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Abstract
We show that there exist properties that are maximally hard for testing, while still admitting
PCPPs with a proof size very close to linear. Specifically, for every fixed `, we construct a property
P(`) ⊆ {0, 1}n satisfying the following: Any testing algorithm for P(`) requires Ω(n) many queries,
and yet P(`) has a constant query PCPP whose proof size is O(n · log(`) n), where log(`) denotes the
` times iterated log function (e.g., log(2) n = log log n). The best previously known upper bound on
the PCPP proof size for a maximally hard to test property was O(n · polylog n).

As an immediate application, we obtain stronger separations between the standard testing model
and both the tolerant testing model and the erasure-resilient testing model: for every fixed `, we
construct a property that has a constant-query tester, but requires Ω(n/ log(`)(n)) queries for every
tolerant or erasure-resilient tester.
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1 Introduction

Probabilistically checkable proofs (PCPs) are one of the landmark achievements in theoretical
computer science. Loosely speaking, PCPs are proofs that can be verified by reading only
a very small (i.e., constant) number of bits. Beyond the construction of highly efficient
proof systems, PCPs have myriad applications, most notably within the field of hardness of
approximation.
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9:2 Hard Properties with (Very) Short PCPPs and Their Applications

A closely related variant of PCPs, called probabilistically checkable proofs of proximity
(PCPPs), was introduced independently by Ben-Sasson et al. [5] and Dinur and Reingold [13].
In the PCPP setting, a verifier is given oracle access to both an input x and a proof π. It
should make a few (e.g., constant) number of queries to both oracles to ascertain whether
x ∈ L. Since the verifier can only read a few of the input bits, we only require that it rejects
inputs that are far (in Hamming distance) from L, no matter what proof π is provided.
PCPPs are highly instrumental in the construction of standard PCPs. Indeed, using modern
terminology, both the original algebraic construction of PCPs [1] (see also [5]) as well as
Dinur’s [12] combinatorial proof utilize PCPPs.

By combining the seminal works of Ben-Sasson and Sudan [7] and Dinur [12], one
can obtain PCPs and PCPPs with only poly-logarithmic (multiplicative) overhead. More
specifically, the usual benchmark for PCPPs is with respect to the CircuitEval problem, in
which the verifier is given explicit access to a circuit C and oracle access to both an input x
and a proof π, and needs to verify that x is close to the set {x′ : C(x′) = 1}. The works of
[7, 12] yield a PCPP whose length is quasilinear in the size |C| of the circuit C.1

Given the important connections both to constructions of efficient proof-systems, and
to hardness of approximation, a central question in the area is whether this result can be
improved: Do PCPPs with only a constant overhead exist? In a recent work, Ben Sasson et
al. [6] construct PCPs with constant overhead, albeit with very large query complexity (as
well as a non-uniform verification procedure).2 To verify that C(x) = 1 the verifier needs to
make |C|δ queries, where δ > 0 can be any fixed constant.

Given the lack of success (despite the significant interest) in constructing constant-query
PCPPs with constant overhead, it may be the case that there exist languages that do not
have such efficient PCPPs. A natural class of candidate languages for which such PCPPs
may not exist are languages for which it is maximally hard to test whether x ∈ L or is far
from such, without a PCPP proof. In other words, languages (or rather properties) that do
not admit sub-linear query testers. Thus, we investigate the following question:

Supposing that L requires Ω(n) queries for every (property) tester, must any constant-
query PCPP for L have proof length n · (logn)Ω(1)?

1.1 Our Results

Our first main result answers the above question negatively, by constructing a property
that is maximally hard for testing, while admitting a very short PCPP. For the exact
theorem statement, we let log(`) denote the ` times iterated log function. That is, log(`)(n) =
log(log(`−1)(n)) for ` ≥ 1 and log(0) n = n.

I Theorem 1 (informal restatement of Theorem 30). For every constant integer ` ∈ N, there
exists a property P ⊆ {0, 1}n such that any testing algorithm for P requires Ω(n) many
queries, while P admits a (constant query3) PCPP system with proof length O(n · log(`)(n)).

1 Note that a PCPP for CircuitEval can be easily used to construct a PCP for CircuitSAT with similar
overhead (see [5, Proposition 2.4]).

2 Although it is not stated in [6], we believe that their techniques can also yield PCPPs with similar
parameters.

3 For detection radius (or proximity parameter) ε > 0 and constant soundness, the particular query
complexity of the PCPP system is bounded by (2`/ε)O(`).
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We remark that all such maximally hard properties cannot have constant-query PCPP
proof-systems with a sub-linear length proof string (see Proposition 13), leaving only a small
gap of log(`)(n) on the proof length in Theorem 1.

Beyond demonstrating that PCPPs with extremely short proofs exist for some hard
properties, we use Theorem 1 to derive several applications. We proceed to describe these
applications next.

Tolerant Testing

Recall that property testing (very much like PCPPs) deals with solving approximate decision
problems. A tester for a property P is an algorithm that given a sublinear number of queries
to its input x, should accept (with high probability) if x ∈ P and reject if x is far from P
(where, unlike PCPPs, the tester is not provided with any proof).

The standard setting of property testing is arguably fragile, since the testing algorithm is
only guaranteed to accept all functions that exactly satisfy the property. In various settings
and applications, accepting only inputs that exactly have a certain property is too restrictive,
and it is more beneficial to distinguish between inputs that are close to having the property,
and those that are far from it. To address this question, Parnas, Ron and Rubinfeld [26]
introduced a natural generalization of property testing, in which the algorithm is required
to accept functions that are close to the property. Namely, for parameters 0 ≤ ε0 < ε1 ≤ 1,
an (ε0, ε1)-tolerant testing algorithm is given an oracle access to the input, and is required
to determine (with high probability) whether a given input is ε0-close to the property or
whether it is ε1-far from it. As observed in [26], any standard testing algorithm whose queries
are uniformly (but not necessarily independently) distributed, is inherently tolerant to some
extent. Nevertheless, for many problems, strengthening the tolerance requires applying
advanced methods and devising new algorithms (see e.g., [16, 23, 10, 8, 9]).

It is natural to ask whether tolerant testing is strictly harder than standard testing. This
question was explicitly studied by Fischer and Fortnow [15], who used PCPPs with polynomial
size proofs to show that there exists a property P ⊆ {0, 1}n that admits a tester with constant
query complexity, but such that every tolerant tester for P has query complexity Ω(nc) for
some 0 < c < 1. Using modern quasilinear PCPPs [7, 12] in combination with the techniques
of [15] it is possible to construct a property demonstrating a better separation, of constant
query complexity for standard testing versus Ω(n/polylog n) for tolerant testing.

Using Theorem 1 we can obtain an improved separation between testing and tolerant
testing:

I Theorem 2 (informal restatement of Theorem 46). For any constant integer ` ∈ N, there
exist a property of boolean strings P ⊆ {0, 1}n and a constant ε1 ∈ (0, 1) such that P is
ε-testable for any ε > 0 with a number of queries4 independent of n, but for any ε0 ∈ (0, ε1),
every (ε0, ε1)-tolerant tester for P requires Ω(n/polylog(`)n) many queries.

Erasure-Resilient Testing

Another variant of the property testing model is the erasure-resilient testing model. This
model was defined by Dixit et. al. [14] to address cases where data cannot be accessed at
some domain points due to privacy concerns, or when some of the values were adversarially
erased. More precisely, an α-erasure-resilient ε-tester gets as input parameters α, ε ∈ (0, 1),

4 The query complexity of the intolerant ε-tester has the same asymptotic bound as in Theorem 1.

ITCS 2020



9:4 Hard Properties with (Very) Short PCPPs and Their Applications

as well as oracle access to a function f , such that at most an α fraction of its values have
been erased. The tester has to accept with high probability if there is a way to assign values
to the erased points of f such that the resulting function satisfies the desired property. The
tester has to reject with high probability if for every assignment of values to the erased
points, the resulting function is still ε-far from the desired property.

Similarly to the tolerant testing scenario, PCPPs were also used in [14] to show that there
exists a property of boolean strings of length n that has a tester with query complexity
independent of n, but for any constant α > 0, every α-erasure-resilient tester is required
to query Ω(nc) many bits for some c > 0, thereby establishing a separation between the
models. Later, in [27] PCPP constructions were used to provide a separation between the
erasure-resilient testing model and the tolerant testing model.

Similarly to the tolerant testing case, we use Theorem 1 to prove a stronger separation
between the erasure-resilient testing model and the standard testing model.

I Theorem 3 (informal restatement of Theorem 47). For any constant integer ` ∈ N, there
exist a property of boolean strings P ⊆ {0, 1}n and a constant ε1 ∈ (0, 1) such that P is ε-
testable for any ε > 0 with number of queries5 independent of n, but for any α = Ω(1/ log(`) n)
and ε ∈ (0, ε1) such that ε < 1 − α, any α-erasure-resilient ε-tester is required to query
Ω(n/polylog(`)n) many bits.

Secret Sharing applications

As an additional application of our techniques we also obtain a new type of secret sharing
scheme. Recall that in a secret sharing scheme, a secret value b ∈ {0, 1} is shared between n
parties in such a way that only an authorized subset of the users can recover the secret. We
construct a secret sharing scheme in which no subset of o(n) parties can recover the secret
and yet it is possible for each one of the parties to recover the secret, if given access to a
PCPP-like proof, with the guarantee that no matter what proof-string is given, most parties
will either recover b or reject.

We obtain such a secret sharing scheme through a notion called Probabilistically Checkable
Unveiling of a Shared Secret (PCUSS), which will be central in our work. This notion is
loosely described in Subsection 1.2 and formally defined in Section 4.

