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Abstract
We consider active learning under incentive compatibility constraints. The main application of our
results is to economic experiments, in which a learner seeks to infer the parameters of a subject’s
preferences: for example their attitudes towards risk, or their beliefs over uncertain events. By
cleverly adapting the experimental design, one can save on the time spent by subjects in the
laboratory, or maximize the information obtained from each subject in a given laboratory session;
but the resulting adaptive design raises complications due to incentive compatibility. A subject in
the lab may answer questions strategically, and not truthfully, so as to steer subsequent questions in
a profitable direction.

We analyze two standard economic problems: inference of preferences over risk from multiple
price lists, and belief elicitation in experiments on choice over uncertainty. In the first setting, we
tune a simple and fast learning algorithm to retain certain incentive compatibility properties. In
the second setting, we provide an incentive compatible learning algorithm based on scoring rules
with query complexity that differs from obvious methods of achieving fast learning rates only by
subpolynomial factors. Thus, for these areas of application, incentive compatibility may be achieved
without paying a large sample complexity price.
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1 Introduction

We study active learning under incentive compatibility constraints. Consider a learner: Alice,
who seeks to elicit the parameters governing the behavior of a human subject: Bob. The
chief application of our paper is to the design of laboratory experiments in economics. In
such applications, Alice is an experimenter observing choices made by Bob in her laboratory.
The active learning paradigm seeks to save on the number of questions posed by Alice by
making the formulation of each question dependent on Bob’s answers to previous questions
[8, 21]. Now, Bob may misrepresent his answers to some of Alice’s questions so as to guide
Alice’s line of questioning in a direction that he can benefit from.

Our setting differs from standard applications of active learning in computer science,
in that data are labeled by a self-interested human agent (in our story, Bob). Computer
scientists have thought of active learning as applied to, for example, combinatorial chemistry,
or image detection. A learner then makes queries that are always truthfully answered. In
economic settings, in contrast, one must recognize the role of incentives.
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67:2 Incentive Compatible Active Learning

The existing literature on applications of passive learning to preference elicitation (see
for example [12, 30, 11, 17]) does not have to deal with agents’ incentives to manipulate
the learning mechanism, but active learning does, because an agent who understands the
learner’s algorithm may answer strategically early on in the experiment so as to influence
the questions he faces later in the experiment.

We should emphasize that experimental orthodoxy in economics requires that subjects
(such as Bob) know as much as possible about the experimental design. No deception is
allowed in economic experiments. In addition, subjects’ participation is almost universally
incentivized: Bob gets a payoff that depends on his answers to Alice’s questions. Our model
relates to a long-standing interest among economists for adaptive experimental design, see
[23, 32, 16, 29].

Consider a concrete example. Bob has a utility function xσ over money, so that if he
faces a random amount of money X, his expected utility is E[Xσ]. In other words, Bob has
a utility of the “constant relative risk aversion” (CRRA) form, and Alice wants to learn the
value of the parameter σ –Bob’s relative risk aversion coefficient.1 A standard procedure for
estimating σ is a multiple price list.2

In a multiple-price list (MPL), Alice successively asks Bob to choose between a sure
payoff of x dollars and a fixed lottery L, for example a lottery that flips a fair coin and pays
0 dollars if the coin turns up Heads, and 1 dollar if it turns up Tails. Alice would first ask
Bob to choose between a very small amount x (almost zero) and L. Then Alice would raise
x a little and ask Bob to choose again. The procedure is repeated, each time increasing the
amount x, until reaching a number equal to, or close to 1. At some value x, Bob would
switch from preferring the lottery to preferring the fixed amount of money. Then Alice would
solve the equation

xσ = (1/2)0σ + (1/2)1σ = (1/2) (1)

to find the value of σ. Now, it is important to explain how the experiment is incentivized:
When the experiment is over, Alice will actually implement one of the choices made by Bob.
Conventional experimental methodology dictates [7] that she chooses one of the questions at
random and implements it.

A proponent of active learning will immediately remark that the MPL design asks too
many questions. Alice only needs to know the value of x at which Bob is indifferent between
x and the lottery L. We can thus imagine an adaptive design, where Alice raises x until Bob
switches from L to x, and stops the experiment when that happens. This design will result
in strictly fewer questions than the passive (supervised) learning design.

Bob, however, understands that Alice stops raising x when he declares indifference to
L. So he will manipulate Alice into offering him values of x beyond what he truly views as
indifferent to L. Specifically, suppose that Alice raises x continuously (this is a simplifying
assumption; see Section 3 for a realistic version of this design), and that if Bob declares
indifference at x then the last question is implemented with probability p(x) ∈ (0, 1). The
function p is strictly decreasing since reporting a larger value of x increases the probability
that a question for which Bob preferred L will be implemented.

1 The coefficient σ captures Bob’s willingness to assume risk. It is a parameter that economic experiments
very often seek to measure, even when the experiment is ostensibly about a totally different question.
Economic experimentalists want to understand the relation between risk and their general experimental
findings, so they include risk elicitation as part of the design.

2 Multiple price lists are a very common experimental design, first used by [13], and popularized by [28]
as a method to estimate σ, as described here.
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Bob’s payoff from stopping at x is π(x;σ) = p(x)xσ + (1 − p(x))(1/2) because with
probability p(x) the last question gets implemented, so he gets the sure amount x, and with
the complementary probability one of the other questions is implemented and Bob gets his
preference for those questions, namely the lottery L. The expected utility of L is 1/2.

Then it is clear that Bob would like to stop at an x that is strictly greater than the value
at which he would truly be indifferent to L, the value that solves (1). If he stops at the true
value of x, he gets for sure something that he values as much as L (either L or the amount x
that he values exactly as L). By stopping at a strictly greater x, he has a shot at getting a
value of x that he prefers over L.

The situation is, however, far from hopeless. Bob’s optimal value of x is strictly increasing
in σ.3 Alice can then undo Bob’s strategic choice of x and back out the true value of σ.
(Alice’s approach is common in applied econometrics, often called the “structural” method.)

In this paper, we prove general possibility results, to illustrate that there are many
situations where active learning is consistent with incentive compatibility. In Section 3 we
shall present a formal model of multiple price lists, and show that it is possible to learn
while satisfying incentive compatibility. In Section 4 we discuss incentive issues in active
learning in a more general sense. We present a formal notion of incentive compatible active
learning in a general preference elicitation environment, and provide characterizations of the
complexity of incentive compatible learning in certain “nice” environments.

A recent and growing body of work studies the problem of inferring models of economic
choice from a learning theoretic perspective [30, 12, 35, 9, 11, 17, 10]. The learnability of
preference relations has also received very recent attention [11, 17]. Our investigation takes
a different angle: in attempting to model an experimental situation where subjects are asked
to make choices in an interactive manner, via, e.g., a computer program, or in person, we
allow the analyst complete control over the learning data. In the active learning literature,
this framework is known as the membership queries model. There is also an ongoing line
of work that considers learning problems when the data provider is strategic [22, 1, 31, 18].
Finally, the recent work of [27] studies a model where an agent may (at a cost) manipulate
the input to a classification algorithm.

