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Abstract
We explore the possibility of basing one-way functions on the average-case hardness of the fundamental
Minimum Circuit Size Problem (MCSP[s]), which asks whether a Boolean function on n bits specified
by its truth table has circuits of size s(n).

1. (Pseudorandomness from Zero-Error Average-Case Hardness) We show that for a given size
function s, the following are equivalent: Pseudorandom distributions supported on strings
describable by s(O(n))-size circuits exist; Hitting sets supported on strings describable by s(O(n))-
size circuits exist; MCSP[s(O(n))] is zero-error average-case hard. Using similar techniques,
we show that Feige’s hypothesis for random k-CNFs implies that there is a pseudorandom
distribution (with constant error) supported entirely on satisfiable formulas. Underlying our
results is a general notion of semantic sampling, which might be of independent interest.

2. (A New Conjecture) In analogy to a known universal construction of succinct hitting sets
against arbitrary polynomial-size adversaries, we propose the Universality Conjecture: there is a
universal construction of succinct pseudorandom distributions against arbitrary polynomial-size
adversaries. We show that under the Universality Conjecture, the following are equivalent:
One-way functions exist; Natural proofs useful against sub-exponential size circuits do not exist;
Learning polynomial-size circuits with membership queries over the uniform distribution is hard;
MCSP[2εn] is zero-error hard on average for some ε > 0; Cryptographic succinct hitting set
generators exist.

3. (Non-Black-Box Results) We show that for weak circuit classes C against which there are natural
proofs [44], pseudorandom functions secure against poly-size circuits in C imply superpolynomial
lower bounds in P against poly-size circuits in C. We also show that for a certain natural variant
of MCSP, there is a polynomial-time reduction from approximating the problem well in the
worst case to solving it on average. These results are shown using non-black-box techniques, and
in the first case we show that there is no black-box proof of the result under standard crypto
assumptions.
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1 Introduction

We investigate the relationship between the complexity of the Minimum Circuit Size Problem
(MCSP) [2] and the existence of various kinds of pseudorandom objects, such as hitting sets
and pseudorandom sets, succinctly describable or not, in the cryptographic regime. There
are two broad regimes of pseudorandom constructions: the complexity-theoretic regime,
where the generator has more resources than the adversary, and the cryptographic regime,
where the adversary can have more resources than the generator. In the complexity-theoretic
regime, there is a beautiful theory [40, 31] giving equivalences between the existence of hard
problems in E (linear exponential time), and explicit constructions of hitting set generators
and pseudorandom generators.

In the cryptographic regime, the celebrated result of [22] gives an equivalence between
pseudorandom generators and one-way functions, which are in many ways the fundamental
cryptographic primitive. However, as we point out, there are several gaps in our understanding
of the relationships between hardness and pseudorandomness in the cryptographic regime.
To some extent, these gaps reflect an imperfect knowledge of average-case hardness for NP
in general. In this paper, we make the argument that the average-case complexity of MCSP
in particular is deeply relevant to pseudorandomness in the cryptographic regime.

We first discuss the questions that motivate us.

1.1 Our Questions
1.1.1 One-way Functions
From a cryptographer’s point of view, one-way functions are an extremely robust and useful
primitive, forming the basis for a range of important crypo constructions [34]. However,
one-way functions do not fit very neatly into the complexity landscape. The hardness
assumptions required to do cryptography seem stronger than the assumptions traditionally
studied in complexity theory, and bridging this gap is an important open problem.

I Question 1. Is there a natural well-studied problem in NP whose average-case hardness
with respect to some natural distribution is equivalent to the existence of one-way functions?

An attempt to base one-way functions on a standard complexity assumption was made
by Ostrovsky and Wigderson [42], who showed that a weak variant of one-way functions
called auxiliary-input one-way functions follow from the assumption that ZK (computational
zero-knowledge) is not contained in BPP. It is unknown whether the existence of one-way
functions is equivalent to the existence of auxiliary-input one-way functions. An equivalence
result would imply that one-way functions could be based on worst-case hardness of ZK,
which “would have a major impact on cryptography” [10].

I Question 2. Are one-way functions equivalent to auxiliary-input one-way functions?

One-way functions are also relevant to proof complexity. The main result of [44] is that
if one-way functions exist, “natural proofs” of lower bounds against superpolynomial-size
circuits do not. Here a “natural proof” is a property of Boolean functions that is satisfied with
significant probability by a random Boolean function, and is moreover easy to check. Most
standard algebraic and combinatorial lower bound techniques yield properties of this form.

Thus one-way functions rule out natural proofs of lower bounds, but could it be the case
that neither one-way functions exist nor natural proofs? Both objects are useful, the first for
cryptographic applications and the second for proof theory, so it would be nice to have at
least one of them available, even if it is impossible to have both.

I Question 3. Can we base one-way functions on the non-existence of natural proofs?
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1.1.2 Pseudorandomness
In many contexts where pseudorandomness is relevant, there is a distinction between a
one-sided “hitting” notion where the goal is to find an explicit set of points that hits
every “easy” dense set and a two-sided “pseudorandom” notion, where the question is to
find an explicit distribution on points that approximates every easy set. The support of
a pseudorandom distribution is a hitting set, but it is not clear in general how to get
pseudorandom distributions from hitting sets. Sometimes the two notions coincide, and this
makes for a cleaner theory. This is the case for example with the complexity-theoretic regime,
where the results of [40, 31] imply that hitting set generators (HSGs) and pseudorandom
generators (PRGs) are equivalent.

How about the cryptographic regime? What is the power of HSGs in this setting?
Surprisingly, this question doesn’t seem to have received much attention, though it seems a
very natural one.

Part of the reason might be that, in contrast to PRGs, HSGs are not obviously robust.
For instance, while we can increase the “stretch” of a PRG simply by iterating it, this does
not seem to work with HSGs.

I Question 4. Can HSGs be stretched in the cryptographic regime? For example, does a
HSG with seed length N0.5 (where N is the output length) imply one with seed length N0.25?

Question 4 might seem purely curiosity-driven, but in fact it has relevance to proof complexity
and cryptography against non-deterministic adversaries, as suggested by Rudich [45]. The
notion of cryptographic pseudorandomness does not make sense against non-deterministic
adversaries, as a non-deterministic adversary could break the PRG by simply guessing the
seed and checking that it maps to his/her input. However, a crucial observation is that
the notion of HSG still does make sense against non-deterministic adversaries. Rudich
defined the notion of a “demi-bit” to capture hitting sets in this setting, and asked questions
about whether they can be stretched. Indeed, Question 4 is a version of his question for
deterministic adversaries.

Cryptographic PRGs are equivalent to the existence of one-way functions, as shown
by [22]. Is there a comparable connection for HSGs?

I Question 5. In the cryptographic regime, is the existence of HSGs equivalent to some
notion of average-case hardness for a decision or search problem?

Finally, an ideal situation in terms of the cleanness of the resulting theory would be if HSGs
are simply equivalent to PRGs.

I Question 6. Are HSGs equivalent to PRGs in the cryptographic regime?

1.1.3 The Minimum Circuit Size Problem and Learning
The Minimum Circuit Size Problem (MCSP), which asks if a given string is the truth table of
a function with small circuits, is both fundamental and elusive. It asks a very natural question
about the complexity of a string, and the naturalness and importance of the problem have
been clear since work by Soviet researchers in the 50s and 60s [46]. However, the problem
has also been elusive in terms of classifying its complexity. It is said that Levin delayed
publication of his seminal paper on NP-completness because he was hoping to show MCSP is
NP-complete [8]. Nearly 50 years later, we still lack even a clear belief about whether MCSP
is NP-complete or not.

