P(f) such as the one
in Theorem 32, imply lower bounds on mSU (f). In particular:

I Corollary 44. Let f : {0, 1}n → {0, 1} be the function described in Theorem 32. Then
mSU (f) ≥ (logn)2−o(1). Let g : {0, 1}n → {0, 1} be the function described in Theorem 31.
Then mS1

U (g) ≥ Ω(n).

S. Jeffery 4:27

We emphasize that while this does not give a lower bound on the quantum space complexity
of f , or the one-sided quantum space complexity of g, it does show that any algorithm
that uses (logn)c space to solve f with bounded error, for c < 2, or o(n) space to solve g
with one-sided error, must be of a different form than that described in Definition 41 and
Definition 42.

In a certain sense, monotone phase estimation algorithms completely characterize those
that can be derived from monotone span programs, because the algorithm we obtain from
compiling a monotone span program is a monotone phase estimation algorithm, as stated
below in Lemma 45. However, not all monotone phase estimation algorithms can be obtained
by compiling monotone span programs, and similarly, we might hope to show that an even
larger class of algorithms can be converted to monotone span programs, in order to give
more strength to lower bounds on mSU (f).

I Lemma 45. Let P be an approximate monotone span program for f with size S and
complexity C. Then there is a monotone algorithm for f with query complexity O(C) and
space complexity O(logS + logC).

Proof. Fix a monotone span program, and assume it has been appropriately scaled. Without
loss of generality, we can let Hj = Hj,1 = span{|j, z〉 : z ∈ Zj} for some finite set Zj .
Then, Ox = I − 2ΠH(x), which is only true because the span program is monotone. Let
U = 2Πrow(A) − I. Then UOx = (2Πker(A) − I)(2ΠH(x) − I) is the span program unitary,
described in [8]. The algorithm obtained from compiling a span program works by performing
O(C) steps of phase estimation of this unitary, applied to |w0〉 = A+|τ〉, and estimating
the amplitude on 0 in the phase register to constant precision (see [8, Lemma 3.6]). This is
clearly a phase estimation algorithm for f with query complexity O(C) and space complexity
O(logS + logC).

The algorithm is a monotone phase estimation algorithm because U = 2Πrow(A) − I is
a reflection, and |ψ0〉 = |w0〉 = A+|τ〉 is in the (+1)-eigenspace of U , row(A). Since U is a
reflection, the (+1)-eigenspace of UOx is exactly (ker(A) ∩H(x))⊕ (row(A) ∩H(x)⊥), and
so Π0(x)|w0〉 ∈ row(A) ∩H(x)⊥ ⊂ H(x)⊥. J

5.2.1 Monotone Algorithms to (Approximate) Monotone Span
Programs

In this section, we prove Theorem 43. Throughout this section, we fix a phase estimation
algorithm A = (U, |ψ0〉, δ, T,M) that computes f , with U acting on H. For any x ∈ {0, 1}n
and Θ ∈ [0, π], we let ΠΘ(x) denote the orthogonal projector onto the span of eiθ-eigenvectors
of UOx for |θ| ≤ Θ. We will let Πx =

∑
j∈[n],z∈Z:xj=1 |j, z〉〈j, z|.

We begin by drawing some conclusions about the necessary relationship between the
eigenspaces of UOx and a function f whenever a monotone phase estimation computes f .
The proofs are somewhat dry and are relegated to Appendix B.

I Lemma 46. Fix a phase estimation algorithm with δ = 0 that solves f with bounded error.
Then if f(x) = 0,

‖Π0(x)|ψ0〉‖2 ≥
1
M2 ,

and for any d <
√

8/π, if f(x) = 1, then∥∥Πdπ/T (x)|ψ0〉
∥∥2 = 0,

and the algorithm always outputs 1, so it has one-sided error.

ITCS 2020

4:28 Span Programs and Quantum Space Complexity

I Lemma 47. Fix a phase estimation algorithm with δ 6= 0 that solves f with bounded error.
Then there is some constant c > 0 such that if f(x) = 0,

‖Π0(x)|ψ0〉‖2 ≥ max{δ(1 + c), 1/M2}

and if f(x) = 1, for any d <
√

8/π,∥∥Πdπ/T (x)|ψ0〉
∥∥2 ≤ δ

1− d2π2

8
.

To prove Theorem 43, we will define a monotone span program PA as follows:

Htrue = span{|j, z〉 : j ∈ [n], z ∈ Z} = H
Hj,1 = Hj = span{|j, z, 1〉 : z ∈ Z}

A|j, z, 1〉 = 1
2(|j, z〉 − (−1)1|j, z〉) = |j, z〉

A|j, z〉 = (I − U†)|j, z〉
|τ〉 = |ψ0〉. (2)

We first show that Π0(x)|ψ0〉 is (up to scaling) a negative witness for x, whenever it is
nonzero:

I Lemma 48. For any x ∈ {0, 1}n, we have

w−(x) = 1
‖Π0(x)|ψ0〉‖2

.

