
Implementation in Advised Strategies: Welfare
Guarantees from Posted-Price Mechanisms When
Demand Queries Are NP-Hard
Linda Cai
Princeton University, Princeton, NJ, USA
tcai@cs.princeton.edu

Clay Thomas
Princeton University, Princeton, NJ, USA
claytont@cs.princeton.edu

S. Matthew Weinberg
Princeton University, Princeton, NJ, USA
smweinberg@princeton.edu

Abstract
State-of-the-art posted-price mechanisms for submodular bidders withm items achieve approximation
guarantees of O((log logm)3) [1]. Their truthfulness, however, requires bidders to compute an NP-
hard demand-query. Some computational complexity of this form is unavoidable, as it is NP-hard
for truthful mechanisms to guarantee even an m1/2−ε-approximation for any ε > 0 [21]. Together,
these establish a stark distinction between computationally-efficient and communication-efficient
truthful mechanisms.

We show that this distinction disappears with a mild relaxation of truthfulness, which we
term implementation in advised strategies. Specifically, advice maps a tentative strategy either to
that same strategy itself, or one that dominates it. We say that a player follows advice as long
as they never play actions which are dominated by advice. A poly-time mechanism guarantees
an α-approximation in implementation in advised strategies if there exists advice (which runs in
poly-time) for each player such that an α-approximation is achieved whenever all players follow
advice. Using an appropriate bicriterion notion of approximate demand queries (which can be
computed in poly-time), we establish that (a slight modification of) the [1] mechanism achieves the
same O((log logm)3)-approximation in implementation in advised strategies.

2012 ACM Subject Classification Theory of computation→ Algorithmic mechanism design; Theory
of computation → Solution concepts in game theory

Keywords and phrases Combinatorial auctions, Posted-Price mechanisms, Submodular valuations,
Incentive compatible

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.61

Funding S. Matthew Weinberg: Supported by NSF CCF-1717899.

Acknowledgements We thank Sepehr Assadi, Sahil Singla and the anonymous reviewers for helpful
discussions.

1 Introduction

Combinatorial auctions have been at the forefront of Algorithmic Game Theory since its
inception as a lens through which to study the relative power of algorithms for honest agents
versus mechanisms for strategic agents. Specifically, there are n buyers with combinatorial
valuations v1(·), . . . , vn(·) over subsets of m items, and the designer wishes to allocate the
items so as to maximize the welfare,

∑
i vi(Si) (where Si is the set allocated to bidder i).

Without concern for computation/communication/etc., the celebrated Vickrey-Clarke-Groves
© Linda Cai, Clay Thomas, and S. Matthew Weinberg;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 61; pp. 61:1–61:32

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tcai@cs.princeton.edu
mailto:claytont@cs.princeton.edu
mailto:smweinberg@princeton.edu
https://doi.org/10.4230/LIPIcs.ITCS.2020.61
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Implementation in Advised Strategies

mechanism [41, 9, 28] provides a black-box reduction from precisely optimal mechanisms to
precisely optimal algorithms. Of course, precisely optimal algorithms are NP-hard and require
exponential communication in most settings of interest (for example, when buyers have
submodular valuations over the items, which we’ll take as the running example for the rest
of the introduction), rendering VCG inapplicable. On the algorithmic front, poly-time/poly-
communication constant-factor approximation algorithms are known [38, 30, 33, 4, 42, 24]
and a central direction in algorithmic mechanism design is understanding whether these
guarantees are achievable by computationally/communication efficient truthful mechanisms
as well.

From the communication complexity perspective, this problem is still wide open: state-
of-the-art truthful mechanisms guarantee an O((log logm)3)-approximation [1], yet no lower
bounds separate achievable guarantees of mechanisms from algorithms (that is, it could
very well be the case that truthful, poly-communication mechanisms can achieve the same
guarantees as poly-communication algorithms). From the computational perspective, however,
a landmark result of Dobzinski and Vondrak establishes that for all ε > 0, an m1/2−ε-
approximation is NP-hard for truthful mechanisms [21]. As poly-time algorithms guarantee
a e/(e− 1)-approximation [42], this establishes a strong separation between computationally-
efficient algorithms and computationally-efficient truthful mechanisms.

So while the communication perspective has seen exciting progress in recent years [15, 3],
the computational perspective is generally considered fully resolved. In this paper, we present
a new dimension to the computational perspective, motivated by the following two examples.
Consider first the truthful mechanism of [1]. The core of the mechanism is a posted-price
mechanism: it visits each bidder one at a time, posts a price pj on each remaining item j,
and offers the option to purchase any set S of items at total price

∑
j∈S pj (see Section 4

and Appendix B for a full description of their mechanism, which also includes randomization,
pre-procesesing, and learning). The auxiliary parts of the mechanism run in poly-time,1
and the offered prices can also be computed in poly-time. While it might sound like this
mechanism should be poly-time, the catch is that it’s NP-hard for the buyer find their
utility-maximizing set, called a demand query. Therefore, the mechanism is either not
truthful (because the buyers do not select their utility-maximizing sets), or requires solving
an NP-hard problem (because the buyers pick their favorite sets). Still, the analysis of [1]
and related mechanisms [12, 18, 31, 11, 26, 14, 22, 14] seems fairly robust, suggesting that
perhaps they should maintain their guarantees under reasonable strategic behavior. Indeed,
the focus of this paper is a novel solution concept (described below) under which the [1]
O((log logm)3)-approximation is maintained in polynomial time.

A New Solution Concept: Implementation in Advised Strategies. To get intuition for our
solution concept, consider the following example due to [39]: there is only a single buyer, but
the buyer can receive only k of them items (this is the one-buyer case of Combinatorial Public
Projects). Since there is just a single buyer, the obvious mechanism for the designer simply
allows the buyer to pick any set of size k for free (call this the “Set-For-Free” mechanism).
The same catch is that it is NP-hard for the buyer to pick their favorite set, so Set-For-Free is
again not truthful (because the buyer picks a suboptimal set) or solving an NP-hard problem
(because they find their favorite set). In fact, [39] establishes that it is NP-hard for truthful
mechanisms to achieve a m1/2−ε-approximation for any ε > 0. Algorithmically, a poly-time
e/(e− 1)-approximation is known [35], providing again a strong separation.

1 Rather, they can be slightly modified to run in poly-time – see Section 4 and Appendix B.

L. Cai, C. Thomas, and S.M. Weinberg 61:3

We ask instead: what should one reasonably expect to happen if a strategic buyer
participated in Set-For-Free? Consider the set S output by the poly-time algorithm of [35].
It is certainly reasonable for the buyer to select some set T 6= S: perhaps a different heuristic
finds a better set. But it seems irrational for the buyer to select some set T with v(T) < v(S).
We therefore pose that there should be some reasonable solution concept under which
Set-For-Free guarantees an e/(e − 1)-approximation. Indeed, Set-For-Free guarantees an
e/(e− 1)-approximation under our proposed “implementation in advised strategies.”

Formally, we will think of Set-For-Free as simply asking the buyer to report a set of size
at most k, and then awarding them that set for free. In addition, the designer provides
advice: a Turing machine A(·, ·) which takes as input the buyer’s valuation v(·) (possibly as
a circuit/Turing machine itself, or accessing it via value queries) and a tentative set T , then
recommends a set S to purchase that is at least as good as T . Specifically in Set-For-Free,
we will think of the advice as running the [35] approximation algorithm to get a set S′ and
outputting S := arg max{v(T), v(S′)}. We say that a bidder follows advice if they select
a set S with A(v, S) = S. The idea is that it seems irrational for the buyer to select a set
without this property, when the advice gives a poly-time algorithm to improve it.

For a general mechanism, we think of advice as a Turing machine which takes as input the
current state of the mechanism, the buyer’s valuation, and a tentative action, then advises
an (maybe the same, maybe different) action to take. Importantly, we say that advice is
useful if for all strategies s, either the advice maps s to itself, or to another strategy which
dominates it (see Section 2 for full definition). Intuitively, this suggests that it is irrational
for a buyer to use a strategy which advice does not map to itself. We postpone to Section 2
a formal definition of what it means to follow advice, but note here that our definition is a
natural relaxation of dominant strategies: if a mechanism has a dominant strategy s, then
the only strategy which follows advice that recommends s is s itself. We say that mechanism
guarantees a poly-time α-approximation in implementation in advised strategies whenever
the mechanism itself concludes in poly-time, and there exists poly-time advice A such that
an α-approximation is guaranteed whenever all bidders follow advice A. Again, note that
the assumption on bidder behavior is quite permissive: they need not play a dominant, or
even undominated strategy. We just assume they do not play a strategy which the advice
itself dominates.

Advice via Approximate Demand Queries. We now revisit posted-price mechanisms, which
achieve approximation guarantees of O((log logm)3), but whose truthfulness requires buyers
to compute NP-hard demand queries. Instead, we pursue guarantees in implementation
in advised strategies. For a posted-price mechanism with price vector p, our proposed
advice will take as input a tentative set T for purchase, and the buyer’s valuation v(·), and
recommend a set S guaranteeing v(S)− p(S) ≥ v(T)− p(T).2 More specifically, our advice
will compute a tentative recommendation S′ independently of T , then simply recommend
arg max{v(S′) − p(S), v(T) − p(T)}. Again, our behavioral assumption does not assume
that the buyer will purchase the set S′ tentatively recommended, just that they will not
irrationally ignore the advice in favor of a lower-utility set.

The remaining challenge is now to find concrete advice under which the [1] approximation
guarantees are maintained. A first natural attempt is simply an approximate demand
oracle: have a tentative recommendation S′ with v(S′)−p(S′) ≥ c ·maxT {v(T)−

∑
j∈T pj}.

Unfortunately, even this is NP-hard for any c = Ω(1/m1−ε) (for any ε > 0) [25]. Instead,

2 Throughout the paper we will use notation p(S) :=
∑

i∈S
pi.

ITCS 2020

61:4 Implementation in Advised Strategies

we design bicriterion approximate demand oracles. Specifically, for some c, d < 1, a (c, d)-
approximate demand oracle produces a set S′ satisfying v(S′)− p(S′) ≥ c ·maxT {v(T)−
p(T)/d}. That is, the guaranteed utility is at least an c-fraction of the optimum if all
prices were increased by a factor of 1/d. We design a simple greedy (1/2, 1/2)-approximation
in poly-time (based on [33]), and further establish that the [1] mechanism maintains its
approximation guarantee up to an additional min{c, d} factor when bidders follow advice
provided in this manner by a (c, d)-approximate demand oracle. This allows us to conclude
the main result of this paper:

I Theorem 1. There exists a poly-time mechanism which achieves an O((log logm)3)-
approximation to the optimal welfare for any number of submodular buyers in implementation
in advised strategies.

1.1 Roadmap
Combinatorial auctions have a long history within AGT, along with related problems like
Combinatorial Public Projects. The most related work is overviewed in Section 1, but
we provide additional context in Section 1.2. Section 2 contains a formal definition of
implementation in advised strategies, repeating our motivating examples and providing
additional discussion.

In Section 3, we design our poly-time (1/2, 1/2)-approximate demand oracles for submod-
ular valuations. The proof is fairly simple, but we include the complete proof in the body for
readers unfamiliar with [33] (readers familiar with [33] will find the outline simliar).

In Section 4, we establish that existing posted-price mechanisms maintain their approxi-
mation guarantees as long as buyers follow advice given by (Ω(1),Ω(1))-approximate demand
oracles. We include a complete analysis of the main lemma of [26] concerning “fixed price
auctions” for readers unfamiliar with this aspect (readers familiar with [26] will find the
outline similar). We defer all aspects of the analysis of [1] to Appendix B.

Finally, in Section 5, we design simple poly-time (1√
m
, 1

1+
√
m

)-approximate demand oracles
for subadditive valuations. This is essentially the best possible even for XOS valuations,3
due to known lower bounds on welfare-maximization with value queries [17] and the results
of Section 4.

1.2 Discussion and Related Work
There is a vast literature studying combinatorial auctions, which we will not attempt to
overview in its entirety here. We summarize the lines of work most relevant to ours below.

VCG-based Mechanisms. The Vickrey-Clarke-Groves mechanism provides a poly-time/
poly-communication black-box reduction from precise welfare maximization with a truthful
mechanism to precise welfare maximization with an algorithm for any class of valuation
functions [41, 9, 28]. The same reduction applies for “maximal-in-range” approximation
algorithms, but this approach provably cannot achieve sub-polynomial approximations in poly-
time (unless P = NP) or subexponential communication [8, 7, 10]. Still, in some regimes (e.g.
arbitrary monotone valuations with poly-time/poly-communication, or XOS valuations with
poly-time), no better than a Θ(

√
m)-approximation is achievable even with honest players,

and a Θ(
√
m)-approximation is achievable via truthful VCG-based mechanisms [32, 17].

3 More precisely, it is unconditionally hard to obtain a (1/m1/2−ε, 1/m1/2−ε)-approximate demand query
for XOS valuations using polynomially many black-box value queries.

