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Abstract
In classical secretary problems, a sequence of n elements arrive in a uniformly random order, and
we want to choose a single item, or a set of size K. The random order model allows us to escape
from the strong lower bounds for the adversarial order setting, and excellent algorithms are known
in this setting. However, one worrying aspect of these results is that the algorithms overfit to the
model: they are not very robust. Indeed, if a few “outlier” arrivals are adversarially placed in the
arrival sequence, the algorithms perform poorly. E.g., Dynkin’s popular 1/e-secretary algorithm is
sensitive to even a single adversarial arrival: if the adversary gives one large bid at the beginning of
the stream, the algorithm does not select any element at all.

We investigate a robust version of the secretary problem. In the Byzantine Secretary model, we
have two kinds of elements: green (good) and red (rogue). The values of all elements are chosen by
the adversary. The green elements arrive at times uniformly randomly drawn from [0, 1]. The red
elements, however, arrive at adversarially chosen times. Naturally, the algorithm does not see these
colors: how well can it solve secretary problems?

We show that selecting the highest value red set, or the single largest green element is not
possible with even a small fraction of red items. However, on the positive side, we show that these
are the only bad cases, by giving algorithms which get value comparable to the value of the optimal
green set minus the largest green item. (This benchmark reminds us of regret minimization and
digital auctions, where we subtract an additive term depending on the “scale” of the problem.)
Specifically, we give an algorithm to pick K elements, which gets within (1− ε) factor of the above
benchmark, as long as K ≥ poly(ε−1 log n). We extend this to the knapsack secretary problem, for
large knapsack size K.

For the single-item case, an analogous benchmark is the value of the second-largest green item.
For value-maximization, we give a poly log∗ n-competitive algorithm, using a multi-layered bucketing
scheme that adaptively refines our estimates of second-max over time. For probability-maximization,
we show the existence of a good randomized algorithm, using the minimax principle.

We hope that this work will spur further research on robust algorithms for the secretary problem,
and for other problems in sequential decision-making, where the existing algorithms are not robust
and often tend to overfit to the model.
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1 Introduction

In sequential decision-making, we have to serve a sequence of requests online, i.e., we must
serve each request before seeing the next one. E.g., in online auctions and advertising, given a
sequence of arriving buyers, we want to choose a high bidder. Equivalently, given a sequence
of n numbers, we want to choose the highest of these. The worst-case bounds for this problem
are bleak: choosing a random buyer is the best we can do. So we make (hopefully reasonable)
stochastic assumptions about the input stream, and give algorithms that work well under
those assumptions.

A popular assumption is that the values/bids are chosen by an adversary, but presented
to the algorithm in a uniformly random order. This gives the secretary or the random-order
model, under which we can get much better results. E.g., Dynkin’s secretary algorithm that
selects the first prefix-maximum bidder after discarding the first 1/e-fraction of the bids,
selects the highest bid with probability 1/e [13]. The underlying idea – of fixing one or more
thresholds after seeing some prefix of the elements – can be generalized to solve classes of
packing linear programs near-optimally [8, 9, 25, 21], and to get O(log logn)-competitive
algorithms for matroids [28, 16] in the random-order model.

However, the assumption that we see the elements in a uniformly random order is quite
strong, and most current algorithms are not robust to small perturbations to the model. E.g.,
Dynkin’s algorithm is sensitive to even a single adversarial corruption: if the adversary gives
one large bid at the beginning of the stream, the algorithm does not select any buyer at all,
even if the rest of the stream is perfectly random! Many other algorithms in the secretary
model suffer from similar deficiencies, which suggests that we may be over-fitting to the
assumptions of the model.

We propose the Byzantine secretary model, where the goal is to design algorithms robust
to outliers and adversarial changes. The use of the term “Byzantine” parallels its use in
distributed systems, where some of the input is well-behaved while the rest is arbitrarily
corrupted by an adversary. Alternatively, our model can be called semi-random or robust:
these other terms are used in the literature which inspires our work. Indeed, there is
much interest currently in designing stochastic algorithms that are robust to adversarial
noise (see [10, 34, 29, 3, 34, 11, 12, 14, 30] and references therein). Our work seeks to
extend robustness to online problems. Our work is also related in spirit to investigations
into how much randomness in the stream is necessary and sufficient to get competitive
algorithms [5, 23].

https://doi.org/10.4230/LIPIcs.ITCS.2020.32
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1.1 Our Model
In the secretary problem, n elements arrive one-by-one. Each item has a value that is revealed
upon its arrival, which happens at a time chosen independently and uniformly at random in
[0, 1]. (We choose the continuous time model, instead of the uniformly random arrival order
model, since the independence allows us to get clean proofs.) When we see an item, we must
either select it or discard it before we see the next item. Our decisions are irrevocable. We
can select at most K elements, where K = 1 for the classical version of the problem. We
typically want to maximize the expected total value of the selected elements where the value
of a set is simply the sum of values of individual elements. (For the single-item case we may
also want to maximize the probability of selecting the highest-value item, which is called the
ordinal case.) Given its generality and wide applicability, this model and its extensions are
widely studied; see §1.3.

The difference between the classical and Byzantine secretary models is in how the sequence
is generated. In both models, the adversary chooses the values of all n elements. In the
classical model, these are then permuted in a random order (say by choosing the arrival
times independently and uniformly at random (u.a.r.) from [0, 1]). In the Byzantine model,
the elements are divided into two groups: the green (or good) elements/items G, and the
red (or rogue/bad) elements/items R. This partition and the colors are not visible to the
algorithm. Now elements in G arrive at independently chosen u.a.r. times between [0, 1], but
those in R arrive at times chosen by the adversary. Faced with this sequence, the algorithm
must select some subset of elements (say, having size at most K, or more generally belonging
to some down-closed family). The precise order of actions is important:

First, the adversary chooses values of elements in R∪G, and the arrival times of elements
in R.
Then each element e ∈ G is independently assigned a uniformly random arrival time
te ∼ U [0, 1].

Hence the adversary is powerful and strategic, and can “stuff” the sequence with values in
an order that fools our algorithms the most. The green elements are non-strategic (hence are
in random order) and beyond the adversary’s control. When an element is presented, the
algorithm does not see the color (green vs. red): it just sees the value and the time of arrival.
We assume that the algorithm knows n := |R|+ |G|, but not |R| or |G|; see Appendix B on
how to relax this assumption. The green elements are denoted G = {gmax = g1, g2, . . . , g|G|}
in non-increasing order of values.

What results can we hope to get in this model? Here are two cautionary examples:
Since the red elements behave completely arbitrarily, the adversary can give non-zero
values to only the reds, and plant a bad example for the adversarial order using them.
Hence, we cannot hope to get the value of the optimal red set in general, and should aim
to get value only from the greens.
Moreover, suppose essentially all the value among the greens is concentrated in a single
item gmax. Here’s a bad example: the adversary gives a sequence of increasing reds, all
having value much smaller than gmax, but values which are very far from each other.
When the algorithm does see the green item, it will not be able to distinguish it from the
next red, and hence will fail. This is formalized in Observation 19. Hence, to succeed,
the green value must be spread among more than one item.

Given these examples, here is the “leave-one-out” benchmark we propose:

V ∗ := value of the best feasible green set from G \ gmax. (1)

ITCS 2020
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This benchmark is at least as strong as the following guarantee:

(value of best feasible green set from G) − v(gmax). (2)

The advantage of (1) over (2) is that V ∗ is interesting even when we want to select a single
item, since it asks for value vg2 or higher.

We draw two parallels to other commonly used benchmarks. Firstly, the perspective (2)
suggests the regret-type guarantees, where we seek the best solution in hindsight, minus
the “scale of the problem instance”. The value of gmax is the scale of the instance here.
Secondly, think of the benchmark (1) as assuming the existence of at least two high bids,
then the second-largest element is almost as good a benchmark as the top element. This is a
commonly used assumption, e.g., in digital goods auctions [4].

Finally, if we really care about a benchmark that includes gmax, our main results for
selecting multiple items (Theorem 1 and Theorem 2) continue to hold, under the (mild?)
assumption that the algorithm starts with a polynomial approximation to v(gmax).

1.2 Our Results
We first consider the setting where we want to select at most K elements to maximize the
expected total value. In order to get within (1 + ε) factor of the benchmark V ∗ defined in (1),
we need to assume that we have a “large budget”, i.e., we are selecting a sufficiently large
number of elements. Indeed, having a larger budget K allows us to make some mistakes and
yet get a good expected value.

I Theorem 1 (Uniform Matroids). There is an algorithm for Byzantine secretary on uniform
matroids of rank K ≥ poly(ε−1 logn) that is (1 + ε)-competitive with the benchmark V ∗.

For the standard version of the problem, i.e. without any red elements, [26] gave an
algorithm that achieves the same competitiveness when K ≥ Ω(1/ε2). The algorithm
from [26] uses a single threshold, that it updates dynamically; we extend this idea to having
several thresholds/budgets that “cascade down” over time; we sketch the main ideas in §2.2.
In fact, we give a more general result – an algorithm for the knapsack setting where each
element has a size in [0, 1], and the total size of elements we can select is at most K. (The
uniform-matroids case corresponds to all sizes being one.) Whereas the main intuition remain
unchanged, the presence of non-uniform sizes requires a little more care.