The membership query model closely captures an adaptive economic experiment, while
in this context the more traditional learning/active learning models (e.g. PAC learning,
stream-based active learning) seem to place unnecessary restrictions on how the analyst
learns. This notion is briefly discussed in [17], where classical learning theoretic approaches
appear to give much weaker complexity guarantees than the membership queries model in
learning time-dependent discounted utility preferences. For the remainder of this paper,
whenever we use the phrase “active learning”, we refer to the membership query setting – all
other forms of learning can be viewed as a special case of membership queries.

The other important component in modelling an economic experiment is a payment to the
agent after the experiment has concluded. Experiments in economics are always incentivized,
meaning that there are actual material consequences to subjects’ decisions in the lab. Subjects
are paid for their decisions in the experiment. We incorporate this incentive payment into the
execution of the algorithm by which the analyst chooses questions – the analyst implements
the outcome chosen by the agent in the final round of the interaction. Thus, rather than
treating the payment scheme as a separate problem, we use it to demand a certain level of

3 If π(x;σ) = p(x)xσ + (1 − p(x))(1/2) and we assume that p is smooth, then ∂2π(x;σ)/∂σ∂x =
p′(x)xσ ln(x) + (σ + 1)p(x)xσ−1 > 0 as x ∈ (0, 1] and p is decreasing. So π is strictly supermodular.
Hence the optimal x is increasing in σ.

ITCS 2020
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robustness from our learning algorithms. As we demonstrate, this precludes the analyst from
running naive learning algorithms that, despite achieving good query complexities, allow the
agent to strategically and dishonestly answer questions to get offered higher payoff outcomes.

Finally, the framework we introduce engenders the following natural question: is there a
combinatorial measure of complexity, akin to VC dimension for PAC learning concept classes,
that precisely captures the complexity of incentive compatible learning in preference environ-
ments? Our results examine certain sufficient conditions for incentive compatible learning, a
potential first step towards better understanding this new and interesting learning model.

Summary of results
We begin by discussing incentive issues in a very common experimental paradigm, that of
convex budgets. We present an example to the effect that incentive problem are present
and can be critical. Then we turn to the Multiple Price Lists (MPL), another very common
experimental design used to infer agents’ attitudes towards risk. In MPL experiments,
an agent is asked to choose between receiving various deterministic monetary amounts
and participating in a lottery. The goal of the analyst is to elicit the agent’s certainty
equivalent, i.e. the deterministic quantity at which the agent values the lottery (in our
previous discussion, the certainty equivalent is the quantity that solves Equation (1)). We
analyze a simple sequential search mechanism that is used in practice – start from the lowest
possible deterministic amount and keep increasing the offer until the agent prefers it to the
lottery. The analyst pays the agent by implementing the agent’s decision on a randomly
selected question that was asked. We show that while this mechanism is not incentive
compatible, under relatively benign assumptions it satisfies a one-to-one condition where the
analyst can accurately infer the agent’s true certainty equivalent after learning the agent’s
reported certainty equivalent. We then show how a modified payment scheme that only
depends on the final decision of the agent allows the analyst to do a binary search and retain
incentive compatibility, giving a mechanism for learning the certainty equivalent of a strategic
agent to within an error of ε using O(log 1/ε) questions.

We then turn to an abstract model of learning preference parameters/types. The idea is,
as in the MPL, to induce incentive compatibility by incentivizing the payment from the last
question asked of the agent. To this end, we coin a formal notion of incentive compatible
(IC) learnability. A learning algorithm is simply an adaptive procedure that at each step
asks the agent to choose between two outcomes. Informally, the IC learning complexity of an
algorithm is the number of rounds required to both

1. Accurately learn (with high probability) the agent’s type with respect to some specified
metric on the type space.

2. Ensure that (with high probability) the payment mechanism of implementing the agent’s
choice on the final question cannot be strategically manipulated to yield a significant
payoff gain over answering questions truthfully.

A simple structural condition allows a strong notion of incentive compatibility to be
achieved via a deterministic exhaustive search (truthful reporting is the agent’s unique best
response), and we give examples of commonly studied economic preference models that fit
our condition. We demonstrate that a large class of preference relations over Euclidean space
– those exhibiting strict convexity under a condition which we call hyperplane uniqueness
(detailed in Section 4) – can be learned in an incentive compatible manner.
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I Theorem 1 (informal). Let Θ be a type space such that the preferences induced by each
θ ∈ Θ are continuous, strictly convex, and satisfy hyperplane uniqueness. Then, Θ is IC
learnable, under a suitably chosen metric.

However, this strong notion of incentive compatibility comes at a cost – the associated
IC learning complexity can be massive (exponential in the preference parameters). In
the abstract setting of preferences over outcomes, it is unclear how to obtain a tangible
improvement in this complexity (even with randomization), and specifically it would appear
that the problem parameters (e.g. the outcome space, the set of possible agent types) require
much more structure for any sort of improvement.

We then analyze the specific setting of learning the beliefs of an expected utility agent,
where we have the required structure. Here, an agent holds a belief represented by a
distribution α ∈ ∆n (there are n uncertain states of the world, and αi is the probability
with which the agent believes state i will occur), and is asked to make choices between
vectors of rewards x ∈ Rn, where the utility an agent of type α enjoys from x is simply α.x.
We first observe that naive learning algorithms can vastly beat the learning complexity of
the general preference framework, but fail to be incentive compatible. Our main result is
an incentive compatible learning algorithm for eliciting an agent’s beliefs that significantly
improves upon the complexity in the general framework, and only differs from the fast naive
learning algorithms by subpolynomial factors.

I Theorem 2. There is an algorithm for learning the belief of an expected utility agent that
when run for

O

(
n3/2 lognmax

(
log n

ε
, log 1

τ

))
rounds (with high probability) cannot be manipulated to yield more than a τ increase in payoff,
and learns a truthful agent’s belief to within total variation distance of ε. 4

Our algorithm is built upon disagreement based active learning methods that provide
learning guarantees, and employs the spherical scoring rule to ensure incentive compatibility
properties.

2 Example: Convex budgets

We present a simple example to illustrate how incentive issues can prevent a very popular
experimental design from being implementable in an active learning setting.

Consider an experiment on choice under uncertainty, with an adaptive “convex budgets”
design. Such designs are ubiquitous in experimental economics: see [5, 19, 2, 25, 4, 6] among
(many) others. Convex budgets is very popular as a design because it parallels the most
basic model in economic theory, the model of consumer choice.5

Bob, a subject in the lab, has expected utility preferences. Specifically, suppose that the
experiment involves two possible states of the world, and that Bob chooses among vectors
x = (x1, x2) ∈ R2

+. If Bob chooses the vector (x1, x2) and the state of the world turns out to

4 Typical supervised learning bounds have a logarithmic dependence on the confidence parameter 1
δ , and

so for the sake of brevity we omit terms depending on δ in our complexity bounds.
5 Consumer choice is probably the first model a student of economics is ever exposed to. It captures
optimal choice from an economic budget sets, defined from linear prices and a maximum expenditure
level.