1.2 Techniques
Central to our construction are (univariate) polynomials over a finite field F. A basic fact is
that a random polynomial p : F→ F of degree (say) |F|/2, evaluated at any set of at most
|F|/2 points, looks exactly the same as a totally random function f : F→ F. This is despite
the fact that a random function is very far (in Hamming distance) from the set of low degree
polynomials. Indeed, this is the basic fact utilized by Shamir’s secret sharing scheme [29].

Thus, the property of being a degree-|F|/2 univariate polynomial is a hard problem to
decide for any tester, in the sense that such a tester must make Ω(|F|) queries to the truth
table of the function in order to decide. Given that, it seems natural to start with this
property in order to prove Theorem 1. Here we run into two difficulties. First, the property
of being a low degree polynomial is defined over a large alphabet, whereas we seek a property
over boolean strings. Second, the best known PCPPs for this property have quasi-linear
length [7], which falls short of our goal.

5 Again, the query complexity of the (non erasure resilient) ε-tester has the same asymptotic bound as in
Theorem 1.
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To cope with these difficulties, our approach is to use composition, or more accurately, an
iterated construction. The main technical contribution of this paper lies in the mechanism
enabling this iteration. More specifically, rather than having the property contain the
explicit truth table of the low degree polynomial p, we would like to use a more redundant
representation for encoding each value p(α). This encoding should have several properties:

It must be the case that one needs to read (almost) the entire encoding to be able to
decode p(α). This feature of the encoding, which we view as a secret-sharing type of
property, lets us obtain a hard to test property over boolean strings.
The encoding need not be efficient, and in fact it will be made long enough to eventually
subsume the typical length of a PCPP proof-string for the low degree property, when
calculated with respect to an unencoded input string.
Last but not least, we need the value to be decodable using very few queries, when given
access to an auxiliary PCP-like proof string. This would allow us to “propagate” the
PCPP verification of the property across iterations.

In more detail, we would like to devise a (randomized) encoding of strings in {0, 1}k by
strings in {0, 1}m. The third requirement listed above can be interpreted as saying that given
oracle access to v ∈ {0, 1}m and explicit access to a value w ∈ {0, 1}k, it will be possible
verify that v indeed encodes w using a PCPP-like scheme, i.e. by providing a proof that can
be verified with a constant number of queries. We refer to this property as a probabilistically
checkable unveiling (PCU)6. Note that in our setting a single value w may (and usually will)
have more than one valid encoding.

Going back to the first requirement of the encoding, we demand that without a proof,
one must query at least Θ(m) bits of v to obtain any information about the encoded w, or
even discern that v is indeed a valid encoding of some value. Given this combination of
requirements, we refer to the verification procedure as a Probabilistically Checkable Unveiling
of a Shared Secret (PCUSS).

Low degree polynomials can be used to obtain a PCUSS based on Shamir’s secret sharing
scheme. More specifically, to encode a k bit string w, we take a random polynomial whose
values on a subset H ⊆ F are exactly equal to the bits of w. However, we provide the values
of this polynomial only over the sub domain F \H. Then, the encoded value is represented
by the (interpolated) values of g over H, which admit a PCU scheme. On the other hand, the
“large independence” feature of polynomials makes the encoded value indiscernible without a
a supplied proof string, unless too many of the values of g over F \H are read, thus allowing
for a PCUSS.

This construction can now be improved via iteration. Rather than explicitly providing
the values of the polynomial, they will be provided by a PCUSS scheme. Note that the
PCUSS scheme that we now need is for strings of a (roughly) exponentially smaller size. The
high level idea is to iterate this construction ` times to obtain the ` iterated log function in
our theorems.

At the end of the recursion, i.e., for the smallest blocks at the bottom, we utilize a
linear-code featuring both high distance and high dual distance, for a polynomial size PCUSS
of the encoded value. This is the only “non-constructive” part in our construction, but since
the relevant block size will eventually be less than log log(n), the constructed property will
still be uniform with polynomial calculation time (the exponential time in poly(log log(n)),
needed to construct the linear-code matrix, becomes negligible).

6 In fact, we will use a stronger variant where the access to w is also restricted.
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9:6 Hard Properties with (Very) Short PCPPs and Their Applications

Our PCUSS in particular provides a property that is hard to test (due to its shared
secret feature), and yet has a near-linear PCPP through its unveiling, thereby establishing
Theorem 1. We utilize this property for separation results in a similar manner to [15] and
[14], by considering a weighted version of a “PCPP with proof” property, where the proof
part holds only a small portion of the total weight. The PCPP proof part enables a constant
query test, whereas if the PCPP proof is deleted, efficient testing is no longer possible.

1.3 Related work
Short PCPPs

For properties which can be verified using a circuit of size n, [5] gave PCPP constructions with
proof length n · exp(poly(log logn)) and with a query complexity of poly(log logn), as well
as slightly longer proofs with constant query complexity. Later, Ben-Sasson and Sudan [7]
gave constructions with quasilinear size proofs, but with slightly higher query complexity.
The state of the art construction is due to Dinur [12] who, building on [7], showed a PCPP
construction with proof length that is quasilinear in the circuit size and with constant query
complexity. In a recent work Ben Sasson et al. [3] constructed an interactive version of
PCPPs [4, 28] of strictly linear length and constant query complexity.

Tolerant Testing

The tolerant testing framework has received significant attention in the past decade. Property
testing of dense graphs, initiated by [19], is inherently tolerant by the canonical tests of
Goldreich and Trevisan [21]. Later, Fischer and Newman [16] (see also [2]) showed that every
testable (dense) graph property admits a tolerant testing algorithm for every 0 < ε0 < ε1 < 1,
which implies that O(1) query complexity testability is equivalent to distance approximation
in the dense graph model. Some properties of boolean functions were also studied recently in
the tolerant testing setting. In particular, the properties of being a k-junta (i.e. a function
that depends on k variables) and being unate (i.e., a function where each direction is either
monotone increasing or monotone decreasing) [9, 24, 11].

Erasure-resilient Testing

For the erasure resilient model, in addition to the separation between that model and
the standard testing model, [14] designed efficient erasure-resilient testers for important
properties, such as monotonicity and convexity. Shortly after, in [27] a separation between
the erasure-resilient testing model and the tolerant testing model was established. The last
separation requires an additional construction (outside PCPPs), which remains an obstacle
to obtaining better than polynomial separations.

2 Preliminaries

We start with some notation and central definitions. For a set A, we let 2A denote the
power-set of A. For two strings x, y ∈ {0, 1}∗ we use x t y to denote string concatenation.

For an integer k, a field F = GF(2k) and α ∈ F, we let 〈〈α〉〉 ∈ {0, 1}k denote the binary
representation of α in some canonical way.

For two sets of strings A and B we use A tB to denote the set {a t b | a ∈ A, b ∈ B}.
For a collection of sets {A(d)}d∈D we use

⊔
d∈D A(d) to denote the set of all possible

concatenations
⊔
d∈D ad, where ad ∈ A(d) for every d ∈ D.
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Throughout this paper we use boldface letters to denote random variables, and assume a
fixed canonical ordering over the elements in all the sets we define. For a set D, we write
v ∼ D to denote a random variable resulting from a uniformly random choice of an element
v ∈ D.

2.1 Error correcting codes and polynomials over finite fields
The relative Hamming distance of two strings x, y ∈ Σn is defined as dist(x, y) = 1

n ·
|{i ∈ [n] | xi 6= yi}|. For a string x ∈ Σn and a non-empty set S ⊆ Σn, we define
dist(x, S) = miny∈S dist(x, y). The following plays a central role in many complexity-related
works, including ours.

I Definition 4. A code is an injective function C : Σk → Σn. If Σ is a finite field and C is
a linear function (over Σ), then we say that C is a linear code. The rate of C is defined
as k/n, whereas the minimum relative distance is defined as the minimum over all distinct
x, y ∈ Σk of dist(C(x), C(y)).

An ε-distance code is a code whose minimum relative distance is at least ε. When for a
fixed ε > 0 we have a family of ε-distance codes (for different values of k), we refer to its
members as error correcting codes.

In this work we use the fact that efficient codes with constant rate and constant relative
distance exist. Moreover, there exist such codes in which membership can be decided by a
quasi-linear size Boolean circuit.

I Theorem 5 (see e.g., [30]). There exists a linear code Spiel : {0, 1}k → {0, 1}100k with
constant relative distance, for which membership can be decided by a k ·polylog k size Boolean
circuit.

Actually, the rate of the code in [30] is significantly better, but since we do not try to
optimize constants, we use the constant 100 solely for readability. In addition, the code
described in [30] is linear time decodeable, but we do not make use of this feature throughout
this work.

We slightly abuse notation, and for a finite field F of size 2k, view the encoding given
in Theorem 5 as Spiel : F → {0, 1}100k, by associating {0, 1}k with F in the natural way.
Note that for f : F → F, it holds that 〈〈f(β)〉〉 ∈ {0, 1}k for every β ∈ F, and therefore
Spiel(f(β)) ∈ {0, 1}100k. We slightly abuse notation, and for a function f : F→ F we write
Spiel(f) to denote the length 100k ·2k bit string

⊔
β∈F Spiel(f(β)) (where we use the canonical

ordering over F).

I Definition 6. Let CF denote the set of polynomials g : F→ F such that deg(g) ≤ |F|2 .

The following lemma of [22], providing a fast univariate interpolation, will be an important
tool in this work.

I Lemma 7 ([22]). Given a set of pairs {(x1, y1), . . . , (xr, yr)} with all xi distinct, we can
output the coefficients of p(x) ∈ F[X] of degree at most r − 1 satisfying p(xi) = yi for all
i ∈ [r], in O(r · log3(r)) additions and multiplications in F.

The next lemma states that a randomly chosen function λ : F→ F is far from any low
degree polynomial with very high probability.

I Lemma 8. With probability at least 1− o(1), a uniformly random function λ : F→ F is
1/3-far from CF.