ITCS 2020
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Natural proofs are essentially zero-error algorithms for MCSP on average over the uniform
distribution [44, 24], so it is no surprise that the “natural proofs” paper revived work on
MCSP and its place in the complexity of landscape. There has been a long line of recent
works on the problem [33, 5, 3, 4, 7, 39, 53, 6, 25, 26, 24, 41]. In fact, the work by Williams
[53] implicitly studies connections between MCSP and derandomization, but he is interested
in connections to complexity-theoretic derandomization, while we are interested in the
cryptographic regime, which raises some very different issues.

Despite recent work, major questions still remain about how the problem relates to other
problems. Indeed, a number of the cited works deal with the difficulties of constructing
reductions to MCSP.

I Question 7. Is MCSP or one of its variants equivalent in complexity to some other
complexity class or notion of independent interest?

MCSP comes supplied with a parameter - the size s for which we wish to know whether
the input truth table has circuits of that size. Often complexity results about MCSP are
fairly robust to this parameter, but there is no formal justification known for this. It was
suggested in [24] that the problem might be easier to show robust to its parameter in terms
of average-case complexity.

I Question 8. Does the average-case easiness of MCSP with parameter 2n/4 imply the
average-case easiness of MCSP with parameter 2n/2?

The MCSP problem is closely connected to Valiant’s PAC learning model [52]. Learning
algorithms can be thought of as methods to solve the search version of MCSP - they are given
access to the truth table of a Boolean function with small circuits, and need to efficiently find
a small circuit that approximates the truth table well. Valiant observed in his original paper
that polynomial-size circuits are not learnable in his model under cryptographic assumptions,
and it was observed in [43] that non-learnability follows from the assumption that one-way
functions exist. However the precise complexity of learning in various models is still not
known despite more than three decades of work [52, 35, 11, 10, 15, 50]. In particular, one can
ask if there is a converse to the hardness result of [52, 43] for some natural learning model.

I Question 9. For some natural learning model, does non-learnability of polynomial-size
circuits imply the existence of one-way functions?

MCSP has stubbornly resisted attempts to show that it is NP-complete. It is natural to
wonder if it has structural features that distinguish it from other NP-complete problems, such
as for example random self-reducibility or a worst-case to average-case reduction. This might
give some evidence that MCSP is not NP-complete - it is known under standard complexity
assumptions that NP-complete problems do not have black-box worst-case to average-case
reductions [17, 12].

I Question 10. Is there a worst-case to average-case reduction for MCSP? Or to ask a more
relaxed question, does average-case easiness of MCSP imply non-trivial approximations for
the problem?
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1.2 Results
1.2.1 Pseudorandomness from Zero-Error Average-Case Hardness
We begin by showing connections between zero-error average-case hardness of MCSP, and
the existence of succinct hitting sets and pseudorandom distributions. As mentioned before,
we are inspired by the connections between these notions in the complexity-theoretic setting
[40, 31], and are looking for analogous results in the cryptographic setting.

Let us first explain what we mean by zero-error average-case hardness of MCSP. Given any
size function s : N→ N, MCSP[s] has a very natural distribution on inputs associated with
it, namely the uniform distribution. MCSP[s] is heavily biased over the uniform distribution
since the overwhelming majority of truth tables correspond to hard Boolean functions. So
it does not make sense to study bounded-error notions of average-case hardness over the
uniform distribution - the trivial algorithm that always says “no” will do very well. Instead,
we consider zero-error algorithms, i.e., algorithms that always output the correct answer or
“?”, and output the correct answer with noticeable probability over the uniform distribution.

It turns out that this notion of average-case hardness is fairly robust. It was shown in [24]
that average-case hardness is essentially equivalent to the non-existence of Razborov-Rudich
natural proofs. Thus the main result of Razborov and Rudich [44] showing that natural
proofs don’t exist if one-way functions exist can also be interpreted as showing zero-error
average-case hardness of MCSP[s] for any s = 2Ω(n) under the assumption that one-way
functions exist. A major motivation for this paper is the question of whether the converse
holds, i.e., whether one-way functions can be based on zero-error average-case hardness of
MCSP[s] for reasonable size functions s. Indeed, by the connection we just mentioned with
natural proofs, this is equivalent to Question 3.

It is known in the cryptographic setting that the existence of pseudorandom functions
of circuit complexity 2εn for any ε > 0 is equivalent to the existence of one-way functions
[22, 20]. In order to make progress toward basing one-way functions on zero-error average-case
hardness of MCSP, we first show how to derive weaker versions of pseudorandom functions.
Succinct hitting sets and succinct pseudorandom distributions are examples of such weaker
objects, as we explain below.

A succinct set (resp. distribution) is a set of (resp. distribution over) strings, each of
which, when interpreted as the truth table of a Boolean function, has circuits that are not
too large. Succinct hitting sets are simply succinct sets that are hitting sets against arbitrary
poly-size adversaries. A succinct pseudorandom distribution is a succinct distribution that is
pseudorandom against arbitrary poly-size adversaries.

To compare these notions with pseudorandom functions, we note that pseudorandom
functions are essentially equivalent to succinct PRGs, i.e., succinct pseudorandom distribu-
tions that are efficiently samplable. Similarly, a succinct HSG is an efficiently computable
function whose range is a collection of succinct hitting sets.

It is fairly straightforward to show that zero-error average-case hardness of MCSP[Õ(s)],
Õ(s(n))-succinct hitting sets and Õ(s(n))-succinct HSGs are all equivalent. We give this
argument in Subsection 3.1 of Section 3. The equivalence between the second and third
notions follows from the existence of universal succinct HSGs, i.e., a fixed polynomial-time
construction that is guaranteed to be a succinct HSG if succinct hitting sets exist. This
is essentially folklore - the idea is to use the mapping from circuits to the truth tables of
functions they compute. Indeed, this has been a very fruitful technique in complexity theory
- the “easy witness” method of [32, 29].

What seems less straightforward is to get a connection between succinct hitting sets and
succinct pseudorandom sets. This is what we manage to show.

ITCS 2020
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I Theorem 1 (Informal Statement). The following are equivalent:
1. For all ε > 0, there are succinct hitting sets supported on truth tables of circuit complex-

ity 2εn.
2. For all ε > 0, MCSP with parameter 2εn is zero-error hard on average.
3. For all ε > 0, there are succinct pseudorandom distributions supported on truth tables of

circuit complexity 2εn.

It is perhaps surprising that based on a zero-error average-case notion of hardness for
MCSP, we are able to get pseudorandom distributions that are indistinguishable from random
with respect to bounded two-sided error.

The proof of Theorem 1 proceeds via a certain Sampler-Distinguisher game we define
here, inspired by the PRF-Distinguisher game in [41]. The analysis of the game uses the
approximate Min-Max theorem of [9, 38] and is fairly general. We note that the approximate
Min-Max theorem has been used in many different contexts in complexity theory and
pseudorandomness (see [51]), but as far as we are aware, our use of it here to derive
pseudorandomness from zero-error average-case hardness is novel.

Indeed our techniques can be used to establish an analogous result for Satisfiability based
on Feige’s hypothesis [16] that random k-CNFs of linear density are hard to refute. Feige’s
hypothesis is essentially a hypothesis about zero-error average-case hardness of k-SAT under
a natural distribution on k-CNFs, just as the non-existence of natural proofs is a hypothesis
about zero-error average-case hardness of MCSP. One way of stating the hypothesis is that
errorless polynomial-time algorithms, which always output the correct answer or “?” and
output the correct answer with high probability over randomly chosen k-CNFs of linear
density, do not exist.