ITCS 2020
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be i, then he is paid xi. Bob believes that the state of the world i occurs with probability αi,
so his expected utility from choosing x is α1x1 + α2x2 (we assume for simplicity that Bob is
risk-neutral).

The experiment seeks to learn the subjects’ beliefs α with a design that has Bob choosing

x ∈ B(p, I) = {y ∈ R2
+ : p · y ≤ I},

at prices p ∈ R2
+ and income I > 0. The problem is equivalent to learning the ratio α1/α2.

It is obviously optimal for Bob to choose x = (1/p1, 0) if α1/p1 > α/p2 and x = (0, 1/p2) if
α1/p1 < α/p2.

The experimental design presents the subject with a sequence of prices p and incomes I,
and asks him to choose from B(p, I). Usually only one of the choice problems in the sequence
will actually be paid off. It is standard practice in experimental economics to pay out only
one of the questions posed to a subject. For the purpose of this example, imagine that the
sequence has a length of 2: (p1, I1) and (p2, I2). Moreover, suppose (again for simplicity)
that incomes and prices are such that It = pt · (1/2, 1/2) = 1, for t = 1, 2.

Fix the first price at p1 = (1, 1). If Alice, the experimenter, observes a choice of (1/p1, 0)
she should conclude that α1/α2 > p1

1/p
1
2. And given such an inference, it would not make

sense to set the second set of prices so that p2
1/p

2
2 < p1

1/p
1
2. Alice, following an active learning

paradigm of adaptive experimental design, should adjust p1/p2 upwards. So let us assume
that she decides to adjust the ratio p1

1/p
1
2 by a factor of 2 in the direction in which there is

something to learn: If the choice from B(p1, I1) is (1/p1
1, 0), Alice will set p2

1/p
2
2 = 2(p1

1/p
1
2).

If the choice is (0, 1/p1
2), she will set p2

1/p
2
2 = (1/2)(p1

1/p
1
2).

Now consider the problem facing our subject, Bob. Suppose that Bob’s beliefs are such
that α1 < α2, and, to make our calculations simpler, that α1/α2 ≤ 1/2. If he chooses
“truthfully” according to his beliefs, he would choose x = (0, 1/p1

1) = (0, 1) from B(p1, I1)
and thus face prices p2 = (2/3, 4/3). This means that the relative price of payoffs in state
2 increase, the state that Bob values the most because he thinks it is the most likely to
occur. If instead Bob “manipulates” the experiment by choosing x = (1/p1, 0), he will face
prices p2 = (4/3, 2/3). It is obvious that Bob is better off in the second choice problem from
facing the second budget because he will be able to afford a much larger payoff in state 2. If
Alice only incentivizes (pays out) the choice from B(p2, I2), then Bob is always better off by
misrepresenting his choice from the first budget.

If, instead, Alice incentivizes the experiment by implementing one of the choices made by
Bob at random (a common practice in economic experiments, see [7] for a formal justification),
then the utility from truthtelling is (1/2)α2(1+3/4) = α2(7/8). The utility from manipulation
is (1/2)(α1 + α2(3/2)). As long as α1/α2 ∈ (1/4, 1/2), the manipulation yields a higher
utility than truth telling.

The convex budgets example illustrates the perils of active learning as a guide to adaptive
experimental design, when human subjects understand how the experiment unfolds conditional
on how they make choices. The main result of our paper (see Section 4.2) considers belief
elicitation, but proposes an active learning algorithm that is based on pairwise comparisons,
not choices from convex budgets.

3 Multiple Price Lists

We begin by formally considering the application in the introduction: the use of Multiple
Price Lists (MPL) to elicit an agent’s preferences over risk. MPL was first proposed by
[13], and popularized by [28], who used it to estimate risk attitudes along the lines of the
discussion in the sequel.
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We shall consider a version of MPL where a lottery with monetary outcomes is fixed, and
an agent chooses between a sure (deterministic) monetary payment x or the lottery. More
specifically, consider a lottery where a coin is flipped and if the outcome is heads, the payoff
is x dollars, while if the outcome is tails, the payoff is x dollars. An analyst wants to assess
an agent’s willingness to participate in the lottery when presented with various deterministic
alternatives. Denote this lottery by L.

At every round of the experiment, the analyst asks the agent to choose between a
deterministic payoff of x or participation in the lottery, and aims to learn the agent’s
certainty equivalent: the deterministic amount that yields indifference. Conventionally (for
example, see [28, 3]), the experiment is run by presenting the agent with a list of n pairs
(xi, L). The agent makes a choice from each pair, either the sure amount xi or the lottery L.
Then the experimenter draws one of the n questions at random an pays the agent according
to the decision he made for that question. (i.e. if he preferred the deterministic amount
x, he is paid x, and otherwise gets to participate in the lottery). We now present a formal
model of the MPL experimental design and analyze issues of incentive compatibility.

3.1 The model
We consider a lottery L with a low outcome x and a high outcome x, x < x. The lottery
can operate in any number of ways, for example, by a coin flip. The analyst chooses a
discretization x = x0 < x1, . . . < xn−1 < xn = x of the interval I = [x, x] such that the
intervals Ik = (xk, xk+1] all have equal length ` = x−x

n . This discretization of I represents
the deterministic amounts that the analyst will offer to the agent.

An agent’s certainty equivalent is the point x ∈ (x, x) such that he is indifferent between
receiving x versus participating in the lottery. Certainty equivalents will be uniquely
determined by an agent’s utility over money, as long as his utility function is strictly
increasing.

For example, if an agent values money according to u : R→ R, his certainty equivalent
(assuming that L is a coin-flip) would be the point x ∈ (x, x) such that u(x) = 1

2u(x) + 1
2u(x).

In our model, we consider agents whose utility functions belong to a given family U of
functions such that a given certainty equivalent uniquely determines the utility function of
the agent, and vice-versa. For example, if U = {x 7→ xσ : 0 < σ < 1}, so utilities take the
CRRA form we discussed in the introduction, then σ uniquely determines the point x such
that xσ = 1

2x
σ + 1

2x
σ.

3.2 Sequential Search
We first consider a simple mechanism that aims to find the agent’s certainty equivalent
by performing a sequential search on x1, . . . , xn. On round t of the experiment, the agent
chooses between the lottery and a deterministic payoff of xt. If he chooses the lottery, the
experiment continues, and if he chooses xt or claims indifference, the experiment terminates.
If the experiment terminates at round T , the analyst can conclude that the agent reported a
certainty equivalent lying in the interval (xT−1, xT ].

The goal of the analyst is to make a payment to the agent at the end of the experiment such
that the agent is incentivized to answer questions according to his true certainty equivalent.
We analyze a common scheme used in experiments: if the experiment terminates after T
rounds, choose t randomly from {1, . . . , T}, and pay the agent based on his preference on
the tth question: so if t = T , the agent receives xT , otherwise the agent receives a payment
that is the outcome of the lottery. However, as discussed in the introduction, this scheme

ITCS 2020
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is not incentive compatible. Indeed, if xT is the agent’s true certainty equivalent, he has a
profitable deviation to push the experiment to terminate at xT+1. The agent is indifferent
between receiving xT and participating in the lottery, so by declaring a certainty equivalent
that is higher than xT he may possibly win an amount larger than xT , and which he values
strictly more than the lottery.