I Theorem 2 (Knapsack). There is an algorithm for Byzantine secretary on knapsacks with
size at least K ≥ poly(ε−1 logn) (and elements of at most unit size) that is (1+ε)-competitive
with the benchmark V ∗.

As mentioned earlier, under mild assumptions the guarantee in Theorem 2 can be extended
against the stronger benchmark that includes gmax. Formally, assuming the algorithm starts
with a poly(m)-approximation to the value of gmax, we get a (1 + ε)-competitive algorithm
for K ≥ poly(ε−1 log(mn)) against the stronger benchmark.

Selecting a Single Item. What if we want to select a single item, to maximize its expected
value? Note that the benchmark V ∗ is now the value of g2, the second-largest green item.
Our main result for this setting is the following, where log∗ n denotes the iterated logarithm:

I Theorem 3 (Value Maximization Single-Item). There is a randomized algorithm for the
value-maximization (single-item) Byzantine secretary problem which gets an expected value
at least (log∗ n)−2 · V ∗.
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Interestingly, our result is unaffected by the corruption level, and works even if just
two elements gmax, g2 are green, and every other item is red. This is in contrast to many
other robustness models where the algorithm’s performance decays with the fraction of bad
elements [14, 3, 12, 30]. Moreover, our algorithms do not depend on the fraction of bad
items. Intuitively, we obtain such strong guarantees because the adversary has no incentive
to present too many bad elements with large values, as otherwise an algorithm that selects a
random element would have a good performance.

In the classical setting, the proofs for the value-maximization proceed via showing
that the best item itself is chosen with constant probability. Indeed, in that setting, the
competitiveness of value-maximization and probability-maximization versions is the same.
We do not know of such a result in the Byzantine model. However, we can show a non-trivial
performance for the probability-maximization (ordinal) problem:

I Theorem 4 (Ordinal Single-item Algorithm). There is a randomized algorithm for the
ordinal Byzantine secretary which selects an element of value at least the second-largest green
item with probability Ω(1/ log2 n).

Other Settings. Finally, we consider some other constraint sets given by matroids. In
(simple) partition matroids, the universe U is partitioned into r groups, and the goal is to
select one item from each group to maximize the total value. If we were to set the benchmark
to be the sum of second-largest green items from each group, we can just run the single-item
algorithm from Theorem 1 on each group independently. But our benchmark V ∗ is much
higher: among the items g2, . . . , g|G|, the set V ∗ selects the largest one from each group.
Hence, we need to get the largest green item from r − 1 groups! Still, we do much better
than random guessing.

I Theorem 5 (Partition Matroids). There is an algorithm for Byzantine secretary on partition
matroids that is O(log logn)2-competitive with the benchmark V ∗.

Finally, we record a simple but useful logarithmic competitive ratio for arbitrary matroids
(proof in §6.2), showing how to extend the corresponding result from [1] for the non-robust
case.

I Observation 6 (General Matroids). There is an algorithm for Byzantine secretary on
general matroids that is O(logn)-competitive with the benchmark V ∗.

Our results show how to get robust algorithms for the widely-studied secretary problems,
and we hope it will generate futher interest in robust algorithm design. Interesting next
directions include improving the quantitative bounds in our results (which are almost certainly
not optimal), and understanding tradeoffs between competitiveness and robustness.

1.3 Related Work
The secretary problem has a long history, see [17] for a discussion. The papers [1, 28,
16] studied generalizations of the secretary problem to matroids, [20, 27, 24, 22] studied
extensions to matchings, and [38, 39] studied extensions to arbitrary packing constraints.
More generally, the random-order model has been considered, both as a tool to speed up
algorithms (see [6, 41]), and to go beyond the worst-case in online algorithms (see [32, 18, 19]).
E.g., we can solve linear programs online if the columns of the constraint matrix arrive in
a random order [8, 9, 25, 21], and its entries are small compared to the bounds. In online
algorithms, the random-order model provides one way of modeling benign nature, as opposed
to an adversary hand-crafting a worst-case input sequence; this model is at least as general
as i.i.d. draws from an unknown distribution.

ITCS 2020
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Both the random-order model and the Byzantine model are semi-random models [2, 15],
with different levels of power to the adversary. Other restrictions of the random-order
model have been studied, via lower-bounding the entropy of the input stream, to ensure
the permutations are “random enough” [5, 23]. These papers give sufficient conditions for
the classical algorithms to perform well, whereas we take the dual approach of permitting
outliers and then asking for new robust algorithms. There are works (e.g., [31, 33, 35]) that
give algorithms which have a worst-case adversarial bound, and which work better when
the input is purely stochastic; most of these do not study the performance on mixed arrival
sequences. One exception is the work [14] who study online matching for mixed arrivals,
under the assumption that the “magnitude of noise” is bounded. Another exception is a
recent (unpublished) work of Kesselheim and Molinaro, who define a robust K-secretary
problem similar to ours. They assume the corruptions have a bursty pattern, and get
1− f(K)-competitive algorithms. Our model is directly inspired by theirs.

2 Preliminaries and Techniques

By [a . . . b] we denote the set of integers {a, a + 1, . . . , b − 1, b}. The universe U := R ∪G
consists of red/corrupted elements R and greed/good elements G. Let v(e) denote the value of
element e: in the ordinal case v(e) merely defines a total ordering on the elements, whereas in
the value-maximization case v(e) ∈ R≥0. Similarly, let v(A) be the random variable denoting
the value of the elements selected by algorithm A. Let te ∈ [0, 1] be the arrival time of
element e. Let R = {r1, r2, . . . , r|R|} and G = {gmax, g2, g3, . . . , g|G|}; the elements in each
set are ordered in non-increasing values. Let V ∗ be the benchmark to which we compare
our algorithm. Note that V ∗ is some function of G \ {gmax}, depending on the setting. We
sometimes refer to elements {e ∈ U | v(e) ≥ v(g2)} as big.

2.1 Two Useful Subroutines
Here are two useful subroutines.

Select a Random Element. The subroutine is simple: select an element uniformly at
random. The algorithm can implement this in an online fashion since it knows the total
number of elements n. An important property of this subroutine is that, in the value case,
if any element in U has value at least nV ∗, this subroutine gets at least V ∗ in expectation
since this highest value element is selected with probability 1/n.

Two-Checkpoints Secretary. The subroutine is defined on two checkpoints T1, T2 ∈ [0, 1],
and let I := [T1, T2] be the interval between them. The subroutine ignores the input up
to time T1, observes it during I by setting threshold τ to be the highest value seen in the
interval I, i.e., τ ← max{v(e) | te ∈ I}. Finally, during 〈T2, 1] the subroutine selects the first
element e with value v(e) ≥ τ .

We use the subroutine in the single-item setting where the goal is to find a “big” element,
i.e., an element with value at least v(g2). Suppose that there are no big red elements
in I. Now, if g2 lands in I, and also gmax lands in 〈T2, 1], we surely select some element
with value at least g2. Indeed, if there are no big items, threshold τ ← g2, and because
gmax lands after I, it or some other element will be selected. Hence, with probability
Pr[tg2 ∈ I] Pr[tgmax ∈ 〈T2, 1]] = (T2 − T1) · (1 − T2), we select an element of value at least
v(g2).
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2.2 Our Techniques
A common theme of our approaches is to prove a “good-or-learnable” lemma for each problem.
Our algorithms begin by putting down a small number of checkpoints {Ti}i to partition
the time horizon [0, 1] – and the arriving items – into disjoint intervals {Ii}i. We maintain
thresholds in each interval to decide whether to select the next element. Now a “good-or-
learnable” lemma says that either the setting of the thresholds in the current interval Ii will
give us a “good” performance, or we can “learn” that this is not the case and update the
thresholds for the next interval Ii+1. Next we give details for each of our problems.

Uniform Matroid Value Maximization (§3). Recall that here we want to pick K elements
(in particular, all elements have size 1, unlike the knapsack case where sizes are in the range
[0, 1]). For simplicity, suppose the algorithm knows that the benchmark V ∗ lies in [1, n]; we
remove this assumption later. We define O(ε−1 logn) levels, where level ` ≥ 0 corresponds to
values in the range [n/(1 + ε)`+1, n/(1 + ε)`). For each interval Ii and level `, we maintain a
budget B`,i. Within this interval Ii, we select the next arriving element having a value in
some level ` only if the budget B`,i has not been used up. How should we set these budgets?
If there are 1/δ intervals of equal size, we expect to select δK elements in this interval. So we
have a total of δK budget to distribute among the various levels. We start off optimistically,
giving all the budget to the highest-value level. Now this budget gradually cascades from a
level ` to the next (lower-value) level ` + 1, if level ` is not selecting elements at a “good
enough” rate. The intuition is that for the “heavy” levels (i.e., those that contain many
elements from the benchmark-achieving set S∗), we will roughly see the right number of
them arriving in each interval. This allows us to prove a good-or-learnable lemma, that
either we select elements at a “good enough” rate in the current interval, or this is not the
case and we “learn” that the budgets should cascade to lower value levels. There are many
details to be handled: e.g., this reasoning is only possible for levels with many benchmark
elements, and so we need to define a dedicated budget to handle the “light” levels.