In this case again, we get a consequence for pseudorandom distributions. Just as the
pseudorandom distributions obtained in Theorem 1 are succinct, i.e., supported on YES
instances of MCSP[s], here the pseudorandom distributions obtained are supported on
satisfiable instances.

I Theorem 2 (Informal Statement). For any fixed integer k, if random k-CNFs with any
linear number of clauses are hard to refute for non-uniform poly-time algorithms, then for
each ε > 0 there is a pseudorandom distribution over satisfiable formulas with error ε.

We abstract out the main idea behind the proofs of Theorems 1 and 2 to show a more
general connection between zero-error average-case hardness for a language Q ⊆ {0, 1}∗
and the existence of pseudorandom distributions supported on a language Q′ ⊆ {0, 1}∗.
We show that such a connection exists whenever there are samplers satisfying a certain
semantic condition. Recall that a sampler f from n bits to m bits with seed length ` is a
polynomial-time computable function such that for any bounded function g on m bits, for
most inputs x of length n, the expectation of g(f(x, U`)) is close to the expectation of g(Um).
Samplers are closely related to randomness extractors [49]. We consider samplers with an
additional condition: whenever x ∈ Q, for every y of length `, f(x, y) ∈ Q′. We call such
samplers (Q,Q′)-semantic samplers, and show that the existence of semantic samplers with
good parameters implies a strong connection between zero-error average-case hardness and
pseudorandomness.

We note that this connection between samplers and pseudorandomness is different to the
well-known connection of Trevisan [47] between hardness-based pseudorandom generators
and extractors. Indeed, Trevisan’s connection does not involve any semantic property of the
extractor.
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1.2.2 A New Conjecture and Its Consequences
Theorem 1 partly addresses Questions 5 and 6 in Subsection 1.1, but it is not clear what
it says about the others. Motivated by a belief that the questions in Subsection 1.1 are all
connected and part of a unified picture, we propose a natural conjecture about universal
succinct PRGs that results in such a picture.

A universal succinct PRG is a fixed polynomial-time computable function f such that if
succinct pseudorandom distributions exist, then f induces such distributions on uniformly
chosen seeds.

I Universality Conjecture (Informal Statement). There exist universal succinct PRGs.

We briefly discuss the context for the Conjecture. Universality is a phenomenon that is widely
observed in complexity theory and the foundations of cryptography. For example, there are
universal one-way functions [36], and via the equivalence between one-way functions and
PRGs [22], there are universal PRGs in the cryptographic setting. In the complexity-theoretic
setting, universal HSGs and PRGs follow from the equivalence of HSGs, PRGs and circuit
lower bounds for E def= DTIME(2O(n))), together with the existence of complete problems for
E. Given the variety of such universal examples, and the variety of ways for establishing that
they exist, it is perhaps not unreasonable to expect them in the context of succinct PRGs.

An even closer analogy is to the case of succinct HSGs, which are the one-sided error
version of succinct PRGs. As described in the previous subsection, universal succinct HSGs
can be shown to exist by interpreting circuits succinctly describing hitting sets as seeds
to a hitting set generator. This is a folklore argument that we formalize in Section 3 as
Proposition 9. The Universality Conjecture is simply the analogue of Proposition 9 for
pseudorandom distributions.

Next we turn to the consequences of our Conjecture for the questions raised in the
introduction. We make a few clarifications about notation in the informal statement of our
main result below. N always refer to the output size of some generator and is a power of 2,
and n def= log(N). By default, we take the succinctness parameter (i.e., the size of circuits
representing each element of the range) to be the same as the seed length. To clarify any
further notational issues, please refer to Section 2.

I Theorem 3 (Informal Statement). If the Univerality Conjecture is true, then the following
hold:
1. One-way functions exist iff there is an ε < 1 such that MCSP with parameter 2εn is

zero-error hard on average.
2. One-way functions exist iff auxiliary one-way functions exist.
3. One-way functions exist iff natural proofs against SIZE(poly) do not exist.
4. For any 0 < ε < δ < 1, a succinct HSG with seed length Nδ implies a succinct HSG with

seed length N ε.
5. For any ε < 1, a succinct HSG with seed length N ε exists iff MCSP with parameter 2εn is

zero-error hard on average.
6. For any ε < 1, a succinct HSG with seed length N ε exists iff a PRG with seed length N ε

exists.
7. For any 0 < ε < δ, MCSP with parameter 2εn is zero-error hard on average iff MCSP

with parameter 2δn is zero-error hard on average.
8. One-way functions exist iff polynomial-size circuits cannot be learned with membership

queries under the uniform distribution in polynomial time.

ITCS 2020
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Items 1 to 3 of Theorem 3 answer Questions 1 to 3. Items 4 to 6 answer Questions 4 to 6,
but for succinct HSGs rather than HSGs. Question 7 is also answered by Item 1. Questions
8 and 9 are answered by Items 7 and 8.

Of the items in Theorem 3, it is perhaps Item 1 which is of most interest. Most candidate
one-way functions are based on problems in NP∩ coNP. MCSP, however, is believed by many
to be NP-complete, and therefore unlikely to be in coNP. Indeed, a conjecture of Rudich [45]
even asserts that MCSP is hard on average for coNP.

Item 1 also has implications for Impagliazzo’s “Five Worlds” [28]. In particular, if the
Conjecture were true and we could base one-way functions on average-case hardness of MCSP,
we would get evidence against the existence of Pessiland: a world where there are problems
that are hard on average, but one-way functions do not exist.

We briefly explain how the Conjecture helps to show these results. For every item
in Theorem 3, one of the two directions of the equivalence was known before, and it is
the Conjecture, together with Theorem 1, that enables us to show the reverse direction.
The crucial aspect of the Conjecture is that it allows us to derive succinct PRGs from
succinct pseudorandom distributions. Once we have a PRG, we are able to stretch the PRG
using standard techniques, and this enables us to close the chain of implications between
average-case hardness of MCSP, succinct HSGs and succinct PRGs.

We discuss some reasons why it might be useful to consider the Universality Conjecture.
First note that common beliefs in the crypto and complexity communities support the

Conjecture. Indeed, most complexity theorists and cryptographers believe that one-way
functions exist. If one-way functions exist, by [22] and [20], pseudorandom function generators
exist, and any pseudorandom function generator is trivially a universal succinct PRG.

Of course, the issue is not simply truth but also provability. Is it likely the Universality
Conjecture will be proved in the near future? We do not have a strong belief about this, but
there is at least some reason to hope that more sophisticated versions of the proof technique
of Theorem 1 might help. More precisely, understanding uniformity and succinctness of
approximate strategies for Min-Max games [9, 38] is a possible direction.

Regardless of whether the Conjecture will be settled in the near future, it could function
as an organizing principle connecting various fundamental phenomena that we still don’t
understand well, including the complexity of MCSP, the hardness of learning, the relationship
between uniform and non-uniform versions of one-way functions, the structure of zero
knowledge, reducibilities between average-case problems over the uniform distribution, and
the role of pseudorandomness in proof complexity, among others.