We now show that under some simplifying assumptions, this kind of payment scheme
can at least be implemented in a manner such that the agent’s true certainty equivalent
can be accurately inferred based on his report. Let U be a family of utility functions such
that each u ∈ U satisfies an inverse Lipschitz condition with constant Ku: for all x, x∗,
|u(x)− u(x∗)| > Ku|x− x∗|. Let K = supu∈U Ku. Finally, let M = supu∈U (u(x)− u(x)).

For t ∈ {1, . . . , n} let pt denote the probability that the agent is paid the deterministic
amount xt if the experiment stops on round t (so the agent participates in the lottery with
probability 1 − pt). An agent with true certainty equivalent x and corresponding utility
function u has an expected payoff of

Payoff(x, xt) = ptu(xt) + (1− pt)u(x)

for reporting a certainty equivalent in (xt−1, xt].
Let r : (x, x)→ {x1, . . . , xn} be the best response of an agent with certainty equivalent x:

r(x) = argmaxxt
Payoff(x, xt).

We refer to r as the report function.
We now show that when p1, . . . , pn satisfy pt+1 < pt

6 and pt+1 <
K`
2M pt, the analyst can

recover the agent’s true certainty equivalent up to some low error via the sequential search
mechanism.

We should emphasize that the agent will not be truthful, in the sense of reporting their
true certainty equivalent. However, we are still able to back out the true certainty equivalent
from understanding the agents strategic incentives.

We proceed in steps. First, we characterize the best responses for agents with certainty
equivalents belonging to {x1, . . . , xn−1}. We show that the report function is one to one.
This implies that r(xt) = xt+1, since r(xt) > xt, for each t = 1, . . . , n− 1.

I Proposition 3. For xt ∈ {x1, . . . , xn−1}, r(xt) = xt+1.

Proof. Note that since r(xn−1) = xn, it suffices to show that r is injective on {x1, . . . , xn−1}.
Suppose r(xt1) = r(xt2), and without loss of generality let t1 ≥ t2. Let r(xt1) = r(xt2) =

xt. Since any agent is incentivized to report higher than their true certainty equivalent,
t > t1, t2, so in particular t ≥ t1 + 1. Let u1 denote the utility function of the agent with
true type xt1 , u2 that of the agent with true type xt2 .

For any s 6= t we have (since r gives the best response):

ptu1(xt)− ptu1(xt1) > psu1(xs)− psu1(xt1),
ptu2(xt)− ptu2(xt2) > psu2(xs)− psu2(xt2).

Adding the two inequalities and rearranging gives

pt
ps

>
u1(xs)− u1(xt1) + u2(xs)− u2(xt2)
u1(xt)− u1(xt1) + u2(xt)− u2(xt2) . (2)

6 This is true for the standard uniform randomization scheme, as pt = 1/t. More generally, without this
condition the agent will have incentives to report high certainty equivalents as this is not penalized by
lower probabilities of winning the certain amount.
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At s = t1 (we know t1 6= t, since r(xt1) > xt1), Equation 2 simplifies to

pt
pt1

>
u2(xt1)− u2(xt2)

u1(xt)− u1(xt1) + u2(xt)− u2(xt2) >
u2(xt1)− u2(xt2)

2M ,

so

u2(xt1)− u2(xt2) < 2M pt
pt1
≤ 2M pt1+1

pt1
< K`.

The inverse Lipschitz condition on u2 then implies that |xt1 − xt2 | < `, which cannot happen
unless t1 = t2. J

Thus, if an agent’s true certainty equivalent happens to coincide with one of the points
of the discretization, the agent will answer questions as if his certainty equivalent is the next
point in the discretization.

For the next step, we need an additional Lipschitz type condition on utility functions.
Suppose there are constants C1 and C2 such that for any x, x∗ ∈ (x, x), with u, u∗ the
corresponding utility functions, and for any x, x′′ ∈ (x, x),

|u(x′)− u∗(x′′)| ≤ C1|x− x∗|+ C2|x′ − x′′|.

Moreover, let

λ = inf
x∈(x,x)

min
s,t
|Payoff(x, xs)− Payoff(x, xt)| ,

be the smallest possible deviation in payoff obtained by changing one’s report.
We also require the assumption that if x∗ ≥ x, then u∗(x′) ≥ u(x′) for any x′, where u∗ and

u are the utility functions corresponding to certainty equivalents x∗ and x, respectively. This
is an intuitive condition stating that agents with a higher certainty equivalent value money
more than agents with a lower certainty equivalent (note that the CRRA utilities discussed
previously satisfy this property). This in particular implies that u∗(x∗) ≥ u∗(x) ≥ u(x), so
Payoff(x∗, xk) ≥ Payoff(x, xk) for any xk in the discretization. We will use this in the proof
of the following proposition, which establishes that r satisfies a certain weak monotonicity
property.

I Proposition 4. Let xt−1 < x < x∗ ≤ xt with x∗−x < λ
2(2C1+C2) , and suppose r(x∗) ≤ xt+1.

Then, r(x) ≤ xt+1.

Proof. Let u, u∗ be the utility functions corresponding to certainty equivalents x and x∗,
respectively. We first bound the increase in payoff an agent of type x∗ experiences over an
agent of type x for making the same report. For any xk, we have

Payoff(x∗, xk)− Payoff(x, xk) = pk(u∗(xk)− u(xk))− pk(u∗(x∗)− u(x)) + (u∗(x∗)− u(x))
< pk(u∗(xk)− u(xk)) + (u∗(x∗)− u(x))
< (u∗(xk)− u(xk)) + (u∗(x∗)− u(x))
≤ C1`+ (C1 + C2)`

≤ λ

2

As r(x∗) ≤ xt+1, either r(x∗) = xt+1 or r(x∗) = xt. Suppose r(x∗) = xt+1. We show
that an agent of type x cannot increase his payoff by reporting above xt+1. Let s > t+ 1.
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Plugging xt+1 into the above bound gives

Payoff(x∗, xt+1) ≤ λ

2 + Payoff(x, xt+1),

and the definition of λ gives that

Payoff(x∗, xt+1) ≥ Payoff(x∗, xs) + λ.

Combining the two inequalities yields

Payoff(x, xt+1) ≥ Payoff(x∗, xt+1)− λ

2 > Payoff(x∗, xs) + λ

2
> Payoff(x∗, xs)
> Payoff(x, xs),

so r(x) ≤ xt+1.
In the case that r(x∗) = xt, we similarly get r(x) ≤ xt. J

We can then repeatedly apply this proposition starting with r(xt) = xt+1 to conclude
that for any xt−1 < x ≤ xt, we have r(x) ≤ xt+1.