In particular, when Π0(x)|ψ0〉 6= 0, Π0(x)|ψ0〉/ ‖Π0(x)|ψ0〉‖2 is an optimal negative witness
for x.

Proof. Suppose Π0(x)|ψ0〉 6= 0, and let |ω〉 = Π0(x)|ψ0〉/ ‖Π0(x)|ψ0〉‖2. We will first show
that this is a negative witness, and then show that no negative witness can have better
complexity. First, we notice that

〈ω|τ〉 = 〈ω|ψ0〉 = 〈ψ0|Π0(x)|ψ0〉
‖Π0(x)|ψ0〉‖2

= 1.

Next, we will see that 〈ω|AΠH(x) = 0. By the monotone phase estimation property,
OxΠ0(x)|ψ0〉 = Π0(x)|ψ0〉, and so Ox|ω〉 = |ω〉, and thus Πx|ω〉 = 0, where Πx is the
projector onto |j, z〉 such that xj = 1. Note that H(x) = span{|j, z, 1〉 : xj = 1, z ∈
Z} ⊕ span{|j, z〉 : j ∈ [n], z ∈ Z}. Thus ΠH(x) = ΠHtrue + Πx ⊗ |1〉〈1|. We have:

〈ω|A(Πx ⊗ |1〉〈1|) = 〈ω|Πx = 0.

Since |ω〉 is in the (+1)-eigenspace of UOx, we have UOx|ω〉 = |ω〉 so since Ox|ω〉 = |ω〉,
U |ω〉 = |ω〉. Thus

〈ω|AΠHtrue = 〈ω|(I − U†)⊗ 〈1| = (〈ω| − 〈ω|)⊗ 〈1| = 0.

Thus |ω〉 is a zero-error negative witness for x. Next, we argue that it is optimal.
Suppose |ω〉 is any optimal negative witness for x, with size w−(x). Then since 〈ω|Πx =

〈ω|A(Πx⊗|1〉〈1|) must be 0, Ox|ω〉 = (I−2Πx)|ω〉 = |ω〉, and since 〈ω|AΠHtrue = 〈ω|(I−U†)
must be 0, U |ω〉 = |ω〉. Thus |ω〉 is a 1-eigenvector of UOx, so

‖Π0(x)|ψ0〉‖2 ≥

∥∥∥∥∥ |ω〉〈ω|‖|ω〉‖2
|ψ0〉

∥∥∥∥∥
2

= |〈ω|ψ0〉|2

‖|ω〉‖2
= 1
‖|ω〉‖2

.

We complete the proof by noticing that since 〈ω|AΠHtrue = 0, we have 〈ω|A = 〈ω|〈1|, and
w−(x) = ‖〈ω|A‖2 = ‖|ω〉‖2. J

S. Jeffery 4:29

Next we find approximate positive witnesses.

I Lemma 49. For any Θ ≥ 0, the span program PA has approximate positive witnesses for
any x with error at most ‖ΠΘ(x)|ψ0〉‖2 and complexity at most 5π2

4Θ2 .

Proof. We first define a vector |v〉 by:

|v〉 = (I − (UOx)†)+(I −ΠΘ(x))|ψ0〉.

Note that I − (UOx)† is supported everywhere except the (+1)-eigenvectors of (UOx)†,
which are exactly the (+1)-eigenvectors of UOx. Thus, (I −ΠΘ(x))|ψ0〉 is contained in this
support.

Next we define |w〉 =
(
|ψ0〉 − (I − U†)|v〉

)
|1〉+ |v〉. Then we have:

A|w〉 = |ψ0〉 − (I − U†)|v〉+ (I − U†)|v〉 = |ψ0〉 = |τ〉.

So |w〉 is a positive witness, and we next compute its error for x:∥∥ΠH(x)⊥ |w〉
∥∥2 =

∥∥Πx̄

(
|ψ0〉 − (I − U†)|v〉

)∥∥2

=
∥∥Πx̄|ψ0〉 −Πx̄(I − U†)(I − (UOx)†)+(I −ΠΘ(x))|ψ0〉

∥∥2
.

Above, Πx̄ = I −Πx. We now observe that

Πx̄(I −OxU†) = Πx̄

(
Πx̄ − (Πx̄ −Πx)U†

)
= Πx̄(I − U†).

Thus, continuing from above, we have:∥∥ΠH(x)⊥ |w〉
∥∥2 =

∥∥Πx̄|ψ0〉 −Πx̄(I −OxU†)(I −OxU†)+(I −ΠΘ(x))|ψ0〉
∥∥2

= ‖Πx̄|ψ0〉 −Πx̄(I −ΠΘ(x))|ψ0〉‖2 = ‖Πx̄ΠΘ(x)|ψ0〉‖2 ≤ ‖ΠΘ(x)|ψ0〉‖2 .