1.2.3 Non-Black-Box Results
Finally, we show a couple of non-black-box results about MCSP. As a meta-complexity
problem, i.e., a problem whose instances themselves encode computations, MCSP seems
particularly amenable to non-black-box techniques. Hopefully this amenability will come
in useful in establishing strong unconditional connections between the hardness of MCSP
and the existence of one-way functions. Basing one-way functions on NP-hardness in a
black-box fashion has unlikely consequences [1], so if MCSP did turn out to be NP-complete
and we wished to base one-way functions on its worst-case hardness, we would need to use
non-black-box techniques.

Our first result is about circuit classes that are weak in the sense that there are natural
proofs useful against them. For such circuit classes (which include AC0, AC0[p] for prime p,
etc.), we establish a surprising implication from lower bounds for MCSP to lower bounds
for P.



R. Santhanam 68:9

I Theorem 4 (Informal Statement). Let D be any circuit class closed under projections for
which there are natural proofs against D. If there is a constant k such that MCSP with
parameter nk is zero-error hard on average against D, then P is not contained in D.

The proof of Theorem 4 is non black-box, i.e., it does not work when the circuit class D
against which we are arguing is given access to an oracle. Indeed, we can prove that under
standard crypto assumptions, there is no black-box implication of the sort we show.

The reason we find the implication in Theorem 4 somewhat surprising is that the
hypothesis is about the hardness of a problem in NP and unlikely to be in P, indeed even
believed by many to be NP-complete. Yet the conclusion is about super-polynomial lower
bounds within P!

Our next result addresses the relaxed version of Question 10. We observe that a recent
search-to-decision reduction of [14] for a slight variant of MCSP called AveMCSP (where the
question is whether there is a small circuit that computes the input truth table correctly on
a 0.9 fraction of inputs) actually gives an approximation to average-case reduction. We note
that Shuichi Hirahara [23] independently observed an analogous approximation to average-
case reduction for the standard version of MCSP, based on [13], however the approximation
factor there is much larger.

I Theorem 5 (Informal Statement). There is an approximation to average-case reduction for
AveMCSP.

Theorem 5 has implications for the NP-hardness of problems such as MCSP and AveMCSP.
For several NP-hard problems, the theory of probabilistically checkable proofs establishes
strong inapproximability results under the NP 6= P assumption. Thus an approximation to
average-case reduction can be considered morally similar to a worst-case to average-case
reduction. It is known under standard complexity assumptions that NP-complete problems
do not have black-box worst-case to average-case reductions [17, 12].

Does this suggest that AveMCSP is unlikely to be NP-complete? Not quite! The proof of
Theorem 5 is also non black-box, even though the ideas are quite different from the proof of
Theorem 4.

1.3 Related Work
The first paper to connect the complexity of MCSP with the existence of one-way functions
was the “natural proofs” paper of Razborov and Rudich [44]. Razborov and Rudich do
not explicitly consider MCSP - indeed, this problem was only defined in subsequent work
of Kabanets and Cai [33]. The main result of [44] states that exponentially-hard one-way
functions imply the non-existence of natural proofs with poly-size constructibility that
are useful against polynomial-size circuits. This can be re-interpreted [24] as saying that if
exponentially-hard one-way functions exist, then MCSP[poly(n)] is zero-error hard on average.
Thus an average-case algorithm for MCSP can be used to break any one-way function. The
main question we consider in this paper is whether the converse holds.

Various works have attempted to connect the existence of one-way functions and their
variants with other complexity notions. Ostrovsky and Wigderson [42] showed that if
ZK 6= BPP, then auxiliary-input one-way functions exist. They also showed that if ZK is
hard for BPP on average (in the bounded-error sense), then one-way functions exist. [30]
and [11] (see also [10]) show equivalences between the existence of one-way functions and
certain average-case hardness assumptions for learning.

ITCS 2020
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More recently, interest in the complexity of MCSP and its connections with learning and
pseudorandomness has been re-awakened by the result of [13] which shows that natural
proofs useful against a circuit class C imply efficient learning algorithms for C, under certain
reasonable conditions on C. Building on this, [41] show equivalences between various forms
of learning, as well as a dichotomy between learning and pseudorandomness in a certain
parameter regime.

A very recent work of Hirahara [23] (who obtained his results independently from ours)
builds on [13] to show that solving MCSP on average in the zero-error sense implies efficient
non-trivial approximability of the minimum circuit size. Thus, if MCSP were NP-hard even
to approximate non-trivially, the existence of hard-on-average problems in NP would follow.
This suggests the possibility of excluding Impagliazzo’s Heuristica world [28] where NP is
hard in the worst case but not hard on average by studying MCSP and showing that it is
NP-hard to approximate.

In contrast to [23], our focus in this paper is on finding evidence against the existence of
Pessiland: another world of Impagliazzo’s [28] where there are hard-on-average problems but
one-way functions do not exist.

2 Preliminaries

2.1 Notation

For convenience, we use f : K → N to denote a function mapping K bits to N bits, i.e.,
f : {0, 1}K → {0, 1}N . We let FK→N denote the family of all functions f : K → N . We
sometimes view a boolean function f : N → 1 as a subset of {0, 1}N .

Throughout this paper, we use capital letters to denote the input length and output
length of a function when we are interested in interpreting the output as the truth table of a
Boolean function. In such a case, we will use a lowercase letter to denote the logarithm of
the number represented by the corresponding uppercase letter.

We let UL denote the uniform distribution over {0, 1}L. We occasionally abuse notation
and identify a set S with the uniform distribution over the set. We say that a function
f : K → N ε-fools a family of functions D ⊆ FN→1 if |Pr[g(f(UK)) = 1]−Pr[g(UN ) = 1]| ≤ ε
for every g ∈ D.

A function g : N → 1 is γ-dense if Pr[g(UN ) = 1] ≥ γ. We say that f ∈ FK→N hits g is
f({0, 1}K) ∩ g−1(1) 6= ∅.

Given a Boolean function f ∈ Fn→1, tt(f) is the 2n-bit string which represents the truth
table of f in the standard way, and conversely, given a string y ∈ {0, 1}2n , fn(y) is the
Boolean function in Fn→1 whose truth table is represented by y.

Given a circuit class C, we use C[s(n)] to refer to the class of functions computed by
C-circuits of size s(n). Given a language L ⊆ {0, 1}∗, co-L denotes the complement of L.

We say a circuit class C is standard if there is a quasi-linear time Turing machine which,
given a representation C̃ of a circuit C from the class and an input x, computes C(x).
All commonly studied circuit classes contained in the class of general Boolean circuits are
standard.

For a size bound s : N → N, we use quasi-s(n) to denote a function of growth rate
s(n) · poly(log s(n)).

The density of a set A ⊆ {0, 1}N is |A|/2N . Given a language L and an integer n,
Ln = L ∩ {0, 1}n denotes the slice of L at length n.
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2.2 Pseudorandomness and Average-Case Hardness

Let K : N→ N be a function such that K(N) < N for all N , and ε : N→ [0, 1] be a function.
Moreover, let C be a complexity class and D be a class of functions. A C-PRG against
D with seed length K and error ε is a sequence f = {fN}N∈N of functions such that (i)
f ∈ FK(N)→N ; (ii) f ∈ C; and (iii) the output of fN ε(N)-fools every function in FN→1 ∩D,
whenever N is sufficiently large. If ε is left unspecified, it will be taken to be 1/Nω(1) by
default. Similarly C will be taken to be DTIME(poly(N)) by default, and D will be taken to
be SIZE(poly(N)) by default. Note that in this default situation, the generator is computable
in a fixed polynomial time in its output length, but must be secure against arbitrary poly-size
distinguishers.