Single-Item Value-Maximization (§5). We want to maximize the expected value of the
selected element, compared to V ∗ := v(g2), the value of the second-max green. With some
small constant probability our algorithm selects a uniformly random element. This allows
us to assume that every element has value less than nV ∗, as otherwise the expected value
of a random guess is Ω(V ∗). We now describe how applying the above “good-or-learnable”
paradigm in a natural way guarantees an expected value of Ω(V ∗/ logn). Running the
two-checkpoint secretary (with constant probability) during T1 = 0, T2 = 1/2 we know that
it gets value Ω(V ∗) and we are done, or failing that, there exist a red element of value at
least V ∗ in [0, 1/2]. But then we can use this red element (highest value in the first half)
to get a factor n estimate on the value of V ∗. So by grouping elements into buckets if
their values are within a factor 2, and randomly guessing the bucket that contains v(g2),
gives us an expected value of Ω(V ∗/ logn). To obtain the stronger factor of poly log∗ n in
Theorem 3, we now define log∗ n checkpoints. We prove a “good-or-learnable” lemma that
either selecting a random element from one of the current buckets has a good value, or we
can learn a tighter estimate on V ∗ and reduce the number of buckets.

Ordinal Single-Item Secretary (§4). We now want to maximize the probability of selecting
an element whose value is as large as the green second-max; this is more challenging than
value-maximization since there is no notion of values for bucketing. Our approach is crucially
different. Indeed, we use the minimax principle in the “hard” direction: we give an algorithm

ITCS 2020
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that does well when the input distribution is known to the algorithm (i.e., where the algorithm
can adapt to the distribution), and hence infer the existence of a (randomized) algorithm
that does well on worst-case inputs.

The known-distribution algorithm uses O(logn) intervals. Again, we can guarantee there
is a “big” (larger than g2) red element within each interval, as otherwise running Dynkin’s
algorithm on a random interval with a small probability already gives a “good” approximation.
This implies that even if the algorithm “learns” a good estimate of the second-max just
before the last interval, it will win. This is because the algorithm can set this estimate of
second-max as a threshold, and it wins by selecting the big red element of the last interval.
Finally, to learn a good estimate on the second-max, we again prove a “good-or-learnable”
lemma. Its proof crucially relies on the algorithm knowing the arrival distribution, since that
allows us to set “median” of the conditional distribution as a threshold.

Other Results (§6). We also give O(log logn)2-competitive algorithms for Partition
matroids, where the difficulty is that we cannot afford to lose the max-green element
in every part. Our idea is to only lose one element globally to get a very rough scale of
the problem, and then exploit this scale in every part. We also show why other potential
benchmarks are too optimistic in §A, and how to relax the assumption that n is known in
§B. See those sections for details.

3 Knapsack Byzantine Secretary

Consider a knapsack of size K; for all the results in this section we assume that K ≥
poly(ε−1 logn). Each arriving element e has a size s(e) ∈ [0, 1] and a value v(e) ≥ 0. Let
gmax, g2, g3, . . . , denote the green elements G with decreasing values and let

V ∗ := max
{∑

e∈S v(e) | S ⊆ G \ gmax and
∑
e∈S s(e) ≤ K

}
(3)

be the value of the benchmark solution, i.e., the optimal solution obtained after discarding
the top green element gmax. Let S∗ be the set of green elements corresponding to this
benchmark.

In §3.1 we give a (1 + ε)-competitive algorithm assuming we have a factor poly(n)-
approximation to the benchmark value V ∗. (In fact, given this poly(n)-approximation, we
can even get within a (1 + ε)-factor of the optimal set including gmax.) Then in §3.2 we
remove the assumption, but now our value is only comparable to V ∗ (i.e., excluding gmax).

Intuition. The main idea of the regular (non-robust) multiple-secretary problem (where we
pick at most K items) is to observe a small ε fraction of the input, estimate the value of
the Kth largest element, and then select elements with value exceeding this estimate. (A
better algorithm revises these estimates over time, but let us ignore this optimization for
now.) In the Byzantine case, there may be an arbitrary number of red items, so strategies
that try to estimate some statistics (like the Kth largest) to use for the rest of the algorithm
are susceptible to adversarial attacks.

For now, suppose we know that all items of S∗ have values in [1, nc] for some constant c.
The density of an item to be its value divided by its size. We define O(logn) density levels,
where elements in the same level have roughly the same density, so our algorithm does not
distinguish between them. The main idea of our algorithm is to use cascading budgets. At
the beginning we allocate all our budget to picking only the highest-density level items. If
we find that we are not picking items at a rate that is “good enough”, we re-allocate parts of



D. Bradac, A. Gupta, S. Singla, and G. Zuzic 32:9

our budget to lower-density levels. The hope is that if the benchmark solution S∗ selects
many elements from a certain density level, we can get a good estimate of the “right” rate at
which to pick up items from this level. Moreover, since our budgets trickle from higher to
lower densities, the only way the adversary can confuse us is by giving dense red elements, in
which case we will select them.

Such an idea works only for the value levels that contain many elements of S∗. For the
remaining value levels, we allocate dedicated budgets whose sole purpose is to pick a “few”
elements from that level, irrespective of whether they are from S∗. By making the total
number of levels logarithmic, we argue that the total amount of dedicated budgets is only
o(K), so it does not affect the analysis for the cascading budget.

3.1 An Algorithm Assuming a Polynomial Approximation
Suppose we know the benchmark V ∗ to within a polynomial factor: by rescaling, assume
that V ∗ lies in the range [1 . . . nc] for some constant c. This allows us to simplify the instance
structure as follows: Firstly, we can pick all elements of size at most 1/n, since the total
space usage is at most n · 1/n = 1 (recall, K ≥ poly(ε−1 logn)). Next, we can ignore all
elements with value less than 1/n2 because their total value is at most 1/n� 1 ≤ V ∗. If the
density of an element is defined to be the ratio v(e)/s(e), then all remaining elements have
density between nc+1 and n−2. The main result of this section is the following:

I Lemma 7. If V ∗ lies between 1 and nc for some constant c, each element has size at
least 1/n and value at least 1/n2, and K ≥ poly(ε−1 logn), then there exists a (1 +O(ε))-
competitive algorithm.

The idea of our algorithm is to partition the input into 1/δ disjoint pieces (δ is a small
parameter that will be chosen later) and try to solve 1/δ “similar-looking” instances of the
knapsack problem, each with a knapsack of size δK.

The Algorithm. Define checkpoints Ti := δi and corresponding intervals Ii := 〈Ti−1, Ti]
for all i ∈ [1 . . . 1/δ]. Define L := (1 + c+3

ε logn) density levels as follows: for each integer
` ∈ [0 . . . L), density value ρ` := nc+1/(1+ε)`. Now density level ` corresponds to all densities
lying in the range (ρ`+1, ρ`]. Note that densities decrease as ` increases. We later show that
the setting of parameters K ≥ Ω

(L2 log L/ε

ε4

)
and 1/δ = Ω(L/ε) suffices.

We maintain two kinds of budgets:
Cascading budgets: We maintain a budget B`,i for each density level ` and each interval Ii.
For the first interval I1, define B0,1 := δK, and B`,1 := 0 for ` > 0. For the subsequent
intervals, we will set B`,i in an online way as described later.
Dedicated budgets: We maintain a dedicated budget B̃` := H for each density level `; we
will later show that setting H := Ω

(L log L/ε

ε3

)
suffices.

Suppose we are in the interval Ii, and the arriving element e has density v(e)/s(e) in level `.
1. If the remaining cascading budget B`′,i of one of the density levels `′ ≥ ` is positive then

select e. For the smallest `′ ≥ ` satisfying this condition, update B`′,i ← B`′,i − s(e).
2. Else, if the remaining dedicated budget B̃` for level ` is positive, select e and update

B̃` ← B̃` − s(e).
Finally, for i > 1, we define the cascading budgets B`,i for this interval Ii based on how much
of the budgets at levels ` and ` − 1 are consumed in the previous interval Ii−1 as follows.
The amount of budget B`−1,i−1 at level `− 1 that is not consumed in interval Ii−1 is moved
to level ` (which has lower density), and the budget that gets consumed in Ii−1 is restored
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Interval Ii−1 Interval Ii

`− 1

`

`+ 1
L
ev
el
s

25

18

10

8

16

16

8+7=15

16+2=18

18+6=24

Figure 1 The bars for Ii−1 show the budget, and (in darker colors) the amount consumed. The
consumed budget (in dark blue) at level ` in interval Ii−1 is restored at level ` in Ii; the unconsumed
budget at level `− 1 in interval Ii−1 is then added to it.

at level ` (see Figure 1). Formally, if C`,i−1 is the amount of consumed cascading budget for
level ` in interval Ii−1 and R`,i−1 is the amount of remaining budget at level ` at the end of
interval i− 1 (i.e., the value of B`,i−1 at the time corresponding to the end of Ii−1), then we
define the initial budget for level ` at the start of interval i to be

B`,i := C`,i−1 +R`−1,i−1.

It is easy to see that we can compute these cascading budgets online.
A Note about Budget Violations. The total budget, summed over both categories and over

all the intervals for the cascading budgets, is K ′ := ((1/δ) · δK) + LH > K. If we use up all
this budget, we would violate the knapsack capacity. Moreover, we select an element as long
as the corresponding budget is positive, and hence may exceed each budget by the size of the
last element. However, since K ′ ≤ (1 + ε)K and K is much larger than individual element
sizes, the violations is a small fraction of K, so we can reject each element originally selected
by the algorithm with some small probability (e.g., p = 2ε) to guarantee that the non-rejected
selected elements have size at most K with high probability (i.e., at least 1− 1/nc, for an
arbitrary constant c > 0). Henceforth, we will not worry about violating the budget.