Now we compute the complexity of |w〉. First, let UOx =
∑
j e
iθj |λj〉〈λj | be the eigenvalue

decomposition of UOx. Then

(I − (UOx)†)+ =
∑
j:θj 6=0

1
1− e−iθj |λj〉〈λj | and I −ΠΘ(x) =

∑
j:|θj |>Θ

|λj〉〈λj |.

We can thus bound ‖|v〉‖2:

‖|v〉‖2 =
∥∥(I − (UOx)†)+(I −ΠΘ(x))|ψ0〉

∥∥2 =

∥∥∥∥∥∥
∑

j:|θj |>Θ

1
1− e−iθj 〈λj |ψ0〉|λj〉

∥∥∥∥∥∥
2

=
∑

j:|θj |>Θ

1
4 sin2 θj

2

|〈λj |ψ0〉|2 ≤
π2

4Θ2 .

Next, using Ox + 2Πx = I − 2Πx + 2Πx = I, we compute:∥∥|ψ0〉 − (I − U†)|v〉
∥∥2

=
∥∥|ψ0〉 − (I −OxU† − 2ΠxU

†)(I −OxU†)+(I −ΠΘ(x))|ψ0〉
∥∥2

=
∥∥|ψ0〉 − (I −ΠΘ(x))|ψ0〉+ 2ΠxU

†(I − (UOx)†)+(I −ΠΘ(x))|ψ0〉
∥∥2

ITCS 2020

4:30 Span Programs and Quantum Space Complexity

. . . ≤

‖ΠΘ(x)|ψ0〉‖+ 2

∥∥∥∥∥∥ΠxU
†
∑

j:|θj |>Θ

1
1− e−iθj 〈λj |ψ0〉|λj〉

∥∥∥∥∥∥
2

≤

‖ΠΘ(x)|ψ0〉‖+ 2

√√√√ ∑
j:|θj |>Θ

1
4 sin2 θj

2

|〈λj |ψ0〉|2

2

≤
(
‖ΠΘ(x)|ψ0〉‖+ π

Θ ‖(I −ΠΘ(x))|ψ0〉‖
)2
≤ π2

Θ2 .

Then we have the complexity of |w〉:

‖|w〉‖2 =
∥∥|ψ0〉 − (I − U†)|v〉

∥∥2 + ‖|v〉‖2 ≤ π2

Θ2 + π2

4Θ2 = 5π2

4Θ2 . J

We conclude with the following two corollaries, whose combination gives Theorem 43.

I Corollary 50. Let A = (U, |ψ0〉, 0, T,M) be a monotone phase estimation algorithm for
f with space complexity S = log dimH + log T + logM + 1 and query complexity O(TM).
Then there is a monotone span program that decides f (exactly) whose size is 2 dimH ≤ 2S
and whose complexity is O(TM).

Proof. If f(x) = 0, then by Lemma 46, we have ‖Π0(x)|ψ0〉‖2 ≥ 1
M2 , so by Lemma 48,

w−(x) ≤M2. Thus W− ≤M2.
If f(x) = 1, then by Lemma 46, we have

∥∥Π2/T (x)|ψ0〉
∥∥2 = 0, so by Lemma 49, there’s

an exact positive witness for x with complexity O(T 2). Thus W+ ≤ O(T 2), and so the
span program PA from (2) has complexity O(TM). The size of the span program PA is
dimH = 2 dimH. J

I Corollary 51. Let A = (U, |ψ0〉, δ, T,M) be a monotone phase estimation algorithm for
f with space complexity S = log dimH + log T + logM + 1 and query complexity O(TM).
Then there is a constant κ ∈ (0, 1) such that there exists a monotone span program that
κ-approximates f whose size is 2 dimH ≤ 2S and whose complexity is O(TM).

Proof. If f(x) = 0, then by Lemma 47, we have ‖Π0(x)|ψ0〉‖2 > δ(1 + c) for some constant
c > 0. Thus, by Lemma 48, W− ≤ 1

(1+c)δ .

If f(x) = 1, then by Lemma 49, setting Θ = dπ/T for d = 2
π

√
c

1+c , (where c is the
constant from above), by Lemma 49 there is an approximate positive witness for x with error
ex =

∥∥∥Π2
√

c
1+c/T

(x)|ψ0〉
∥∥∥2

and complexity O(T 2). By Lemma 47, we have

ex ≤
δ

1− d2π2

8
= δ

1− c
2(1+c)

= δ(1 + c)
1 + c− c/2 ≤

1
1 + c/2

1
W−

.