ITCS 2020



9:8 Hard Properties with (Very) Short PCPPs and Their Applications

Proof. Consider the size of a ball of relative radius 1/3 around some function λ : F→ F in
the space of functions from F to itself. The number of points (i.e., functions from F→ F)
contained in this ball is at most(

|F|
|F|/3

)
· |F||F|/3 ≤ (3e|F|)|F|/3.

By the fact that the size of CF is |F||F|/2+1, the size of the set of points that are at relative
distance at most 1/3 from any point in CF is at most

|F||F|/2+1 · (3e|F|)|F|/3 = o(|F||F|).

The lemma follows by observing that there are |F||F| functions from F to itself. J

2.1.1 Dual distance of linear codes
We focus here specifically on a linear code C : Fk → Fn, and consider the linear subspace
of its image, VC = {C(x) : x ∈ Fk} ⊆ Fn. We define the distance of a linear space as
dist(V ) = minv∈V \{0n} dist(v, 0n), and note that in the case of V being the image VC of
a code C, this is identical to dist(C). For a linear code, it helps to investigate also dual
distances.

I Definition 9. Given two vectors u, v ∈ Fn, we define their scalar product as u · v =∑
i∈[n] uivi, where multiplication and addition are calculated in the field F. Given a linear

space V ⊆ Fn, its dual space is the linear space V ⊥ = {u : ∀v ∈ V, u · v = 0}. In other words,
it is the space of vectors who are orthogonal to all members of V .The dual distance of the
space V is simply defined as dist(V ⊥).

For a code C, we define its dual distance, dist⊥(C), as the dual distance of its image
VC . We call C an η-dual-distance code if dist⊥(C) ≥ η. The following well-known lemma is
essential to us, as it will relate to the “secret-sharing” property that we define later.

I Lemma 10 (See e.g., [25, Chapter 1, Theorem 10]). Suppose that C : Fk → Fn is a linear
η-dual distance code, let Q ⊂ [n] be any set of size less than η · n, and consider the following
random process for picking a function u : Q→ F: Let w ∈ Fk be drawn uniformly at random,
and set u be the restriction of C(w) to the set Q. Then, the distribution of u is identical to
the uniform distribution over the set of all functions from Q to F.

2.2 Probabilistically checkable proofs of proximity (PCPP)
As described briefly in the introduction, a PCPP verifier for a property P is given access to
an input x and a proof π, as well as a detection radius ε > 0 and soundness parameter δ > 0.
The verifier should make a constant number of queries (depending only on ε, δ) to the input
x and the proof π, and satisfy the following. If x ∈ P, then there exists π for which the
verifier should always accept x. If dist(x,P) > ε, the verifier should reject x with probability
at least δ, regardless of the contents of π. More formally, we define the following.

I Definition 11 (PCPP). For n ∈ N, let P ⊂ {0, 1}n be a property of n-bit Boolean strings,
and let t ∈ N. We say that P has a q(ε, δ)-query, length-t Probabilistically Checkable Proof
of Proximity (PCPP) system if the following holds: There exists a verification algorithm V

that takes as input ε, δ > 0 and n ∈ N, makes a total of q(ε, δ) queries on strings w ∈ {0, 1}n
and π ∈ {0, 1}t, and satisfies the following:
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1. (Completeness) If w ∈ P, then there exists a proof π = ProofP(w) ∈ {0, 1}t such that
for every ε, δ > 0, the verifier V accepts with probability 1.

2. (Soundness) If dist(w,P) > ε, then for every alleged proof π ∈ {0, 1}t, the verifier V
rejects with probability greater than δ.

Note that soundness is easy to amplify: Given a PCPP as above with parameters ε, δ, t
and query complexity q(ε, δ), one can increase the soundness parameter to 1− τ (for any
τ > 0) by simply running Θ(log(1/τ)/δ) independent instances of the verification algorithm
V , and rejecting if at least one of them rejected; the query complexity then becomes
Θ (q(ε, δ) · log(1/τ)/δ), while the parameters ε and t remain unchanged.

The following lemma, establishing the existence of a quasilinear PCPP for any property
P that is verifiable in quasilinear time, will be an important tool throughout this work.

I Lemma 12 (Corollary 8.4 in [12], see also [20]). Let P be a property of Boolean strings
which is verifiable by a size t Boolean circuit. Then, there exists a length-t′ PCPP system P
with parameters ε, δ > 0, that makes at most q(ε, δ) queries, where t′ = t · polylog t.

Specifically, q(ε, δ) = O(ε−1) suffices for any δ < 0.99.
As described briefly in the introduction, maximally hard properties cannot have a constant

query PCPP proof systems with a sublinear length proof string.

I Proposition 13. Let P ⊆ {0, 1}n and ε > 0 be such that any ε-tester for P has to make
Ω(n) many queries. Then, any constant query PCPP system for P (where e.g. δ = 1/3) must
have proof length of size Ω(n).

Proof. Suppose that there exists a PCPP for P with O(1) queries and proof length t = o(n).
Since the PCPP verifier has constant query complexity, we may assume that it is non adaptive
and uses q = O(1) queries. By an amplification argument as above, we can construct an
amplified verifier that makes O(q · t) = o(n) queries, with soundness parameter 1− 2−t/3.
By the fact that the verifier is non-adaptive, it has the same query distribution regardless of
the proof string. Therefore, we can run 2t amplified verifiers in parallel while reusing queries,
one verifier for each of the 2t possible proof strings. If any of the 2t amplified verifiers accept,
we accept the input. If the input belongs to P, one of the above 2t verifiers will accept (the
one that used the correct proof). If the input was ε-far from P, then by a union bound, the
probability that there was any accepting amplified verifier is at most 1/3. This yields an
o(n) tester for P, which contradicts our assumption. J

2.3 Testing, tolerant testing and erasure-resilient testing
In this subsection we define notions related to the property testing framework. We also
formally define a few variants of the original testing model that will be addressed in this
work. A property P of n-bit boolean strings is a subset of all those strings, and we say that
a string x has the property P if x ∈ P.

Given ε ≥ 0 and a property P, we say that a string x ∈ {0, 1}n is ε-far from P if
dist(x,P) > ε, and otherwise it is ε-close to P . We next define the notion of a tolerant tester
of which standard (i.e. intolerant) testers are a special case.

I Definition 14 (Intolerant and tolerant testing). Given 0 ≤ ε0 < ε1 ≤ 1, a q-query (ε0, ε1)-
testing algorithm T for a property P ⊆ {0, 1}n is a probabilistic algorithm (possibly adaptive)
making q queries to an input x ∈ {0, 1}n that outputs a binary verdict satisfying the following
two conditions.
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1. If dist(x,P) ≤ ε0, then T accepts x with probability at least 2/3.
2. If dist(x,P) > ε1, then T rejects x with probability at least 2/3.
When ε0 = 0, we say that T is an ε1-testing algorithm for P, and otherwise we say that T is
an (ε0, ε1)-tolerant testing algorithm for P.

Next, we define the erasure-resilient testing model. We start with some terminology. A
string x ∈ {0, 1,⊥}n is α-erased if xi is equal to ⊥ on at most αn coordinates. A string
x′ ∈ {0, 1}n that differs from x only on coordinates i ∈ [n] for which xi = ⊥ is called a
completion of x. The (pseudo-)distance dist(x,P) of an α-erased string x from a property P
is the minimum, over every completion x′ of x, of the relative Hamming distance of x′ from
P . Note that for a string with no erasures, this is simply the Hamming distance of x from P .
As before, x is ε-far from P if dist(x,P) > ε, and ε-close otherwise.

I Definition 15 (Erasure-resilient tester). Let α ∈ [0, 1) and ε ∈ (0, 1) be parameters satisfying
α+ ε < 1. A q-query α-erasure-resilient ε-tester T for P is a probabilistic algorithm making
q queries to an α-erased string x ∈ {0, 1,⊥}n, that outputs a binary verdict satisfying the
following two conditions.
1. If dist(x,P) = 0 (i.e., if there exists a completion x′ of x, such that x′ ∈ P), then T

accepts x with probability at least 2/3.
2. If dist(x,P) > ε (i.e., if every completion of x′ of x is ε-far from P), then T rejects x

with probability at least 2/3.

The next lemma will be useful to prove that some properties are hard to test. The lemma
states that if we have two distributions whose restrictions to any set of queries of size at
most q are identical, then no (possibly adaptive) algorithm making at most q queries can
distinguish between them.

I Definition 16 (Restriction). Given a distribution D over functions f : D → {0, 1} and a
subset Q ⊆ D, we define the restriction D|Q of D to Q to be the distribution over functions
g : Q → {0, 1}, that results from choosing a function f : D → {0, 1} according to D, and
setting g to be f |Q, the restriction of f to Q.

I Lemma 17 ([17], special case). Let D1 and D2 be two distributions of functions over some
domain D. Suppose that for any set Q ⊂ D of size at most q, the restricted distributions
D1|Q and D2|Q are identically distributed. Then, any (possibly adaptive) algorithm making
at most q queries cannot distinguish D1 from D2 with any positive probability.

3 Code Ensembles

It will be necessary for us to think of a generalized definition of an encoding, in which each
encoded value has multiple legal encodings.

I Definition 18 (Code ensemble). A code ensemble is a function E : Σk → 2Σm . Namely,
every x ∈ Σk has a set of its valid encodings from Σm. We define the distance of the code
ensemble as

min
x6=x′∈{0,1}k

min
(v,u)∈E(x)×E(x′)

dist(v, u).

It is useful to think of a code ensemble E : Σk → 2Σm as a randomized mapping, that given
x ∈ Σk, outputs a uniformly random element from the set of encodings E(x). Using the
above we can define a shared secret property. In particular, we use a strong information
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theoretic definition of a shared secret, in which o(m) bits do not give any information at
all about the encoded value. Later on, we construct code ensembles with a shared secret
property.