The Analysis. Recall the benchmark V ∗ from (3), and let S∗ be a set that achieves this
value. All the elements have value in [1/n2, nc] and size at least [1/n, 1], so each element
e ∈ S∗ has a corresponding density level `(e) ∈ [0 . . . L) based on its density v(e)/s(e). We
need the notion of “heavy” and “light” levels. For any level ` ∈ [0 . . . L), define s∗` to be the
total size of elements in S∗ with density level `:

s∗` :=
∑
e∈S∗:`(e)=` s(e). (4)

We say a level ` is heavy if s∗` ≥ H, else level ` is light. We refer to (green) elements of S∗ at
a heavy (resp., light) level as heavy-green (resp., light-green) elements. Note that elements
not in S∗ (some are red and others green) are left unclassified. If H is sufficiently large, a
concentration-of-measure argument using the uniformly random arrival times for green items
shows that each heavy level receives (1− ε)δH size during each interval with high probability.
The idea of the proof is to argue that the cascading budget never “skips” a heavy level, and
hence we get almost all the value of the heavy levels.

To avoid double-counting the values of the light levels, we separately account for the
algorithm’s value attained (a) on light levels using the dedicated budget or on light-green
elements using the cascading budget, and (b) for elements that are not light-green (incl.
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red elements) using the cascading budget. Note that (a) and (b) are disjoint, hence their
contributions can be added up. We show that (a) exceeds the value of S∗ restricted to the
light levels, while (b) exceeds (1− ε) times the value of of S∗ on the heavy levels. This is
sufficient to prove our result. We start by arguing the former claim.

B Claim 8 (Light-Green Elements). The sum of values of elements selected using the dedicated
budget at light levels, and of light-green elements selected using the cascading budget, is at
least

∑
` light s

∗
` · ρ`+1.

Proof. Our algorithm attempts to select each light-green element in S∗ using the cascading
budget, or failing that, by the dedicated budget at its density level. The only case in which
a light-green element e ∈ S∗ is dropped is if all the dedicated budget at its level `(e) has
been exhausted. But this means the algorithm has already collected at least s∗` · ρ`+1 from
the dedicated budget at this light level `. C

Next, to prove that (b) exceeds the value on heavy levels (up to 1 − ε), we need the
following property of the cascading budget on the heavy levels.

B Claim 9. For all intervals Ii and levels `, w.h.p. we have that if B`,i > 0 then every heavy
level `′ < ` satisfies B`′,i ≥ δs∗`′ · (1− ε).

Proof. For a heavy level `′, the expected size of heavy-green elements from S∗ falling in any
interval is δs∗`′ ≥ δH. If δH ≥ Ω(log(L/(δε)))

ε2 then with probability 1− ε we get that for each
interval i and each heavy level `′, the total size of elements from S∗ lying at level `′ and
arriving in interval Ii is at least δs∗`′ · (1− ε), by a concentration bound. Henceforth, let us
condition on this event happening for all heavy levels `′.

Now if the cascading budget B`,i > 0, this budget must have gradually come from levels
`′ < ` of higher densities. But this means B`′,i ≥ δs∗`′ · (1−ε) because otherwise the cascading
budget would never move to level `′ + 1, since level `′ receives at least δs∗`′ · (1− ε) size of
elements in every interval. C

For a level τ let h∗[0,τ〉 :=
∑
`′heavy, `′<τ s

∗
`′ denote the total size of items in S∗ restricted

to heavy levels from [0, τ〉. Similarly, let hA[0,τ〉 be the total size of non-light-green items
collected by the algorithm in levels [0, τ〉 and charged against the cascading budget.

B Claim 10. For all levels τ we have that hA[0,τ〉 ≥ (1−O(ε))h∗[0,τ〉.

Proof. Let t be the smallest index of an interval where Bτ,t+1 > 0. We partition the
intervals into two groups: I1, I2, . . . , It and It+1, . . . , I1/δ. From Claim 9 we can conclude
that for each interval in the latter group, the algorithm collects a total size of at least∑
` heavy, `<τ (1− ε) δ s∗` = (1− ε) δ h∗[0,τ〉 from levels [0, τ〉. Hence the total contribution over

all the intervals of the latter group is ( 1
δ − t)(1− ε) δ h

∗
[0,τ〉 = (1− tδ)(1− ε)h∗[0,τ〉.

We now consider the group I1, . . . , It. Let Ci, Ri and Qi be the total size of the consumed
non-light-green, remaining budget, and consumed light-green elements charged to the cas-
cading budget in interval i with levels [0, τ〉. By definition, the total size of all light-green
elements is at most LH, giving

∑t
i=1Qi ≤ LH. Furthermore, since the full cascading budget

is contained in [0, τ〉, the algorithm construction guarantees Ci +Ri +Qi = δK. Finally, we
argue that

∑t
i=1Ri ≤ δKL: consider an infinitesimally small part dB of the budget. At the

end of each interval, dB is either used to consume an element or it “moves” from level ` to
`+ 1, which can happen at most L times. Since the total amount of budget per interval is∫
dB = δK, the total sum is at most δKL.
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This lower-bounds the total size contribution of the group It+1, . . . , I1/δ.

t∑
i=1

Ci = tδK −
t∑
i=1

Ri −
t∑
i=1

Qi ≥ tδK − δKL− LH ≥ (tδ − ε− ε)K

≥ (tδ −O(ε))h∗[0,τ〉,

where we use K ≥ h∗[0,τ〉 (since the total size of elements in S∗ is at most K), δL ≤ ε, and
LH ≤ εK. Combining contributions from both groups we get:

(1− tδ)(1− ε)h∗[0,τ〉 + (tδ −O(ε))h∗[0,τ〉 = [(1− ε)− tδ(1− ε) + tδ −O(ε)] h∗[0,τ〉
= (1−O(ε)) h∗[0,τ〉.

Hence, we conclude that hA[0,τ〉 ≥ (1−O(ε))h∗[0,τ〉. C

Using the above claims we now prove Lemma 7.

Proof of Lemma 7. Our fine-grained discretization of densities gives us that

V ∗ ≤ (1 + ε)
( ∑
` light

s∗`ρ`+1 +
∑

` heavy
s∗`ρ`+1

)
. (5)

From Claim 8, our algorithm accrues value at least
∑
` light s

∗
` · ρ`+1 due to the elements from

light levels that were charged to the dedicated budget and light-green elements charged to the
cascading budget. It is therefore sufficient to prove a similar bound on the value accrued on
non-light-green elements charged to the cascading budget with respect to

∑
` heavy s

∗
` · ρ`+1,

which we deduce from Claim 10.
Let `′(x) be defined as the largest level `′ where ρ`′ ≥ x, then∑
` heavy

s∗`ρ`+1 =
∫ ∞

0

∑
` heavy, ρ`+1≥x

s∗` dx =
∫ ∞

0
h∗[0,`′(x)〉 dx

≤ (1 +O(ε))
∫ ∞

0
hA[0,`′(x)〉 dx,

where the last inequality uses Claim 10. Notice the right-hand side is the value of non-light-
green elements charged against the cascading budget. Thus, this part of the algorithm’s
value exceeds (up to 1−O(ε)) the value of heavy levels of S∗, finalizing our proof. J

3.2 An Algorithm for the General Case
To remove the assumption that we know a polynomial approximation to V ∗, the idea is to
ignore the first ε fraction of the arrivals, and use the maximum value in this interval to get a
poly(n) approximation to the benchmark. This strategy is easily seen to work if there are
Ω(1/ε) elements with a non-negligible contribution to V ∗. For the other case where most of
the value in V ∗ comes from a small number of elements, we separately reserve some of the
budget, and run a collection of algorithms to catch these elements when they arrive.

Formally, we define (1/ε) checkpoints Ti := iε and corresponding intervals Ii := 〈Ti−1, Ti]
for all i ∈ [1 . . . (1/ε)]. We run the following three algorithms in parallel, and select the union
of elements selected by them.

(i) Select one of the n elements uniformly at random; i.e., run Select-Random-Element
from §2.1.
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(ii) Ignore elements that arrive in times [0, ε), and let v̂ denote the highest of their values.
Run the algorithm from §3.1 during time [1/ε, 1], assuming that V ∗ ∈ [v̂/n2, v̂ n2].

(iii) At every checkpoint Ti, consider the largest value v̂i seen until then. Define L := 10
ε logn

value levels as follows: for ` ∈ (−L/2 . . . L/2) and τ` := v̂i/(1 + ε)`, define level `(i) as
corresponding to values in (τ`(i)+1, τ`(i)]. For each of these levels `, keep D := 10

ε log 1
ε

dedicated slots, and select any element having this value level and arriving after Ti, as
long as there is an empty slot in its level.

The total space used by the there algorithms is at most

1 +K + (1/ε) · L ·D = K +O
( logn log 1/ε

ε3

)
≤ (1 + ε)K,

where the last inequality holds because K ≥ Ω
(L2 log(L/ε)

ε4

)
from the size condition from §3.1.

We can now fit this into our knapsack of size K w.h.p. by sub-sampling each selected element
with probability (1−O(ε)). To complete the proof of Theorem 2, we need to show that we
get expected value (1−O(ε))V ∗.