Thus, letting κ = 1
1+c/2 < 1, we have that PA κ-approximates f . Since the positive witness

complexity is O(T 2), and by Lemma 47, we also have W− ≤ O(M2), the complexity of PA
is O(TM). The size of PA is dimH = 2 dimH. J

S. Jeffery 4:31

References
1 S. Aaronson, S. Ben-David, and R. Kothari. Separations in query complexity using cheat

sheets. In Proceedings of the forty-eighth annual ACM Symposium on Theory of Computing
(STOC 2016), pages 863–876, 2016. arXiv:1511.01937.

2 S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University
Press, 2009.

3 L. Babai, A. Gál, and A. Wigderson. Superpolynomial Lower Bounds for Monotone Span
Programs. Combinatorica, 19:301–319, 1999.

4 G. Brassard, P. Høyer, M. Mosca, and A. Tapp. Quantum Amplitude Amplification and
Estimation. In S. J. Lomonaca and H. E. Brandt, editors, Quantum Computation and Quantum
Information: A Millennium Volume, volume 305 of AMS Contemporary Mathematics Series
Millennium Volume, pages 53–74. AMS, 2002. arXiv:quant-ph/0005055v1.

5 M. Bun and J. Thaler. A Nearly Optimal Lower Bound on the Approximate Degree of AC0.
In Proceedings of the IEEE 58th Annual Symposium on Foundations of Computer Science
(FOCS 2017), 2017. arXiv:1703.05784.

6 B. Fefferman and C. Lin. A Complete Characterization of Unitary Quantum Space. In
Proceedings of the 2018 ACM Conference on Innovations in Theoretical Computer Science
(ITCS 2018), pages 4:1–4:21, 2018. arXiv:1604.01384.

7 A. Gàl. A characterization of span program size and improved lower bounds for monotone
span programs. Computational Complexity, 10(4):277–296, 2001.

8 T. Ito and S. Jeffery. Approximate Span Programs. Algorithmica, 81(6):2158–2195, 2019.
arXiv:1507.00432.

9 R. Jozsa, B. Kraus, A. Miyake, and J. Watrous. Matchgate and space-bounded quantum
computations are equivalent. Proceedings of the Royal Society A, 466(2115), 2009. doi:
10.1098/rspa.2009.0433.

10 M. Karchmer and A. Wigderson. On span programs. In Proceedings of the IEEE 8th Annual
Conference on Structure in Complexity Theory, pages 102–111, 1993.

11 A. Kitaev. Quantum measurements and the Abelian stabilizer problem, 1995. arXiv:quant-ph/
9511026.

12 T. Lee, R. Mittal, B. Reichardt, R. Špalek, and M. Szegedy. Quantum Query Complexity of
State Conversion. In Proceedings of the 52nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2011), pages 344–353, 2011.

13 S. V. Lokam. Complexity Lower Bounds using Linear Algebra. Now Publishers Inc., Hanover,
MA, USA, 2009. doi:10.1561/0400000011.

14 T. Pitassi and R. Robere. Strongly Exponential Lower Bounds for Monotone Computation. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC
2017), pages 1246–1255, 2017.

15 A. A. Razborov. Applications of matrix methods to the theory of lower bounds in computational
complexity. Combinatorica, 10(1):810093, 1990.

16 A. A. Razborov. On Submodular Complexity Measures. In Poceedings of the London Math-
ematical Society symposium on Boolean function complexity, pages 76–83, 1992.

17 B. Reichardt. Span programs and quantum query complexity: The general adversary bound
is nearly tight for every Boolean function. In Proceedings of the 50th IEEE Symposium on
Foundations of Computer Science (FOCS 2009), pages 544–551, 2009. arXiv:quant-ph/0904.
2759.

18 B. Reichardt and R. Špalek. Span-program-based quantum algorithm for evaluating formulas.
Theory of Computing, 8(13):291–319, 2012.

19 R. Robere, T. Pitassi, B. Rossman, and S. A. Cook. Exponential Lower Bounds for Monotone
Span Programs. In Proceedings of the 57th IEEE Symposium on Foundations of Computer
Science (FOCS 2016), pages 406–415, 2016. doi:10.1109/FOCS.2016.51.

20 Alexander A. Sherstov. The Pattern Matrix Method. SIAM Journal on Computing,
40(6):1969–2000, 2009.

21 J. Watrous. Space-Bounded Quantum Complexity. Journal of Computer and System Sciences,
59(2):281–326, 1999.

ITCS 2020

http://arxiv.org/abs/1511.01937
http://arxiv.org/abs/quant-ph/0005055v1
http://arxiv.org/abs/1703.05784
http://arxiv.org/abs/1604.01384
http://arxiv.org/abs/1507.00432
https://doi.org/10.1098/rspa.2009.0433
https://doi.org/10.1098/rspa.2009.0433
http://arxiv.org/abs/quant-ph/9511026
http://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1561/0400000011
http://arxiv.org/abs/quant-ph/0904.2759
http://arxiv.org/abs/quant-ph/0904.2759
https://doi.org/10.1109/FOCS.2016.51

4:32 Span Programs and Quantum Space Complexity

A Proof of Claim 18

In this section, we prove Claim 18, restated below:

B Claim 18. Let P be a span program that κ-approximates f : D → {0, 1} for some constant
κ. For any constant κ′ ≤ κ, there exists a span program P ′ that κ′-approximates f with

s(P ′) = (s(P) + 2)
2

log 1
κ′

log 1
κ , and Cκ′(P ′, D) ≤ O (Cκ(P,D)).