L. Cai, C. Thomas, and S.M. Weinberg 61:5

Combinatorial Auctions in the Computational Model. Taking the above discussion into
account, valuation function classes above XOS (including subadditive, or arbitrary monotone)
are “too hard”, in the sense that Θ(

√
m) is the best approximation achievable in poly-time

even without concern for incentives, and this guarantee can be matched by VCG-based truthful
mechanisms. Other valuation function classes like Gross Substitutes are “easy”, in the sense
that precise welfare maximization is achievable in poly-time, so the VCG mechanism is poly-
time as well. Submodular valuations are a fascinating middle ground. Here, an algorithmic
e/(e− 1)-approximations is possible in poly-time (and it is NP-hard to do better) [42, 34, 19],
but a long series of works establishes that it is NP-hard for a truthful mechanism to even
achieve an m1/2−ε-approximation (for any ε > 0) [36, 7, 8, 10, 13, 20, 19, 21].

On this front, our work establishes that significantly better (O((log logm)3)) guarantees
are achievable with a slightly relaxed solution concept, matching the state-of-the-art in the
communication model. In addition to the standalone motivation for the communication
model discussed below, our work establishes that resolving key open questions (e.g. is there
a constant-factor approximation in the communication model for submodular valuations?)
may have strong implications in the computational model as well (via implementation in
advised strategies).

Combinatorial Auctions in the Communication Model. In the communication model, only
arbitrary monotone valuations are “too hard” per the above discussion: a 2-approximation
is possible for subadditive valuations, and a 1

1−(1−1/n)n -approximation is possible for XOS
valuations in poly-communication, both of which are tight [24, 17, 23]. Yet, no truthful
constant-factor approximations are known (the state-of-the-art is O((log logm)3) for sub-
modular/XOS [1] or O(logm log logm) for subadditive [12]). On the lower bounds side,
no separations are known between the approximation ratios of truthful mechanisms and
non-truthful algorithms using poly(n,m) communication, even for deterministic truthful
mechanisms (where the O(

√
m)-approximation of [17] remains the state-of-the-art). De-

termining whether such a separation exists is the central open problem of this agenda
(e.g. [15, 3]).

On this front, our work in some sense unifies the state-of-the-art for submodular valuations
in the communication and computational models via implementation in advised strategies.
So in addition to the standalone interest in establishing (or disproving) a separation in the
communication model, such a result will now likely have implications in the computational
model as well.

Posted Price Mechanisms. Posted-price mechanisms are ubiquitous in mechanism design,
owing to their simplicity and surprising ability to guarantee good approximations through a
variety of lenses [31, 11, 26, 14, 22, 1]. Very recent work also establishes posted-price mecha-
nisms as the unique class of mechanisms which is “strongly obviously strategy-proof” [37].
One minor downside of these mechanisms is that they require buyers to compute NP-hard
demand queries. Our work formally mitigates this downside under implementation in advised
strategies. For example, our work immediately extends the price of anarchy bounds of [11]
to hold in equilibria which are poly-time learnable for submodular buyers (previously the
equilibria required computation of demand queries).

Combinatorial Public Projects. Combinatorial Public Projects is a related problem, which
has also received substantial attention. Here, the designer may select any set of k items,
but every bidder receives all k items (instead of the bidders each receiving disjoint sets of

ITCS 2020

61:6 Implementation in Advised Strategies

items, as in auctions). We used the single submodular bidder Combinatorial Public Projects
problem as a motivating example due to the hardness results established in [39]: no poly-time
truthful mechanism can achieve an approximation ratio better than O(

√
m) (unless P =

NP). Contrast this with the general communication model, where Set-For-Free is truthful
and precisely optimizes welfare. Follow up work of [6] establishes that while the single-bidder
CPPP is inapproximable only because demand queries are NP-hard, the strong multi-bidder
inapproximability results of [36, 8] hold even when bidders have access to demand oracles.

[31, 14, 1] already establish that the aforementioned computational separations no longer
hold with demand oracles (so the story for combinatorial auctions differs greatly from
combinatorial public projects). Our work further establishes that the same guarantees are
achievable in truly polynomial time, under a relaxed solution concept.

(c, d)-Approximate Demand Oracles. To the best of our knowledge, bicriterion approxi-
mate demand oracles have not previously been considered. However, prior work regarding
approximation algorithms for nonnegative submodular functions with bounded curvature
subject to a matroid constraint designs a randomized (1− 1/e, 1− 1/e)-approximate demand
oracle for submodular functions (under a different name) [40, 27, 29]. We include our
(1/2, 1/2)-approximate demand oracles for submodular functions as they are deterministic
and significantly simpler (note also that determinism makes our related solution concepts
significantly cleaner).

Related Solution Concepts. The most related existing solution concept to ours is Algo-
rithmic Implementation in Undominated Strategies [2]. Here, a mechanism achieves an
α-approximation if whenever players play any undominated strategy, the resulting allocation
is an α-approximation (and for all dominated strategies, there is a poly-time algorithm to find
an undominated one which dominates it). For posted-price mechanisms, this solution concept
has no bite as the only undominated strategy is to pick the utility-maximizing set, and it is
not possible to find this set in poly-time. We establish in Observation 10 that implementation
in advised strategies is a relaxation of algorithmic implementation in undominated strategies.
The purpose of our novel solution concept is to have bite even when it is NP-hard to find an
undominated strategy.

2 Implementation in Advised Strategies

Motivated by the example of [39], we first relax the requirement that a mechanism be truthful,
instead requiring that a mechanism achieve its approximation guarantee whenever players
behave in a manner which is not clearly irrational. Before proposing our formal definition,
let’s examine it applied to two motivating examples.

Example One: [39]. There is a single buyer with submodular valuation function v(·). The
seller’s mechanism (Set-For-Free) allows the buyer to state any set of size k, and receive
that set for free. Recall that it is NP-hard for the buyer to find their favorite set of size k –
so if the mechanism is to be truthful, it is not poly-time (unless P = NP). The buyer can
indeed find an e/(e− 1)-approximation in poly-time [35], but assuming the buyer will run
this particular algorithm (or any specific approximation algorithm) is perhaps too strong an
assumption.

Instead, we assume simply that the buyer picks a set yielding at least as much utility
as this e/(e − 1)-approximation. Specifically, we will think of the designer as providing a
poly-time mechanism (Set-For-Free – the buyer states a set of size k and receives that set

L. Cai, C. Thomas, and S.M. Weinberg 61:7

for free), and a poly-time advice algorithm (takes as input the buyer’s valuation function
v(·), and a tentative set S, then runs the e/(e− 1)-approximation to get a set T and outputs
arg max{v(S), v(T)}, tie-breaking for S). Intuitively, we are claiming that it is certainly
rational for the buyer to purchase a set other than T , but that it is irrational to purchase a
set with v(S) < v(T).

Example Two: Posted-Price Mechanisms. Consider now any posted-price mechanism.
Again, we think of the designer as providing a poly-time mechanism (for all i, computes in
poly-time a price vector to offer bidder i, based on interactions with bidders < i), along with
a poly-time advice algorithm (takes as input the buyer’s valuation function v(·), a tentative
set S, computes in poly-time a set T and outputs arg max{v(S)− p(S), v(T)− p(T)}, again
tie-breaking for S). Again note that we are claiming that it may be rational for the buyer to
purchase a set other than T , but that it is irrational to purchase a set yielding lower utility
than T .

Importantly, we emphasize that we assume the buyer achieves at least as much utility as
recommended (a well-justified behavioral assumption, although not particularly convenient
for welfare guarantees), and not that the buyer picks a set guaranteeing them at least as much
welfare (more convenient for analyzing welfare guarantees, but an unmotivated assumption).
With these instantiations in mind, we now build up language to present our formal definition.

I Definition 2 (Mechanism as an Extended Form Game). Formally, a mechanism is just an
extended form game: at every state, it solicits actions from one or more players and (possibly
randomly) updates its state. With probability one, the mechanism eventually reaches a
terminal state, and (possibly randomly) outputs an allocation of items and payments charged.

A mechanism is poly-time if every state update is poly-time computable, and the mecha-
nism reaches a terminal state with probability one after poly(n,m) updates.

I Definition 3 (Strategies, Utility, and Dominance). A strategy s(·) for player i is simply a
mapping from the current state x of the mechanism to an action s(x).

We denote by ui(vi, ~s) the expected utility of player i when their valuation function is
vi(·) and the players use strategy profile ~s.

Strategy s(·) dominates strategy s′(·) for player i with valuation vi(·) if for all s−i,
ui(vi, si;~s−i) ≥ ui(vi, s′i;~s−i), and there exists an ~s−i such that ui(vi, si;~s−i) > ui(vi, s′i;~s−i).

I Definition 4 (Advice). Advice is a function A(·, ·, ·) which takes as input the valuation vi(·)
of a player, a state x of a mechanism, and a tentative action a, then (possibly randomly)
outputs an advised action A(vi, x, a). We say that advice is poly-time if it is poly-time
computable.

Observe that every advice A(·, ·, ·), valuation function vi(·), and tentative strategy s(·)
induces a strategy Avi,s(·) with Avi,s(x) := A(vi, x, s(x)).

I Definition 5 (Useful Advice). We say that advice A is useful if:
1. For all s(·), and all vi(·), either Avi,s(·) = s(·), or Avi,s(·) dominates s(·) (for valuation

vi(·)).
2. For all s(·) and all vi(·), Avi,A

vi,s(·) = Avi,s(·) (Advice is idempotent – applying advice
to s(·) twice is the same as applying it once).

Intuitively, Property 1 guarantees that the bidder should indeed follow advice given by A
instead of whatever strategy they had originally planned. Property 2 guarantees essentially
that the bidder does not get “stuck” in an exponentially-long loop trying to repeatedly
improve their strategy via advice (because the loop terminates after one iteration). Let us
briefly observe the following implication of our definition (which we explore further when
revisiting our two main examples):

ITCS 2020

61:8 Implementation in Advised Strategies

I Observation 6. Let A(·, ·, ·) be useful, and let A(vi, x, a) 6= a. Then for all s such that
s(x) = a, Avi,s(·) dominates s(·).

Intuitively, useful advice A separates strategies into advised strategies (where Avi,s(·) =
s(·)), and ill-advised strategies (where Avi,s(·) dominates s(·)). We say that a bidder follows
advice if they use an advised strategy.

I Definition 7 (Follows Advice). We say that s(·) is advised for vi(·) under A if Avi,s(·) = s(·).
A bidder with valuation vi(·) follows advice A if they use a strategy which is advised under A.

Intuitively, we are claiming that it is irrational for a player to use an ill-advised strategy
s(·) (because they could instead use the strategy Avi,s(·), which dominates it).

I Definition 8 (Implementation in Advised Strategies). We say that a mechanismM guarantees
an α-approximation in implementation in advised strategies with advice A if A is useful and
for all v1(·), . . . , vn(·), if all players follow advice A, the resulting allocation in M achieves
(expected) welfare at least α ·OPT(v1, . . . , vn). If both M and A are poly-time, we say that
M guarantees a poly-time α-approximation in implementation in advised strategies (without
referencing A).

Let’s now briefly revisit our two examples through the formal definitions. First, recall the
single-bidder mechanism Set-For-Free. Set-For-Free is poly-time: it takes as input a set and
simply outputs that set, and terminates after one iteration. Consider the advice algorithm
which takes as input v(·), and a set S, then runs the e/(e − 1)-approximation algorithm
of [35] to get a set T and outputs arg max{v(S), v(T)}, tie-breaking for S (the mechanism
has only a single non-terminal state, so this completely specifies the advice). Then the advice
indeed recommends a dominating strategy whenever it recommends T 6= S, and is idempotent
(tie-breaking in favor of S is subtly necessary for this claim – if instead the advice tie-broke
for T , then it might recommend an action distinct from S which does not dominate it).
Moreover, observe that the bidder follows advice if and only if they choose a higher value set
than produced by the algorithm, and therefore we’re guaranteed a e/(e− 1)-approximation
whenever the bidder follows advice.

Posted-price mechanisms with poly-time computable prices are poly-time: they iteratively
take as input a set from bidder i, assign that set to bidder i, then run a poly-time computation
to determine the prices for bidder i + 1. They terminate after n iterations. We will later
design poly-time approximate demand oracles, which take as input vi(·) and the price vector
p, and output a recommended set D(vi,p) in poly-time. For a posted-price mechanism,
there are multiple non-terminal states, each corresponding to a different price vector p. Our
advice, on input vi, S,p, will advise the set arg max{v(S)−p(S), v(D(vi,p))−p(D(vi,p))},
again tie-breaking in favor of S.4 If a strategy follows advice, it must, for all p, select a set
S satisfying vi(S)− p(S) ≥ vi(D(vi,p))− p(D(vi,p)). It’s not immediately clear why this
property should provide meaningful welfare guarantees, but we will later argue that the right
pairing of mechanism and notion of approximate demand oracle achieves polynomial-time
welfare guarantees which match state-of-the-art guarantees for computationally-unbounded
bidders.