Putting things together, we get:

I Theorem 5. If r(x) = xt+1, then xt−1 < x < xt+1.

Thus, to learn the agent’s true certainty equivalent to within ε-error, the analyst chooses
a discretization with x−x

n ≤ ε
2 , and runs a sequential search over the discretization. The

number of questions the analyst asks is O( 1
ε ).

Of course, to lower the number of questions asked, the analyst could instead perform
a binary search. It is easy to see that, like in the sequential search mechanism, simply
implementing a uniformly random question is not incentive compatible. For example,
consider a discretization with deterministic amounts x1, . . . , x7, and consider an agent with
true certainty equivalent at x3. For simplicity, we assume that if when presented with
(xi, L) the agent is indifferent between xi and L, he chooses xi. If the agent answers
truthfully, the pairs offered by a binary search would be (x4, L), (x2, L), and (x3, L), and
his choices would have been x4, L, and x3, respectively. The agent’s expected payoff is
(1/3)u(x4) + (1/3)u(L) + (1/3)u(x3) = (1/3)u(x4) + (2/3)u(L). Suppose instead the agent
answers as if his true certainty equivalent is x5. Then, the pairs he gets offered would be
(x4, L), (x6, L), and (x5, L), and his choices would have been L, x6, and x5, respectively. His
expected payoff is then (1/3)u(L) + (1/3)u(x6) + (1/3)u(x5), which is clearly a profitable
deviation.

It is unclear if this scheme can be directly modified to satisfy incentive compatibility
properties, but since the payments in the sequential search mechanism only depended on
the last question asked, we can use the same payment scheme here so that Theorem 5 holds.
So now the analyst can learn the agent’s certainty equivalent to within an error of ε with
O(log 1/ε) questions.

4 General Preference Elicitation

Our discussion so far has focused on a specific, albeit ubiquitous, preference elicitation
environment. In the rest of the paper we introduce a general model of incentive compatible
active learning. We introduce the idea of incentive compatible query complexity: the sample
size that guarantees some learning objective while maintaining incentive compatibility.
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The main application of our tools will be to expected utility theory. We shall introduce a
learning algorithm that is incentive compatible for learning the beliefs of an agent that has
expected utility preferences.

We focus on learning an agent’s preferences. The agent will be modeled as having a utility
function parameterized by some type, which generates the agent’s choices, that the learner
wishes to infer. To this end, Θ is a type space equipped with a metric d : Θ×Θ→ R≥0 that
is bounded with respect to d. O is the space of possible outcomes. An agent of type θ ∈ Θ
has utility u(θ, o) if the outcome is o ∈ O. θ induces a preference relation % over O defined
by o % o′ ⇐⇒ u(θ, o) ≥ u(θ, o′).

An analyst aims to learn the agent’s type by asking him to make a sequence of choices
between pairs of outcomes.7 The agent makes choices among the pairs presented to him.

The agent’s choices can be thought of as the result of a strategy. Formally, a strategy σ
is a mapping

σ :
⋃
t

{((o1, o
′
1),1o1%o′1

), . . . , ((ot, o′t),1ot%o′t
), (ot+1, ot+1′)} → ∆{0, 1}

that dictates a (potentially randomized) response for every possible history of the interaction
up to any given time. Let Σ denote the collection of all possible consistent strategies (a
strategy is consistent if its outputs up to any given time are consistent with some preference
relation in the type space).

For any strategy σ, let σ̂ denote an oracle with memory that responds to queries of the
form “is o preferred to o′?” according to σ given the history of previous queries made so far.
Let Σ̂ = {σ̂ : σ ∈ Σ} denote the collection of oracles corresponding to all possible strategies.
For a type θ ∈ Θ, let θ̂ ∈ Σ̂ denote the oracle that responds truthfully according to θ (i.e. on
query (o, o′) it returns 1u(θ,o)≥u(θ,o′)).

We imagine the oracle playing the role of the agent: in an interaction with the analyst, an
agent of true type θ chooses to act as an oracle for some strategy σ (departing from standard
terminology, we allow the oracle to have randomized responses).

The analyst implements a learning mechanism, which consists of the following steps:

1. Run a (potentially randomized) learning algorithm A : Σ̂→ Θ that has access to oracle
σ̂ and can make queries to σ̂ of the form (o, o′) for o, o′ ∈ O.

2. Arrive at a hypothesis θh ∼ A(σ̂) for the agent’s type.
3. Implement the agent’s response on the last query.8

We now establish the notion of learnability that we work with. This definition is not
concerned with issues of incentive compatibility: it is simply a refinement of the standard
notion of a learning algorithm that stipulates that we learn a truthfully reported hypothesis
accurately. Since in our setting the analyst has full control over the data he learns from, our
requirements on the error of the algorithm are with respect to the metric d on the space of
types Θ.

7 One can imagine many other protocols for learning. We constrain ourselves to protocols that are based
on a sequence of pairwise comparisons. Such protocols are common in practice, and are the obvious
empirical counterpart to the decision theory literature in economics and statistics. This stands in
contrast with the literature on scoring rules, which allows for richer message spaces.

8 Within adaptive experimental design, the idea of making a last choice on behalf of the agent is due to
Ian Krajbich.
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I Definition 6. A : Σ̂→ Θ is an (ε, δ)-learning algorithm if for all θ ∈ Θ,

Pr
θh∼A(θ̂)

[d(θ, θh) ≤ ε] ≥ 1− δ.

The number of queries made by A to the oracle θ̂ is the query complexity of A, denoted by
q(ε, δ).

Next, we define what it means for a learning algorithm to be incentive compatible.
Intuitively, we require that if the learning algorithm is terminated on round T , and the
analyst implements the agent’s preferred outcome on the T th query (oT , o′T ), then the agent
(with high probability) cannot gain a non-negligible advantage over truthfully reporting by
attempting to answer questions strategically. Let AT (σ̂) = (oT , o′T ) ∈ ∆(O ×O) denote the
T th query to θ̂ made by an execution of A(σ̂).

I Definition 7. A : Σ̂→ Θ is (τ, ν)-incentive compatible if there exists a T (τ, ν) ∈ N such
that for all T ≥ T (τ, ν), the following holds for any type θ and strategy σ:

Pr
(oT ,pT )∼AT (θ̂)
(o′T ,p

′
T )∼AT (σ̂)

[u(θ, qT ) ≥ u(θ, q′T )− τ ] ≥ 1− ν,

where qT (q′T ) is the preferred outcome between oT and pT (o′T and p′T ) according to oracle θ̂
(σ̂). The quantity T (τ, ν) is the IC complexity of A.9

Our goal is to design mechanisms that learn the agent’s true type in an incentive
compatible manner.

I Definition 8. A : Σ̂→ Θ is an (ε, δ, τ, ν)-IC learning algorithm if it is an (ε, δ)-learning
algorithm that is (τ, ν)-IC. We refer to the quantity max(q(ε, δ), T (τ, ν)) as the IC learning
complexity of A.