Let |w0〉 = A+|τ〉. We say a span program is normalized if ‖|w0〉‖ = 1. A span program
can easily be normalized by scaling |τ〉, which also scales all positive witnesses and inverse
scales all negative witnesses. However, we sometimes want to normalize a span program,
while also keeping all negative witness sizes bounded by a constant. We can accomplish this
using the following construction, from [8].

I Theorem 52. Let P = (H,V, |τ〉, A) be a span program on {0, 1}n, and let N = ‖|w0〉‖2.
For a positive real number β, define a span program P β = (Hβ , V β , |τβ〉, Aβ) as follows,
where |0̂〉 and |1̂〉 are not in H or V :

Hβ
j,b = Hj,b, Hβ

true = Htrue ⊕ span{|1̂〉}, Hβ
false = Hfalse ⊕ span{|0̂〉}

V β = V ⊕ span{|1̂〉}, Aβ = βA+ |τ〉〈0̂|+
√
β2 +N

β
|1̂〉〈1̂|, |τβ〉 = |τ〉+ |1̂〉.

Then we have the following:∥∥(Aβ)+|τβ〉
∥∥ = 1;

for all x ∈ P1, w+(x, P β) = 1
β2w+(x, P) + 2;

for all x ∈ P0, w−(x, P β) = β2w−(x, P) + 1.

I Corollary 53. Let P be a span program on {0, 1}n, and P β be defined as above for
β = 1√

W−(P)
. If P κ-approximates f , then P β

√
κ-approximates f , with W−(P β) ≤ 2,

Ŵ+(P β) ≤W−(P)Ŵ+(P) + 2 and s(P β) ≤ s(P) + 2.

Proof. First note that by Theorem 52, W−(P β) ≤ 2. Let |w〉 be an approximate positive
witness for x in P , with

∥∥ΠH(x)⊥ |w〉
∥∥2 ≤ κ

W−(P) and ‖|w〉‖2 ≤ Ŵ+(P). Define

|w′〉 = 1
β(1 + κ) |w〉+ β√

β2 +N
|1̂〉+ κ

1 + κ
|0̂〉.

One can check that Aβ |w′〉 = |τβ〉.∥∥ΠHβ(x)⊥ |w′〉
∥∥2 = 1

β2(1 + κ)2

∥∥ΠH(x)⊥ |w〉
∥∥2 + κ2

(1 + κ)2

≤ 1
β2(1 + κ)2

κ

W−(P) + κ2

(1 + κ)2

= κ+ κ2

(1 + κ)2 ≤
2κ(1 + κ)

W−(P β)(1 + κ)2 = 1
W−(P β)

2κ
1 + κ

≤
√
κ

W−(P β) ,

where we have used W−(P β) ≤ 2. We upper bound Ŵ+(P β) by noting that:

‖|w′〉‖2 ≤ 1
β2(1 + κ)2 Ŵ+(P) + β2

β2 +N
+ κ2

(1 + κ)2 ≤W−(P)Ŵ+(P) + 2.

Finally, s(P β) = s(P) + 2 because of the two extra degrees of freedom |0̂〉 and |1̂〉. J

S. Jeffery 4:33

Proof of Claim 18. We will first show how, given a span program P such that ‖|w0〉‖2 ≤ 1, and
P κ-approximates f , we can get a span program P ′ such that ‖|w′0〉‖

2 ≤ 1,W−(P ′) ≤W−(P)2,
P ′ κ2-approximates f , Ŵ+(P ′) ≤ 4Ŵ+(P), and s(P ′) = s(P)2.

Define P ′ as follows, where S is a swap operator, which acts as S(|u〉|v〉) = |v〉|u〉 for all
|u〉, |v〉 ∈ H:

H ′j,b = Hj,b ⊗H, A′ = (A⊗A)
(
IH⊗H + S

2

)
, |τ ′〉 = |τ〉|τ〉.

Observe that for any |u〉, |v〉 ∈ H, we have

A′(|u〉|v〉 − |v〉|u〉) = 0, and A′|u〉|u〉 = A|u〉 ⊗A|u〉.

Note that A′(|w0〉|w0〉) = |τ ′〉, so
∥∥∥A′+|τ ′〉∥∥∥ ≤ ‖|w0〉|w0〉‖ ≤ 1.