Proof of Theorem 2. The proof considers several cases. Firstly, if there is any single element
with value more than n · V ∗, then the algorithm in Step (i) will select it with probability
1/n, proving the claim. Hence, all elements have value at most nV ∗.

Now suppose at least D = 10
ε log 1

ε elements in S∗ (recall S∗ has total value V ∗) have
individual values at least V ∗/n2. In this case, at least one of these D elements arrives in the
interval [0, ε) with probability 1− ε, and that element gives us the desired n2-approximation
to V ∗. Moreover, the expected value of elements in S∗ arriving in times [ε, 1] is at least
(1−O(ε))V ∗, even conditioning on one of them arriving in [0, ε).

Finally, consider the case where D′ ≤ D elements of S∗ have value more than V ∗/n2.
The idea of the algorithm in Step (iii) is to use the earliest arriving of these D′ elements, or
the element gmax, to get a rough estimate of V ∗, and from thereon use the dedicated slots
to select the remaining elements. Indeed, if the first of these elements arrive in interval Ii,
the threshold v̂i lies in [V ∗/n2, nV ∗] (since we did not satisfy the first case above). Now the
value levels and dedicated budgets set up at the end of this interval would pick the rest of
these D′ elements – except those that fall in this same interval Ii. We argue that each of the
remaining D′ elements has at least (1− ε) probability of not being in Ii, which gives us an
expected value of (1−O(ε))V ∗ in this case as well. This is true because the expected number
of these 1 + D′ elements (including gmax) that land in any interval that contains at least
one of them is at most 1 + εD′ (even after we condition on the first arrival, each remaining
element has ε chance of falling in this interval). Since any such interval has the same chance
of being the first interval Ii, and these 1 + D′ elements have the same distribution, the
expected number of additional elements in Ii is εD′. J

This completes the proof of Theorem 2 for the knapsack case, where the size K of the
knapsack is large enough compared to the largest size of any element. This generalizes the
multiple-secretary problem, where all items have unit size. We have not optimized the value
of K that suffices, opting for modularity and simplicity. It can certainly be improved further,
though getting an algorithm that works under the assumption that K ≥ O(1/ε2), like in the
non-robust case, may require new ideas.

4 Single-Item Ordinal Case

In this section we give a proof of Theorem 4, showing that there exists an algorithm which
selects an element with value no smaller than g2, with probability at least Ω(1/ log2 n). Our
proof for this theorem is non-constructive and uses (the hard direction of) the Minimax

ITCS 2020



32:14 Robust Algorithms for the Secretary Problem

Theorem; hence we can currently only show the existence of this algorithm, and not give a
compact description for it. Our main technical lemma furnishes an algorithm which, given a
known (general) probability distribution B over input instances, selects a big element with
probability at least Ω(1/ log2 n). Consequently, we use the Minimax Lemma to deduce that
the known-distribution case is equivalent to the worst-case input setting and recover the
analogous result.

Since our algorithms crucially argue about the input distribution B and rely on the
Minimax, we need to formally define these terms and establish notation connecting the
Byzantine secretary problem with two-player zero-sum games. Suppose we want to maximize
the probability of selecting a big element and to this end we choose an algorithm A, while
the adversary chooses a distribution B over the input instances and there is an (infinite)
payoff matrix K prescribing the outcomes. Its rows are indexed by different algorithms,
and columns by input instances. Formally, a “pure” input instance is represented as an
|R|-tuple of numbers in [0, 1], representing the arrival times te of the red elements; and a
permutation π ∈ Sn over U representing the total ordering of all values in U = R∪G. Recall
that the green elements G choose their arrival times independently and uniformly at random
in [0, 1], hence their te’s are not part of the input. A “mixed” input instance is a probability
distribution B over pure instances [0, 1]|R| × Sn.

While we do not need the full formal specifications of algorithms, we will mention that
a “mixed” algorithm A is a distribution over deterministic algorithms. An algorithm A on
an input instance I gets a payoff of K(A, I) := Pr[v(A) ≥ v(g2) | I] where the probability
is taken over the assignment of random arrival times to elements in G and the distribution
of deterministic algorithms A. The following Lemma states that for each B there is an
algorithm (that depends on B) that selects a big elements with probability Ω(1/ log2 n). We
prove the result in §4.1 and §4.2.

I Lemma 11 (Known Distribution Ordinal Single-Item Algorithm). Given a distribution over
input instances B, there exists an algorithm A that has an expected payoff of Ω(1/ log2 n).

To deduce the general case from the known distribution setting, we use a minimax lemma
for two-player games. We postpone the details to Appendix C and simply state the final
result here.

I Theorem 4 (Ordinal Single-item Algorithm). There is a randomized algorithm for the
ordinal Byzantine secretary which selects an element of value at least the second-largest green
item with probability Ω(1/ log2 n).

4.1 The Algorithm when B is Known
In this section we give the algorithm for Lemma 11. We start with some preliminary notation.
For each element e, let te denote the time at which it appears. Furthermore, for t ∈ [0, 1], let
K(t) denote the information seen by the algorithm up to and including time t, consisting of
arrival times and relative values of elements appearing before t.

We define logn+ 1 time checkpoints as follows: set the initial checkpoint T0 := 1
4 , and

then subsequent checkpoints Ti := 1
4 + i

2·logn for all i ∈ [1 . . . logn]. Note that the last
checkpoint is Tlogn = 3

4 . Now the corresponding intervals are

I0 := [0, 1/4] , Ii := 〈Ti−1, Ti] ∀ i ∈ [1 . . . logn], and Ilogn+1 := 〈3/4, 1]. (6)

Let mi := max{v(e) | e ∈ R and te ∈ Ii} be the maximum value among the red elements
that land in interval Ii, and let H := {mi > v(g2) for all i ∈ [1 . . . logn]} be the event where
the maximum value red item in all intervals is larger than the target g2, i.e., is “big”. We
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call this event H the hard cases and Hc the easy cases; we will show the Two Checkpoints
Secretary (from §2.1) achieves Ω(1/ log2 n) winning probability for all input instances in Hc.
Finally, define

pie := Pr
B

[e = g2 | H and K(Ti)],

i.e., pie is the probability that e is the second-highest green element conditioned on the
information seen until checkpoint Ti and the current instance being hard. Importantly, the
algorithm can compute pie at Ti.

Now to solve the hard cases, at each checkpoint Ti the algorithm computes sets Si
satisfying Si+1 ⊆ Si. These sets represent elements which are candidates for the second-max.
In other words, at time Ti there is reasonable probability that second-max is in Si. We start
with defining S0 ← {e ∈ U | te ∈ I0}, the elements the algorithm saw before T0. For i ≥ 0,
let ci denote the center of Si, i.e., the element of Si such that there are exactly b|Si|/2c
elements smaller than it. Define pi(X) :=

∑
e∈X p

i
e for a set X and index i ≥ 0. Given Si−1,

we determine Si as follows:
Define boti−1 ← {e ∈ Si−1 | v(e) ≤ v(ci−1)}, and note that boti−1 ⊆ Si−1.
If pi(boti−1) = pi−1(Si−1) then Si ← boti−1, else Si ← Si−1 \ boti−1.

Our algorithm runs one of the following three algorithms uniformly at random:
(i) Select a random i ∈ [1 . . . logn], define τ ← max{v(e) | te ∈ Ii} and select the first

element larger than τ . I.e., run Two Checkpoints Secretary (from §2.1) with the
checkpoints being the ends of interval Ii.

(ii) Select a random i ∈ [0 . . . logn], read input until checkpoint Ti, define τ ← v(ci) and
select the first element larger than it.

(iii) Compute the sets Si until |Sk| ≤ 10 for some k: then define τ to be the value of a
random element in Sk, and select the first element larger than it.

4.2 The Analysis
In this section we prove Lemma 11. Let us give some intuition. We can assume we have a
hard case, else the first algorithm achieves Ω(1/ log2 n) winning probability. For the other
two algorithms, let us condition on g2 falling in the first interval I0, and then exploit the
fact that there is a big red element in every interval Ii. It may be useful to imagine that
we are trying to guess, at each checkpoint, which of the elements in the past were actually
g2. If we could do this, we would set a threshold at its value, and select the first subsequent
element bigger than the threshold – and since there is a 1/4 chance that gmax would fall in
Ilogn+1, we’d succeed! Of course, since there are red elements all around, guessing g2 is not
straightforward.

So suppose we are at checkpoint Tk, and suppose there is a reasonable probability that
v(g2) ≤ v(ck−1), but also still some nonzero probability that v(g2) > v(ck−1). In such
a scenario, we claim that trying to choose an element in the interval Ik larger than ck−1
will give us a reasonable probability of success. Indeed, we claim there would have been
at least one red element in Ik bigger than ck−1 (since there is still a non-zero probability
that v(g2) > v(ck−1) even at the end of the interval Ik, and since the case is hard), and
v(g2) ≤ v(ck−1) with reasonable probability. Of course, we only know this at the end of the
interval, but the algorithm can randomly guess k with Ω(1/ logn) probability. Finally, if
there is no such checkpoint, then in every interval we reduce the size of set |Si| by half while
suffering a small loss in p(Si). In this case, both |Slogn| = O(1) and p(Slogn) = Ω(1), so the
third algorithm can guess g2 with constant probability and select an element larger than it
in the last interval.
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Formal Analysis. Let ALG be 1 if v(A) ≥ v(g2) and 0 otherwise, where A is the algorithm
from the last section. Suppose we’re in an easy case, i.e., there is an interval Is such that
all red elements in this interval are smaller than g2. Now if the first algorithm is chosen,
suppose it selects the interval Is, suppose g2 lands in Is, and gmax lands in Ilogn+1. Then
the algorithm surely selects an element greater than g2, and it has expected value:

E[ALG] ≥ 1
3 ·

1
logn ·

1
2 logn ·

1
4 = Ω

(
1

log2 n

)
.