4 Subtly, note that tie-breaking in favor of T would violate the definition of usefulness, via Observation 6.
Indeed, consider the strategy s(·) which purchases a utility-maximizing set on all prices 6= p, and set S
on p. Then any advice which tie-breaks in favor of T on prices p does not map s(·) to itself, and does
not dominate s(·) (because it generates the same utility on prices p, and cannot generate strictly higher
utility on any other prices, because s(·) is optimal).

L. Cai, C. Thomas, and S.M. Weinberg 61:9

Brief Discussion of Definitions. We chose our definitions with the goal of (a) providing a
strict relaxation of truthfulness, and (b) doing so in a way that permits all rational behavior
while (c) still eliminating enough irrational behavior to guarantee good welfare. We include
in Appendix A a brief example motivating our decision to think of advice as improving
a given strategy as opposed to outright proposing a replacement strategy. We conclude by
establishing that implementation in advised strategies is a strict relaxation of truthfulness
and algorithmic implementation in undominated strategies.

I Observation 9. If player i with valuation vi has a dominant strategy s∗(·) in mechanism
M , and Avi,s(·) := s∗(·) for all s(·), then the only strategy which follows advice is s∗(·) itself.

I Observation 10. Let M achieve an α-approximation in algorithmic implementation in
undominated strategies. Then M achieves an α-approximation in implementation in advised
strategies.

Proof. Recall that algorithmic implementation in undominated strategies implies for all vi(·)
the existence of a poly-time function fvi(·) which takes as input a strategy s(·) and outputs
a new strategy fvi(s) such that if s(·) is dominated, fvi(s) dominates s. Extend this so
that fvi(s) := s when s(·) is undominated. Now simply define Avi,s(·) := fvi(s), and then
A is useful and poly-time. Moreover, the advised strategies are exactly the undominated
strategies, so because M achieves an α-approximation whenever all players use undominated
strategies, it also achieves an α-approximation whenever all players follow advice. J

Of course, the whole point of our definitions is that the designer may not be able to find
a dominant (or even undominated) strategy in poly-time, and implementation in advised
strategies has bite even under these circumstances while the previous solution concepts
do not.

3 Approximate demand oracles

In this section, we develop our poly-time advice for posted-price mechanisms in the form
of an approximate demand oracle. Recall that a demand oracle for valuation function v(·)
takes as input a price vector p and outputs a set in arg maxS⊆M{v(S) − p(S)}. Recall
also that implementing a demand oracle is NP-hard when v(·) is submodular. In fact, it
is NP-hard to even guarantee better than a m-approximation when v(·) is submodular
(more precisely, for any ε > 0 it is NP-hard to guarantee a set T satisfying v(T)− p(T) ≥

1
O(m1−ε) · maxS{v(S) − p(S)} [25]). Motivated by this, we pursue instead a bicriterion
approximation. Specifically:

I Definition 11. For any c, d ≤ 1, a (c, d)-approximate demand oracle takes as input a
valuation function v(·) and a price vector p and outputs a set of items S such that

v(S)− p(S) ≥ c ·max
T
{v(T)− p(T)/d}.

That is, a (c, d)-demand oracle outputs a set guaranteeing at least a c-fraction of the
optimal utility if all prices were blown up by a factor of 1/d. We refer to the utility of
the optimal bundle with these higher prices (i.e. maxT {v(T)− p(T)/d}) as the benchmark
(so our goal is to be c-competitive with the benchmark). In this section, we establish that
poly-time (1/2, 1/2)-approximate demand oracles exist for submodular functions, based on the
simple greedy algorithm of [33].

ITCS 2020

61:10 Implementation in Advised Strategies

Algorithm 1 SimpleGreedy(v,p,M).

S ← ∅
for j = 1, . . . ,m do . For items in an arbitrary order

if v(S ∪ {j})− v(S) ≥ 2p(j) then . If the marginal gain is at least twice the price
S ← S ∪ {j} . Then allocate that item

return S

I Proposition 12. When v(·) is submodular, SimpleGreedy is a (1/2, 1/2)-approximate demand
oracle.

Proof. Our proof follows by induction on the number of items m. Importantly, observe that
SimpleGreedy is recursive. Specifically, if we do not allocate item 1, then the remainder of the
for loop is simply SimpleGreedy(v,p,M \ {1}). If we do allocate item 1, then the remainder
of the for loop is simply SimpleGreedy(v{1},p,M \ {1}), where vS(T) := v(S ∪ T)− v(S).
Also importantly, observe that vS(·) is submodular whenever v(·) is submodular (like [33],
this is the only part of the proof which requires submodularity instead of subadditivity).

Now we begin with the base case. Observe that when m = 1, SimpleGreedy purchases
the item if and only if the value exceeds twice the price. So when SimpleGreedy purchases
the item, it is optimal. When SimpleGreedy doesn’t purchase the item, the benchmark is 0
(because we compete with the optimal utility when the prices are doubled, which is zero). So
in both cases, it guarantees a the required (1/2, 1/2)-approximation. This proves the base case.

Now assume that the proposition holds for a fixed m ≥ 1, and consider the case with
m + 1 items. First, observe that if SimpleGreedy does not allocate item 1, it is because
v(1) < 2p(1). By submodularity of v(·) (in fact, subadditivity suffices), this implies that
v(S)− 2p(S) > v(S ∪ {1})− 2p(S ∪ {1}) for all S 3 1 (and in particular, that the optimum
when prices are doubled does not contain item 1). By the inductive hypothesis, SimpleGreedy
finds a (1/2, 1/2)-approximation for v(·) on M \ {1}, which by the previous sentence is also a
(1/2, 1/2)-approximation for v(·) on M , completing the inductive step in this case.

It remains to consider the case where SimpleGreedy allocates item 1. Let S2 := S \ {1}
denote the set output by SimpleGreedy(v{1},p,M \ {1}), and let O∗ := arg max{v(Y) −
2p(Y)} be the optimum bundle if prices were doubled. Then the inductive hypothesis
guarantees:

v{1}(S2)− p(S2) ≥ v{1}(O∗)/2− p(O∗ \ {1}).

Suppose first 1 ∈ O∗. The inductive hypothesis then implies:

v(O∗)/2− p(O∗) = v{1}(O∗)/2− p(O∗ \ {1}) + v({1})/2− p({1})
≤ v{1}(S2)− p(S2) + v({1})/2− p({1})
≤ v(S)− p(S).

Above, the first and third lines are simply expanding the definition of v{1}(·), and
the second line follows by inductive hypothesis. Observe that this concludes a (1/2, 1/2)-
approximation in the case that 1 ∈ O∗. Now, suppose instead that 1 /∈ O∗. Then we have:

v(O∗)/2− p(O∗) ≤ v(O∗ ∪ {1})/2− p(O∗) = v{1}(O∗)/2 + v({1})/2− p(O∗)
≤ v{1}(S2)− p(S2) + v({1})/2
≤ v{1}(S2)− p(S2) + v({1})− p(1)
= v(S)− p(S).

L. Cai, C. Thomas, and S.M. Weinberg 61:11

Above, the first line follows by monotonicity and expanding the definition of v{1}(·). The
second line follows by inductive hypothesis. The third line follows as v({1}) ≥ 2p(1) by
assumption that SimpleGreedy allocates item 1. The final line follows again by expanding
v{1}(·). This concludes both cases of the inductive step, and the proof of the proposition. J

This concludes our development of bicriterion approximate demand oracles. The following
section establishes that a wide class of posted-price mechanisms that achieve good guarantees
when buyers use precise demand queries maintain their guarantees when buyers follow advice
given by bicriterion approximate demand oracles.

4 Welfare Guarantees with Approximate Demand Oracles

In this section, we demonstrate that a slight modification of the O((log logm)3) approximation
of [1] (which is truthful when buyers implement precise demand oracles) maintains its
approximation guarantee when buyers follow advice recommended by a (1/2, 1/2)-approximate
demand oracle. We begin with the main insight below, followed by a precise statement of
our main result.

4.1 Fixed Price Auctions with Approximate Demand Oracles
A key component of the [1] (and related) auctions is the notion of a Fixed Price Auction. A
fixed price auction simply sets a price p(j) on item j, visits the buyers one at a time, and
offers the buyer the option to purchase any set S of remaining items for price p(S) (so it is a
posted-price mechanism which sets the same prices for all bidders).

A key lemma used by these works establishes that there exists a fixed price auction
generating good welfare (when bidders implement exact demand oracles) for any instance
with submodular bidders (or even XOS bidders).5 One can view the [14, 1] auctions as
attempting to learn such a “good” fixed price auction. The key intuition behind our extension
is that good fixed price auctions still exist when bidders only implement approximate demand
oracles. This is captured formally by Lemma 15 below, which first requires the notion of
supporting prices.

I Definition 13. q are supporting prices for v1(·), . . . , vn(·) and allocation S1, . . . , Sn if:
For all i, T , vi(T) ≥ q(Si ∩ T).
For all i, vi(Si) = q(Si).

I Fact 14. When all vi(·) are XOS, supporting prices exist for any allocation S1, . . . , Sn.6

Much prior work leverages the fact that with precise demand queries, the fixed-price
auction with prices q/2 achieves half the optimal welfare. The intuition for our main result
is that this key lemma extends to (c, d)-approximate demand queries by losing an additional
min{c, d} factor. In the statement below, we will slightly abuse notation and say that a
bidder “follows advice given by a (c, d)-approximate demand oracle” if they follow advice
given by an algorithm which on input v(·), S computs a (c, d)-approximate demand query T ,
then advises arg max{v(S)− p(S), v(T)− p(T)}.

5 This lemma appears at least as early as [16].
6 Recall that submodular functions are XOS, and a function is XOS if it can be written as the maximum of

additive functions. Supporting prices for items in Si are defined by simply taking the additive function
which defines vi(Si).

ITCS 2020

61:12 Implementation in Advised Strategies

I Lemma 15. Let q be supporting prices for v1(·), . . . , vn(·) and S1, . . . , Sn. Then the fixed-
price auction with prices dq/2 guarantees welfare at least min{c, d} ·

∑
i vi(Si)/2 when all

bidders follow advice given by a (c, d)-approximate demand oracle.

Proof. Let S := ∪iSi. Let also Ti denote the set purchased by bidder i (following advice
given by a (c, d)-approximate demand oracle), and denote by Sold =

⋃
i∈N Ti. Define

Ai = Si \ Sold. Because items in Ai are never allocated when bidder i is chosen to act
(meaning that bidder i could choose to purchase the set Ai), and bidder i will choose a set
guaranteeing at least as much utility as a (c, d)-approximate demand oracle, we have:

vi(Ti)− dq(Ti)/2 ≥ c
(
vi(Ai)−

dq(Ai)/2
d

)
= c

(
vi(Ai)−

1
2q(Ai)

)
.

The welfare achieved (
∑
i∈N vi(Ti)) is exactly the sum of the utilities of each bidder

(vi(Ti)− dq(Ti)/2) and the total revenue of the auction (
∑
i∈N dq(Ti)/2 = dq(Sold)/2). By

the definition of supporting prices (and the fact that Ai ⊆ Si), we know that vi(Ai) ≥ q(Ai).
Thus:

d

2q(Sold) +
n∑
i=1

vi(Ti)−
d

2q(Ti) ≥
d

2q(Sold) + c

(
n∑
i=1

vi(Ai)−
1
2q(Ai)

)

≥ d

2q(Sold) + c

2

n∑
i=1

q(Ai)

≥ min{c, d}
2

(
q(Sold) + q(S \ Sold)

)
≥ min{c, d}

2 q(S) = min{c, d}
2

∑
i

vi(Si).

The first inequality follows as each bidder follows advice of a (c, d)-approximate demand
oracle. The second follows as vi(Ai) ≥ q(Ai) for all i (by definition of supporting prices).
The third follows as ∪iAi = S \ Sold. The final inequality follows by basic arithmetic, and
the final equality follows as q(S) =

∑
i vi(Si) by definition of supporting prices. J

Lemma 15 captures the main intuition for why existing posted-price guarantees can
be extended to accommodate bicriterion approximate demand queries. Of course, the [1]
mechanism is not just a single posted-price mechanism, and Lemma 15 is just one technical
lemma used along the way (to be more precise, a generalization of Lemma 15 is used along
the way, but the overly technical statement hides the intuition). But an outline similar to the
proof of Lemma 15 establishes the more general claim. Section 4.2 formally states our main
result, and all details of the proof aside from the above intuition can be found in Appendix B.

4.2 Formal Statement of Main Result
I Theorem 16. Let V be a subclass of XOS valuations and let D be a poly-time (c, d)-
approximate demand oracle for valuation class V. Then there exists a poly-time mecha-
nism for welfare maximization when all valuations are in V with approximation guarantee
O
(
max

{ 1
c ,

1
d

}
· (log logm)3) in implementation in advised strategies with polynomial time

computable advice.

Theorem 1 now follows from Theorem 16 as submodular valuations are a subclass of XOS
which admits poly-time (1/2, 1/2)-approximate demand oracles. The poly-time mechanism
witnessing Theorem 16 is a slight modification of [1]. The high-level approach of their

L. Cai, C. Thomas, and S.M. Weinberg 61:13

mechanism is the following: because V is XOS, Lemma 15 establishes that there exists a
fixed-price mechanism which achieves an 1/O(min{c, d}) = O(max {1/c, 1/d}) approximation
in implementation in advised strategies. Of course, implementing this fixed-price auction
requires complete knowledge of v1(·), . . . , vn(·), which the seller lacks. The mechanism of [1]
essentially tries to iteratively guess a better and better set of fixed prices, and then pick one
uniformly at random.