If 〈ω| is a negative witness for x in P , it is easily verified that 〈ω′| = 〈ω|⊗〈ω| is a negative
witness in P ′, and

‖〈ω′|A′‖2 =
∥∥∥∥1

2(〈ω|A)⊗ (〈ω|A) + 1
2(〈ω|A)⊗ (〈ω|A)

∥∥∥∥2
= ‖〈ω|A‖4 ,

so w−(x, P ′) ≤ w−(x, P)2, and W−(P ′) ≤W−(P)2.
If |w〉 is an approximate positive witness for x in P , then define

|w′〉 = |w〉|w〉 −ΠH(x)⊥ |w〉ΠH(x)|w〉+ ΠH(x)|w〉ΠH(x)⊥ |w〉 −ΠH(x)|w〉Πker(A)|w〉.

We have

A′|w′〉 = A|w〉A|w〉 − 1
2
(
AΠH(x)|w〉 ⊗AΠker(A)|w〉+AΠker(A)|w〉 ⊗AΠH(x)|w〉

)
= |τ〉|τ〉 = |τ ′〉.

We can bound the error as:∥∥ΠH′(x)⊥ |w′〉
∥∥2 =

∥∥(ΠH(x)⊥ ⊗ I)|w′〉
∥∥2 =

∥∥ΠH(x)⊥ |w〉|w〉 −ΠH(x)⊥ |w〉ΠH(x)|w〉
∥∥2

=
∥∥ΠH(x)⊥ |w〉ΠH(x)⊥ |w〉

∥∥2 ≤ κ2

W−(P)2 ≤
κ2

W−(P ′) .

Next, observe that

(ΠH(x) + ΠH(x)⊥)⊗ (ΠH(x) + ΠH(x)⊥)−ΠH(x)⊥ ⊗ΠH(x) + ΠH(x) ⊗ΠH(x)⊥

= ΠH(x) ⊗ΠH(x) + ΠH(x) ⊗ΠH(x)⊥ + ΠH(x)⊥ ⊗ΠH(x)⊥ + ΠH(x) ⊗ΠH(x)⊥

= ΠH(x) ⊗ I + I ⊗ΠH(x)⊥

so |w′〉 = ΠH(x)|w〉 ⊗ |w〉+ |w〉 ⊗ΠH(x)⊥ |w〉 −ΠH(x)|w〉 ⊗Πker(A)|w〉.

Thus, using the assumption ‖|w0〉‖ ≤ 1, and the fact that Πrow(A)|w〉 = |w0〉:

‖|w′〉‖2 =
∥∥ΠH(x)|w〉|w〉+ |w〉ΠH(x)⊥ |w〉 −ΠH(x)|w〉Πker(A)|w〉

∥∥2

=
∥∥ΠH(x)|w〉Πrow(A)|w〉+ |w〉ΠH(x)⊥ |w〉

∥∥2

=
∥∥ΠH(x)|w〉|w0〉

∥∥2 +
∥∥|w〉ΠH(x)⊥ |w〉

∥∥2 + 2
∥∥ΠH(x)|w〉

∥∥2 〈w0|ΠH(x)⊥ |w〉

≤ Ŵ+(P) + Ŵ+(P) κ

W−(P) + 2Ŵ+(P)
√

κ

W−(P) ≤ (1 + κ+ 2
√
κ)Ŵ+(P).

Note that we could assume that Ŵ−(P) ≥ 1 because ‖w0‖ ≤ 1.

ITCS 2020

4:34 Span Programs and Quantum Space Complexity

We complete the proof by extending to the general case. Let P be any span program
that κ-approximates f . By applying Theorem 52 and Corollary 53, we can get a span
program, P0, with ‖|w0〉‖ = 1, W−(P0) ≤ 2, Ŵ+(P0) ≤ C(P)2 + 2, and s(P0) = s(P) + 2,
that

√
κ-approximates f . We can then apply the construction described above, iteratively, d

times, to get a span program Pd that
√
κ

2d = κ2d−1 -approximates f , with

s(Pd) = s(P0)2d = (s(P) + 2)2d ,

W−(Pd) ≤ 22d , and Ŵ+(Pd) ≤ 4dŴ+(P0) ≤ 4dC(P)2 + 2 · 4d.

Setting d = log
(

log 1
κ′

log 1
κ

)
+ 1 gives the desired κ′. C

B Proofs of Lemma 46 and Lemma 47

We will prove the lemmas as a collection of claims. Fix T ′ ≥ T and M ′ ≥M with which to
run the algorithm. Suppose Φ(x) outputs |ψ(x)〉 = √px|0〉A|Φ0(x)〉+

√
1− px|1〉A|Φ1(x)〉,

and let p̃ denote the estimate output by the algorithm. We will let UOx =
∑
j e
iσj(x)|λxj 〉〈λxj |

be an eigenvalue decomposition.