We say f = {fN}N∈N is a C-HSG against D if instead of condition (iii) above the output
of fN hits every set AN ⊆ {0, 1}N of density ε(N) in D. Again the error parameter is taken
to be 1/Nω(1) by default.

It is instructive to consider the following examples: standard cryptographic PRGs are
default PRGs with seed length K(N) = NΩ(1), while complexity-theoretic (Nisan-Wigderson)
PRGs are E-PRGs against SIZE(N) with error 1/N , where the seed length can be anything
between logN and N − 1.

We say the seed length K is non-trivial if K(N) < N .
We will be interested in succinct pseudorandom distributions and hitting sets. Let C

be a circuit class and ε : N → [0, 1] be an error bound. We say that there are C-succinct
pseudorandom distributions against D with error ε if there is a set S ⊆ {0, 1}∗ and a
probability distribution µS supported on S such that for each N a power of 2, (i) For each
y ∈ SN , fn(y) ∈ C; and (ii) |Pry←µS

[g(y) = 1]− Pry←UN
[g(y) = 1]| ≤ ε(N) for every g ∈ D.

By default, we will take ε(N) to be 1/Nω(1) as usual.
Similarly, we say that there are C-succinct hitting sets against D with error ε if there is a

set S ⊆ {0, 1}∗ such that for each N a power of 2, (i) For each y ∈ SN , fn(y) ∈ C; and (ii)
For each set AN ⊆ {0, 1}N of density ε(N), SN has non-empty intersection with AN .

A C-succinct PRG is simply a PRG that induces a C-succinct pseudorandom distributions
when a seed of any given length is chosen uniformly at random, and a C-succinct HSG is a
HSG whose range is a collection of C-succinct hitting sets.

I Definition 6 (Universal Succinct Generators). Let C be a circuit class and K : N→ N be a
function. A universal C-succinct HSG with seed length K is a poly-time computable sequence
f = {fN}N∈N of functions from K(N) bits to N bits such that if there are C-succinct hitting
sets against SIZE(poly) with error ε(N), then f is a C-succinct HSG with error ε(N). A
universal C-succinct PRG with seed length K is a poly-time computable family f of functions
from K(N) bits to N bits such that if there are C-succinct pseudorandom distributions against
SIZE(poly) with error ε(N), then f is a C-succinct PRG with error ε(N). A non-uniform
universal C-succinct PRG with seed length K is a poly-size computable family f of functions
from K(N) bits to N bits such that if there are C-succinct pseudorandom distributions against
SIZE(poly) with error ε(N), then f is a C-succinct SIZE(poly)-PRG with error ε(N).

Given ε : N→ R, a one-way function with security ε(N) is a polynomial-time computable
sequence of functions f = {fN : K(N) → N} for some K(N) = NΩ(1), such that for any
sequence {CN} of polynomial-size circuits, for large enough N , Prx∼UN

[fN (CN (1N , f(x))) =
fN (x)] ≤ ε(N). A one-way function is called weak if it has security 1−1/poly(N), and strong
if it has security 1/Nω(1). One-way functions are often defined against uniform adversaries;
in this work, we only consider security against non-uniform adversaries.
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Informally, an auxiliary-input one-way function is a poly-time computable sequence of
functions f with an “auxiliary” input z such that for any poly-size adversary, there is an
infinite set of auxiliary inputs z for which f is hard to invert. For a formal definition and a
good discussion of the significance of auxiliary-input one-way functions, see [48].

We require a notion of zero-error average-case hardness for languages. Given a parameter
ε : N → [0, 1], a language Q ⊆ {0, 1}∗, and a circuit class D, we say that Q is zero-error
average-case feasible for D with success probability ε if there is a sequence of circuits DN ∈ D

such that for each N , DN always outputs 0,1 or “?”, never outputs the wrong answer for
any input to Q, and outputs “?” with probability at most 1− ε(N). We say Q is zero-error
average-case easy if it is average-case feasible for SIZE[poly] with success probability 1/NO(1).

We say that Q is zero-error average-case infeasible for D with success probability ε if for
every sequence of circuits DN ∈ D such that DN always outputs 0,1 or “?”, for large enough
N , DN either outputs the wrong answer for some input to Q or outputs “?” with probability
greater than 1− ε(N). We say Q is zero-error average-case hard if it is average-case infeasible
for SIZE[poly] with success probability 1/NO(1).

Note that hardness is not just defined as the complement of easiness - hardness and
easiness are both required to hold on almost all input lengths.

2.3 MCSP, Natural Proofs and Learning
MCSP[s(n)] denotes the Minimum Circuit Size Problem for a size parameter s(n), where the
truth table given as input to the problem has size 2n. In other words, an input truth table
is a positive instance if and only if it is computed by a circuit of size at most s(n). This
notation is adopted for convenience. Thus the most interesting functions s(n) would satisfy
n ≤ s(n) ≤ 2n. Given a class C, C-MCSP[s(n)] denotes MCSP for C-circuits. In case the
input size N is not a power of two, we consider the input truth table to be the first 2blog(N)c

bits of the input.
We also require some variants of MCSP. Given an approximation parameter δ : N→ [0, 1],

and size functions c, s : N→ N with n ≤ c(n) ≤ s(n) ≤ 2n for all n, δ-AveMCSP[c, s] is the
following promise problem: YES instances are truth tables of Boolean functions that can
be δ(n)-approximated by circuits of size at most c(n), and NO instances are truth tables of
Boolean functions that cannot be δ-approximated by circuits of size at most s(n). When δ is
left unspecified, we take it to be 0.9 for convenience.

We say that R = {Rn}n∈N is a combinatorial property (of boolean functions) if Rn ⊆ Fn
for all n. We use LR to denote the language of truth-tables of functions in R. Formally,
LR = {y | y = tt(f) for some f ∈ Rn and n ∈ N}.

I Definition 7 (Natural Properties [44]). Let R = {Rn} be a combinatorial property, C

a circuit class, and D a (uniform or non-uniform) complexity class. We say that R is a
D-natural property useful against C[s(n)] if there is n0 ∈ N such that the following holds:
(i) Constructivity. LR ∈ D.
(ii) Density. For every n ≥ n0, Prf∼Fn

[f ∈ Rn] ≥ 1/2.
(iii) Usefulness. For every n ≥ n0, we have Rn ∩ Cn[s(n)] = ∅.

By default, D is taken to be SIZE[poly].
It has been observed that the density parameter in the definition above can be amplified

using a straightforward reduction (cf. [13]).

I Proposition 8 ([24]). Let s : N→ N be a size function. MCSP[s(n)] is zero-error easy on
average iff there are SIZE(poly)-natural properties useful against SIZE[s(n)].
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We give only a brief description of learning in Valiant’s PAC model. We will be concerned
here only with learning using membership queries under the uniform distribution. A learning
algorithm in this context is a probabilistic oracle algorithm making queries to an oracle for
some function f . Given a circuit class C and a function T : N→ N, a time T learner for C
is an oracle algorithm which given input 1n and oracle access to a function f from C halts
in time T (n) and outputs with high probability a circuit computing f correctly on a 0.9
fraction of inputs of length n.

3 Hitting Sets, Pseudorandom Distributions and the Hardness of
MCSP

3.1 Succinct HSGs and MCSP
We first observe that there is a universal succinct HSG.

I Proposition 9. Let C be any standard circuit class, and s : N→ N be any function such
that n ≤ s(n) ≤ 2n for all n. There is a universal C[s(n)]-succinct HSG U with seed length
quasi-s(n).