Henceforth we can assume the case is hard, and hence each interval Ii contains a red
element bigger than g2. We condition on the event that g2 appears in I0, which happens
with constant probability. Define

k∗ := min
{
i ∈ [1 . . . logn] | 1

logn ≤
pi(boti−1)
pi−1(Si−1) < 1

}
,

and set k∗ = logn+ 1 if the above set is empty.

B Claim 12. For all i < k∗, the probability pi(Si) = Ω(1).

Proof. By definition, p0(S0) = 1. By our definition of the sets Si, we know that if pi(boti−1) =
pi−1(Si−1) then pi(Si) = pi−1(Si−1). Else since i < k∗, we have

pi(Si) = pi−1(Si−1)− pi(boti−1) ≤ pi−1(Si−1)(1− 1
logn ).

Hence, pi(Si) ≥ (1− 1
logn )logn = Ω(1), proving the claim. C

Now there are two cases, depending on the value of k∗. Suppose k∗ ≤ logn. Condition on
the event that the second algorithm is chosen, that it chooses the ith = (k∗− 1)th checkpoint,
and that v(g2) ≤ v(ci). By our choice of k∗, we get that v(g2) ≤ τ = v(ci) with probability
at least pi(Si) · 1

logn , and by Claim 12 this is Ω( 1
logn ). Since the case we are considering is

hard and Pr[v(g2) > v(ci) | H and K(Ti+1)] > 0, there is a red element larger than v(ci) = τ

appearing in Ii. Thus the algorithm will always select an element in this interval. The correct
interval is chosen with probability 1

logn , so the algorithm’s value is

E[ALG] = 1
3 ·

1
logn · Ω

( 1
logn

)
= Ω

( 1
log2 n

)
.

The other case is when k∗ = logn + 1. By definition |S0| ≤ n and |Si| ≤ d|Si−1|/2e.
Therefore |Slogn| ≤ 10. Let us condition on the event that the third algorithm is chosen,
that gmax appears in Ilogn+1, and that the algorithm guesses g2 correctly. The probability of
this event is at least

1
3 ·

1
4 · p

logn(Slogn) · 1
10 = Ω(1).

where we use Claim 12 to bound the probability plogn(Slogn). In this event, the algorithm
selects an element larger than g2 and has expected value E[ALG] = Ω(1).

Putting all these cases together, we get that our algorithm selects an element with value
at least v(g2) with probability at least Ω((logn)−2). This finishes the proof of Lemma 11,
and hence of Theorem 4. It remains an intriguing open question to get a direct algorithm
that achieves similar guarantees.
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5 Single-Item Value-Maximization

In this section, we give an algorithm for the problem of selecting an item to maximize the
expected value, instead of maximizing the probability of selecting the second-largest green
item (the ordinal problem considered in §4). In the classical secretary problem, both problems
are well known to be equivalent, with Dynkin’s algorithm giving a tight 1/e bound for both.
But in the Byzantine case the problems thus far appear to have different levels of complexity:
in §6.2 we present a simple O(logn)-competitive algorithm for the value-maximization
byzantine secretary problem, which is already better than the poly logn-competitive of §4.
We now substantially improve it to give a poly log∗ n-competitive ratio.

I Theorem 3 (Value Maximization Single-Item). There is a randomized algorithm for the
value-maximization (single-item) Byzantine secretary problem which gets an expected value
at least (log∗ n)−2 · V ∗.

In the rest of this section, let V ∗ := v(g2) denote the benchmark, the value of the
second-largest green element. The high level idea of our algorithm is to partition the input
into O(log∗ n) intervals and argue that every interval contains a red element of value vi > V ∗,
as otherwise Dynkin’s algorithm will be successful. Moreover, this vi cannot be much larger
than V ∗, as otherwise we can just select a random element. This implies we can use the
largest value in each interval to find a good estimate of V ∗, and eventually set it as a threshold
in the last interval to select a large value element.

5.1 The Algorithm
Define log(i) n to be the iterated logarithm function: log(0) n = n and log(i+1) n = log(log(i) n).
We define log∗ n + 1 time checkpoints as follows: the initial checkpoint T0 = 1

2 , and then
subsequent checkpoints Ti = 1

2 + i
4·log∗ n for all i ∈ [1, . . . , log∗ n]. Note that the last

checkpoint is Tlog∗ n = 3
4 . Now the intervals are

I0 := [0, T0] , Ii := 〈Ti−1, Ti] ∀ i ∈ [1 . . . log∗ n], and Ilog∗ n+1 := 〈Tlog∗ n, 1]. (7)

Our algorithm runs one of the following three algorithms chosen uniformly at random.

(i) Select one of the n elements uniformly at random; i.e., run Select-Random-Element
from §2.1.

(ii) Select a random interval i ∈ [1 . . . log∗ n] and run Dynkin’s secretary algorithm on
Ii. Formally, run Two-Checkpoints-Secretary (from §2.1) with the interval being
[Ti−1,

1
2 (Ti−1 + Ti)].

(iii) Select a random index i ∈ [0 . . . log∗ n] and observe the maximum value during the
interval Ii; let this maximum value be vi. Choose a uniformly random s ∈ [0 . . . 2 log(i) n].
Select the first element arriving after Ti that has value at least τ := (vi log(i) n)/2s.

5.2 The Analysis
To prove Theorem 3, assume WLOG that there are only two green elements gmax and g2,
and every other element is red (otherwise, we can condition on the arrival times of all other
green elements). Let vi be the value of the highest red element in Ii, i.e., excluding gmax
and g2.
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Proof of Theorem 3. We assume log(i) n is an integer for all i; this is true with a constant
factor loss. For sake of a contradiction, assume that the algorithm in §5.1 does not get
expected value Ω((log∗ n)−2V ∗). Under this assumption, we first show that every interval
contains a red element of value at least V ∗.

B Claim 13. For all j ∈ [1 . . . log∗ n] we have vj ≥ V ∗.

Proof. Suppose this is not the case. Let E1 be the event that the following three things happen
simultaneously: that we select Algorithm ii in §5.1 with random variable i = j, that the
second-highest green element g2 falls in the interval [Ti−1,

1
2 (Ti−1 +Ti)〉, and that the highest

green element gmax falls in Ilog∗ n+1. Note that Pr[E1] = 1
3 log∗ n ·

1
4 log∗ n ·

1
4 = Ω((log∗ n)−2).

Conditioned on this event E1, our algorithm (or specifically, Algorithm ii on the interval Ij)
gets a value at least v(g2) = V ∗. Hence the algorithm has expected valuation Ω

(
(log∗ n)−2V ∗

)
,

which is a contradiction to our assumption on its performance. C

We now prove that these red elements with large values cannot be much larger than V ∗.

I Lemma 14. For all j ∈ [1 . . . log∗ n] we have vj ≤ V ∗ · log(j−1) n.

Proof. We prove this lemma by induction. The base case j = 1 says v1 ≤ nV ∗, i.e., the
highest observed value in I1 = [T0, T1〉 is at most nV ∗. Suppose this is not the case – there
exists a red element e in I1 with value at least nV ∗. Let E1 be the event that we select
Algorithm i in §5.1 (i.e., Select-Random-Element) and that it selects e. Since Pr[E1] = Ω( 1

n ),
we have a contradiction that the expected valuation is Ω(V ∗).

Now suppose the statement is true until j ≥ 1. We prove the inductive step j+1. Suppose
not, i.e., vj+1 > V ∗ log(j) n. Let E2 be the event that we select Algorithm iii in §5.1 with
parameter i = j and that the random s ∈ [0 . . . 2 log(j) n] is such that vj

2s+1 ≤ V ∗ <
vj

2s (it
exists by induction hypothesis). This implies threshold τ := vj log(j) n

2s is between 1
2V
∗ log(j) n

and V ∗ log(j) n. Note Pr[E2] ≥ 1
3 ·

1
log∗ n ·

1
2 log(j) n

. Since event E2 implies the algorithm gets
value at least τ ≥ 1

2V
∗ log(j) n (because vj+1 > τ), its expected value is Ω((log∗ n)−1V ∗), a

contradiction. J

Now by Claim 13 and Lemma 14, we have vj ∈ [V ∗, V ∗ · log(j) n] for all j ∈ [1 . . . log∗ n].
We still get a contradiction. Let E3 be the event that the following three things happen
simultaneously: that we select Algorithm iii in §5.1 with i = log∗ n, that the highest
green element gmax is in interval Ilog∗ n+1, and that we select s in Algorithm iii such that
τ := (vlog∗ n log(j) n)/(2s) is between 1

2V
∗ and V ∗. Note Pr[E3] ≥ 1

3 log∗ n ·
1
4 ·

1
2 log∗ n . Since the

event E2 implies the algorithm gets value at least τ ≥ 1
2V
∗ (because gmax is in Ilog∗ n+1), its

expected value is Ω((log∗ n)−2V ∗). Thus, we have a contradiction in every case, which means
our assumption is incorrect and the algorithm has expected value Ω((log∗ n)−2V ∗). J

6 Value Maximization for Matroids

In this section we discuss multiple-choice Byzantine secretary algorithms in the matroid
setting.