B Claim 54. If f(x) = 0 then ‖Π0(x)|ψ0〉‖2 ≥ 1
M2 .

Proof. Since the algorithm computes f with bounded error, the probability of accepting x is
at most 1/3, so p̃ ≤ δ with probability at most 1/3.

Amplitude estimation is just phase estimation of a unitary WΦ such that |ψ(x)〉 is in the
span of e±2iθx-eigenvectors of WΦ, where px = sin2 θx, θx ∈ [0, π/2) [4]. One can show that
the probability of outputting an estimate p̃ = 0 is sin2(M ′θx)/(M ′2 sin2(θx)), so

1
3 ≥

sin2(M ′θx)
M ′2 sin2(θx)

.

If M ′θx ≤ π
2 , then this would give 1

3 ≥
4
π2 , which is a contradiction. Thus, we have:

M ′θx >
π

2 ⇒ 2θx
π

>
1
M ′

⇒ sin θx >
1
M ′

⇒ √
px >

1
M ′

.

Since Φ(x) is the result of running phase estimation, we have

px =
∑
j

|〈λxj |ψ0〉|2
sin2(T ′σj(x)/2)
T ′2 sin2(σj(x)/2)

≤ ‖ΠΘ(x)|ψ0〉‖2 + π2

T ′2Θ2
,

for any Θ. In particular, if ∆ is less than the spectral gap of UOx, we have ‖Π∆(x)|ψ0〉‖ =
‖Π0(x)|ψ0〉‖, so

1
M ′2

< ‖Π0(x)|ψ0〉‖2 + π2

T ′2∆2
.

This is true for any choices T ′ ≥ T and M ′ ≥M , so we must have:

1
M2 ≤ ‖Π0(x)|ψ0〉‖2 . C

S. Jeffery 4:35

B Claim 55. If f(x) = 1 and δ = 0, then for any d <
√

8
π ,
∥∥Πdπ/T (x)|ψ0〉

∥∥2 = 0.

Proof. Suppose towards a contradiction that
∥∥Πdπ/T (x)|ψ0〉

∥∥2
> 0. Then px > 0, and some

sufficiently large M ′ ≥M would detect this and cause the algorithm to output 0, so we must
actually have

∥∥Πdπ/T (x)|ψ0〉
∥∥2 = 0. In fact, in order to sure that no large enough value M ′

detects amplitude > 0 on |0〉A, we must have px = 0 whenever f(x) = 1. That means that
when f(x) = 1, the algorithm never outputs 0, so the algorithm has one-sided error. C

B Claim 56. There is some constant c such that if f(x) = 0 and δ > 0 then ‖Π0(x)|ψ0〉‖2 >
δ(1 + c).

Proof. Recall that p̃ ∈ {sin2(πm/M ′) : m = 0, . . . ,M ′ − 1}. We will restrict our attention to
choices M ′ such that for some integer d,

sin2 dπ

M ′
≤ δ < sin2 (d+ 1/3)π

M ′
.

To see that such a choice exists, let τ be such that δ = sin2 τ , and note that the condition
holds as long as d ≤ τM ′

π < d+ 1/3 for some d, which is equivalent to saying that b 3τM ′
π c = 0

mod 3. If K = b 1
2
π
3τ c, then for any M ′ ≥ M , and ` ≥ 0, define M` = M ′ + `K. Then for

any ` > 0,

3τ
π
M` −

3τ
π
M`−1 = 3τ

π
K ∈

[
1
2 −

3τ
π
,

1
2

]
,

so there must be one ` ∈ {0, . . . , 6} such that b 3τ
π M`e = 0 mod 3. In particular, there is

some choice M` satisfying the condition such that (using some M ′ ≤ 1√
δ
):

√
δM` ≤

√
δ

(
1√
δ

+ 6 π6τ

)
= 1 + π sin τ

τ
≤ 1 + π. (3)

We will use this value as our M ′ for the remainder of this proof.
Let px = sin2 θx for θx ∈ [0, π/2]. Let z be an integer such that ∆ = θx − πz/M ′ has

|∆| ≤ π
2M ′ . Then the outcome p̃ = sin2 πz

M ′ has probability:

1
M ′2

∣∣∣∣∣∣
M ′−1∑
t=0

ei2t(θx−πz/M
′)

∣∣∣∣∣∣
2

= 1
M ′2

∣∣∣∣∣∣
M ′−1∑
t=0

ei2t∆

∣∣∣∣∣∣
2

= sin2(M ′∆)
M ′2 sin2 ∆

≥ 4
π2 ,

since |M ′∆| ≤ π
2 . Thus, by correctness, we must have sin2(πz/M ′) > δ ≥ sin2 dπ

M ′ . Thus
z > d, so

(d+ 1)π
M ′

≤ zπ

M ′
= θx −∆ ≤ θx + π

2M ′ .