I Definition 19 (Shared Secret). For m, k ∈ N and a constant ζ > 0, we say that a code
ensemble C : {0, 1}k → 2({0,1}m) has a ζ-shared secret property if it satisfies the following. For
any Q ⊆ [m] of size |Q| ≤ ζm, any w,w′ ∈ {0, 1}k such that w 6= w′, and any t ∈ {0, 1}|Q| it
holds that

Pr
v∼C(w)

[v|Q = t] = Pr
v′∼C(w′)

[v′|Q = t].

Namely, for any w 6= w′ and any Q ⊆ [m] of size at most ζm, the distribution obtained
by choosing a uniformly random member of C(w) and considering its restriction to Q, is
identical to the distribution obtained by choosing a uniformly random member of C(w′) and
considering its restriction to Q.

3.1 A construction of a hard code ensemble
We describe a construction of a code ensemble for which a linear number of queries is necessary
to verify membership or to decode the encoded value. This code will be our base code in
the iterative construction. The existence of such a code ensemble is proved probabilistically,
relying on the following simple lemma.

I Lemma 20. Fix constant α, β > 0 where β log(e/β) < α. Let s, t ∈ N so that s ≤ (1−α)t.
Then, with probability 1− o(1), a sequence of s uniformly random vectors {v1, . . . , vs} from
{0, 1}t is linearly independent, and corresponds to a β-distance linear code.

Proof. The proof follows from a straightforward counting argument. If we draw s uniformly
random vectors v1, . . . , vs ∈ {0, 1}t, then each non-trivial linear combination of them is
in itself a uniformly random vector from {0, 1}t, and hence has weight less than β with
probability at most

2−t ·
(
t

βt

)
≤ 2−t

(
et

βt

)βt
= 2−t · 2β log(e/β)t = 2(γ−1)t,

where we set γ = β log(e/β) < α.
By a union bound over all 2s ≤ 2(1−α)t possible combinations, the probability that there

exists a linear combination with weight less than β is at most 2(γ−α)t = o(1). If this is not
the case, then v1, . . . , vs are linearly independent, and moreover, {v1, . . . , vs} corresponds to
a β-distance linear code (where we use the fact that the distance of a linear code is equal to
the minimal Hamming weight of a non-zero codeword). J

Our construction makes use of a sequence of vectors that correspond to a high-distance
and high-dual distance code, as described below.

I Definition 21 (Hard code ensemble Hk). Let k ∈ N and let {v1, . . . , v3k} be a se-
quence of vectors in {0, 1}4k such that Span{v1, . . . , v3k} is a 1/30-distance code, and that
Span{vk+1, . . . , v3k} is a 1/10-dual distance code. Let

A =

 | |
v1 · · · v3k
| |

 .
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We define the code ensemble Hk : {0, 1}k → 2{0,1}4k as

Hk(w) = {Au : u ∈ {0, 1}3k where u|{1,...,k} = w},

where all operations are over GF(2).

The next lemma states that a collection of random vectors {v1, . . . , v3k} in {0, 1}4k satisfies
the basic requirements of a code ensemble Hk with high probability (that is, with probability
tending to one as k →∞), and hence such a code ensemble exists.

I Lemma 22. A set {v1, . . . , v3k} of random vectors in {0, 1}4k satisfies with high probability
the following two conditions: Span{v1, . . . , v3k} is a 1/30-distance code, and furthermore,
Span{vk+1, . . . , v3k} is a 1/10-dual distance code. In particular, for all k large enough the
code ensemble Hk exists.

Proof. We apply Lemma 20 multiple times. First, picking t = 4k, s = 3k, α = 1/4, and
β = 1/30, we conclude that v1, . . . , v3k with high probability correspond to a 1/30-distance
code.

To show that with high probability the code spanned by the last 2k vectors has high
dual distance, we compare the following two processes, whose output is a linear subspace of
(GF(2))4k, that we view as a code: (i) Choose 2k vectors and return their span. (ii) Choose
4k−2k = 2k vectors and return the dual of their span. Conditioning on the chosen 2k vectors
being linearly independent, the output distributions of these two processes are identical.
Indeed, by a symmetry argument it is not hard to see that under the conditioning, the linear
subspace generated by Process (i) is uniformly distributed among all rank-2k subspaces V of
(GF(2))4k. Now, since we can uniquely couple each such V with its dual V ⊥ (also a rank-2k
subspace) and since V = (V ⊥)⊥, this means that the output distribution of Process (ii) is
uniform as well.

However, it follows again from Lemma 20 (with t = 4k, s = 2k, α = 1/2, and any β > 0
satisfying the conditions of the lemma) that the chosen 2k vectors are independent with
high probability. This means that (without the conditioning) the output distributions of
Process (i) and Process (ii) are o(1)-close in variation distance. Applying Lemma 20 with
t = 4k, s = 2k, α = 1/2, and β = 1/10 we get that the distance of the code generated by
Process (i) is at least β = 1/10 with high probability. However, the latter distance equals
by definition to the dual distance of the code generated by Process (ii). By the closeness of
the distributions, we conclude that the dual distance of Process (i) is also at least 1/10 with
high probability. J

We next state a simple but important observation regarding membership verification.

I Observation 23. Once a matrix A with the desired properties is constructed (which may
take exp(k2) time if we use brute force), given w ∈ {0, 1}k, the membership of v in Hk(w)
can be verified in poly(k) time (by solving a system of linear equations over GF(2)).

4 PCUs and PCUSSs

Next, we define the notion of Probabilistically Checkable Unveiling (PCU). This notion is
similar to PCPP, but here instead of requiring our input to satisfy a given property, we require
our input to encode a value w ∈ {0, 1}k (typically using a large distance code ensemble).
We then require that given the encoded value w, it will be possible to prove in a PCPP-like
fashion that the input is indeed a valid encoding of w.
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I Definition 24 (PCU). Fix m, t, k ∈ N, and let C : {0, 1}k → 2{0,1}m be a code ensemble. We
say that C has a q(ε, δ)-query, length-t PCU if the following holds. There exists a verification
algorithm V that takes as inputs ε, δ > 0, m ∈ N, and w ∈ {0, 1}k, makes at most q(ε, δ)
queries to the strings v ∈ {0, 1}m and π ∈ {0, 1}t, and satisfies the following:
1. If v ∈ C(w), then there exists a proof π = ProofC(v) ∈ {0, 1}t such that for every ε, δ > 0,

the verifier V accepts with probability 1.
2. If dist(v, C(w)) > ε, then for every alleged proof π ∈ {0, 1}t, the verifier V rejects v with

probability greater than δ.

In order to facilitate the proof of the main theorem, we utilize a more stringent variant
of the above PCU definition. Instead of supplying w ∈ {0, 1}k to the algorithm, we supply
oracle access to a a string τ ∈ {0, 1}100k that is supposed to represent Spiel(w), along with
the proof π, and the algorithm only makes q(ε, δ) queries to the proof string π, the original
encoding v and the string τ . For cases where v ∈ C(w), we use Value(v) to denote Spiel(w).

I Definition 25 (Spiel-PCU). Fix m, t, k ∈ N, and let C : {0, 1}k → 2{0,1}m be a code
ensemble. We say that C has a q(ε, δ)-query, length-t Spiel-PCU if the following holds. There
exists a verification algorithm V that takes as inputs ε, δ > 0, m ∈ N, makes at most q(ε, δ)
queries to the strings v ∈ {0, 1}m, τ ∈ {0, 1}100k and π ∈ {0, 1}t, and satisfies the following:
1. If there exists w ∈ {0, 1}k for which v ∈ C(w) and τ = Value(v) = Spiel(w), then there

exists a proof π = ProofC(v) ∈ {0, 1}t such that for every ε, δ > 0, the verifier V accepts
with probability 1.

2. If for every w ∈ {0, 1}k either dist(τ,Spiel(w)) > ε or dist(v, C(w)) > ε, then for every
alleged proof π ∈ {0, 1}t, the verifier V rejects v with probability greater than δ.

Note that a code ensemble admitting a Spiel-PCU automatically admits a PCU. Indeed,
given the string w, an oracle for Spiel(w) can be simulated.

The following lemma states the existence of Spiel-PCU for efficiently computable code
ensembles, and will be used throughout this work. The proof follows from Lemma 12 together
with a simple concatenation argument.

I Lemma 26. Let k,m, t ∈ N be such that t ≥ m, and let C : {0, 1}k → 2{0,1}m be a code
ensemble. If given w ∈ {0, 1}k and v ∈ {0, 1}m, it is possible to verify membership of v in
C(w) using a circuit of size t, then there is a q(ε, δ)-query, length-t′ Spiel-PCU for C where
t′ = t · polylog t.

Proof. Assume without loss of generality that m ≥ |Spiel(0k)|. Let ξ =
⌊

m
|Spiel(0k)|

⌋
(note

that ξ ≥ 1), and define

Ceq
def=
{
v t (Spiel(w))ξ

∣∣ ∃w ∈ {0, 1}k for which v ∈ C(w)
}
,

where (Spiel(w))ξ denotes the ξ-times concatenation of Spiel(w).
For any string u it is possible to check, using a quasilinear size circuit (see [30]), that the

substring that corresponds to the domain of (Spiel(w))ξ is a ξ-times repetition of Spiel(w) for
some w. After doing so, we decode w using a quasilinear size circuit (as in [30]), and then,
by the premise of the lemma, we can verify membership in C(w) using a circuit of size t.
Therefore, membership in Ceq can be decided using a O(t) size boolean circuit, and therefore
by Lemma 12 admits a PCPP system whose proof length is quasilinear in t.