4.1 An incentive compatible exhaustive search
We first give a very simple method of achieving incentive compatible learning in the general
framework introduced in Section 4. The method proceeds by exhaustively searching over the
type space, and requires a simple structural assumption. The assumption connects agents’
payoffs to the distance metric used by the learner to assess learning accuracy. In a sense,
this lines up the agent’s incentives with the learner’s objective, and makes it easy to obtain
a satisfactory algorithm.

Suppose there exists a one-to-one assignment of outcomes to types s : Θ→ O such that

u(θ, s(θ′)) > u(θ, s(θ′′)) ⇐⇒ d(θ, θ′) < d(θ, θ′′),

so in particular θ = argmaxθ′ u(θ, s(θ′)). In the literature on scoring rules, s is called effective
with respect to d [24].

The following is an incentive compatible learning algorithm. Recall that an ε-cover of a
subset K of a metric space (M,d) is a set of points C such that for every x ∈ K, there is an
x∗ ∈ C such that d(x, x∗) ≤ ε.

1. Initialize an ε-cover {θ1, . . .} of Θ with respect to d.
2. Initialize θh ← θ1.

9 In this definition, (oT , pT ) and (o′T , p′T ) are drawn from independent executions of A.
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3. For t = 1 to T :
a. Query (s(θt+1), s(θh)).
b. If s(θt+1) is preferred, θh ← θt+1.

4. Output θh.
5. Pay the agent s(θh).

By definition of the function s, allowing the algorithm to exhaustively search over all
points of the cover will yield a θh that is the most preferred point in the cover and is also
the closest point in the cover to the report. So reporting θ yields d(θ, θh) ≤ ε. Moreover,
this (deterministic) algorithm satisfies (0, 0)-incentive compatibility for any runtime T , since
lying at any round would simply reduce the payoff of stopping at any round. The learning
complexity is the covering number Nε(Θ) of the type space (which is finite as Θ is bounded).

We now present some natural preference environments in which such an assignment
function can be constructed. In the following discussion, the outcome space is O = Rn, and
Θ is assumed to be bounded so that the search above terminates.

Euclidean preferences. Each agent has an “ideal point” θ ∈ Rn, and u(θ, x) ≥ u(θ, y) iff
||x− θ|| ≤ ||y − θ||. Let s : Rn → Rn be the identity.
Linear preferences. The type of an agent is a vector θ ∈ Rn and u(θ, x) ≥ u(θ, y) iff
θ.x ≥ θ.y (in order for preferences to be distinguishable we assume that no two θ, θ′ ∈ Θ
are scalar multiples of one another, and so for simplicity we normalize so that all types
have the same length). The indifference sets of an agent of type θ are the hyperplanes
{x : θ.x = k}, for k ∈ R. For each θ, there is a unique indifference set that is tangent to
the unit (n− 1)-sphere Sn−1. Let s(θ) be that tangent point.

Euclidean and linear preferences are characterized by natural axioms for preference
relations [14].

More generally, suppose the preferences of each agent are continuous and strictly convex,
which we define as the upper contour sets C(x) = {y : y % x} being closed, convex, and any
supporting hyperplane of C(x) being unique, for all x. For a type θ, real number k, and
outcome x ∈ Rn such that u(θ, x) = k, let Hθ

k(x) denote the supporting hyperplane of the
upper contour set {y : u(θ, y) ≥ k} at x.

Suppose that the following uniqueness requirement holds: for every pair of types θ 6= θ′,
real number k, and outcome x ∈ Rn such that u(θ, x) = k, if k′ is such that u(θ′, x) = k′,
it holds that Hθ

k(x) 6= Hθ′

k′ (x). We call this property hyperplane uniqueness.10 Then, the
argument for IC learnability in the case of linear preferences can be adapted to this setting
as well. Though the assignment function s we construct may not necessarily be effective,
we show that exhaustively searching over a sufficiently fine cover is nevertheless incentive
compatible.

I Theorem 1. Let Θ be a type space such that the preferences induced by each θ ∈ Θ are
continuous, strictly convex, and satisfy hyperplane uniqueness. Then, there exists a metric
on Θ with respect to which Θ is (ε, 0, 0, 0)-IC learnable.

Proof. For each θ, let s(θ) be the unique maximizer of u(θ, x) over the unit (n− 1)-sphere
Sn−1; uniqueness follows from the strict convexity of preferences. Note that Sn−1 and
C = {y : u(θ, y) ≥ k}, with k = u(θ, s(θ)), are on differing sides of the supporting hyperplane
of C at s(θ). Hyperplane uniqueness ensures that s is one-to-one. Let d be the metric where
d(θ, θ′) is the Euclidean distance between s(θ) and s(θ′).

10Hyperplane uniqueness is reminiscent of the single-crossing property in mechanism design.
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Let Cθk′ = {y : u(θ, y) > k′} with k′ < k and let Nθ
k′ = Ck′∩Sn−1. Clearly the diameter of

Nθ
k′ converges to 0 as k′ ↑ k. Therefore, for each θ and ε > 0, there is an open neighborhood

Nθ
ε ⊂ Bε(s(θ)) of s(θ) such that u(θ, x) > u(θ, y) for all x ∈ Nθ

ε and all y ∈ Sn−1 \ Nθ
ε

(where Nθ
ε is of the form Nθ

k′ , for k′ sufficiently close to k). 11

Now, fix the learning parameter ε, and let η > 0 be sufficiently small such that if K is an
η-cover of Sn−1, K ∩Nθ

ε 6= ∅ for all θ. Then, any x ∈ K ∩Nθ
ε satisfies u(θ, x) > u(θ, y), for

all y ∈ Sn−1 \Bε(s(θ)). Thus, the most preferred point of an agent of type θ is contained in
K ∩Nθ

ε ⊂ Bε(s(θ)), and so exhaustively searching over this η-cover is an ε-learning algorithm
with respect to d that is incentive compatible. J

It is an interesting question to see what structural conditions one can impose on the type
space, the outcome space, etc. to write down better learning mechanisms. For example,
one might hope to achieve a learning complexity that is logarithmic in the size of the cover
Nε(Θ). As we will see in the case of expected utility, naive learning algorithms achieve this
sample complexity, but fail to be incentive compatible. More generally one can ask if there
is a combinatorial complexity measure (such as VC dimension in the case of PAC learning)
that characterizes the complexity of incentive compatible learning.

4.2 The expected utility model of choice under uncertainty
We now turn to the case of belief elicitation for an expected utility agent. Belief elicitation
has a long history in experimental economics, and in the theoretical literature on scoring
rules (e.g. [15]; see [20] for a survey). A major difference with the theory of scoring rules is
that we shall take as given a protocol that is based on pairwise comparisons among uncertain
prospects.12 The case of passive learning was studied in [11].

There are n states of the world, indexed by i = 1, . . . , n. An agent has a subjective
belief α ∈ ∆n, where αi is the probability the agent assigns to state i occurring. The agent
evaluates the payoff of a vector of rewards x ∈ Rn by computing expectation according to α.
An agent’s belief α defines a preference relation %⊆ Rn × Rn, where

x % y ⇐⇒ α.x ≥ α.y.