Thus:
(d+ 1/3)π

M ′
+ 2π

3M ′ ≤ θx + π

2M ′

sin
(

(d+ 1/3)π
M ′

+ π

6M ′

)
≤ sin θx

sin
(

(d+ 1/3)π
M ′

)
cos π

6M ′ + cos
(

(d+ 1/3)π
M ′

)
sin π

6M ′ ≤
√
px

√
δ

√
1− sin2 π

6M ′ +
√

1− δ sin π

6M ′ ≤
√
px

ITCS 2020

4:36 Span Programs and Quantum Space Complexity

When sin2 π
6M ′ ≤ 1 − δ, which we can assume, the above expression is minimized when

sin2 π
6M ′ is as small as possible. We have, using M ′ ≤ 1+π√

δ
, from (3):

sin2 π

6M ′ ≥
4

36M ′2
≥ δ

9(1 + π)2 .

Thus, continuing from above, letting k = 1
9(1+π)2 , we have:

√
δ
√

1− kδ +
√

1− δ
√
kδ ≤ √px

δ(1− kδ) + (1− δ)kδ + 2δ
√
k(1− δ)(1− kδ) ≤ px

Next, notice that (1− kδ)(1− δ) is minimized when δ = 1+k
2k , but δ ≤ 1

2 <
1+k
2k , so we have,

using k < 1 and δ ≤ 1/2:

δ(1 + k(1− 2δ) + 2
√
k
√

(1− k/2)(1− 1/2)) ≤ px
δ(1 + 0 +

√
k) ≤ px.

Since Φ(x) is the result of running phase estimation of UOx for T ′ ≥ T steps, we have:

px =
∑
j

|〈λxj |ψ0〉|2
sin2(T

′σj(x)
2)

(T ′)2 sin2(σj(x)
2)

,

so in particular, for any Θ ∈ [0, π), we have

px ≤ ‖ΠΘ(x)|ψ0〉‖2 +
∑

j:|σj(x)|>Θ

|〈λxj |ψ0〉|2
1

(T ′)2 sin2(Θ
2)
.

≤ ‖ΠΘ(x)|ψ0〉‖2 + ‖(I −ΠΘ(x))|ψ0〉‖2
π2

(T ′)2Θ2 .

In particular, for any Θ < ∆ where ∆ is the spectral gap of UOx, we have ‖ΠΘ(x)|ψ0〉‖ =
‖Π0(x)|ψ0〉‖, so for any T ′ ≥ T , we have

‖Π0(x)|ψ0〉‖2 + π2

(T ′)2∆2 ≥ px ≥ δ(1 +
√
k).

Since this holds for any T ′ ≥ T , we get ‖Π0(x)|ψ0〉‖2 ≥ δ(1 +
√
k). The proof is completed

by letting c =
√
k. C

B Claim 57. If f(x) = 1 and δ > 0 then
∥∥Πdπ/T (x)|ψ0〉

∥∥2 (1− d2π2/8) ≤ δ.

Proof. If |λ〉 is an eiθ-eigenvector of UOx for some |θ| ≤ dπ/T <
√

8/T , then the probability
of measuring 0 in the phase register upon performing T steps of phase estimation is:

px(θ) := 1
T 2

∣∣∣∣∣
T−1∑
t=0

eitθ

∣∣∣∣∣
2

=
sin2 Tθ

2
T 2 sin2 θ

2
.

Let ε(x) = 1 − sin2 x
x2 for any x. It is simple to verify that ε(x) ≤ x2/2 for any x, and

ε(x) ∈ [0, 1] for any x. So we have:

px(θ) ≥ (Tθ/2)2(1− ε(Tθ/2))
T 2(θ/2)2(1− ε(θ/2)) ≥ 1− ε(Tθ/2) ≥ 1− T 2θ2

8 .

S. Jeffery 4:37

Thus, we conclude that

px ≥
∥∥Πdπ/T (x)|ψ0〉

∥∥2
(

1− T 2

8
d2π2

T 2

)
=
∥∥Πdπ/T (x)|ψ0〉

∥∥2
(

1− d2π2

8

)
.

If this is > δ, then with some sufficiently large M ′ ≥M , amplitude estimation would detect
this and cause the algorithm to output 0 with high probability. C

ITCS 2020

	Introduction
	Preliminaries
	Span Programs and Quantum Algorithms
	Span Programs
	From Quantum Algorithms to Span Programs

	Span Programs and Space Complexity
	Monotone Span Programs and Monotone Algorithms
	Monotone Span Program Lower Bounds
	Monotone Algorithms
	Monotone Algorithms to (Approximate) Monotone Span Programs

	Proof of Claim 18
	Proofs of Lemma 46 and Lemma 47