Given an input v to Spiel-PCU, let v′ = v t (Spiel(w))ξ and use the PCPP system for Ceq,
with detection radius ε/3 and soundness parameter δ, where each query to v′ is emulated by
a corresponding query to v or Spiel(w). Note that if v ∈ C(w), then v′ ∈ Ceq, so the PCPP
system for Ceq will accept with probability 1.
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Next, suppose that dist(v, C(w)) > ε, and observe that this implies that v′ is at least ε/3-
far from Ceq. Thus, by the soundness property of the PCPP for Ceq, the verifier rejects with
probability at least δ, regardless of the contents of the alleged proof π it is supplied with. J

Next we define Probabilistically Checkable Unveiling of a Shared Secret (PCUSS).

I Definition 27. For m, k, t ∈ N, we say that a function C : {0, 1}k → 2({0,1}n) has a q(ε, δ)-
query, length-t PCUSS, if C has a shared secret property, as well as C has a q(ε, δ)-query,
length-t PCU. Similarly, when C has a shared secret property (for constant ζ), as well as C has
a q(ε, δ)-query, length-t Spiel-PCU, we say that C has a q(ε, δ)-query, length-t Spiel-PCUSS.

Note that C admitting a Spiel-PCUSS directly implies that it admits a PCUSS with similar
parameters.

The following lemma establishes the existence of a Spiel-PCUSS for Hk, where Hk is the
code ensemble from Definition 21.

I Lemma 28. For any k ∈ N, Hk has a q(ε, δ)-query, length-t′ Spiel-PCUSS where t′ =
poly(k).

Proof. By Observation 23, given w, membership in Hk(w) can be checked in poly(k) time,
which means that there exists a polynomial size circuit that decides membership in Hk(w).
Combining the above with Lemma 26 implies a q(ε, δ)-query, length-t′ Spiel-PCU where
t′ = poly(k). By Lemma 10, the large dual distance property of Hk implies its shared secret
property for some constant ζ, which concludes the proof of the lemma. J

5 PCUSS construction

In this section we give a construction of code ensembles that admit a PCUSS. First we show
that our code ensemble has a PCU with a short proof. Specifically,

I Lemma 29. For any fixed ` ∈ N and any k ∈ N, there exists n0(`, k) and a code ensemble
E(`) : {0, 1}k → 2({0,1}n), such that for all n > n0(`, k), the code ensemble E(`) has a
q(ε, δ)-query length-t PCU, for t = O(n · polylog(`)n).

Later, we prove that our code ensemble has a shared secret property, which implies that it
has a PCUSS (which implies Theorem 1, as we shall show).

I Theorem 30. For any fixed ` ∈ N and any k ∈ N, there exists n0(`, k) and a code
ensemble E(`) : {0, 1}k → 2({0,1}n), such that for all n > n0(`, k), the code ensemble E(`) has
a q(ε, δ)-query length-t PCUSS, for t = O(n · polylog(`)n).

Specifically, by the discussion before Lemma 37, for any fixed soundness parameter 0 < δ < 1
it suffices to take

q(ε, δ) ≤
(
2`/ε

)O(`)
,

and for the high soundness regime where δ = 1− τ (and τ > 0 is small), it suffices to have

q(ε, δ) ≤
(
2`/ε

)O(`) log(1/τ).
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5.1 The iterated construction
Our iterative construction uses polynomials over a binary finite field GF(2t). In our proof
we will need to be able to implement arithmetic operations over this field efficiently (i.e., in
poly(t) time). This can be easily done given a suitable representation of the field: namely, a
degree t irreducible polynomial over GF(2). It is unclear in general whether such a polynomial
can be found in poly(t) time. Fortunately though, for t = 2 · 3r where r ∈ N, it is known
that the polynomial xt + xt/2 + 1 is irreducible over GF(2) (see, e.g., [18, Appendix G]). We
will therefore restrict our attention to fields of this form. At first glance this seems to give us
a property that is defined only on a sparse set of input lengths. However, towards the end of
this section, we briefly describe how to bypass this restriction.

We next formally define our iterated construction, starting with the “level-0” construction
as a base case. The constants c, d in the definition will be explicitly given in the proof of
Lemma 36. Additionally, for any ` ∈ N, we shall pick a large enough constant c` that satisfies
several requirements for the “level-`” iteration of the construction.

I Definition 31 (Iterated coding ensemble). For k ∈ N and w ∈ {0, 1}k, we define the base
code ensemble of w (i.e., level-` code ensemble of w for ` = 0) as

E(0)
k (w) = Hk(w).

Let c, d ∈ N be large enough global constants, fix ` > 0, let c` be large enough, and let F be a
finite field for which |F| ≥ max{c`, c · k}.

We define the level-` code ensemble of w ∈ {0, 1}k over F as follows. Let r ∈ N be the
smallest integer such that (log |F|)d ≤ 22·3r , set F′ = GF

(
22·3r) and k′ = log |F|. Note that

these satisfy the recursive requirements of a level-(`− 1) code ensemble provided that c` is
large enough (specifically we require (log |F|)d−1 > c, so that |F′| ≥ ck′). Finally, let H ⊆ F
be such that |H| = k, and define

E(`)
F,k(w) =

⋃
g∈CF: g|H=w

⊔
β∈F\H

E(`−1)
F′,k′ (〈〈g(β)〉〉).

(Note that for ` = 1 we just use E(1)
F,k(w) =

⋃
g∈CF: g|H=w

⊔
β∈F\H E

(0)
k′ (〈〈g(β)〉〉)).

That is, v ∈ E(`)
F,k(w) if there exists a polynomial g ∈ CF such that v =

⊔
β∈F\H vβ , where

vβ ∈ E(`−1)
F′,k′ (〈〈g(β)〉〉) for every β ∈ F\H and g|H = w (where we identify the 0 and 1 elements

of F with 0 and 1 bits respectively). When the context is clear, we sometimes omit the
subscripts.

Our choice of the constants c, d, c` needs to satisfy the following conditions. The constant
c is chosen such that H will not be an overly large portion of F (this requirement is used in
Lemma 42). The constant d is needed to subsume the length of PCPP proof string which is
part of the construction (this requirement is used in Lemma 36). Finally, the constant c`
needs to be large enough to enable iteration (as explained in Definition 31 itself).

Let ` ≥ 0 be some fixed iteration. The following simple observation follows by a simple
inductive argument using the definition of the level-` coding ensemble, and in particular that
|F′| = polylog |F|.

I Observation 32. For ` > 0, let n = |F| and w ∈ {0, 1}k. If v ∈ E(`)(w), then m(`)
F

def= |v| =
n · poly(logn) · poly(log logn) · · · poly(log(`) n), where log(`) n is the log function iterated `
times.
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When the field F is clear from context, we shall usually write m(`) as a shorthand for
m

(`)
F . The following lemma, proved in the next subsection, establishes the existence of short

length Spiel-PCUs for our code ensembles.

I Lemma 33. For any ` ≥ 0, the code ensemble E(`)
F,k admits a q(ε, δ)-query, length-t

Spiel-PCU for t = O(m(`) · polylog(`)m(`)).

5.2 Proof of Lemma 33
We start by defining the PCU proof string for a given v ∈ E(`)

F,k(w) for some w ∈ {0, 1}k.

I Definition 34 (The PCU Proof String). For ` = 0, let v ∈ E(0)
k (w) and Value(0)(v) =

Spiel(w). We define the proof string for v, Proof(0)(v), as the one guaranteed by Lemma 28
(note that the length of Proof(0)(v) is poly(k)).

For ` > 0, let g ∈ CF and w ∈ {0, 1}k be such that v ∈
⊔
β∈F\H E(`−1)(〈〈g(β)〉〉),

Value(`)(v) = Spiel(w) and g|H = w. In addition, set Sv
def=
⊔
β∈F\H Value(`−1)(vβ) =⊔

β∈F\H Spiel(g(β)). The proof string for v ∈ E(`)
F,k is defined as follows.

Proof(`)(v) = Sv t
⊔

β∈F\H

Proof(`−1)(vβ) tProofL (Sv)

where the code ensemble L : {0, 1}k → 2{0,1}O(|F|·log |F|) is defined as follows. Given w ∈ {0, 1}k,
S ∈ L(w) if and only if there exists a polynomial g ∈ CF such that the following conditions
are satisfied.
1. g|H = w.
2. S =

⊔
β∈F\H Spiel(g(β)).

The following lemma establishes the existence of a Spiel-PCU for L.

I Lemma 35. L has a q(ε, δ)-query length-t Spiel-PCU for t = O(|F| · polylog |F|).

Proof. By Theorem 5, there exists a quasilinear size circuit that decodes Spiel(α). Using
such a circuit, we can decode g(β) from S for every β ∈ F. Then, using all the values g(β)
and w (where the i-th bit of w correspond to the value of the i-th element in H according to
the ordering), we use Theorem 7 to interpolate the values and achieve a representation of
a polynomial g : F → F. If g ∈ CF we accept S and otherwise we reject. Since deciding if
S ∈ L(w) has a quasilinear size circuit, by Lemma 26, there is a quasilinear length Spiel-PCU
for L. J

Having defined Proof(`), we first provide an upper bound on the bit length of the
prescribed proof string. For ` > 0, let z(`)

F,k denote the bit length of the proof for membership
in E(`) as defined in Definition 34, where for ` = 0 we replace the (nonexistent) field F
with |w|.

The following lemma, establishing the proof string’s length, relies on our choice of the
constant d in Definition 31. In particular, d needs to be large enough to subsume the size of
ProofL(·)

I Lemma 36. For any ` ≥ 0, we have that z(`)
F,k = O

(
m(`) · polylog(`)m(`)).

Proof. The proof follows by induction on `. The base case (` = 0) follows directly from the
definition of P(0) by our convention that log(0) |w| = |w|.
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Consider ` > 0, and note that since the size of Sv is O(|F| log |F|), the size of ProofL(Sv)
is O(|F| ·polylog |F|). By combining the above with the definition of the proof string we have

z
(`)
F,k ≤ |F| · polylog |F|+ |F| · z(`−1)

F′,k′ .