I Definition 15 (Byzantine secretary problem on matroids). Let M be a matroid over U =
R ∪ G, where elements in G = {gmax, g2, . . . , g|G|} arrive uniformly at random in [0, 1].
When an element e ∈ U arrives, the algorithm must irrevocably select or ignore e, while
ensuring that the set of selected elements forms an independent set inM. The leave-one-out
benchmark V ∗ is the highest-value independent subset of G \ {gmax}.
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The knapsack results imply (1− ε)-competitiveness for uniform matroids as long as the
rank r is large enough; we now consider other matroids.

6.1 O(log log n)2-competitiveness for Partition Matroids
A partition matroid is where the elements of the universe are partitioned into parts
{P1, P2, . . .}. Given some integers r1, r2, . . ., a subset of elements is independent if for
every i it contains at most ri element from part Pi.

I Theorem 5 (Partition Matroids). There is an algorithm for Byzantine secretary on partition
matroids that is O(log logn)2-competitive with the benchmark V ∗.

We prove Theorem 5 for simple partition matroids where all ri = 1, i.e., we can select at
most one element in each part. This is without loss of generality (up to O(1) approximation)
because we can randomly partition each part Pi further into ri parts and run the simple
partition matroid algorithm.

Recall that our single item poly log∗ n algorithm from §5 no longer works for partition
matroids. This is because besides one part we want to get the highest green element in all
the other parts. Formally, Claim 13 where we use Dynkin’s secretary algorithm in the proof
of Theorem 3 fails because it needs at least two green elements. So we need to overcome the
lower bound to getting the highest-value green element v(g1) in Observation 19. We achieve
this and design an O(log logn)2-approximation algorithm by making an assumption that
the algorithm starts with a polynomial approximation to v(g1). Although in general this
is a strong assumption, it turns out that for partition matroids this assumption is w.l.o.g.
because the algorithm may lose the highest green element in one of the parts.

6.1.1 The Algorithm
We define log logn+ 1 time checkpoints as follows: the initial checkpoint T0 = 1

2 , and then
subsequent checkpoints Ti = 1

2 + i
2·log logn for all i ∈ [1 . . . log logn]. Now the corresponding

intervals are

I0 := [0, T0] and Ii = 〈Ti−1, Ti] ∀ i ∈ [1 . . . log logn] (8)

Let v0 denote the value of the max element seen by the algorithm in I0.
Now for every part P of the partition matroid, we execute the following algorithm

separately. Let vi for i ∈ [1 . . . log logn] denote the value of the max element seen by the
algorithm in part P during interval Ii. Let V ∗ denote the element of our benchmark in P .
Notice that vi ∈ P and V ∗ cannot be the overall highest green element as we exclude it. We
define 4 log1/i n levels for Ii where level j for j ∈ [1 . . . 4 log1/i n] is given by elements with
values in[vi−1 · log1/i n

2j ,
vi−1 · log1/i n

2j−1

]
.

We run one of the following algorithms uniformly at random.

(a) Select an element uniformly at random as discussed in §2.1.
(b) For every part P , select a random interval i ∈ [1 . . . log logn] and select a random level

j ∈ [4 log1/i n]. Select the first element above vi−1·log1/i n
2j in P .

(c) For every part P , select a random interval i ∈ [1 . . . log logn] and if there is an element
with value more than 2log1/i n times the max of all the already seen elements in Ii, selects
it with constant probability, say 1/100.
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6.1.2 The Analysis
Since with constant probability our algorithm selects one of the n elements uniformly at
random (Algorithm a), we can assume that v0 ≤ n2 · V ∗. We always condition on the event
that gmax arrives in the interval I0, which happens with constant probability and implies
v0 ≥ v(gmax). Moreover, we ignore parts P where V ∗ is below v(gmax)/n2 because they do
not contribute significantly to the benchmark. So from now assume

V ∗/n2 ≤ v0 ≤ n2 · V ∗.

We design an algorithm that gets value Ω(V ∗/(log logn)2) in each part P , which implies
Theorem 5 by linearity of expectation over parts.

Let v(red)
i ∈ P for i ∈ [1 . . . log logn] denote the value of the max red element that the

adversary presents in Ii.

B Claim 16. If there exists an i ∈ [1 . . . log logn] with v(red)
i > V ∗ · log1/i n then the expected

value of the algorithm is Ω(V ∗/ log logn).

Proof. With constant probability, our algorithm selects a random interval i and selects a
random level element in it (Algorithm b). Since w.p. 1/ log logn it selects this i, and w.p.
1
4 log1/i n it selects the random level of v(red)

i in Ii, the algorithm has expected value at least

1
log logn ·

1
4 log1/i n

· v(red)
i ≥ 1

4 log logn · V
∗. C

By the last claim we can assume for all i ∈ [1 . . . log logn], we have v(red)
i ≤ V ∗ · log1/i n.

B Claim 17. If there exists an i ∈ [1 . . . log logn] with v(red)
i < V ∗/2log1/i n then the expected

value of the algorithm is Ω(V ∗/(log logn)2).

Proof. With constant probability the algorithm guesses one of the intervals i and if there
is an element with value more than 2log1/i n times the max of all the already seen elements
in Ii, selects it with constant probability (Algorithm c). With 1/ log logn probability the
algorithm selects this particular i and with 1/ log logn probability V ∗ appears in this interval
with value at least 2log1/i n times the max seen element in this interval. Notice there can be
at most O

(
4 log1/i n
log1/i n

)
= O(1) elements with such large jumps in value in this interval. In this

case our algorithm selects V ∗ with constant probability. C

Finally, we are only left with the case where for all i ∈ [1 . . . log logn] value V ∗

2log1/i n
≤

v
(red)
i ≤ V ∗ · log1/i n, which we handle using Algorithm b.

B Claim 18. If for all i ∈ [1 . . . log logn] we have

V ∗

2log1/i n
≤ v(red)

i ≤ V ∗ · log1/i n

then the expected value of the algorithm is Ω(V ∗/(log logn)2).

Proof. Consider Algorithm b. It selects i = log logn− 1 w.p. 1/ log logn. Moreover, suppose
V ∗ appears in Ilog logn−1. Now since there are only a constant number of levels in this
interval, our algorithm selects an element of value at least V ∗ with constant probability. C

We have shown that in every case the algorithm has expected value Ω(V ∗/(log logn)2) for
any fixed part P . This implies Theorem 5 by linearity of expectation over parts.
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6.2 O(log n)-approx for General Matroids
I Observation 6 (General Matroids). There is an algorithm for Byzantine secretary on
general matroids that is O(logn)-competitive with the benchmark V ∗.

Proof. Notice that no element can have weight more than nr times the second max-element
because w.p. 1/n our algorithm selects one of the n elements uniformly at random. Given
this, condition on the event that the max element with value v lands in the first half of the
input. Define 2 log(nr) exponentially separated levels as follows:[ v

2log(nr) ,
v

2log(nr)−1

〉
,
[ v

2log(nr)−1 ,
v

2log(nr)−2

〉
, . . . ,

[v
2 , v

〉
, . . . ,

[
v2log(nr)−1, v2log(nr)〉.

Since at least one of these intervals contains at least 2 log(nr) fraction of OPT, we can guess
that interval and run a greedy algorithm, i.e., accept any element with value in that interval
or above if it is independent. J

7 Conclusion

In this paper we defined a robust model for the secretary problem, one where some of the
elements can arrive at adversarially chosen times, whereas the others arrive at random times.
For this setting, we argue that a natural is the optimal solution on all but the highest-valued
green item (or even simpler, the optimal solution on the green items, minus the single
highest-value item). This benchmark reflects the fact that we cannot hope to compete with
the red (adversarial) items, and also cannot do well if all the green value is concentrated in a
single green item.

We show that for the case where we want to pick K items, or if we have a knapsack
of size K, we can get within (1 − ε) of this benchmark, assuming K is large enough. We
can also get non-trivial results for the single-item case, where our benchmark is now the
second-highest valued green item. In the ordinal setting where we only see the relative
order of arriving elements and the goal is to maximize the probability of getting an element
whose value is above the benchmark, we use the minimax principle to show existence of
an O(log2 n)-approximation algorithm in §4. In the value maximization setting, we give an
O(log∗ n)2-approximation algorithm in §5. We also show O(log logn)-competitiveness for
partition matroids.

The results above suggest many question. Can we improve the lower bound on the
size required for (1− ε)-competitiveness? Can we get a constant-competitive algorithm for
the single-item case? For the probability-maximization problem, our proof only shows the
existence of an algorithm; can we make this constructive? More generally, many of the
algorithms for secretary problems seem to overfit to the model, at least in the presence of
small adversarial changes: how can we make our algorithms robust?
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A Hard Benchmarks

We show that for the benchmark V ∗ := v(gmax), every algorithm has an approximation of at
most O(1/n).

I Observation 19 (Lower Bound for gmax). Any randomized algorithm for the single-item
Byzantine secretary problem cannot select the highest-value good/green item with probability
larger than 1/(|R|+ 1).