An analyst would like to learn α by asking the agent to make several choices between
vectors of rewards. The analyst presents the agent with a sequence of pairs (x, y) and if the
agent chooses x she infers that (x− y).α ≥ 0. So the problem is related to that of learning
half spaces, but with the added complication of having to respect incentive compatibility.
An important assumption is that the analyst is able to simulate the states of the world and
observe a state according to the “ground truth” process governing the states (so for example
if the states were “rain”, “snow”, and “shine”, the analyst could simply observe the weather
on the given day).

Using the notation of the previous section, Θ = ∆n, O = Rn, and u(α, x) = Ei∼α[x] =
α.x.

In the context of learning the agent’s true belief, the analyst uses total variation distance
||α− β||TV = 1

2
∑n
i=1 |αi − βi| to measure accuracy/error.

11The neighborhoods and balls are with respect to the subspace topology on Sn−1.
12This follows experimental practice, as well as the standard model of choice under uncertainty; starting

from von-Neumann and Morgenstern [34] and Savage [33]. In the scoring rule model, subjects are asked
to report beliefs rather than carrying out a sequence of binary choices. In any case we shall use scoring
rules in our solution, just not by asking subjects to report their beliefs.
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4.2.1 Naive algorithms are not incentive compatible
First, to illustrate the restrictions of our definitions, we write down a naive algorithm for
eliciting α that achieves a good query complexity, but is not incentive compatible.

Consider a mechanism that tries to elicit each αi by performing a search (sequential or
binary) on each state. That is, for each state i, the algorithm makes queries (ei, ci~1), varying
ci over a 2ε

n -cover of [0, 1] to find the indifference points, which reveal αi to within an error
of 2ε

n . So, for example, a binary search uses O(n log n
ε ) questions to arrive at a hypothesis

within total variation distance ε from α. Note that a 2ε
n -cover of the simplex ∆n with respect

to total variation distance contains O((n/ε)n) elements, so performing a state-wise binary
search exponentially improves upon a search over the entire cover.

However, incentive compatibility is broken rather easily, since the agent has a great deal
of control over what questions the agent asks (in a similar manner to the situation in MPL).
Consider the following simple example: suppose the analyst fixes a discretization of [0, 1]
with sure amounts x1, . . . , x7, as in the binary search MPL example from Section 3, and
suppose an agent has a true belief α, with αn ≤ x6. If, instead of α, the agent reports an
α′ with α′n ∈ (x6, x7), the final question he would get asked would be (en, x7~1). The agent
would prefer x7~1, and thus would get paid off a sure amount of x7. It is clear that truthfully
reporting yields a strictly lower payoff than the misrepresentation. Notice that this situation
is even worse than that of MPL, since if the binary search ends on state n, then regardless of
the probabilities an agent assigns to states 1, . . . , n − 1, he will want to answer questions
as if he assigns most weight to state n – so there is no hope of backing-out an agent’s true
belief using this kind of scheme.

A strategic agent can easily outwit minor modifications to this scheme: for example if the
analyst does the binary searches in a random order over the states, the agent can adaptively
report a belief that assigns most weight to the last state over which the analyst performs a
binary search.

4.2.2 A mechanism based on scoring rules.
In this section we present an IC learning algorithm with IC learning complexity

O

(
n3/2 lognmax

(
log n

ε
, log 1

τ

))
.

The algorithm is based on ideas from active learning, and specifically leverages convergence
bounds on so-called disagreement based methods. Let || · || denote the L2 norm, let Sn−1

denote the unit (n− 1)-sphere, and let ρ : Rn → Sn−1 denote the projection map onto the
unit sphere defined by ρ(α) = α

||α|| .
We now present an incentive compatible learning algorithm that we henceforth refer to

as A.

1. Initialize H0 ← ∆n.
2. For t = 1 to T :

a. Choose v uniformly at random from Sn−1. If the hyperplane {x : v.x = 0} does not
intersect Ht−1, resample.

b. Let β1, β2 be any elements of Ht−1 such that ρ(β1)− ρ(β2) is a scalar multiple of v.
c. Query oracle on pair (xt = ρ(β1), yt = ρ(β2)).
d. Ht ← Ht−1 ∩ {β ∈ ∆n : β is consistent with label on (xt, yt)}

3. Output any βh ∈ HT .
4. Pay the agent off based on preference from (xT , yT ). If zT is the preferred vector, simulate

states of the world, and pay (zT )i if state i occurs.
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Before analyzing the algorithm, let us briefly remark that the analyst can always find β1,
β2 satisfying the required conditions to query the agent. Let normal vector v ∈ Sn−1 define a
hyperplane v.x = 0 that cuts through the projection ρ(H) ⊂ Sn−1 of the current hypothesis
set onto the unit sphere. Let w be a point in the interior of ρ(H) such that v.w = 0.13 We
can find an open ball B(w, r) (with respect to the subspace topology on Sn−1 induced by
Rn) of radius r centered at w such that B(w, r) ⊂ ρ(H). Then, take a point x ∈ B(w, r) in
the positive v direction from w and y ∈ B(w, r) in the negative v direction from w such that
||x− w|| = ||y − w||. Then, x− y = v||x− y||.

Choosing β1 and β2 in this manner has no effect on the analysis of the learning rate,
but is the main ingredient in achieving incentive compatibility. The learning guarantees we
obtain are due to standard bounds on the label complexity of disagreement based active
learning.

I Theorem 9. A is a learning algorithm of query complexity O(n3/2 logn log n
ε ) with respect

to total variation distance.

Proof. Suppose A receives as input an oracle α̂. If on a given round we sample a normal
vector v and correspondingly query points (xt, yt), the truthful agent’s/oracle’s preference
from (xt, yt) precisely reveals sgn(v.α) – this is simply because xt − yt and v determine the
same hyperplane.

The VC dimension of the expected utility model is linear (Theorem 2 of [11]), and
the disagreement coefficient of the class of homogeneous linear separators with respect to
the uniform distribution over normal vectors is bounded above by π

√
n (Theorem 1 of

[26]). Standard convergence results in active learning (see, e.g., [21]) then imply that with
O(n3/2 logn log 1

η ) queries, it holds with high probability that errα(αh) ≤ η for all αh in the
final hypothesis set, where

errα(β) = Pr
v∼Sn−1

[sgn(v.α) 6= sgn(v.β)] = arccos(ρ(α).ρ(β))
π

.