Now, assume that z(`−1)
F′,k′ = O(m(`−1) ·polylog(`−1)|F′|). Note that since the global constant d

was chosen so that |F|·|F′| ≥ |ProofL(Sv)|, we have that |F|·z(`−1)
F′,k′ ≥ |F|·|F′| ≥ |ProofL(Sv)|.

Therefore,

m(`) = Θ(|F| ·m(`−1)) = Ω(|F| · |F′|) = Ω(|F| · polylog |F|),

so that |F| · polylog |F| = O(m(`)), and

z
(`)
F,k = O(|F| · z(`−1)

F′ ).

In addition, by the fact that m` = Θ(|F| ·m(`−1)) and the induction hypothesis we obtain

|F|·z(`−1)
F′,k′ = O(|F|·m(`−1)·polylog(`−1)|F′|) = O(m(`)·polylog(`)|F|) = O(m(`)·polylog(`)m`).

So overall, we get that z(`)
F,k = O(m(`) · polylog(`)m(`)) as required. J

Next, for an alleged proof π = Proof(`)(v), we use the notation π|Dom(X) to denote the
restriction of π to the bits that correspond to X in π as defined in Definition 34. For example,
π|Dom(Value(`−1)(vβ)) refers to the bits that represent Value(`−1)(vβ).

We introduce the verifier procedure for E(`)
F,k (see Figure 1), and prove its completeness

and soundness. For technical considerations, the verifier procedure is only defined when
the soundness parameter δ is small enough (as a function of `); the soundness amplification
argument from Subsection 2.2 can easily take care of the situation where δ is larger, by
running sufficiently many independent instances of the verification step.

Before proceeding to the completeness and soundness proofs, let us analyze the query
complexity. Denote by Q`(ε, δ) the query complexity of the verifier in the above procedure
for a given ` ≥ 0. It follows from the recursive description of Verifier-Procedure E(`) and
the proof of Lemmas 26 and 35 that the query complexity satisfies the recurrence relation
Q`(ε, δ) ≤ O(1/ε) ·Q`−1(ε/O(1)), δ ·O(1)) + q∗(Θ(ε),Θ(δ)), where q∗(ε∗, δ∗) = O((ε∗)−1) is
the query complexity of Dinur’s PCP [12] with detection radius ε∗ and soundness parameter
δ∗ ≤ 1/2; and furthermore, that Q0(ε, δ) ≤ q∗(Θ(ε),Θ(δ)). Thus, we conclude by induction
that, provided that δ ≤ 2−`−1,

Q`(ε, δ) ≤
C

ε
· C

2

ε
· . . . · C

`

ε
· q∗(ε/2O(`), δ · 2`) = 2O(`2)ε−O(`),

where C > 0 is a large enough absolute constant. To achieve any given soundness δ > 1/2,
we can amplify by repeating the verifier procedure with parameter δ′ = 2−`−1 a total of
2O(`) · log

(
(1− δ)−1) times and rejecting if any of these instances rejected. The query

complexity is bounded by

2O(`2)ε−O(`) · 2O(`) · log
(
(1− δ)−1) = (2`/ε)O(`) · log

(
(1− δ)−1) ,

as desired. The next two lemmas establish the completeness and soundeness of the verifier
procedure, respectively.
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Verifier-Procedure E(`)

Input: Parameters ε, δ ∈ (0, 1) where δ ≤ 2−`−1, an input v ∈ {0, 1}m(`) , an alleged
value τ ∈ {0, 1}100k of v, and an alleged proof π ∈ {0, 1}z

(`)
F,k for v.

1. If ` = 0, use the PCU for E(0) with parameters ε and δ.
2. If ` > 0:

a. Use the PCU verifier for L with radius ε/300 and soundness δ, to verify the
unveiling of π|Dom(Sv), using τ as the value oracle and π|Dom(ProofL(Sv)) as the
proof oracle.

b. For 6/ε many times:
i. Pick β ∈ F \H uniformly at random.
ii. Use the PCU verifier procedure for E(`−1) with parameters ε/3 and 2δ, to

verify the unveiling of vβ, using π|Dom(Value(`−1)(vβ)) as the value oracle and
π|Dom(Proof(`−1)(vβ)) as the proof oracle.

If any of the stages rejected then Reject, and otherwise Accept.

Figure 1 Description of Verifier-Procedure E(`) .

I Lemma 37. If there exist w ∈ {0, 1}k for which v ∈ E(`)
F,k(w), then Verifier-Procedure E(`)

accepts v with probability 1 when supplied with oracle access to the corresponding Proof(`)(v)
and τ = Value(`)(v) = Spiel(w).

Proof. The proof follows by induction on `. The base case follows directly from Lemma 28.
Hence, the verifier for E(0) supplied with Proof(0)(v) as the proof oracle and Value(`)(v) as
the value oracle, will accept v with probability 1.

Assume that Verifier-Procedure E(`−1) accepts with probability 1 any valid encoding
v′ when supplied with the corresponding oracles for Value(`−1)(v′) and Proof(`−1)(v′). Let
v ∈ E(`) and write v =

⊔
β∈F\H vβ , where there exist w ∈ {0, 1}k and g ∈ CF such that for

all β ∈ F \H, vβ ∈ E(`−1)(g(β)), where g|H = w and τ = Value(`)(v) = Spiel(w). Then, by
the definition of the language L and the first two components of Proof(`)(v), Step (2a) of
Verifier-Procedure E(`) will always accept. In addition, for every β ∈ F \H, we have that
vβ ∈ E(`−1), and therefore by the induction hypothesis, Step (2b) of Verifier-Procedure E(`)

will accept the corresponding unveiling for any picked β ∈ F \H. J

I Lemma 38. If for every w ∈ {0, 1}k either dist(τ,Spiel(w)) > ε or dist(v, E(`)(w)) > ε (or
both), then with probability greater than δ, Verifier-Procedure E(`) will reject v regardless
of the contents of the supplied proof string.

Proof. Let τ ∈ {0, 1}100k be an alleged value for v, and π ∈ {0, 1}z
(`)
F,k be an alleged proof

string for v. We proceed by induction on `. For ` = 0 we use the PCU verifier for E(0) with
error ε and soundness δ to check that v is a member of the code ensemble E(0) and τ is
its value. If the PCU verifier for E(0) rejects with probability at most δ, then there exist
w ∈ {0, 1}k such that dist(v, E(0)(w)) ≤ ε and dist(τ,Spiel(w)) ≤ ε, and the base case is
complete.
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Next assume that the lemma holds for `− 1. If the PCU verifier for L in Step (2a) rejects
with probability at most δ, then there exist a function g ∈ CF and w ∈ {0, 1}k for which
g|H = w so that

dist(π|Dom(Sv),Spiel(g|F\H)) ≤ ε/300 and dist(τ,Spiel(w)) ≤ ε/300.

In particular, the leftmost inequality means that for at most ε3 |F\H| of the elements β ∈ F\H,
it holds that

dist(π|Dom(Value(`−1)(vβ)),Spiel(g(β)) > 1/100.

We refer to elements β ∈ F \H satisfying the above inequality as bad elements, and to the
rest as good elements. Let G denote the set of good elements.

Next, we show that if the loop that uses the PCU verifier for E(`−1) in Step (2b) rejects
with probability at most δ, then for at most an ε/3 fraction of the good β ∈ F \ H, it
holds that

dist
(
vβ , E(`−1)(〈〈g(β)〉〉)

)
> ε/3.

Assume that there are more than ε
3 · |G| good elements such that dist

(
vβ , E(`−1)(〈〈g(β)〉〉)

)
>

ε/3. Then, by our induction hypothesis, each of them will be rejected by the PCU verifier for
E(`−1) with probability more than 2δ. In addition, with probability at least 1/2 we sample
at least one such good β, and then during this iteration the verifier in Step (2b(ii)) rejects
with conditional probability more than 2δ, and hence the verifier will reject with overall
probability more than δ. Summing everything up, when the input is rejected with probability
at most δ,

dist

v, ⊔
β∈F\H

E(`−1)(〈〈g(β)〉〉)

 ≤ ε/3 + (1− ε/3) · ε/3 + (1− ε/3)2 · ε/3 ≤ ε,

where the three summands are respectively the contribution to the distance of the bad
elements, the good elements with vβ being far from any level `− 1 encoding of 〈〈g(β)〉〉, and
all the other elements. J

The proof of Lemma 33 follows directly by combining Lemma 36, Lemma 37 and Lemma 38.
The following corollary follows directly from Lemma 33 and the definition of Spiel-PCU

(Definition 25), and implies Lemma 29.

I Corollary 39. Let F be a finite field and k ∈ N which satisfy the requirements in Defin-

ition 31. Then, for every ` ≥ 0 the coding ensemble E(`)
F,k : {0, 1}k → 2

(
{0,1}m

(`)
)

has a
q(ε, δ)-query, length-t Spiel-PCU for t = O(m(`)polylog(`)m(`)).

5.3 The Lower Bound
We turn to prove the linear query lower bound for the testability of our property. We start
by defining distributions over strings of length m(`).

Distribution D(`)
yes (w): Given w ∈ {0, 1}k, we define the distribution D(`)

yes(w) to be the
uniform distribution over elements in E(`)(w).
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Distribution D(`)
no : An element v from D(`)

no is drawn by the following process. For ` = 0, v
is a uniformly random string in {0, 1}4k. For ` > 0, we pick a uniformly random function
λ : F \H → F, and let v be a uniformly random element of

⊔
β∈F\H E(`−1)(〈〈λ(β)〉〉)

I Lemma 40. For any ` ≥ 0, every w ∈ {0, 1}k and q = o(m(`)/10`), any algorithm making
at most q queries cannot distinguish (with constant probability) between v ∼ D(`)

yes(w) and u
which is drawn according to any of the following distributions:
1. D(`)

yes(w′) for any w′ 6= w.
2. D(`)

no .