Proof. We use Yao’s minimax lemma, so it is enough to construct an input distribution B
for which no deterministic algorithm can achieve an approximation better than 1

|R|+1 . The
distribution is as follows. The red elements arrive at random times, that is (tr1 , tr2 , ...tr|R|) ∼
U [0, 1]|R|. The linear ordering among the elements is set such that the red elements are
strictly increasing according to their arrival time, or formally: tri > trj =⇒ v(ri) > v(rj).
The maximum element is green and all the other green elements are smaller than all red
elements. Formally: v(gmax) > v(r1) > v(r2)... > v(r|R|) > v(g2) > v(g3) . . . > v(g|G|). This
fully defines the input distribution.

All the arrival times are distinct with probability 1. Let K(t) denote the information
seen by the algorithm up to and including time t. Partition the probability space according
to S := {tgmax , tr1 , tr2 , ...tr|R|} and L := (tg2 , tg3 , ...tg|G|). Let s1 < s2 < ... < s|R|+1 be
the elements of S. Let Mi := {tgmax

= si}. By definition, we have Pr[Mi|S,L] = 1
|R|+1 .

Note that, since the red items arrive in increasing order of value and the green item has
maximum value, we have Pr[Mi|S,L,K(t)] = Pr[Mj |S,L,K(t)] for all t ≤ si, sj . Therefore,
Pr[Mi|S,L,K(si)] ≤ 1

|R|+2−i . In other words, there is no way to distinguish the maximum
green element from the red elements before it is too late, that is at the time of the green
element’s arrival. Thus, by a simple inductive argument, the proof is finished. J

Using techniques presented in [7], we can extend this result to the value case as well.

B Relaxing the Assumption that n is Known

In this section we extend our results to some settings where n is unknown. Most importantly,
observe that all of the results in this paper hold even if n is known only up to a constant
factor with at most a constant factor degradation in the quality of the result. As a simple
example, note that picking a uniformly random element from an n-element sequence when
the assumed number of elements is ñ ∈ [n, 2n] will select an element x ∈ U with probability
px ∈ [ 1

2n ,
1
n ], leading to a degradation in the result by a factor of at most 2, which we typically

ignore in this paper.
This still leaves us open to the possibility that we do not even know the scale of n.

Surprisingly, it is still possible to “guess” ñ while only incurring a loss of Õ(logn) in the
quality, even if there is no prior known upper limit on n.1 The following claim formalizes
this result.

B Claim 20. There exists a distribution X over the integers such that for every n ≥ 1 the
probability that the sampled number ñ ∼ X is within a constant factor of n, is at least
1/Õ(logn).

1 By Õ(f(n)) we mean f(n) · poly(log f(n)).
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Proof. Consider the sequence ak := 1
k(log2 k)(log2 log2 k)2 defined for k ≥ 2. It is well-known

that this sequence converges, i.e.,
∑∞
k=2 ak = O(1). A simple way to see this is by noting that

a non-negative decreasing sequence (Ak)k converges if and only if (2kA2k )k converges [40,
Thm 3.27].

Let
∑∞
k Ak ∼

∑∞
k Bk be the equivalence relation denoting that (Ak)k and (Bk)k either

both converge or both diverge. Then the above fact implies that
∑∞
k

1
k log2 k(log2 log2 k)2 ∼∑∞

k
1

k(log2 k)2 ∼
∑∞
k

1
k2 , where the last sequence clearly converges.

We can assume without loss of generality that n ≥ 100 by handling those cases separately.
The strategy for guessing the estimate ñ is now immediate: we sample ñ from Z≥2 according
to the distribution Pr[ñ = k] = ak/Z where Z :=

∑∞
k=100 ak = O(1). We observe that Pr[ñ ∈

〈2k−1 . . . 2k]] ≥ 1
22ka2k/Z = Ω̃(1/k). Let k′ be the unique index such that n ∈ 〈2k′−1 . . . 2k′ ],

hence k′ = Θ(logn). Then Pr[ñ ∈ 〈2k′ . . . 2k′+1]] = Ω̃(1/k′) = Ω̃(1/ logn). But also in that
case we have that n ∈ [ñ/4, ñ] and we are done. C

Finally, consider an important case where the fraction of red elements is bounded away
from 1− Ω(1). This is a reasonable assumption for most applications, e.g., online auctions,
where we do not expect that most of the arrivals will be chosen by an adversary. By simply
observing the first half of the sequence, i.e., [0, 1/2〉, we can typically estimate n up to a
constant while degrading the expected output of our algorithms by at most a constant factor.

B Claim 21. If there is a constant ε < 1 such that the fraction of red elements |R|
|R|+|G| ≤ ε

then we can estimate n up to a constant factor by time t = 1/2.

Proof. We run a simple preprocessing step to estimate n up to a constant factor by t = 1/2.
Notice that the expected number of green elements to arrive in the interval [0, 1/2〉 is
0.5 · |G| = 0.5 · n(1− ε) = Ω(n). Since by simple Chernoff bounds this means that w.h.p. we
see Ω(n) elements in the first half, we run a simple algorithm that does not select any element
till t = 1/2, and then use the number of elements that arrive in [0, 1/2〉 as an estimate of n.

C

C Minimax

In this section we argue that an α-payoff (i.e., the probability of selecting the second-max
element or better is at least α) known distribution algorithm for the ordinal single-item
Byzantine secretary implies an α-payoff algorithm for the general, worst-case input, setting.
This can be directly modeled as a two-player game where player A chooses an algorithm A
and player B chooses a distribution over the input instances B. Our coveted result would go
along the lines of

sup
A

inf
B
K(a, b) = inf

B
sup
A
K(A,B),

where K(A,B) denotes the payoff when we run algorithm A on the input distribution B.
The left-hand side denotes the worst-case input setting, while the right-hand side denotes
the known distribution setting.

The main challenge in proving such a claim stems from the infiniteness of the set of
algorithms and set of input distributions. Indeed, if one makes no finiteness assumption for
either A or B, the Minimax property can fail even for relatively well-behaved two-player
games [37]. On the other hand if both A and B would be finite, then the result would follow
from the classic Von Neumann’s Minimax [36].
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I Fact 22 (Von Neumann’s Minimax). Let A and B be finite sets. Denote by D(A) and D(B)
distributions over A and B, respectively. Then for any matrix of values K : A×B → R it
holds that

max
a∈D(A)

min
b∈D(B)

K(a, b) = min
b∈D(B)

max
a∈D(A)

K(a, b). (9)

The infiniteness of the sets stems from the arrival times being in the infinite set [0, 1]. To
solve this issue, we slightly modify our algorithm by discretizing [0, 1]. Let N = n3, T :=
{ 0
N ,

1
N ,

2
N , . . . ,

N
N } and Φ : [0, 1] → T ,Φ(t) := bN · tc/N be the discretizing function. We

modify our algorithm in the following way: apply Φ to the input distribution B, as well as to
every arrival time. Note that the elements are presented to the algorithm exactly as before,
it just pretends they arrive in discrete time steps. We can assume Φ(te) 6= Φ(tg) for every
e ∈ U, g ∈ G, e 6= g (otherwise, we say the algorithm loses), since this happens with at most
n2/N = o(1) probability. Using completely analoguous techniques as in Section 4 we can
show this algorithm is Ω(1/ log2 n)-competitive.

We note that a randomized algorithm is simply a distribution over deterministic algorithms.
Hence our second goal is to argue that the number of distinct deterministic algorithms is
finite (i.e., bounded by a function of n). To this end we have to specify how we represent
them with at least some formality. We identify a deterministic algorithm A with a function
that gets evaluated each time a new element arrives; its parameter is the information history
K(t) (t being the current time) represented in any appropriate format; its output is {⊥,>}
representing whether to select the current element. For concreteness, the information history
consists of (te, πe) for every element e that arrived before the function call, where te ∈ T is
the discretized arrival time (after applying Φ) and πe ∈ [0 . . . n− 1] is the relative value order
of e with respect to prior arrived elements. The number of distinct histories is bounded by
((N + 1)n)n, a function of n; therefore the set of deterministic algorithms, i.e., functions
from the history to {⊥,>}, is also bounded.

We remember that an input distribution is simply a distribution over “pure” inputs. Note
that the payoff of a deterministic algorithm for a specific input depends only on the following:
Φ(tr) for every red element; π ∈ Sn, the permutation representing the total order among
the elements; and πt ∈ S|R|, the permutation denoting the order in which the red elements
arrive (since red elements can have the same discretized arrival time, but an arbitrary order
in which they are presented to the algorithm). The above discretization makes the number
of pure inputs at most (n!)2 · (N + 1)n, i.e., bounded by a function of n. The reader can
refresh their memory about the representation of pure inputs by reviewing the introduction
to Section 4.

Finally, for our discretized algorithm, we proved that the set of pure inputs with different
payoffs, as well as the number of deterministic algorithms is bounded by a function of n.
Therefore, for a fixed n, both numbers are finite. We invoke the Von Neumann’s Minimax
(Fact 22) to conclude that the best result in the known distribution setting and worst-case
input setting are equivalent, recovering the following theorem.

I Theorem 4 (Ordinal Single-item Algorithm). There is a randomized algorithm for the
ordinal Byzantine secretary which selects an element of value at least the second-largest green
item with probability Ω(1/ log2 n).
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