For ε > 0, let η = 2ε
πn <

1
π arccos

(
1− 2ε2

n2

)
, so cos(πη) > 1− 2ε2

n2 .
Running A for O(n3/2 logn log n

ε ) rounds yields that for any hypothesis αh ∈ HT ,

||ρ(α)− ρ(αh)|| =
√

(ρ(α)− ρ(αh)).(ρ(α)− ρ(αh))

=
√

2− 2ρ(α).ρ(αh)

≤
√

2− 2 cos(πη),

which is at most 2ε/n (where the final inequality is with high probability over the execution
of A). Thus ||α− αh|| ≤ 2ε

n , and so ||α− αh||TV ≤ ε. 14 J

We now analyze incentive compatibility properties of the algorithm. The main ingredient
is in using the mapping (α, i) 7→ ρ(α)i = αi

||α|| to choose what questions to ask. This mapping
is known as the spherical scoring rule, and incentivizes truthful forecasts, in the sense that
α = argmaxβ Ei∼α[ρ(β)i]. The spherical scoring rule satisfies the geometric property that

13The interior of ρ(H) can be written as ρ({β ∈ ∆n : v1.β > 0, . . . , vT .β > 0}) for some v1, . . . , vT , which
is a non-empty intersection of open half-spaces as the agent’s responses are required to be consistent.

14 ||α − αh|| ≤ 2ε
n =⇒

∑n

i=1(αi − αhi )2 ≤ 4ε2

n2 , so (αi − αhi ) ≤ 2ε
n for each i, which implies that

||α− αh||TV ≤ ε.
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Ei∼α[ρ(β)i] = ||α|| cos(α, β), where cos(α, β) is the cosine of the angle formed by vectors
α, β. Moreover, the spherical scoring rule is effective with respect to the renormalized L2

metric, i.e. Ei∼α[ρ(β)i] > Ei∼α[ρ(β′)i] if and only if ||ρ(α)− ρ(β)|| < ||ρ(α)− ρ(β′)||. Note
that the spherical scoring rule plays the role of the assignment function s in the more general
preference framework.

We use the following straightforward observation bounding the deviation from the max-
imum possible payoff in terms of the renormalized L2 distance from the true type.

I Lemma 10. Let ||ρ(α)− ρ(α′)|| ≤ λ. Then

Ei∼α[ρ(α′)i] ≥ Ei∼α[ρ(α)i]−
1
2λ

2.

Proof. We can write ||ρ(α)− ρ(α′)||2 = 2(1− cos(α, α′)), so

Ei∼α[ρ(α′)i] = ||α|| cos(α, α′) = ||α||
(

1− 1
2 ||ρ(α)− ρ(α′)||2

)
≥ Ei∼α[ρ(α)i]−

1
2λ

2. J

I Theorem 2. The IC learning complexity of A is O
(
n3/2 lognmax

(
log n

ε , log 1
τ

))
.

Proof. Suppose we run A for T rounds to achieve (ε, δ)-learning. By Theorem 9, it holds
with high probability that the hypothesis set obtained will be contained inside a small ball
with respect to renormalized L2 distance. More precisely, if A is given access to oracle α̂,
and λ = 2ε/n, then

Pr[HT (α) ⊆ B(α, λ)] ≥ 1− δ,

where HT (α) is shorthand to denote a hypothesis set drawn from an execution of AT (α̂) and
B(α, λ) = {α′ : ||ρ(α)− ρ(α′)|| ≤ λ}.

By Lemma 10,

Pr
[
∀αh ∈ HT (α),Ei∼α[ρ(αh)i] ≥ Ei∼α[ρ(α)i]−

1
2λ

2
]
≥ Pr[HT (α) ⊆ B(α, λ)] ≥ 1− δ,

so any strategy can yield an advantage of at most 1
2λ

2 = 2ε2

n2 over truthful reporting. For
ε < n

√
τ and δ = ν we get (τ, ν)-incentive compatibility. The IC complexity is the query

complexity of (n
√
τ , ν)-learning, which is O(n3/2 logn log 1

τ ).
Thus, the number of queries required to simultaneously achieve (ε, δ)-learning and (τ, ν)-

incentive compatibility is O
(
n3/2 lognmax

(
log n

ε , log 1
τ

))
. J

Our notion of incentive compatibility is approximate, and allows for small gains to the
agent from misrepresenting their beliefs. We now demonstrate that, even though Theorem 2
allows for the possibility of gaining some advantage by playing strategically, we can ensure
that with high probability any type learned by the analyst as a result of a strategic interaction
will be sufficiently close to the true type that the analyst accurately learns the true type
nonetheless.

Suppose the analyst wants to achieve ε learning accuracy, and additionally wants to
guarantee that with probability at least 1− δ, any best-responding agent will report a belief,
or type, that is within ε total variation distance to the true type (note that this is a slightly
different notion of incentive compatibility than the previous one). As usual, let α denote the
agent’s true type. Let ε0 <

ε
3 , λ = 2ε0

n , δ0 < 1−
√

1− δ, and run the algorithm to achieve
(ε0, δ0)-learning.
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We first show that any misreport that is sufficiently far from the true type yields, with
high probability, a strictly worse payoff than truthful reporting. Recall that B(α, λ) denotes
the closed ball of radius λ centered at α with respect to the renormalized L2 distance.

Suppose that ||ρ(α)− ρ(β)|| > 2λ, so that B(α, λ) ∩B(β, λ) = ∅. Then, as the spherical
scoring rule is effective with respect to renormalized L2-distance,

Pr
[
∀αh ∈ HT (α),∀βh ∈ HT (β),Ei∼α[ρ(αh)i] > Ei∼α[ρ(βh)i]

]
≥ Pr[HT (α) ⊆ B(α, λ) ∧HT (β) ⊆ B(β, λ)]
≥ (1− δ0)2

≥ 1− δ,

so it holds with high probability that any such misreport yields a strictly worse payoff.
The remaining misreports are sufficiently close to the true type such that the analyst does

not care if these allow the agent to increase his payoff. Indeed, if ||ρ(α)− ρ(β)|| ≤ 2λ, since
HT (α) ⊆ B(α, λ) and HT (β) ⊆ B(β, λ) with high probability, the triangle inequality yields

||ρ(α)− ρ(βh)|| ≤ ||ρ(α)− ρ(β)||+ ||ρ(β)− ρ(βh)|| ≤ 3λ,

so ||α− βh||TV ≤ 3ε0 < ε. Thus with probability at least 1− δ, the analyst will learn a βh
such that ||α− βh||TV ≤ ε for any such misreport.

To summarize, the algorithm can be run for O(n3/2 logn log n
ε ) rounds (the exact number

of rounds would just be a small constant factor more than that required by the vanilla
learning requirement) such that regardless of what strategy an agent may use to best respond
during the interaction, with high probability the analyst will end up accurately learning the
agents true type.

5 Concluding remarks

We have analyzed the incentive compatibility of active learning using data labeled by human
subjects. Our results are directly applicable to the adaptive design of economic experiments
that seek to estimate subjects’ preference parameters. Our paper has discussed some of
the leading areas of economic experimentation: estimation of risk aversion from multiple
price lists, and belief elicitation using convex budgets and scoring rules. We highlight some
challenges in making active learning compatible with incentives, but for the most part we offer
satisfactory algorithmic solutions to the specific areas of experimentation we have focused on.

There are, of course, many other areas of application of active learning, and incentive
issues will be important as long as the required training data is labeled by human subjects
under incentivized conditions. To this end, we have introduced a general model of active
learning under incentives: we believe that we are the first to do so, and we expect our findings
to motivate additional investigations of the problems at the intersection of learning and
incentives.
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