Intuitively, our adapted [1] mechanism works with (c, d)-approximated demand oracles
for the same reason that Lemma 15 works with approximate demand oracles. Formally
establishing this requires a bit of work, but much of the analysis of [1] treats the (c, d) = (1, 1)
case of Lemma 15 as a black box, and therefore we can leverage most of their analysis as
a black box as well. The generalized Lemma 15 (Lemma 20) provides all the properties of
demand queries which their proof requires (and all the properties of approximate demand
queries which our adaptation requires). A complete proof appears in Appendix B.

5 Approximate Demand Queries beyond Submodular

In this section, we explore approximate demand queries beyond submodular valuation func-
tions. As the approximation guarantees of [1] hold for XOS valuations with precise demand
queries, a poly-time (Ω(1),Ω(1))-approximate demand query would immediately extend their
guarantees to XOS valuations under implementation in advised strategies. Interestingly, this
very fact establishes that for all ε > 0, no poly-time (Ω(m−1/2+ε),Ω(m−1/2+ε))-approximate
demand oracle exists for XOS valuations using subexponentially-many value queries.

I Proposition 17. For all ε > 0, there is no (Ω(m−1/2+ε,Ω(m−1/2+ε))-approximate demand
oracle for XOS valuations using poly(m) value queries.

Proof. Assume for contradiction that the proposition were false. Then by Theorem 16, there
exists an algorithm using poly(n,m) value queries that approximates the optimal welfare
within O

(
m1/2−ε · (log logm)3) ∈ O(m1/2−ε/2) for XOS valuations. However, Theorem 6.1

of [17] proves that no such algorithm exists. J

To complete the picture, we also design poly-time (Ω(1/
√
m),Ω(1/

√
m))-approximate

demand oracles for subadditive valuations (defined immediately below, based on the Ω(1/
√
m)-

approximation of [17]), which is the best possible using subexponentially-many value queries.

Algorithm 2 SingleOrBundle(v,p,M).

j ← arg maxj∈M v(j)− p(j)
M∗ ← {j ∈M : v(j)− (1 +

√
m)p(j) > 0}

if v(M∗)− p(M∗) > v(j)− p(j) then
return M∗

else
return {j}

I Proposition 18. SingleOrBundle(v,p,M) is a (1√
m
, 1

1+
√
m

)-approximate demand oracle
for subadditive valuation functions.

Proof. Let S be the set that maximizes utility (v(S)− (1 +
√
m) · p(S)). If S = ∅, then the

benchmark is 0, and SingleOrBundle achieves non-negative utility. It remains to consider
the case v(S)− p(S) > 0.

ITCS 2020

61:14 Implementation in Advised Strategies

In this case, let T be the set returned by SingleOrBundle(v,p,M). Call an item j

special if:

v(j)− p(j) ≥ 1√
m

(v(S)− (1 +
√
m) · p(S)).

Observe that if any item j is special, then we conclude:

v(T)− p(T) ≥ v(j)− p(j) ≥ 1√
m

(v(S)− (1 +
√
m) · p(S)),

which is a (1√
m
, 1

1+
√
m

)-approximate demand oracle. If no item is special, then ∀j ∈ M∗,
v(j)− p(j) < 1√

m
(v(S)− (1 +

√
m)p(S)). Summing this for all j ∈M∗ yields: ∑

j∈M∗
v(j)

− p(M∗) < |M
∗|√
m

(v(S)− (1 +
√
m) · p(S)) ≤

√
m · v(S) ≤

√
m · v(M∗).

(1)

The final inequality follows as S cannot contain items for which v(j) < (1 +
√
m)p(j), as v(·)

is subadditive. We can then conclude that:

v(M∗)− p(M∗) > 1√
m

 ∑
j∈M∗

v(j)

− p(M∗)

− p(M∗)

= 1√
m

 ∑
j∈M∗

v(j)− (1 +
√
m)p(j)


≥ 1√

m

∑
j∈S

v(j)− (1 +
√
m)p(j)


≥ 1√

m

(
v(S)− (1 +

√
m)p(S)

)
.

The first inequality follows directly from (1). The second follows as v(j) > (1 +
√
m)p(j) for

all j ∈M∗, and S ⊆M∗ (because v(·) is subadditive, and S is the utility-maximizing set at
prices (1 +

√
m)p). The third follows from subadditivity of v(·). We conclude that when

there are no special items, the proposition is satisfied as well, completing the proof. J

References
1 Sepehr Assadi and Sahil Singla. Exponentially Improved Truthful Combinatorial Auctions with

Submodular Bidders. In Proceedings of the Sixtieth Annual IEEE Foundations of Computer
Science (FOCS), 2019.

2 Moshe Babaioff, Ron Lavi, and Elan Pavlov. Single-value combinatorial auctions and
algorithmic implementation in undominated strategies. J. ACM, 56(1):4:1–4:32, 2009.
doi:10.1145/1462153.1462157.

3 Mark Braverman, Jieming Mao, and S. Matthew Weinberg. On Simultaneous Two-player
Combinatorial Auctions. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages
2256–2273, 2018. doi:10.1137/1.9781611975031.146.

4 Patrick Briest, Piotr Krysta, and Berthold Vöcking. Approximation techniques for utilitarian
mechanism design. In the 37th Annual ACM Symposium on Theory of Computing (STOC),
2005.

https://doi.org/10.1145/1462153.1462157
https://doi.org/10.1137/1.9781611975031.146

L. Cai, C. Thomas, and S.M. Weinberg 61:15

5 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A Tight Linear Time (1/2)-
Approximation for Unconstrained Submodular Maximization. SIAM J. Comput., 44(5):1384–
1402, 2015. doi:10.1137/130929205.

6 Dave Buchfuhrer. A Theory of Robust Hardness for Truthful Mechanism Design. Manuscript,
2011. URL: http://users.cms.caltech.edu/~dave/papers/oracles.pdf.

7 David Buchfuhrer, Shaddin Dughmi, Hu Fu, Robert Kleinberg, Elchanan Mossel, Christos H.
Papadimitriou, Michael Schapira, Yaron Singer, and Christopher Umans. Inapproximability for
VCG-Based Combinatorial Auctions. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2010.

8 David Buchfuhrer, Michael Schapira, and Yaron Singer. Computation and incentives in
combinatorial public projects. In Proceedings 11th ACM Conference on Electronic Commerce
(EC-2010), Cambridge, Massachusetts, USA, June 7-11, 2010, pages 33–42, 2010. doi:
10.1145/1807342.1807348.

9 Edward H. Clarke. Multipart Pricing of Public Goods. Public Choice, 11(1):17–33, 1971.
10 Amit Daniely, Michael Schapira, and Gal Shahaf. Inapproximability of Truthful Mechanisms

via Generalizations of the VC Dimension. In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 401–408, 2015. doi:10.1145/2746539.2746597.

11 Nikhil R. Devanur, Jamie Morgenstern, Vasilis Syrgkanis, and S. Matthew Weinberg. Simple
Auctions with Simple Strategies. In Proceedings of the Sixteenth ACM Conference on Economics
and Computation, EC ’15, Portland, OR, USA, June 15-19, 2015, pages 305–322, 2015.
doi:10.1145/2764468.2764484.

12 Shahar Dobzinski. Two Randomized Mechanisms for Combinatorial Auctions. In Proceedings
of the 10th International Workshop on Approximation and the 11th International Workshop on
Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 89–103,
2007.

13 Shahar Dobzinski. An Impossibility Result for Truthful Combinatorial Auctions with Sub-
modular Valuations. In Proceedings of the 43rd ACM Symposium on Theory of Computing
(STOC), 2011.

14 Shahar Dobzinski. Breaking the Logarithmic Barrier for Truthful Combinatorial Auctions
with Submodular Bidders. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, pages 940–948, New York, NY, USA, 2016. ACM.
doi:10.1145/2897518.2897569.

15 Shahar Dobzinski. Computational Efficiency Requires Simple Taxation. In FOCS, 2016.
16 Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mechanisms for

combinatorial auctions. In Proceedings of the thirty-eighth annual ACM symposium on Theory
of computing, pages 644–652. ACM, 2006.

17 Shahar Dobzinski, Noam Nisan, and Michael Schapira. Approximation Algorithms for Com-
binatorial Auctions with Complement-Free Bidders. Math. Oper. Res., 35(1):1–13, 2010.
doi:10.1287/moor.1090.0436.

18 Shahar Dobzinski, Noam Nisan, and Michael Schapira. Truthful randomized mechanisms for
combinatorial auctions. J. Comput. Syst. Sci., 78(1):15–25, 2012. doi:10.1016/j.jcss.2011.
02.010.

19 Shahar Dobzinski and Jan Vondrák. From query complexity to computational complexity. In
Proceedings of the 44th Symposium on Theory of Computing (STOC), 2012.

20 Shahar Dobzinski and Jan Vondrak. The Computational Complexity of Truthfulness in
Combinatorial Auctions. In Proceedings of the ACM Conference on Electronic Commerce
(EC), 2012.

21 Shahar Dobzinski and Jan Vondrák. Impossibility Results for Truthful Combinatorial Auctions
with Submodular Valuations. J. ACM, 63(1):5:1–5:19, 2016. doi:10.1145/2786754.

22 Paul Duetting, Michal Feldman, Thomas Kesselheim, and Brendan Lucier. Prophet Inequalities
Made Easy: Stochastic Optimization by Pricing Non-Stochastic Inputs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, 2017, pages 540–551, 2017. doi:10.1109/FOCS.2017.56.

ITCS 2020

https://doi.org/10.1137/130929205
http://users.cms.caltech.edu/~dave/papers/oracles.pdf
https://doi.org/10.1145/1807342.1807348
https://doi.org/10.1145/1807342.1807348
https://doi.org/10.1145/2746539.2746597
https://doi.org/10.1145/2764468.2764484
https://doi.org/10.1145/2897518.2897569
https://doi.org/10.1287/moor.1090.0436
https://doi.org/10.1016/j.jcss.2011.02.010
https://doi.org/10.1016/j.jcss.2011.02.010
https://doi.org/10.1145/2786754
https://doi.org/10.1109/FOCS.2017.56

61:16 Implementation in Advised Strategies

23 Tomer Ezra, Michal Feldman, Eric Neyman, Inbal Talgam-Cohen, and S. Matthew Weinberg.
Settling the Communication Complexity of Combinatorial Auctions with Two Subadditive
Buyers. In the 60th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
2019.

24 Uriel Feige. On Maximizing Welfare When Utility Functions Are Subadditive. SIAM J.
Comput., 39(1):122–142, 2009. doi:10.1137/070680977.

25 Uriel Feige and Shlomo Jozeph. Demand Queries with Preprocessing. In Automata, Languages,
and Programming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part I, pages 477–488, 2014. doi:10.1007/978-3-662-43948-7_40.

26 Michal Feldman, Nick Gravin, and Brendan Lucier. Combinatorial Auctions via Posted Prices.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’15, pages 123–135, Philadelphia, PA, USA, 2015. Society for Industrial and Applied
Mathematics. URL: http://dl.acm.org/citation.cfm?id=2722129.2722139.

27 Moran Feldman. Guess Free Maximization of Submodular and Linear Sums. In Algorithms
and Data Structures - 16th International Symposium, WADS 2019, Edmonton, AB, Canada,
August 5-7, 2019, Proceedings, pages 380–394, 2019. doi:10.1007/978-3-030-24766-9_28.

28 Theodore Groves. Incentives in Teams. Econometrica, 41(4):617–631, 1973.
29 Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular Maximization

beyond Non-negativity: Guarantees, Fast Algorithms, and Applications. In Proceedings of
the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, pages 2634–2643, 2019. URL: http://proceedings.mlr.press/v97/
harshaw19a.html.

30 Stavros G. Kolliopoulos and Clifford Stein. Approximating Disjoint-Path Problems Using
Greedy Algorithms and Packing Integer Programs, pages 153–168. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998. doi:10.1007/3-540-69346-7_12.

31 Piotr Krysta and Berthold Vöcking. Online Mechanism Design (Randomized Rounding
on the Fly). In Automata, Languages, and Programming - 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 636–647, 2012.
doi:10.1007/978-3-642-31585-5_56.

32 Ron Lavi and Chaitanya Swamy. Truthful and Near-Optimal Mechanism Design via Linear
Programming. In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2005.

33 Benny Lehmann, Daniel Lehmann, and Noam Nisan. Combinatorial Auctions with Decreasing
Marginal Utilities. In the 3rd Annual ACM Conference on Electronic Commerce (EC), 2001.

34 Vahab S. Mirrokni, Michael Schapira, and Jan Vondrák. Tight information-theoretic lower
bounds for welfare maximization in combinatorial auctions. In Proceedings 9th ACM Conference
on Electronic Commerce (EC-2008), Chicago, IL, USA, June 8-12, 2008, pages 70–77, 2008.
doi:10.1145/1386790.1386805.