Proof. The idea of the proof is simple. We define a HSG U with seed length quasi-s(n) that
interprets its seed as the representation of a C-circuit of size s(n), and outputs the truth
table of the function computed by this circuit. U can be computed in time 2nquasi-s(n),
which is quasi-quadratic in N = 2n.

We need to show that U is a universal C[s(n)]-succinct HSG. The C[s(n)]-succinctness is
immediate from the definition of the HSG - every output of the HSG is the truth table of a
Boolean function in C[s(n)]. For the universality, suppose that there is some collection H of
C[s(n)]-succinct hitting sets. Every string in this collection is the truth table of a Boolean
function in C[s(n)]. Hence H is contained in the range of U , from which it follows that the
range of U is a collection of hitting sits. J

Next we observe that the existence of succinct hitting set generators is equivalent to
hardness for MCSP. This observation is closely related to similar observations in the theory of
Boolean or arithmetic circuit complexity and meta-mathematics of lower bounds [53, 21, 18].

I Proposition 10. Let C be a standard circuit class and D be a family of functions. Moreover,
let s(n) ≥ n. For every large n, the following are equivalent:
1. There are C[quasi-s(n)]-succinct hitting sets against D
2. There is a C[quasi-s(n)]-succinct HSG with seed length quasi-s(n) against D
3. C-MCSP[quasi-s(n)] is zero-error average-case hard against D.

Proof. The second item follows from the first by Proposition 9.
Next we show that the third item follows from the second. Let H be a C[quasi-s(n)]-

succinct HSG against D. Assume for the sake of contradiction that C-MCSP[quasi-s(n)] is
zero-error average-case solvable with success probability 1/NO(1) in D , where N = 2n. This
implies that there is a subset A of co-C-MCSP[quasi-s(n)] with density 1/NO(1). For each
large N , AN has no strings of C-circuit complexity ≤ quasi-s(n), hence AN does not intersect
the range of HN for such N . Yet the density of An is at least 1/NO(1), which contradicts
the assumption that H is a HSG against D.

Finally we show that the first item follows from the third. Suppose C-MCSP[quasi-s(n)]
is zero-error average-case hard against D. Consider the set of truth tables of functions with
C-complexity at most quasi-s(n). We show that this is a collection of C[quasi-s(n)]-succinct
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hitting sets against D. The succinctness condition follows from the definition of the set.
To show that this is a collection of hitting sets, suppose to the contrary that there is a set
A ∈ D such that AN has density 1/NO(1) for each N a power of 2, and A does not intersect
the collection. Then we can define a zero-error average-case algorithm which outputs 0 for
x ∈ A and “?” otherwise. This algorithm only outputs 0 on truth tables that do not have
quasi-s(n) size C-circuits, hence it always outputs the correct answer when it does not output
“?”. By the density condition on A, the algorithm has success probability 1/NO(1). J

3.2 From Zero-Error Average-Case Hardness to Succinct
Pseudorandomness

In this section, we show that zero-error average-case hardness for MCSP in fact yields succinct
pseudorandom distributions, where the complexity parameter of the succinctness is slightly
worse than that of the MCSP problem we assume to be hard.

In fact, we show something more general for languages Q,Q′ ⊆ {0, 1}∗: assuming the
existence of certain “semantic” samplers, zero-error average-case hardness over the uniform
distribution for a problem Q implies the existence of pseudorandom distributions supported
on YES instances of Q′. The main idea for showing the implication to pseudorandomness is
to analyze a family of Sampler-Distinguisher zero-sum games, which we introduce in this
work. This is inspired by, but different from, the PRF-Distinguisher game analyzed in [41].
The strategies of the row player in the Sampler-Distinguisher game are YES instances of a
given length for the problem Q we wish to solve. The strategies of the column player are
circuits from some circuit class D, corresponding to the class against which we are analyzing
average-case hardness.

The payoff corresponding to a row (instance) x and column (circuit) D is defined as the
average of D(xj), j = 1 . . . k minus the expectation of D on inputs of length |xj |. Here the
strings xj are generated from x to have the following properties. First, when x is a YES
instance of Q, the xj ’s are YES instances of Q’. Second, when y is random, the set {yi} is a
good sampler with high probability, meaning that it can be used to estimate the expectation
of any bounded function to within reasonable error.

We are able to argue that when the Row player wins the game, there are succinct
pseudorandom distributions against D, and when the column player wins the game, there is
a zero-error average case algorithm for Q. The argument in the second case relies on the
approximately optimal succinct strategies for zero-sum games given by [9, 38].

I Lemma 11 ([9, 38]). Let M be a r×c matrix with entries in [−1, 1] representing the payoffs
of a zero-sum game. Let v(M) denote the value of the game. Let δ < 1 be a parameter. Then
there is a strategy for the row (Min) player supported uniformly on at most 10 log(c)/δ2 pure
strategies that guarantees her a payoff at most v(M) + δ and a strategy for the column (Max)
player supported uniformly on at most 10 log(r)/δ2 pure strategies that guarantees here a
payoff at least v(M)− δ.

We will need a special case of the standard Hoeffding inequalities.

I Proposition 12 ([27]). Let X1 . . . Xn be independent random variables taking values in
[−1, 1]. Let X̄ def=

∑
iXi/n denote the empirical mean of these variables. Then, for any

t > 0, Pr(|X̄ − E(X̄)| ≥ t) ≤ 2e−t2n/2.

We now define the notion of semantic sampler we require.
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I Definition 13. Let Q,Q′ ⊆ {0, 1}∗ be languages, `,m : N → N and ε, δ : N → [0, 1] be
functions. A poly-time computable sequence of functions f = {fN : {0, 1}N × {0, 1}`(N) →
{0, 1}m(N)} is a (Q,Q′)-semantic sampler f with seed length `, output length m, accuracy ε
and error δ if:
1. (Semantic condition) For large enough N ∈ N, for all x ∈ {0, 1}N and y ∈ {0, 1}`(N),

x ∈ Q implies fN (x, y) ∈ Q′.
2. (Sampling condition) For large enough N ∈ N, for every function g : {0, 1}m(N) → [−1, 1],

for all but a δ(N) fraction of N-bit strings x, |Ez∈Um(N)g(z) − Ey∈U`(N)g(fN (x, y))| ≤
ε(N).

We are ready to prove our general connection between zero-error average-case hardness
and pseudorandomness.

I Theorem 14. Let Q,Q′ ⊆ {0, 1}∗ be languages, m : N → N be a surjective function
such that m(N) ≤ N for all N ∈ N, and ε, δ : N → [0, 1] be functions. Suppose there is
a (Q,Q′)-semantic sampler f with output length m, accuracy ε and error δ. If Q is zero-
error average-case infeasible for SIZE[poly] with success probability 1− δ(N), then there are
pseudorandom distributions with error 30ε(N) against SIZE[poly] that are supported on Q′.

Proof. Let t : N → N be a size function, and f be the (Q,Q′)-semantic sampler in the
statement of the theorem. We define the (f, t) Sampler-Distinguisher family of zero-sum
games at level N by their payoff functions as follows. For each positive integer N , the set AN
corresponding to strategies of the Row (Min) player is defined to be the set of N -bit strings
x such that x ∈ Q. The set BN corresponding to strategies of the Column (Max) player is
defined to be the set of Boolean circuits with input length m(N) and size at most t(N).