Note that Item (1) in the above follows immediately from Item (2). Additionally, the first
item implies the shared secret property of the code ensemble E(`). Furthermore, we remark
that that above lemma implies a more stringent version of PCUSS. In addition to the shared
secret property, Item (2) implies that the ensemble E(`) is indistinguishable from strings that
are mostly far from any encoding (i.e., drawn from D(`)

no ).
The proof of Lemma 40 follows by induction over `. Before we continue, we introduce

some useful lemmas that will be used in the proof.

I Lemma 41. For any ` ≥ 0 and w,w′ ∈ {0, 1}k for which w 6= w′ it holds that

min
(v,v′)∈E(`)(w)×E(`)(w′)

dist(v, v′) = Θ
(
1/4`+1).

Proof. The proof follows by induction over `. The base case for ` = 0 follows dir-
ectly by the fact that the code from Definition 21 has high distance, and in particular
dist(E(0)(w), E(0)(w′)) > 1/10. Assume that the lemma holds for ` − 1. Namely, for
w,w′ ∈ {0, 1}k′ for which w 6= w′ it holds that

min
(v,v′)∈E(`−1)(w)×E(`−1)(w′)

dist(v, v′) = Θ
(
1/4`

)
.

Let w̃, w̃′ ∈ {0, 1}k be such that w̃′ 6= w̃. Then we can write (ṽ, ṽ′) ∈ E(`)(w̃)× E(`)(w̃′) as

ṽ =
⊔

β∈F\H

E(`−1)(〈〈g(β)〉〉) and ṽ′ =
⊔

β∈F\H

E(`−1)(〈〈g′(β)〉〉),

for some g, g′ ∈ CF such that g|H = w̃ and g′|H = w̃′. By the fact that g and g′ are degree
|F|/2 polynomials (which are not identical), we have that g and g′ disagree on at least
|F \H|/4 of the elements β ∈ F \H. By applying the induction hypothesis on the minimum
distance between E(`)(〈〈g(β)〉〉) and E(`)(〈〈g′(β)〉〉), for all β such that g(β) 6= g′(β), we have
that

min
(ṽ,ṽ′)∈E(`)(w̃)×E(`)(w̃′)

dist(ṽ, ṽ′) > 1
4 ·Θ

(
1
4`

)
= Θ

(
1/4`+1) . J

I Lemma 42. For any ` ≥ 0, with probability at least 1− o(1), a string v drawn from D(`)
no

satisfies dist(v, E(`)(w)) = Θ
(
1/4`+1) for all w ∈ {0, 1}k.

Proof. The proof follows by induction over `. For ` = 0, fix some w ∈ {0, 1}k. Consider
the size of a ball of relative radius 1/40 around some v ∈ E(0)(w) in the space of all strings
{0, 1}4k. The number of strings contained in this ball is at most(

4k
k/10

)
≤ (40e)k/10 = 2k/10·log(40e).
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Thus, the size of the set of strings which are at relative distance 1/40 from any legal encoding
of some word w ∈ {0, 1}k is at most

23k · 2k/10·log(40e) = o(24k).

This implies that with probability at least 1− o(1), a random string from {0, 1}4k is 1/40-far
from E(0)(w) for any w ∈ {0, 1}k.

For any ` > 0, consider v′ sampled according to D(`)
no . Then, v′ can be written as

v′ =
⊔

β∈F\H

E(`−1)(〈〈λ(β)〉〉),

where λ : F \H → F is a uniformly random function. On the other hand, each member ṽ of
P(`) can be written as

ṽ =
⊔

β∈F\H

E(`−1)(〈〈g(β)〉〉),

for some g ∈ CF such that g|H = w for some w ∈ {0, 1}k. Note that by Lemma 41, whenever
λ(β) 6= g(β), we have that the minimum distance between any ṽ ∈ E(`−1)(〈〈g(β)〉〉) and
v′ ∈ E(`−1)(〈〈λ(β)〉〉) is at least Θ(1/4`). In addition, by Lemma 8, we have that that with
probability at least 1 − o(1), a uniformly random function λ : F → F is 1/3-far from any
g ∈ CF. By the restrictions on k in Definition 31, which implies that |H| ≤ |F |/c, we can
ensure (by the choice of c) that with probability at least 1− o(1), that a uniformly random
λ : F \H → F is at least 1/4-far from the restriction g|F\H . This implies that for at least
|F \H|/4 of the elements β ∈ F \H, we have that λ(β) 6= g(β). Therefore, we have that
dist(v′, E(`)(w)) = 1

4 ·Θ
( 1

4`
)

= Θ
(
1/4`+1) for all w ∈ {0, 1}k, and the proof is complete. J

I Lemma 43. Fix any ` > 0, and suppose that for any w′ ∈ {0, 1}k′ , and for any set Q′
of at most q(`−1)

F′,k′ queries (where F′ and k′ are picked according to the recursive definition
of the level `-encoding, and for q(0) we substitute k′ for the nonexistent F′) the restricted
distributions D(`−1)

yes (w′)|Q′ and D(`−1)
no |Q′ are identical. Then, for any w ∈ {0, 1}k, and any

set Q of at most |F\H|10 · q(`−1)
F′,k′ queries, the restricted distributions D(`)

yes(w)|Q and D(`)
no |Q are

identical.

Proof. Let Q ⊂ [m(`)] be the set of queries, and fix a canonical ordering over the elements
in F \H. Let v be an element drawn according to distribution D(`)

yes(w), and let v′ be an
element drawn according to distribution D(`)

no . The sampling process from D(`)
yes(w) can be

thought of as first drawing a uniformly random function g ∈ CF such that g|H = w, and for
every β ∈ F \H, letting vβ be a uniformly random element in E(`−1)(〈〈g(β)〉〉).

For each β ∈ F \H we set Qβ = Q ∩Dom(vβ), and define the set of big clusters

I =
{
β ∈ F \H : |Qβ | ≥ q(`−1)

F′,k′

}
.

Note that since |Q| ≤ |F \H| · q(`−1)
F′,k′ /10, we have that |I| ≤ |F \H|/10.

By the fact that g is a uniformly random polynomial of degree |F|/2 > |I|, we have that
g|I is distributed exactly as λ|I (both are a sequence of |I| independent uniformly random
values), which implies that v|⋃

j∈I
Qj

is distributed exactly as v′|⋃
j∈I

Qj
.

Next, let F \ (I ∪H) = {i1, . . . , i|F\(I∪H)|} be a subset ordered according to the canonical
ordering over F. We proceed by showing that v|⋃

j∈I∪{i1,...,it}
Qj

is distributed identically to
v′|⋃

j∈I∪{i1,...,it}
Qj

by induction over t.

ITCS 2020



9:22 Hard Properties with (Very) Short PCPPs and Their Applications

The base case (t = 0) corresponds to the restriction over
⋃
j∈I Qj , which was already

proven above. For the induction step, let T = {i1, . . . , it−1} ⊆ F \ (I ∪H) be an ordered
subset that agrees with the canonical ordering on F, and let it ∈ F \ (H ∪ T ∪ I) be the
successor of it−1 according to the ordering. We now prove that for each x ∈ {0, 1}m(`) for
which v|⋃

j∈I∪T
Qj

has a positive probability of being equal to x|⋃
j∈I∪T

Qj
, conditioned on the

above event taking place (and its respective event for v′), v|Qit is distributed exactly as v′|Qit .
Observe that conditioned on the above event, v|Qit is distributed exactly as a uniformly

random element in E(`−1)(ρ) for some ρ ∈ {0, 1}k′ (which follows some arbitrary distribution,
possibly depending on x|⋃

j∈I∪T
Qj

), while v′|Qit is distributed exactly as a uniformly random

element in E(`−1)(y) for a uniformly random y ∈ {0, 1}k′ . By the fact that |Qit | ≤ q
(`−1)
F′,k′ /10,

we can apply the induction hypothesis and conclude that v|Qit is distributed exactly as v′|Qit ,
because by our hypothesis both are distributed identically to the corresponding restriction of
D(`−1)
no , regardless of the values picked for ρ and y. This completes the induction step for t.

The lemma follows by setting t = |F \H ∪ I|. J

I Lemma 44. For any ` ≥ 0, w ∈ {0, 1}k and any set of queries Q ⊂ [m(`)] such that
|Q| = O

(
m(`)

10`

)
, the restricted distributions D(`)

yes(w)|Q and D(`)
no |Q are identically distributed.

Proof. By induction on `. For ` = 0 and any w ∈ {0, 1}k, by the fact that our base encoding
E(0)(w) is a high dual distance code, we can select (say) q(0) = k/c (for some constant c > 0),
making the assertion of the lemma trivial.

Assume that for any w′ ∈ {0, 1}k′ , and any set of queries Q′ of size up to O(m(`−1)/10`−1)
the conditional distributions D(`−1)

yes (w′)|Q′ and D(`−1)
no |Q′ are identically distributed. Then,

by Lemma 43, we have that for any w ∈ {0, 1}k and any set of queries Q of size at most

O

(
|F \H|

10` ·m(`−1)
)
,

the restricted distributions D(`)
yes(w)|Q and D(`)

no |Q are identically distributed. Note that by
definition of the level `-encoding, m(`) = |F \H| ·m(`−1), which implies the conclusion of
the lemma. J

Proof of Lemma 40. Lemma 40 follows directly by combining Lemma 17, and Lemma 44.
J

Combining Lemma 40 with the definition of Spiel-PCU (Definition 25) establishes that
we have constructed a Spiel-PCUSS, which implies Theorem 30.

I Corollary 45. Let F be a finite field and k ∈ N which satisfy the requirements in Defin-

ition 31. Then, for every ` ≥ 0, the coding ensemble E(`)
F,k : {0, 1}k → 2

(
{0,1}m

(`)
)

has
q(ε, δ)-query length-t Spiel-PCUSS for t = O(m(`)polylog(`)m(`)).