35 George L Nemhauser, Laurence AWolsey, and Marshall L Fisher. An analysis of approximations
for maximizing submodular set functions. Mathematical Programming, 14(1):265–294, 1978.

36 Christos H. Papadimitriou, Michael Schapira, and Yaron Singer. On the Hardness of Being
Truthful. In Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), 2008.

37 Marek Pycia and Peter Troyan. Obvious Dominance and Random Priority. In Proceedings
of the 2019 ACM Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA,
June 24-28, 2019., page 1, 2019. doi:10.1145/3328526.3329613.

38 Prabhakar Raghavan. Probabilistic Construction of Deterministic Algorithms: Approximating
Packing Integer Programs. J. Comput. Syst. Sci., 37(2):130–143, October 1988. doi:10.1016/
0022-0000(88)90003-7.

39 Michael Schapira and Yaron Singer. Inapproximability of Combinatorial Public Projects. In
Internet and Network Economics, 4th International Workshop, WINE 2008, Shanghai, China,
December 17-20, 2008. Proceedings, pages 351–361, 2008. doi:10.1007/978-3-540-92185-1_
41.

https://doi.org/10.1137/070680977
https://doi.org/10.1007/978-3-662-43948-7_40
http://dl.acm.org/citation.cfm?id=2722129.2722139
https://doi.org/10.1007/978-3-030-24766-9_28
http://proceedings.mlr.press/v97/harshaw19a.html
http://proceedings.mlr.press/v97/harshaw19a.html
https://doi.org/10.1007/3-540-69346-7_12
https://doi.org/10.1007/978-3-642-31585-5_56
https://doi.org/10.1145/1386790.1386805
https://doi.org/10.1145/3328526.3329613
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1007/978-3-540-92185-1_41
https://doi.org/10.1007/978-3-540-92185-1_41

L. Cai, C. Thomas, and S.M. Weinberg 61:17

40 Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature. In Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA,
January 4-6, 2015, pages 1134–1148, 2015. doi:10.1137/1.9781611973730.76.

41 William Vickrey. Counterspeculations, Auctions, and Competitive Sealed Tenders. Journal of
Finance, 16(1):8–37, 1961.

42 Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle
model. In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria,
British Columbia, Canada, May 17-20, 2008, pages 67–74, 2008. doi:10.1145/1374376.
1374389.

A Brief Discussion of Definitions

The following example will motivate our decision to think of advice as improving a given
strategy as opposed to outright proposing a replacement strategy.

Consider, for example, a single-bidder mechanism where the bidder faces one of k posted-
price vectors p1, . . . ,pk chosen uniformly at random, and is asked to submit their desired
sets S1, . . . , Sk before knowing which price is “real.” Then the strategy which submits
Si := arg max{v(S)− pi(S)} is dominant. In this case, advice could indeed simply propose
this strategy to replace whatever else the bidder might try.

Things get more interesting, however, if the designer cannot recommend a dominant
strategy. Consider instead a recommended strategy T1, . . . , Tk where Ti /∈ arg max{v(S)−
pi(S)} ∪ arg min{v(S) − pi(S)} for any i (call this strategy ~T). If the designer shares
the sets T1, . . . , Tk with the buyer, a reasonable buyer should certainly submit sets Si
satisfying v(Si) − pi(Si) ≥ v(Ti) − pi(Ti) for all i (because they could just swap any set
violating this for Ti and strictly improve their utility). Consider then the strategy which
sets Sj ∈ arg max{v(S)− pj(S)} (for a single j ∈ [k]) and Si ∈ arg min{v(S)− pi(S)} for
all i 6= j (picks the optimal set for pj , and worst possible sets for all other pi, call this
strategy ~S). We don’t want to say that a bidder originally planning to use ~S should instead
use ~T (indeed, ~T does not dominate ~S, and it’s not a priori clear which strategy yields
higher expected utility). But we do want to say that a bidder originally planning to use ~S
should stick with Sj , and update Si to Ti for all i 6= j. But in order to recommend such a
strategy without knowing j in advance, ~T would need to be the dominant strategy itself. So
in order for the solution concept to meaningfully apply to posted-price mechanisms without
advising the dominant strategy itself, advice should really take the form of improving a
tentative strategy rather than outright recommending a replacement. Lemma 29 below
provides a representative example of how this solution concept can be harnessed for existing
state-of-the-art mechanisms.

B Proof of Theorem 16

The full definition of “implementation in advised strategies” is very powerful, but a bit
awkward to carry around. Throughout this appendix, we use the following definition of
(c, d)-competitive sets, which simply says that a set of items will give the bidder utility at
least as high as a (c, d)-approximate demand oracle.

ITCS 2020

https://doi.org/10.1137/1.9781611973730.76
https://doi.org/10.1145/1374376.1374389
https://doi.org/10.1145/1374376.1374389

61:18 Implementation in Advised Strategies

I Definition 19. A set S is a (c, d)-competitive subset of M for vi with prices p if

vi(S)− p(S) ≥ c · max
T⊆M

{vi(T)− p(T)/d} .

We say a bidder i picks (c, d) competitive sets in a fixed price auction if, when the fixed
price auction visits i, they pick a set which is a (c, d)-competitive subset of the collection of
remaining items.

The full proof of theorem 16 is fairly involved. We start off this section by providing the
more technical version of lemma 15 in section B.1, which captures most of the properties of
fixed price auctions with approximate demand queries which we need. Next in section B.2,
we describe the “core algorithm” PriceLearningMechanism of [1]. Then in section B.3,
using fairly elementary properties of fixed-price auctions, we prove the correctness of the
PriceLearningMechanism, as long as 1) bidders pick (c, d)-competitive sets in every fixed price
auction they participate in, and 2) we make the simplifying assumption 21. In section B.4,
we remove the simplifying assumption, and prove that there exists poly time computable
advice such that, when bidders are following the advice, they always pick (c, d)-competitive
sets.

B.1 Generalization of Lemma 15

In this subsection we state and prove the generalization of Lemma 15, which will be used in
the analysis of the PriceLearningMechanism.

The first term in the maximum below (and the “moreover” part of the lemma) relates
the achieved welfare with the value of the unsold items, and will be used to handle “learning”
phases in the mechanism. The second term of the maximum shows that once we have learned
the prices well, we definitely get good welfare.

I Lemma 20. Suppose {Ti}i∈N ← FixedPriceAuction(M,N, dp), where each bidder i picks
a subset of the remaining items which is (c, d)-competitive set for vi with prices p. Let
{Oi}i∈N be any allocation with supporting prices q. Let Si be the set of items j where
δq(j) ≤ p(j) ≤ 1

2 q(j) and j ∈ Oi. Denote S =
⋃
i∈N Si and Sold =

⋃
i Ti. Then

∑
i

vi(Ti) ≥ max
{
c
2 · q(S \ Sold),
min

(
c
2 , δd

)
· q(S).

Moreover, suppose k is the last bidder in N . We also have vi(Tk) ≥ c
2 q(Sk \ Sold<k),

where Sold<k =
⋃
i<k Ti.

Proof. Let Ai = Si \ Sold. Because items in Ai are never allocated when bidder i is chosen
to act (and because each bidder picks a (c, d)-competitive set with prices p), the utility of
each bidder i satisfies

vi(Ti)− d · p(Ti) ≥ c · (vi(Ai)− p(Ai)) .

L. Cai, C. Thomas, and S.M. Weinberg 61:19

As Ai ⊆ Si, we know δq(Ai) ≤ p(Ai) ≤ 1
2 q(Ai), and by the definition of supporting

prices, we know that q(Ai) ≤ vi(Ai) Thus, {Ti}i∈N achieves welfare∑
i∈N

vi(Ti) =
∑
i∈N

(
vi(Ti)− d · p(Ti)

)
+ d

∑
i∈N

p(Ti)

≥ c
∑
i∈N

(
vi(Ai)− p(Ai)

)
+ d · p(Sold)

≥
∑
i

c(q(Ai)−
1
2q(Ai)) + dδ · q(Sold). (*)

Observe that S \ Sold =
⋃
i∈N Ai. Thus, ignoring the term dδq(Sold) from (*), we can

conclude the auction gets welfare at least c
2 q(S \Sold). Moreover, (*) tells us we get welfare

at least

min
(c

2 , δd
)
·
(
q(S \ Sold) + q(Sold)

)
≥ min

(c
2 , δd

)
· q(S),

from which we can conclude main statement of the lemma.
For the “moreover” component, simply observe that when bidder k was picked by the

mechanism, the items in A′ := Sk \ Sold<k were still available, and that Sk ⊆ Ok, so

vi(Tk) ≥ vi(Tk)− dp(Tk) ≥ c(vi(A′)− p(A′)) ≥ c(q(A′)− q(A′)/2) = c

2q(A′). J

B.2 The Mechanism
For the reader’s convenience, we first briefly describe the mechanism in [1] and quote the
mechanism verbatim (the only change we need to make is that every price used by the
mechanism is “discounted” by an extra factor of d, plus some slight simplifications in the
“removing extra assumptions” step). Then we present a slightly condensed version of the
analysis.

High-level overview. Posted price mechanisms for combinatorial auctions typically use
the following high-level strategy: attempt to (approximately) learn the supporting prices
(definition 13) of an optimal allocation, then sell the items at those prices. The key innovation
of [1] is to “explore” prices for each item individually using a price tree in which each successive
layer of the tree corresponds to a finer “granularity” of prices. Initially, each item is set at a
price corresponding to the root of the tree, and in each successive round of the mechanism,
the price of each item moves one layer down in the tree to a “more precise” price which
corresponds to some child node of the old price.

The mechanism of [1] runs several fixed-price auctions for each round (i.e. each layer of
the price tree). In each of these successive auctions, each item is priced higher and higher
in a way corresponding to the children of the “old” price node of the item. The price in
the next round of the mechanism is then the highest price in the next layer where the item
was still sold. The idea here is that, in the next layer of prices, we need to make the prices
as high as possible such that the items will still sell. Intuitively, this serves to refine our
estimate for the supporting prices as we move a layer down in the tree.

In fact, the story is more subtle than this. The mechanism may not actually achieve a
better approximation to the prices in each layer, but [1] prove that if you do not get a better
estimate for the prices, then you can already get a good approximation to the optimal welfare
at the current prices. These two cases exactly correspond to the “learnable” or “allocatable”
cases in lemma 22 below. For this reason, for every layer of the price tree, the mechanism

ITCS 2020

61:20 Implementation in Advised Strategies

[1, γ] [γ2, γ3] [γ4, γ5] [γ6, γ7] [γ8, γ9] [γ10, γ11] [γ12, γ13] [γ14, γ15]

1 γ4 γ8 γ12

1 γ8

1

Figure 1 [1, Figure 2] An illustration of a price tree T e with α = 2, β = 3, and ψmin = 1.

has some chance (proportional to the number of layers) of stopping early and allocating the
items according to some fixed price auction in that layer. Thus, regardless of whether we
always learn prices or if we hit the “allocatable” in some step, we will use a good auction
with some probability.

Simplifying Assumption. It’s useful for posted price mechanisms to know ahead of time
the range of possible supporting prices of an optimal allocation. This assumption can be
removed in a fairly “modular” way, as done in [1] (though we make some modifications in
order to more easily fit our solution concept).

Let q be the supporting prices of an optimal allocation. Formally, our simplifying
assumption is the following:

I Assumption 21. There are known numbers ψmin, ψmax such that the supporting prices of
any item in q are either 0 or in [ψmin, ψmax], and ψmax/ψmin is polynomial in m.

The price tree and mechanism parameters. We now formally describe the price tree in
terms of three parameters:

α = Θ(1) is the branching factor of the tree (and the number of auctions in each iteration
of the mechanism).
β = Θ(log log(ψmax/ψmin)) = Θ(log logm) is the number of layers in the price tree (and
the number of iterations of the mechanism).
γ = Θ(αβ) = Θ(log logm) is the “accuracy factor” of the prices.

We would like the leaves of the price tree correspond to “price buckets”

P = {[ψminγi, ψminγi+1] | i = 0, 1, . . . , k}

for some k large enough that all prices in [ψmin, ψmax] are considered. Informally, we take
“learning a price q correctly” to mean that we find the bucket in P to which q belongs. We
will assign “actual” prices in p according to the smallest price ψminγi in the corresponding
bucket. Our goal is that, if we “learn the price of q correctly”, then the price used in p is
within a γ factor of the true price in q.

L. Cai, C. Thomas, and S.M. Weinberg 61:21

However, for technical reasons, we need a gap of at least γ between the prices of consecutive
nodes in each layer of the tree (not just the leaves), so that prices will be guided to the
closest leaf node below the price in q (this is desirable because lemma 20 requires prices in p
to be less than in q). To ensure this, the mechanism creates a price gap of factor γ between
nodes by splitting P into

P o = {[ψminγ2k−1, ψminγ
2k] |k = 1, . . . , αβ}

P e = {[ψminγ2k, ψminγ
2k+1] |k = 0, . . . , αβ − 1}

Trees T o and T e are constructed with leaf nodes P o and P e respectively. We use T ∗ to
denote either of T o or T e, and P ∗ will denote the corresponding P o or P e.