Now we define the Column player’s payoff function PN : AN × BN → [−1, 1] as fol-
lows. Given a string x ∈ AN and a circuit D ∈ BN , PN (x,D) = Ey∈U`(N)D(fN (x, y)) −
Ez∈Um(N)D(z) . Since the class of Boolean circuits is closed under complement, we can
assume wlog that the value of the game is non-negative for each N .

Let γ : N → [0, 1] be a monotonically decreasing error parameter to be specified later.
There are two cases: either for every polynomially bounded t, for almost all N , the value
of the (f, t) Sampler-Distinguisher game at level N is at most γ(N), or there exists some
polynomially bounded t such that for infinitely many N , the value of the game at level N is
greater than γ(N).

In the first case, using Lemma 11, for each t(N), for N large enough, there is a γ(N)/2-
approximately optimal strategy of the Row player for the game at level N that is a uniform
distribution on a multiset R of strings x of length N in Q.

Now the induced distribution on strings z = fN (x, y) obtained by picking x uniformly
from R and y uniformly from strings of length `(N) is a pseudorandom distribution with
error at most 3γ(N)/2 against circuits with input length m(N) and size at most t(N), just
by linearity of expectation. Then we have that there are pseudorandom distributions with
error at most 3γ(N)/2 against SIZE(poly) that are supported on Q′, using the fact that
R ⊆ Q and that f(x, y) ∈ Q′ whenever x ∈ Q and y ∈ {0, 1}`(N). We will eventually choose
γ(N) = 20ε(N), which yields pseudorandom distributions with error at most 30ε(N).

In the second case, let t be polynomially bounded in N and I ′ be an infinite set of input
lengths such that the value of the (f, t) Sampler-Distinguisher game is at least γ(N ′) on
each N ′ ∈ I ′. Define the set I of input lengths as follows: N ∈ I iff m(N) ∈ I ′. Since I ′ is
infinite and m is surjective, I is also infinite. We show that there is a sequence of circuits
{CN} of polynomial size such that for each input length N ∈ I, CN solves Q well on average,
contradicting the assumption that Q is average-case hard against SIZE[poly].
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Since the value of the game is at least γ(N ′) on each N ′ ∈ I ′, we have that for each N ′ ∈ I ′,
there is an approximately optimal strategy for the Column player supported uniformly on at
most O(N ′/γ(N ′)2) pure strategies that guarantees her a payoff at least γ(N ′)/2. Note that
each pure strategy is simply a circuit of size O(t). For each N ′ ∈ I ′, define the probabilistic
circuit C ′N ′ on input z of length N ′ as follows. C ′N ′ samples uniformly a circuit D from the set
of circuits SN ′ in the support of the approximate strategy for the Column player, and outputs
D(z). C ′N ′ can be implemented straightforwardly to have size at most O(tN ′/γ(N ′)2). Let
v denote the value Ez←UN′ ,D←SN′D(z).

Next we define the circuit CN . We first construct a probabilistic circuit and then show how
to fix the randomness. On input x of length N , the circuit samples y uniformly at random
from {0, 1}`(N) and computes fN (x, y). CN runs the probabilistic circuit C ′ independently
100N/(γ(N))2 times on fN (x, y) for uniformly and independently chosen y ∈ {0, 1}`(N). It
computes the average v′ of the outputs obtained by C ′ over all these runs, and checks if
v′ − v ≥ ε/4. In order to implement this check, the value v (which does not depend on x) is
hardcoded into C. If the majority of checks succeed, CN outputs “?”, else it outputs 0.

Let N ∈ I and N ′ = m(N). We show that if x of length N is a YES instance of Q, CN
always outputs “?” with probability > 1 − 2−N , and for a 1 − o(1) fraction of inputs of
length N , CN outputs 0 with probability > 1− 2−N . By fixing the randomness of CN using
Adleman’s trick, we get deterministic circuits which always output “?” on YES inputs, and
output 0 on almost all NO instances. Moreover, they output either “0” or “?” on every NO
instance. This implies that for each N ∈ I, CN is a circuit that solves Q well on average.

We first establish our claim for YES instances. Suppose x of length N is in Q. This implies
that for all y ∈ {0, 1}`(N), fN (x, y) ∈ Q′ by the semantic condition on the (Q,Q′)-semantic
sampler f . Hence, for each y ∈ {0, 1}`(N), fN (x, y) is a pure strategy for the Row player
in the (s′′, t) Sampler-Distinguisher game at level N ′. Since N ′ ∈ I ′, the game at level
N ′ has value greater than γ(N ′). In particular, this means that the Row player’s strategy
of playing f(x, U`N ) yields payoff at least γ(N ′)/2 in expectation to the Column player
when the Column player plays the approximately optimal strategy corresponding to the
probabilistic circuit C ′. Thus, over the randomness of C ′ and random choice of y ∈ {0, 1}`(N),
E[C ′(fN (x, y))] > v+ γ(N ′)/2. Since γ is a monotonically decreasing function, and N ′ ≤ N ,
we have that E[C ′(fN (x, y))] > v + γ(N)/2. Applying Proposition 12, when C ′ is simulated
100N/(γ(N))2 times independently on uniformly chosen y ∈ {0, 1}`(N) to compute the
empirical average v′, v′ > v + γ(N)/4 with probability > 1− 2−N . Hence CN outputs “?”
with at least this probability, as claimed.

Next we argue that when γ(N) is chosen to be 20ε(N), for all but approximately δ(N)
fraction of inputs of length N , CN outputs 0 with probability > 1− 2−N . Intuitively, this
follows from the fact that a large enough randomly chosen set of strings is a good sampler
for a function with range [−1, 1].

More formally, consider the quantity v defined above as the expectation of C ′(z) over
uniformly chosen N ′-bit z and randomness of the circuit C ′. We upper bound the probability,
for a uniformly chosen x of length N , that the empirical average v′ of the outputs obtained
by 100N/(γ(N))2 independent runs of C ′(fN (x, y)) for uniformly chosen y, is greater than
v + γ(N)/4.

By the sampling condition for the (Q,Q′)-semantic sampler f , with probability at least
1 − δ(N) over uniformly chosen x of length N , |Ey∈U`(N)C

′(fN (x, y)) − v| ≤ ε(N). Call a
string x “good” if this inequality is satisfied. Applying Proposition 12 again, for any x, with
probability > 1 − 2−N over the internal randomness of C, |v′ − Ey∈U`(N)C

′(fN (x, y))| ≤
γ(N)/5. In particular, for good x, by the triangle inequality, we have that with probability
> 1− 2−N , |v′ − v| < γ/5 + ε(N) ≤ γ(N)/5 + γ(N)/20 = γ(N)/4. Thus, for all but a δ(N)
fraction of strings x of length N , CN outputs 0 with probability > 1− 2−N , as claimed. J
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We now show how to use Theorem 14 to derive pseudorandom distributions from zero-
error average-case hardness for MCSP and SAT, by showing the existence of appropriate
semantic samplers. Indeed, in both cases, we will use the simple sampler defined below.

I Definition 15. Given a function q : N → N such that q(N) ≤ N is a power of two for
all N , we define the q(N)-projection sampler to be the function sequence Proj = {ProjN :
{0, 1}N × {0, 1}log(q(N)) → {0, 1}bN/q(N)c, where for any string x = x1x2 . . . xN of length N
and a string y of length log(q(N)) interpreted in the standard way as an integer in [q(N)],
ProjN (x, y) = xybN/q(N)c . . . x(y+1)bN/q(N)c−1. In other words, ProjN (x, y) is the contiguous
substring of x of length bN/q(N)c beginning at index ybN/q(N)c.