5.4 Handling arbitrary input lengths
As mentioned in the beginning of this section, our construction of code ensembles relies
on the fact that operations over a finite field GF(2t) can be computed efficiently. In order
to do so we need to have an irreducible polynomial of degree t over GF(2), so that we
have a representation GF(2t). Given such a polynomial, operations over the field can be
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implemented in polylogarithmic time in the size of the field. By [18] (Appendix G), we know
that for t = 2 · 3r where r ∈ N, we do have such a representation. However, the setting of t
restricts the sizes of the fields that we can work with, which will limit our input size length.

We show here how to extend our construction to a set of sizes that is “log-dense”. For a
global constant c′, our set of possible input sizes includes a member of [m′, c′m′] for every
m′. Moving from this set to the set of all possible input sizes now becomes a matter of
straightforward padding.

For any n ∈ N, let r be the smallest integer such that n < 22·3r and let F = GF(22·3r).
We make our change only at the level-` construction. First, we use 4d instead of d in the
calculation of the size of F′. Then, instead of using F \H as the domain for our input, we use
E \H, for any arbitrary set E ⊆ F of size n ≥ max{4k, |F|1/4, c`} that contains H. Then,
for the level-`, instead of considering polynomials of degree |F|/2, we consider polynomials of
degree |E|/2. The rest of the construction follows the same lines as the one defined above.
This way, all of our operations can be implemented in polylogarithmic time in |E|.

6 Separations of testing models

In this section we use Theorem 30 to prove a separation between the standard testing model,
and both the tolerant and the erasure resilient testing models. Specifically, we prove the
following.

I Theorem 46 (Restatement of Theorem 2). For every constant ` ∈ N, there exist a property
Q(`) and ε1 = ε1(`) ∈ (0, 1) such that the following hold.
1. For every ε ∈ (0, 1), the property Q(`) can be ε-tested using a number of queries depending

only on ε (and `).
2. For every ε0 ∈ (0, ε1), any (ε0, ε1)-tolerant tester for Q(`) needs to make Ω(N/10` ·

polylog(`)N) many queries on inputs of length N .

I Theorem 47 (Restatement of Theorem 3). For every constant ` ∈ N, there exist a property
Q(`) and ε1 = ε1(`) ∈ (0, 1) such that the following hold.
1. For every ε ∈ (0, 1), the property Q(`) can be ε-tested using a number of queries depending

only on ε (and `).
2. For every ε ∈ (0, ε1) and any α = Ω(1/ log(`)N) satisfying ε + α < 1, any α-erasure

resilient ε-tester for Q(`) needs to make Ω(N/10` · polylog(`)N) many queries on inputs
of length N .

In order to prove the separation we use the code ensemble E(`)
F,k where k is set to 0. Namely,

we consider EF,0(∅). Note that in this case, the code ensemble becomes a property (i.e. a
subset of the set of all possible strings).

Next, we define the property that exhibits the separation between the standard testing
model and both the tolerant testing model and the erasure resilient model. We prove
Theorem 46 and mention the small difference between the proof of Theorem 46 and the proof
of Theorem 47.

I Definition 48. Fix a finite field F and a constant integer ` ∈ N and let ε(`) = Θ(1/4`).
Let n def= m

(`)
F , z(`)

F,0 ≤ n · polylog(`)n denote the length of the proof for the PCUSS from
Theorem 30, and let N = (log(`) n + 1) · z(`)

F,0. Let Q(`) ⊆ {0, 1}N be defined as follows. A
string x ∈ {0, 1}N satisfies Q(`) if the following hold.

1. The first z(`)
F,0 · log(`) n bits of x consist of s = z

(`)
F,0·log(`) n

n copies of y ∈ E(`)
F,0.

2. The remaining z(`)
F,0 bits of x consist of a proof string π ∈ {0, 1}z

(`)
F,0 , for which the

Verifier-Procedure E(`)
F,0

in Figure 1 accepts y given oracle access to y and π.
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We first show that Q(`) can be tested using a constant number of queries in the standard
testing model.

Testing Algorithm for Q(`)

Input: Parameter ε ∈ (0, 1), an oracle access to x ∈ {0, 1}N .

1. Set s def= z
(`)
F,0·log(`) n

n .
2. Repeat 4/ε times:

a. Sample j ∈ [n] and i ∈ [s] \ {1} uniformly at random.
b. If xj 6= x(i−1)·n+j , then Reject.

3. Let v = (x1, . . . , xn), π = (x
z

(`)
F,0·log(`) n+1, . . . , x(log(`) n+1)z(`)

F,0
) and τ be the empty

string.
4. Run the PCU verifier for E(`)

F,0 with parameters ε/3 and δ = 2/3 on v, using π as the
alleged proof for v, and τ as the alleged value for v.

5. If the PCU verifier rejects, then Reject; otherwise Accept.

Figure 2 Description of Testing Algorithm for Q(`) .

For Item 4 in Figure 2, recall that running the PCU verifier with parameter δ = 2/3
actually involves running multiple instances of the verifier with smaller δ, as discussed in
Subsection 5.2.

I Lemma 49. The property Q(`) has a tester with query complexity depending only on ε.

Proof. We show that the algorithm described in Figure 2 is a testing algorithm for Q(`). We
assume that n is large enough so that log(`) n > 6/ε.

Assume that x ∈ Q(`). Then, there exists a string y ∈ E(`)
F,0 with x1, . . . , xz(`)

F,0 log(`) n
= (y)s

(where (y)s is the concatenation of s copies of y), and x
z

(`)
F,0·log(`) n+1, . . . , x(log(`) +1)z(`)

F,0
= π ∈

{0, 1}z
(`)
F,0 , where π is a proof that makes the PCU verifier for E(`)

F,0 accept when given oracle
access to y and π. Therefore, the algorithm in Figure 2 accepts x.

Next, assume that x is ε-far from Q(`), and let y′ = x1, . . . , xn. Note that if the string
x1, . . . , xz(`)

F,0·log(`) n
is ε/2-far from being (z′)s, then the loop in Step 2 rejects x with probability

at least 2/3, and we are done. If x1, . . . , xz(`)
F,0·log(`) n

is ε/2-close to (y′)s, then y′ must be

ε/3-far from E(`)
F,0. To see this, assume toward a contradiction that y′ is ε/3-close to E(`)

F,0.

Then, by modifying at most ε·z(`)
F,0·log(`) n

2 bits, we can make x1, . . . , xz(`)
F,0·log(`) n

equal to (y′)s.

Since, by our assumption y′ is ε/3-close to E(`)
F,0, we can further modify the string (y′)s to

(ỹ)s, where ỹ ∈ E(`)
F,0, by changing at most ε·z(`)

F,0·log(`) n

3 bits. Finally, by changing at most z(`)
F,0

bits from π, we can get a proof string π̃ which will make the PCPP verifier accept ỹ. By our
assumption that 6/ε < log(`) n, the total number of changes to the input string x is at most

ε · z(`)
F,0 · log(`) n

2 +
ε · z(`)

F,0 · log(`) n

3 + z
(`)
F,0 ≤ ε · (log(`) n+ 1) · z(`)

F,0 = εN,

which is a contradiction to the fact that x is ε-far from E(`)
F,0.

Finally, having proved that y′ is ε/3-far from E(`)
F,0, the PCU verifier for E(`)

F,0 (when called
with parameters ε/3 and δ = 2/3) rejects with probability at least 2/3. J
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I Lemma 50. For every constant ` ∈ N, there exists ε1
def= Θ(1/4`) such that for every

ε0 < ε1, any (ε0, ε1)-tolerant tester for Q(`) needs to make at least Ω
(

N
10`·polylog(`)N

)
many

queries.

Proof. Fix some constant ` ∈ N. The proof follows by a reduction from 2ε1-testing of E(`)
F,0.

Given oracle access to a string y ∈ {0, 1}n which we would like to 2ε1-test for E(`)
F,0, we

construct an input string x ∈ {0, 1}N where N = (log(`) n+ 1) · z(`)
F,0 as follows.

x
def= (y)

z
(`)
F,0·log(`) n

n t (0)z
(`)
F,0 .

That is, we concatenate z(`)
F,0 · log(`) n/n copies of y, and set the last z(`)

F,0 bits to 0. Note that
a single query to the new input string x can be simulated using at most one query to the
string y.

If y ∈ E(`)
F,0, then for large enough n we have that x is ε0-close to Q(`), since the last z(`)

F,0
bits that are set to 0 are less than an ε0-fraction of the input length.

On the other hand, if dist(x, E(`)
F,0) > 2ε1, since each copy of y in x is 2ε1-far from E(`)

F,0,
then x is 2ε1·log(`) n

log(`) n+1 -far from Q(`) (note that log(`) n
log(`) n+1 > 1/2). Therefore, an (ε0, ε1)-tolerant

tester for Q(`) would imply an 2ε1-tester for E(`)
F,0 with the same query complexity. By

Lemma 40, since for some ε1 = Θ(1/4`), every 2ε1-tester for E(`)
F,0 requires Ω(n/10`) queries

on inputs of length n, any (ε0, ε1)-tolerant tester for Q(`) requires to make Ω
(

N
10`·polylog(`)N

)
many queries. J

Proof of Theorem 46. The proof follows by combining Lemma 49 and Lemma 50. J

Proof of Theorem 47. The proof of Theorem 47 is almost identical to the proof of The-
orem 46. The only difference is that we replace Lemma 50 with a counterpart for erasure
resilient testing, where instead of setting the last z(`)

F,0 bits of x to (0)z
(`)
F,0 , we use (⊥)z

(`)
F,0 ,

noting that the relative size of this part of the input is 1/(s+ 1) = Θ(1/ log(`)(N)). J
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