The price tree T ∗ is an α-branching tree with depth β (i.e. with β + 1 layers). The leaf
nodes correspond, in left-to-right (depth-first search) order, to the price buckets in P ∗ (in
increasing order). Furthermore, any non-leaf node x corresponding to a single price, which is
the minimum value in any bucket of any leaf node which is a descendant of x. Thus, the
prices corresponding to consecutive level-i nodes differ by a factor of γ2αβ+1−i .

Let p be a “level-i price vector”, i.e. a vector in which the price of each item is a price
which corresponds to some level-i node. We let next(i)

j (p) = p′ denote the price vector
constructed as follows: for each item ` ∈M , let x be the level-i node whose corresponding
price is p(`). Then set p′(`) to the price corresponding to the jth child node of x. Thus,
a precise formula is given by p′(`) = γ2αβ−i(j−1)p(`). In words, next(i)

j (p) sets the price of
each item ` to be the jth largest “refined price” below the current price of item `.

The mechanism. We start by randomly picking a price tree T o or T e. The mechanism
then proceeds in β iterations (though it may terminate early) in which a price vector p(i) is
constructed in each iteration i. Initially, p(1) is the (unique) level-1 price vector of T ∗. In each
iteration, a 1

10β fraction of the bidders are selected uniformly at random, and the α different
price vectors p(i)

j = next(i)
j (p(i)) for j = 1, . . . , α are considered. The mechanism runs fixed

price auction with the current set of bidders on prices dp(i)
j /2 for j = 1, . . . , α. The new

(level-(i+ 1)) vector p(i+1) is then constructed as follows: for each item `, p(i+1)(`) = p(i)
j (`),

where j is the highest index such that item ` sold in the auction with prices dp(i)
j /2. (or

p(i)(`) if no such j exists). In words, the new price of ` is the price of ` in the highest
auction in iteration i for which item ` was sold. For each fixed price auction described in this
paragraph, there is a 1/Ω(αβ) chance that the mechanism will terminate early and return
the allocation determined by the auction. This serves to strictly incentivizes bidder to pick
good sets, but also serves an important purpose for achieving the desired approximation
grantee, as discussed in the overview.

If the mechanism does not terminate early in iteration 1, . . . , β, then the final step of the
mechanism is to run a fixed price auction with all of the remaining bidders on prices dp(β)/2.
(The hope is that, for a large fraction (weighted by q) of the items, the price of the items is
in the level-β bin which is closest to the price in q, and thus we can apply lemma 20.)

The exact mechanism in [1] is quoted in Algorithm 3.

B.3 The Modified Analysis
Notation

We follow [1] and depart somewhat from conventional notation for the analysis of the
mechanism. We let i denote an iteration of the mechanism, j denote an auction inside some
iterations, b denote a bidder, and ` denote an item.

ITCS 2020

61:22 Implementation in Advised Strategies

Algorithm 3 PriceLearningMechanism(N,M).

1: procedure Partition(N)
2: Permute N uniformly at random.
3: for i = 1, 2, ..β do
4: Remove |N |10β bidders uniformly at random from N ; assign them to the set Ni.

5: Put the remaining items in N into Nβ+1.
6: procedure PriceUpdate(A1,. . . ,Aα, p1,. . . ,pα)
7: For each ` ∈M , let p′(`) = pj(`) for the
8: highest value of j such that ` is allocated in Aj (or p1(`) if no j exists)
9: Return p′

10: Let (N1, N2, ...Nβ+1)← Partition(N)
11: Pick one of the modified trees T o or T e uniformly at random and denote it by T ∗
12: Let p(1) be the (unqiue) level-1 (root) price of T ∗
13: for i = 1, . . . , β do
14: For j = 1, . . . , α, let p(i)

j = next(i)
j (p(i))

15: For j = 1, . . . , α: run FixedPriceAuction(Ni, M, dp(i)
j /2) and let A(i)

j be the allocation
16: With probability (1/β), pick j∗ ∈ [α] u.a.r. and return A(i)

j∗ as the final allocation
17: Otherwise, let p(i+1) ←PriceUpdate(A(i)

1 , ..., A
(i)
α ,p(i)

1 , ...,p(i)
α), and continue

18: Run FixedPriceAuction(Nβ+1,M, dp(β+1)/2) and return the allocation A∗

Let O be an optimal allocation with supporting prices q and OPT be the optimal welfare
resulting from allocation O. Let q∗ be q restricted to items whose prices are in some
bucket of P ∗. Let O∗ be the collection of those items. Let N1, . . . , Nβ+1 denote the groups
of bidders from the Partition function. Given (Ni)i and T ∗ as picked by the mechanism,
define price vectors q(i) as q∗, restricted to items which are allocated in O∗ to bidders from
Ni, Ni+1, . . . , Nβ+1 (intuitively, we restricted attention to items which could still go to the
same bidder in A as in O, and give price 0 to items that can no longer be allocated to the right
bidder in O). Call item ` correctly priced at iteration i if q(i)(`) is in the bin corresponding
to some leaf node which is a child of the node corresponding to p(i)(`). Let C(i) denote all
items priced correctly before iteration i begins. Note that C(1) = O∗ and that an item can
only be in C(i) if it is also in C(j) for j = 1, . . . , i − 1, so C(1) ⊇ C(2) ⊇ . . . ⊇ C(β+1). We
separate C(i) into C(i)

1 , C
(i)
2 , ...C

(i)
α , where C(i)

j is the subset of items in C(i) that are priced
correctly in next(i)

j (p(i)). For any set of bidders N ′ and items D, let ODN ′ be the restriction
of O∗ to items in D and bidders in N ′.

Assumptions

Throughout the claims in this section, we assume all bidders pick (c, d)-competitive sets in
every fixed price auction they participate in, though we may not restate this assumption
in every claim statement7. We also assume that the optimal allocation O has supporting
prices q.

7 It is somewhat easier to prove that PriceLearningMechanism is implementable in advised strategies
compared to GeneralizedMechanism below. However, we hold off and only demonstrate that Generalized-
Mechanism is implementable in advised strategies, both for completeness, and in order to demonstrate
that our solution concept “composes well” to be useful for complicated mechanisms.

L. Cai, C. Thomas, and S.M. Weinberg 61:23

The following lemma is the heart of the proof of the approximation ratio of mechanism 3.

I Lemma 22 (Learnable-Or-Allocable Lemma from [1]). Assume 21, and suppose all bidders
pick (c, d)-competitive sets in every fixed price auction they participate in. For any iteration
i ∈ [β], conditioned on any outcome of first i− 1 iterations and choice of T ∗,
1. either E

[
q(i+1)(C(i+1))

]
≥ q(i)(C(i))− OPT

3β , where the expectation is over Ni;
2. or E

[
val(Aj∗)(i)] ≥ c

O(αβ2)OPT .

First we prove a series of claims before proving the Learnable-Or-Allocable lemma,
following the same outline as [1]. For claims 23 and 24, we fix some j ∈ [α] and let D = C

(i)
j .

Note that q(i)(C(i)
j) = q(i)(ODN≥i), as q(i) zeros out items allocated in O to bidders from

N<i.

B Claim 23. (5.3 from [1]) Deterministically, val(A(i)
j) ≥ c

2 · q
(i)(ODNi \A

(i)
j).

Proof. Recall that ODNi is the restriction of O∗ to items in C
(i)
j and bidders in Ni. The

definition of item ` being “priced correctly” means that p(i)(`) ≤ q(i)(`). Thus, for any
` ∈ ODNi we get that 0 · q(i)(`) ≤ dp(i)(`)/2 ≤ q(i)(`)/2. Thus, the claim follows from lemma
20. C

B Claim 24. (5.4 from [1]) By randomness of choice of Ni from N≥i, E
[
val(A(i)

j)
]
≥

(c
20β) · E

[
q(i)(ODN>i \A

(i)
j)
]
.

Proof. Consider picking a bidder k ∈ N>i uniformly at random and running an imaginary
fixed price auction on Ni ∪ {k}, where k is the last bidder chosen to act. Then by Lemma 20
(parameters in the lemma take values N = Ni ∪ {k}, Sold<k = A

(i)
j , Sk = ODk), the value

bidder k gets from the imaginary fixed price auction satisfy vk(Tk) ≥ c
2 · q

(i)(ODk \A
(i)
j). We

now take the expectation over the randomness on bidders Ni ∪ k,

E
Ni,k∈N>i

[vk(Tk)] ≥ c

2 · E
Ni,k∈N>i

[
q(i)(OD

k \A
(i)
j)
]

= c

2 · ENi

 1
|N>i|

·
∑

k∈N>i

q(i)(OD
k \A

(i)
j)


= 1
|N>i|

· c2 ·E
[
q(i)(OD

N>i \A
(i)
j)
]
.

Observe that the expectation of val(A(i)
j) is the same as the expected welfare of bidders

in Ni in the imaginary fixed price auction. Since the bidders in Ni arrive before bidder k,
their expected welfare in the imaginary fixed price auction is larger equal to that of bidder k.
Thus by linearity of expectation

E
[
val(A(i)

j)
]
≥ |Ni|
|N>i|

· c2 · E
[
q(i)(ODN>i \A

(i)
j)
]
≥
(

c

20β

)
· E
[
q(i)(ODN>i \A

(i)
j)
]
. C

B Claim 25. (5.2 from [1]) For any j, we have

22β
c
· E
[
val(A(i)

j)
]

+ E
[
q(i)(C(i)

j ∩A
(i)
j)
]
≥ E

[
q(i)(C(i)

j)
]
.

Proof. By combining Claim 23 and 24, we have(
20β
c

+ 2
c

)
E
[
val(A(i)

j)
]
≥ E

[
q(i)(ODN>i \A

(i)
j)
]

+ E
[
q(i)(ODNi \A

(i)
j)
]

= E
[
q(i)(C(i)

j \A
(i)
j)
]
.

ITCS 2020

61:24 Implementation in Advised Strategies

Because ODN≥i is exactly C
(i)
j . Thus, we get

20β + 2
c

· E
[
val(A(i)

j)
]

+ E
[
q(i)(C(i)

j ∩A
(i)
j)
]
≥ E

[
q(i)(C(i)

j)
]
. C

The previous claim can be thought of as a preliminary version of the entire learnable-
or-allocatable lemma. In expectation, we get something comparable to the items which are
correctly priced in auction j of round i (i.e. q(i)(C(i)

j)). The contribution come from either
the items which sold in the round they were “supposed to” (i.e. C(i)

j ∩A
(i)
j) or the welfare of

the current allocation (i.e. A(i)
j) (with an extra O(β) factor). The previous claims dealt with

individual auctions within an iteration – next we handle iterations as a whole.
We still have to account for two things: items which sell in auctions where the prices are

too high and the loss in welfare from the fact that bidders in Ni will no longer be allocated
items in later rounds. The proofs in [1] hold as written – only the properties of the price
tree and the structure of the auctions are used.

B Claim 26. (5.5 from [1])

q(i)(C(i+1)) ≥
α∑
j=1

q(i)(A(i)
j ∩ C

(i)
j)− OPT

10β .

Proof. The key observation here is that the set of “overpriced” items represent a small fraction
of the optimal revenue. Let U be the set of items that are allocated in FixedPriceAuction
with price above their correct price in round i. The set of items that are allocated in the
correct round but not priced correctly is exactly

(⋃
j A

(i)
j ∩ C

(i)
j

)
\ C(i+1). This must be a

subset of U . Thus, q(i)(C(i+1)) ≥
∑α
j=1 q(i)(A(i)

j ∩ C
(i)
j)− q(U).

Consider an allocation that gives all items in U to the bidder in the highest priced auction
where it is ever allocated. Such an allocation must give welfare ≤ OPT , but ≥ γq(i)(U)
due to the price gap in the tree structure. Thus q(i)(U) ≤ 1

γOPT ≤
OPT
10β (by choosing

γ = θ(log logm) ≥ 10β) . C

B Claim 27. (5.6 from [1])

E
[
q(i+1)(C(i+1))

]
≥ E

[
q(i)(C(i+1))

]
− OPT

10β .

Proof. This follows simply from the fact that q(i+1) is exactly q(i) with items corresponding
(under O) to bidders in Ni set to zero, and that bidders join Ni with probability 1/(10β).

C

Proof of Learnable-Or-Allocable Lemma, Lemma 22. By Claim 26 and 27,

E
[
q(i+1)(C(i+1))

]
≥

α∑
j=1

E
[
q(i)(A(i)

j ∩ C
(i)
j)
]
− OPT

5β , (2)

We now have two cases. First, assume

α∑
j=1

E
[
q(i)(A(i)

j ∩ C
(i)
j)
]
≥ E

[
q(i)(C(i))

]
− 2

15βOPT. (3)

L. Cai, C. Thomas, and S.M. Weinberg 61:25

Together with (2) this immediately implies that

E
[
q(i+1)(C(i+1))

]
≥ E

[
q(i)(C(i))

]
− OPT

3β .

and we are in the “learnable case”.
On the other hand, if equation (3) is false, then we can sum the inequality in claim 25 for

each j = 1, . . . , α to get

E
[
q(i)(C(i))

]
≤ 22β

c

α∑
j=1

E
[
val(A(i)

j)
]

+
α∑
j=1

E
[
q(i)(C(i)

j ∩A
(i)
j)
]

<
22β
c

α∑
j=1

E
[
val(A(i)

j)
]

+ E
[
q(i)(C(i))

]
− 2

15βOPT.

Thus

22β
c

α∑
j=1

E
[
val(A(i)

j)
]
≥ 2

15β ·OPT

⇒ E
[
val(A(i)

j∗)
]

= 1
α

α∑
j=1

E
[
val(A(i)

j)
]
≥ 2c

22 ∗ 15αβ2 ·OPT = c

O(αβ2) ·OPT.

and we are in the “allocatable” case. J

Theorem 16 now follows readily follow from the Learnable or Allocable Lemma.

I Theorem 28. Suppose ψmin and ψmax are given and satisfy assumption 21. Suppose the
optimal allocation O has supporting prices q, and suppose bidders pick (c, d)-competitive
sets in every fixed price auction they participate in. Then mechanism 3 achieves an
O
(
max

{ 1
c ,

1
d

}
· (log logm)3) approximation to the optimal welfare.

Proof. Note that by the Learnable or Allocable Lemma, in the mechanism there are only two
situation that can occur, 1) event E1: “learnable” occurs in every iteration i = 1, 2, ...β, or
2) event E2: “allocable” occurs in some iteration k. Denote the welfare from the mechanism
as Welf . Then E [Welf] satisfy the equation

E [Welf] ≥ min
(
E [Welf | E1] ,E [Welf | E2]

)
.

Now we bound E [Welf | E1] and E [Welf | E2], respectively.
Suppose that “learnable” occurs for each iteration i = 1, 2, ...β in the mechanism. Because
C(1) consist of items whose prices belong to the bins of P ∗, we know that E

[
q(1)(C(1))

]
=

OPT/2. Thus,

E
[
qβ+1(Cβ+1)

]
≥ E

[
q(1)(C(1))− OPT

3

]
= OPT

2 − OPT

3 = OPT

6 .

Let Wβ+1 be the welfare achieved when the mechanism allocate in the last iteration of
fixed price auction. Since for any correctly priced item j ∈ C(β+1), 1

2 q(j) ≥ p(j) ≥ 1
γq(j),

by lemma 20, Wβ+1 ≥ min
(
c
2 ,

d
γ

)
· E
[
qβ+1(Cβ+1)

]
= O

(
min

(
c, dβ

))
·OPT .

It’s easy to verify that the mechanism allocates in last iteration with constant probability.
Thus, in this case we get E [Welf |E1] at least O

(
min

(
c, dβ

))
·OPT .

ITCS 2020

61:26 Implementation in Advised Strategies

In the case where “learnable” does not occur for some iteration i, “allocable” must occur
at this iteration. Thus

E
[
val(A(i)

j∗)
]

= c

O(αβ2) ·OPT.

The mechanism allocate in iteration i with probability (1− 1/β)i−1 · 1/β = O(1/β), thus
in this case E [Welf | E2] is at least c

O(αβ3) ·OPT .
Since β = Θ(log logm), we conclude that mechanism M achieves an approximation ratio of

O

(
max

(
1
c
,
β

d
,
αβ3

c

))
= max

(
1
c
,

1
d

)
·O(log logm)3. J

B.4 Removing Assumptions
In this section we prove Theorem 16 in full generality by 1) removing the assumption that
the supporting price lies in {0}∪ [ψmin, ψmax], where ψmax/ψmin = poly(m), and 2) showing
that this generalized mechanism can be implemented in advised strategies. We use a similar
(but slightly simplified) extension to PriceLearningMechanism following previous work on
truthful mechanisms for XOS bidders [12, 18, 14, 1]8. Our variation both simplifies the
analysis and allows us to satisfy the formal definition of implementation in advised strategies
more easily.

The final mechanism is as follows.

Algorithm 4 GeneralizedMechanism(N, M).

1: Pick a subset of bidders Nstat ⊆ N by sampling each bidder in N independently and
with probability 1

2 . Let Nmech = N \Nstat.
2: Run a second price auction on the grand bundle M with bidders in Nstat. Let SPA be

the welfare of the resulting allocation. With probability 1
2 , return the resulting allocation

and terminate. With the remaining probability, continue.
3: Set ψmin = 1

4m2 · SPA and ψmax = 4m · SPA.
4: Run PriceLearningMechanism (Mechanism 3) on bidders in Nmech with ψmin and ψmax

and return the allocation.

First, we show that implementation in advised strategies allows us to force bidders to
play truthfully in the second-price auction of mechanism 4, and to pick (c, d)-competitive
sets in the PriceLearningMechanism.

I Lemma 29. Suppose we are given a (c, d)-approximate demand oracle D for valuations
V. Then there exists a useful poly-time computable advice A for mechanism 4 such that, if
a strategy s is advised for vi under A, then any bidder in Nstat will play truthfully in the
second price auction, and any bidder in Nmech will pick (c, d)-competitive sets in every fixed
price auction they participate in.

Proof. As in prior works [1, 12, 14], to formally meet our solution concept we need all actions
by a single bidder to happen simultaneously in order to preclude bidders from “threatening”
each other (for example, if a different bidder will only let me have items in future auctions if

8 Prior works have some probability of selling the grand bundle M in a second price auction (to handle
“dominant bidders”) or running a different algorithm to collect basic “statistics” on the bidders. We
combine the two approaches by using the result of the second price auction to calculate the statistics
(at the cost of some loss in the polynomial factor in assumption 21).

L. Cai, C. Thomas, and S.M. Weinberg 61:27

I lie in the current auction, then truthful play does not dominate lying). Thus, we formally
implement GeneralizedMechanism as a game where each bidder can act in exactly one node.
If the bidder is assigned in Nstat, the mechanisms simultaneously asks all bidders in Nstat
for a single bid on the grand bundle. If the bidder is put in Nmech, and then into Ni for
i < β + 1, then the bidder needs to participate in α fixed-price auctions simultaneously in a
single game node. Thus, the bidder reports a list (Tj)j=1,...,α of α subsets of M , where Tj is
still available in auction j of the mechanism when it is bidder i’s turn to pick a set. Bidders
in Nβ+1 report similarly, but participate in only one auction.

Recall that the advice function A(vi, x, a) takes as input the valuation function vi of
player i, a node x of the game, and a “tentative” action a which the player may play.
The advice works as follows: for a node x which corresponds to a bidder in Nstat, A can
ignore the tentative action a and recommend truthful play in the second price auction, i.e.
A(vi, x, a) = vi(M) in this case. If x corresponds to a bidder put in Ni ⊆ Nmech for some
i < β, then the tentative action a is some list of sets (S1, . . . , Sα) which bidder i may choose
in each auction. For each of the α auctions, A will run the (c, d)-approximate demand query
D (with prices and remaining items known from the node x) to get a sets T1, . . . , Tα. Then,
A will return (S′1, . . . , S′α), where S′i is whichever of Si or Ti that gives bidder i higher utility.
The advice behaves similarly for bidders in Nβ+1 ⊆ Nmech.

It’s clear that, if D is computable in poly-time, then A(vi, x, a) is computable in poly-time.
We now show that A is useful (definition 5). A satisfies the required idempotency property,

because for bidders in Nstat, the result of A is a constant, and for bidders in Nmech, the
result is given by taking the max of sets Sj with the result of D (which is fixed given bidder’s
valuation vi and a node x of the game).

For any si and for any randomness in the mechanism, it’s clear that Avi,s gets i utility at
least as high as s. For, if i is in Nstat, then Avi,s recommends a dominant strategy, and if i
is in Nmech, then the utility of i is completely determined by the unique node in which i
is chosen to act, and Avi,s will differ from s only in selecting sets with higher utility for i.
Moreover, if s 6= Avi,s, then either s and Avi,s differ for some node corresponding to a bidder
in Nstat, or s and Avi,s differ for some node corresponding to a bidder in Nmech. In the first
case, because Avi,s is dominant, there exists v−i and random outcomes of the mechanism
which get i strictly higher utility. In the second case, there must be some auction in which the
advice Avi,s selects strictly better sets than s, and because there is positive probability that
each auction is the allocation returned by the mechanism, there are some random outcomes
of the mechanism which get the bidder strictly more utility. Thus, if Avi,s 6= s, then Avi,s
dominates s.

Finally, it’s clear that if a bidder plays according to strategy Avi,sfor any s, then if the
bidder is in Nstat then they play truthfully, and if the bidder is in Nmech then they select
(c, d)-competitive sets. J

Now, we show that algorithm 4 successfully allows us to remove assumption 21. Let S be
any set of bidders and let OPT (S) denote the optimal welfare possible for bidders in S. We
say (ψmin, ψmax) is correct for S if ψmin ≤ OPT (S)/m2 and ψmax ≥ OPT (S). We call a
bidder i dominant for a set S if vi(Oi) > OPT (S)

8 .

I Lemma 30. Let q be the supporting prices of an optimal allocation of items to bidders
in some set S. If (ψmin, ψmax) is correct for S, then the supporting prices of a (1 − o(1))
fraction of the items (weighted by their supporting prices) are in the range I = [ψmin, ψmax].
More formally,

∑
j∈M 1 [q(j) ∈ I] · q(j) ≥ (1− 1

m) ·OPT (S).

ITCS 2020

61:28 Implementation in Advised Strategies

Proof. Since ψmax ≥ OPT (S), we know that for all item j, q(j) ∈ [0, ψmax]. Now we count
the sum over supporting prices of items whose supporting price is ≤ OPT (S)/m2.∑

q(j)≤OPT (S)/m2

q(j) ≤ m ·OPT (S)/m2 = OPT (S)/m.

Thus∑
j∈[m]

1 [q(j) ∈ I] · q(j) ≥
∑
j∈[m]

q(j)−
∑

q(j)≤OPT (S)/m2

q(j) ≥
(

1− 1
m

)
·OPT (S). J

I Corollary 31. For bidders in S and items in M , if (ψmin, ψmax) is correct for S, and
ψmax/ψmin = poly(m), then PriceLearningMechanism(S,M) returns an allocation with
expected welfare 1

r · (1−
1
m) ·OPT (S), where r = O

(
max

{ 1
c ,

1
d

}
(log logm)3).

Proof. Again let q be the supporting prices of an optimal allocation of items to bidders
in some set S. Observe that although Theorem 28 assumes all supporting price to be in
0∪ [ψmin, ψmax], the proof holds as is for approximating

∑
j∈[m] 1

[
q(j) ∈ [ψmin, ψmax]

]
·q(j)

(i.e. the contribution to the optimal welfare of items whose supporting price is in [ψmin, ψmax]).
If (ψmin, ψmax) is correct for S, then∑

j∈[m]

1

[
q(j) ∈ [ψmin, ψmax]

]
· q(j) ≥ (1− 1

m
) ·OPT (S).

We conclude that PriceLearningMechanism returns an allocation with expected welfare

1
r
·
∑
j∈[m]

1

[
q(j) ∈ [ψmin, ψmax]

]
· q(j) = 1

r
· (1− 1

m
) ·OPT (S),

where r = O
(
max

{ 1
c ,

1
d

}
(log logm)3). J

The following lemma follows from a standard application of chernoff bound and is quoted
verbatim from [1]. It allows us to show that, with constant probability, a good fraction of
the welfare is achievable by bidders in both Nstat and Nmech.

I Lemma 32. [12, 18, 14, 1] Let O = (O1, ...On) be an optimal allocation of items M to
bidders N with welfare OPT . Suppose we sample each i ∈ N w.p. ρ independently to obtain
N ′. If for every i ∈ N , we have vi(Oi) ≤ ε ·OPT , then

∑
i∈N ′ vi(Oi) ≥ (ρ/2) ·OPT w.p. at

least 1− 2 · exp(− ρ
2ε).

Finally, once the previous lemma has been applied, we will need this lemma to prove that
we set the parameters correctly for PriceLearningMechanism.

I Lemma 33. If Nstat satisfy OPT (Nstat) ≥ 1
4 ·OPT and OPT (Nmech) ≥ 1

4 ·OPT , then
(ψmin, ψmax) is correct for Nmech.

Proof. Assume Nstat satisfy OPT (Nstat) ≥ 1
4 · OPT and OPT (Nmech) ≥ 1

4 · OPT . We
know that SPA < OPT (Nstat). Thus

4 ·OPT (Nmech) ≥ OPT ≥ OPT (Nstat) ≥ SPA,

⇒ ψmin = 1
4m2 · SPA ≤

1
m2 ·OPT (Nmech).

L. Cai, C. Thomas, and S.M. Weinberg 61:29

Moreover, since SPA is at least the value of M for any bidder in Nstat, we have m · SPA ≥
OPT (Nstat). Thus

ψmax = 4m · SPA ≥ 4 ·OPT (Nstat) ≥ OPT ≥ OPT (Nmech).

We conclude that (ψmin, ψmax) is correct for Nmech. J

I Theorem 34. For valuation functions v1, . . . , vn, suppose the optimal allocation O has
supporting prices q. Let D be a (c, d)-approximate demand oracle for valuation in {v1, . . . , vn}.
Then mechanism 4 with advice A as in lemma 29 gets a O

(
max

{ 1
c ,

1
d

}
· (log logm)3) fraction

of the optimal welfare in implementation in advised strategies.

Proof. Lemma 29 shows that there exists poly time computable advice such than, whenever
a bidder in Nstat follows advice, they play truthfully, and whenever a bidder in Nmech follows
advice, they pick (c, d)-competitive sets in every fixed price auction they participate in.

Recall that a bidder is dominant if they contribute more than a 1/8 fraction of the
welfare of an optimal allocation. Next we show that whether there is a dominant bidder
or not, the expected welfare from GeneralizedMechanism is an O

(
max

{ 1
c ,

1
d

}
(log logm)3)

approximation to OPT in implementation in advised strategy with advice B.

When there is a dominant bidder, then with 1
2 probability the dominant bidder would

be selected in the Nstat group. Conditioned on this, with 1
2 probability the resulting

allocation from running second price auction on the Nstat group would be realized. Since
a dominant bidder is in Nstat group, the welfare from the second price auction is at least
OPT

8 . Thus the expected welfare of GeneralizedMechanism, conditioned on there being a
dominant bidder, is at least 1

2 ·
1
2 ·

OPT
8 = OPT

32 .
When there is no dominant bidder, then by Lemma 32, OPT (Nstat) ≥ 1

4 · OPT with
probability at least 1 − 2e−2, which means OPT (Nstat) < 1

4 · OPT with probability
< 2e−2. Symmetrically, O(Nmech) < 1

4 ·OPT with probability < 2e−2. By union bound,
both OPT (Nstat) and OPT (Nmech) is ≥ 1

4 · OPT with probability at least 1 − 4e−2,
which is still a positive, constant probability.
Let’s call the event where OPT (Nstat) ≥ 1

4 ·OPT and OPT (Nmech) ≥ 1
4 ·OPT the good

event.
By Lemma 33, if the good event occurs, then (ψmin, ψmax) is correct for Nmech. By con-
struction in GeneralizedMechanism, ψmax/ψmin = O(m3). By Corollary 31, conditioned
on ψmin and ψmax begin set correctly and ψmax/ψmin = poly(m), priceLearningMech-
anism returns an allocation that achieves welfare 1

r · (1 −
1
m) · OPT (Nmech), where

r = O
(
max

{ 1
c ,

1
d

}
(log logm)3). Since the good event occurs, OPT (Nmech) ≥ 1

4 ·OPT .
We conclude that conditioned on the good event, the expected welfare from PriceLearn-
ingMechanism O

(
max

{ 1
c ,

1
d

}
(log logm)3) approximates OPT . As the event “the good

event happens and GeneralizedMechanism runs PriceLearningMechanism in setp 4” occurs
with constant probability, we conclude that Generalized mechanism achieves expected
welfare at least OPT/O

(
max

{ 1
c ,

1
d

}
(log logm)3) when there is no dominant bidder.

Together with the fact that every allocation for XOS valuation functions has supporting
prices, we immediately get theorem 16.

I Theorem 16. Let V be a subclass of XOS valuations and let D be a poly-time (c, d)-
approximate demand oracle for valuation class V. Then there exists a poly-time mecha-
nism for welfare maximization when all valuations are in V with approximation guarantee
O
(
max

{ 1
c ,

1
d

}
· (log logm)3) in implementation in advised strategies with polynomial time

computable advice. J

ITCS 2020

61:30 Implementation in Advised Strategies

C Approximate Demand Queries vs. Approximate Welfare
Approximation

As it happens, both SimpleGreedy and SingleOrBundle were inspired by simple known
algorithms for approximate welfare maximization, combined with the following simple
observation:

I Proposition 35. S is the return of a demand query on prices p if and only if (S,M \S) is
a welfare maximizing bundle for the following two player auction: one bidder has valuation
function v, and the other bidder has additive valuation function given by p.

Proof. The utility of v is v(S)− p(S), which differs from the welfare v(S) + p(M \ S) only
by the constant p(M). So maximizing these two objectives is equivalent. J

In particular, SimpleGreedy is exactly the 2-approximation algorithm from [33] played
by a regular bidder and a “price bidder”. SingleOrBundle is similarly inspired by the

√
m

approximation of [17]. However, we show below that approximate demand queries do not, in
general, reduce to approximate welfare maximization.

I Example 36. Consider a budget additive valuation v with value 2 for every item and
budget of 2

√
m. That is, v(S) = max{2|S|, 2

√
m}. Let p have price 1 for each item, i.e.

p(S) = |S|. The result of a demand query on (v,p) is any set of size
√
m, with utility

√
m.

However, consider running an approximate welfare maximization mechanism A with two
bidders: one with valuation v(S) for bundle S and one with valuation p(S) for bundle S.
The optimal allocation is to give any S of size exactly

√
m to v, and give the rest of the

items to p. This has welfare m+
√
m. However, the allocation giving every item to p has

welfare m. Thus, any constant factor approximation algorithm (for which no other grantees
hold) may return this allocation, as m+

√
m = (1 + o(1))m.

This corresponds to an approximate demand query giving the bidder the empty set. As
this has zero utility, it will fail to be any factor approximation ration of the optimal.

Moreover, the above example would still go through if we consider a few simple variations
on the reduction given by Proposition 35. For example, if we discount prices by a constant
factor, say d, it’s still the case that d(m−

√
m) + 2

√
m = (1 + o(1))dm, so a constant-factor

approximation algorithm A might give all items to the “price player”.
Thus, approximate demand queries do not reduce to approximate welfare maximization

(at least not as outlined by Proposition 35).

D Other Algorithms for approximate demand oracles

Here we give another algorithm for computing a (1/2, 1/2)-approximate demand oracle.
Instead of being inspired by known welfare maximization algorithms, this technique is inspired
by known submodular maximization algorithms. Namely, the algorithm MeetInMiddle below
is exactly the algorithm DeterministicUSM from [5], run on the submodular function f given
by f(S) = v(S)−p(S). When f is a nonnegative (possibly decreasing) submodular function,
[5] shows that it gives a 1/3 approximation to the maximum value of f . Unfortunately, the
submodular utility function we are interested in is possibly negative, so this result does not
apply (indeed, it is NP hard to achieve any nontrivial approximation ration for possibly
negative submodular maximization, as we discussed in section 3).

L. Cai, C. Thomas, and S.M. Weinberg 61:31

Algorithm 5 MeetInMiddle(v,p,M).

X ← ∅ and Y ←M

for j = 1, . . . ,m do . For items in an arbitrary order
Set aj ← v(X ∪ j)− v(X)− p(j) . Invariant: Y = X ∪ {j, . . . ,m}
Set bj ← v(Y \ j)− v(Y) + p(j)
if aj ≥ bj then

Set X ← X ∪ j
else

Set Y ← Y \ j
return X . or return Y (as X = Y by now)

For SimpleGreedy and SingleOrBundle, we needed to run an existing algorithm with the
“higher” prices p/d to attain a (c, d)-approximate demand oracle for (i.e. a set S for which
v(S)− p(S) ≥ cmaxT v(T)− p(T)/d). Interestingly, we show that MeetInMiddle need to
take the lower (“discounted”) prices as input in order to provide an approximation guarantee.

We show that
1. For any ε > 0, S =MeetInMiddle(v,p,M) is not a (ε, ε) approximate demand oracle for

prices εp (i.e. there exists a valuation function v such that v(S)− εp(S) < maxT {v(T)−
p(T)}).

2. MeetInMiddle(v,p/2,M) is an (1
2 ,

1
2) approximate demand oracle for prices p/2 (i.e. for

any submodular v we have v(S)− p(S)/2 ≥ 1
2 maxT {v(T)− p(T)}).

I Example 37. For any ε > 0, let K = 4/ε and N = 2 + (K − 1)/ε and M = {1, 2, ...N}.
Consider the price vector p(1) = K

2 + 1 and ∀i > 1 : p(i) = 1− ε and the bidder valuation
function v(S) = K for any S 3 1 and v(S) = 1 + (|S| − 1)ε for any S 3 1. One can check
that the valuation function is submodular.

MeetInMiddle will remove the first item from X, since v(M−1)−v(M)+p(1) = K
2 +1 >

K
2 − 1 = v(1)− p(1). Similarly, one can check that the algorithm will then remove all items
except the last item N , which it will keep. Thus the algorithm returns set T = {N}, so
v(T)− p(T) = ε.

However, the optimal set is O = {1}. We have ε(v(O)− p(O)) = ε(2
ε − 1) = 2− ε. Thus

v(T) − ε(p(T)) < ε(v(O) − p(O)), and MeedInMiddle(v,p,M) is not a (ε, ε) approximate
demand oracle for all constant 1 > ε > 0.

B Claim 38. If v is submodular, S =MeetInMiddle(v,p/2,M) is an (1
2 ,

1
2) approximate

demand oracle for prices p/2 (i.e. v(S)− p(S)/2 ≥ 1
2 maxT {v(T)− p(T)}.

Proof. Let T ←MeetInMiddle(v,p/2,M) and O = arg maxS⊆M v(S)− p(S). We use induc-
tion on |M |.

For the base case, let |M | = 1. Observe that a1 = v(1) − p(1)/2 = −b1. Thus, T = ∅
only when v(1) ≥ p(1)/2, so T is exactly arg maxS v(S)− p(S)/2 ≥ v(O)− p(O).

Now, let |M | > 1, and assume by induction that the claim is true for all m′ < |M |.
Consider the following two cases:

If 1 6∈ T , then

v(1)− p(1)
2 = a1 < b1 = v(M \ 1)− v(M) + p(1)

2
⇒ p(1) > v(1) + v(M)− v(M \ 1) ≥ v(1). (*)

thus 1 6∈ O. If M ′ = M \ 1, then T =MeetInMiddle(v,p/2,M ′) and O =
arg maxS⊆M ′ v(S)−p(S). By the inductive hypothesis, v(T)− 1

2 p(T) ≥ 1
2 (v(O)−p(O)).

ITCS 2020

61:32 Implementation in Advised Strategies

Suppose 1 ∈ T . Let M ′ = M \ 1 and let O2 be the set that maximizes utility on M ′

for v at prices p (i.e. O2 = arg maxS⊆M ′ v(S) − p(S)). The negation of (∗) plus the
submodularity of v tells us that

p(1) ≤ v(1) + v(M)− v(M \ 1) ≤ v(1) + v(O2 ∪ 1)− v(O2). (†)

Define a new submodular function v′ onM ′ such that v′(S) = v(S∪1)−v(1) for all S ⊆M ′.
One can check that an item > 1 is added to X in MeetInMiddle(v,p/2,M) if and only if it
is added to X in MeetInMiddle(v′,p/2,M ′). Thus, T \1 =MeetInMiddle(v′,p/2,M ′), and
the inductive hypothesis tells us that v′(T \1)− 1

2 p(T \1) ≥ 1
2 (v′(O′2)−p(O′2)), where O′2

is the set that maximizes utility on M ′ for v′ on prices p (i.e. O′2 = arg maxS⊆M ′ v′(S)−
p(S)).
We now analyze two subcases:

If 1 ∈ O, then O = 1 ∪O′2. Thus, applying the inductive hypothesis we know

v(T)− p(T)
2 = v(1)− 1

2p(1) + (v′(T \ 1)− 1
2p(T \ 1))

≥ v(1)− 1
2p(1) + 1

2(v′(O′2)− p(O′2))

≥ 1
2
(
v(1) + v′(O′2)− p(1)− p(O′2)

)
= 1

2(v(O)− p(O))).

If 1 6∈ O, then O = O2. By rearranging (†), we get

p(1) ≤ 2v(1) + v′(O2)− v(O2)

⇒ v(O2)− v′(O2) ≤ 2
(
v(1)− p(1)

2

)
. (§)

Thus

1
2(v(O)− p(O)) = 1

2
(
v(O2)− p(O2)

)
= 1

2
(
v′(O2)− p(O2) + v(O2)− v′(O2)

)
≤ 1

2
(
v′(O′2)− p(O′2) + v(O2)− v′(O2)

)
≤ v′(T \ 1)− p(T \ 1)

2 + v(1)− p(1)
2

= v(T)− p(T)
2 .

Where the first inequality follows from the definition of O′2, and the second follows from
the inductive hypothesis combined with (§). C

	Introduction
	Roadmap
	Discussion and Related Work

	Implementation in Advised Strategies
	Approximate demand oracles
	Welfare Guarantees with Approximate Demand Oracles
	Fixed Price Auctions with Approximate Demand Oracles
	Formal Statement of Main Result

	Approximate Demand Queries beyond Submodular
	Brief Discussion of Definitions
	Proof of Theorem 16
	Generalization of Lemma 15
	The Mechanism
	The Modified Analysis
	Removing Assumptions

	Approximate Demand Queries vs. Approximate Welfare Approximation
	Other Algorithms for approximate demand oracles