We first show how to apply Theorem 14 in the case of MCSP.

I Theorem 16. Let C be any circuit class closed under projections. Let s : N → N be a
size function, and q : N → N be any super-constant poly-time computable function such
that q(N) ≤ N is a power of two for all N . Let ε : N → R be any poly-time computable
monotonically decreasing error function such that ε(N) = ω(1/

√
q(N)). If C-MCSP[s(n)] is

zero-error average-case infeasible for SIZE[poly] with success probability 1− o(1), then there
are C[s′]-succinct pseudorandom distributions with error O(ε(N)) against SIZE[poly], where
s′ : N→ N is any size function such that s′(n− log(q(2n))) ≥ s(n).

Proof. Let Q be C-MCSP[s(n)], and Q′ be C-MCSP[s′(n)], where s′ is any size function
such that s′(n − 2 log(q(2n))) ≥ s(n), as in the statement of the theorem. We show that
the q(N)-projection sampler Proj is in fact a (Q,Q′)-semantic sampler with error o(1) and
accuracy ε(N), and then apply Theorem 14.

First we show the semantic condition. Let x of length N be the truth table of a Boolean
function with C-circuits of size at most s(n), where n = log(N). We show that for any
y ∈ {0, 1}log(q(n), ProjN (x, y) is the truth table of a Boolean function with C-circuits of size at
most s′(n). Indeed, ProjN (x, y) is the truth table of a function on n−log(q(N)) bits, obtained
from x by fixing the first log(q(n)) input bits. Let CN be a C-circuit of size s(n) computing
fn(x). By fixing log(q(n)) input bits of CN to constants, and using the fact that C is closed
under projections, we obtain a C-circuit of size at most s(n) computing fn(Proj(x, y)), which
is a function with n − log(q(N)) input bits. Since s′(n − log(q(N)) ≥ s(n), we have that
fn(Proj(x, y)) is in C-MCSP[s′(n)].

Next we establish the sampling condition. Note that for x uniformly chosen in {0, 1}N ,
the q(N) strings ProjN (x, y), y ∈ [q(N)] are uniformly and independently distributed in
{0, 1}bN/q(N)c. Applying Proposition 12, we have that with for any function
g : {0, 1}bN/q(N)c → [−1, 1], for at least a 1 − o(1) fraction of x, |Ez∈UbN/q(N)cg(z) −
Ey∈Ulog(q(N))g(ProjN (x, y))| ≤ ε(N), where ε(N) is as in the statement of the theorem.

Now applying Theorem 14, the statement of the theorem follows immediately. J

Theorem 16 gives a connection from zero-error average-case hardness of MCSP to succinct
pseudorandom distributions. It is perhaps surprising that zero-error average-case hardness
in this context implies the existence of pseudorandom distributions that approximate any
poly-size circuit well with respect to two-sided error. This is reminiscent of the situation
with complexity-theoretic pseudo-random generators, where the generator is allowed to run
in time exponential in the seed length. Known equivalences between worst-case hardness of
exponential time and existence of complexity-theoretic PRGs [40, 31] also imply an equivalence
between complexity-theoretic PRGs and complexity-theoretic hitting set generators. Such an
equivalence is unknown in the cryptographic setting, and is a major motivation for our work.
Theorem 16 provides partial unconditional evidence for such an equivalence extending to the
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cryptographic setting. Indeed, combining Theorem 16 with Proposition 10 for appropriately
chosen parameters, we get the following equivalence between succinct hitting sets and succinct
pseudorandom distributions in the medium-error regime.

I Corollary 17. Let C be a standard circuit class closed under projections. Moreover, let
s(n) ≥ n. For every large n, the following are equivalent:
1. For every δ < 1/2, there are C[s(O(n))]-succinct hitting sets with error N−δ against

SIZE[poly]
2. For every δ < 1/2, C-MCSP[s(O(n))] is zero-error average-case infeasible for SIZE[poly]

with success probability N−δ.
3. For every δ < 1/2, there are C[s(O(n))]-succinct pseudorandom distributions with error

N−δ against SIZE[poly]

Proof. The second item follows from the first using the proof idea of Proposition 10. By
using a direct implication from the first item to the third item of Proposition 10, we avoid the
quasi-linear blow-up in the parameter, and preserve the error to within a neglibible additive
term.

The third item follows from the second by using Theorem 16 with ε(N) = Nδ and
k(N) = N2δ+γ for some γ such that 2δ + γ < 1. Note that for this parameter choice of k,
s′(N) = s(O(N)), as desired.

The first item follows trivially from the third, since pseudorandom sets are also hitting
sets. J

I Remark. For MCSP, the equivalence above can be extended to the setting of negligible
error by using samplers more sophisticated than the projection sampler used in the proof of
Theorem 16, such as samplers corresponding to the Nisan-Wigderson generator. However,
this extension comes at the cost of generality - it does not work for C-MCSP for arbitrary C

closed under projections.
Corollary 17 implies Theorem 1 by choosing s appropriately.
We next show how to apply Theorem 14 to SAT, by showing an analogous construction

of pseudorandom satisfiable formulas based on Feige’s hypothesis [16] that random k-CNF
formulas with a linear number of clauses are hard to refute. In our terminology, Feige’s
hypothesis states that random k-SAT is zero-error average-case hard. Here, as elsewhere in
this paper, we consider non-uniform algorithms rather than uniform ones.

We would like to construct a pseudorandom distribution supported on satisfiable formulae
based on Feige’s hypothesis, similar to the construction of succinct pseudorandom distribution
in Theorem 16 based on the zero-error average-case hardness of MCSP. However, we need to
be careful in how we encode our formulas. With an arbitrary encoding, it might be the case
that satisfiable formulas are easily distinguishable from random strings. This would the case,
for example, if any valid encoding of any formula began with a 1. To solve this issue, we
specify a natural information-theoretically efficient encoding of formulas as follows.

We consider k-CNF formulas on N variables, where k is a constant and N is a power of 2.
We encode a formula φ with cN clauses by using (n+ 1)kcN bits of information. Each clause
is encoded by (n+ 1)k bits, n bits to encode each variable, and 1 bit to encode whether the
variable is positive or negative. These blocks of bits are simply concatenated together. Thus
every string of (n+ 1)kcN represents a unique k-CNF in a valid way.

Assuming the encoding of inputs to SAT above, we can show the following result.

I Theorem 18. Fix a positive integer k. If for every c > 0, k-SAT on cN clauses is zero-
error infeasible for SIZE[poly] with success probability Ω(1), then for every ε > 0 there are
pseudorandom distributions with error O(ε) supported entirely on satisfiable formulas.
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Proof. We provide a sketch, since the proof is quite similar to that of Theorem 16.
Let ε > 0 be any constant, and q be a power of two to be chosen large enough as a

function of ε. Let Q be k-SAT with cN clauses for some c a large enough power of two,
encoded as described above, and Q′ be k-SAT with cN/q clauses. We show that that the
q-projection sampler is a (Q,Q′)-semantic sampler with error ε and accuracy ε.

For the semantic condition, we simply note that any sub-formula of a satisfiable formula is
itself satisfiable, and therefore the q-projection sampler maps satisfiable formulas to satisfiable
formulas in our encoding, whenever q is a power of two. The sampling condition is easy to
check by again using Proposition 12.

Now the theorem follows by applying Theorem 14. J

Theorem 18 is a formal statement of Theorem 2.
We use the simple projection sampler in the proof of Theorem 18. We might be able to

reduce the error for the pseudorandom sets by using more sophisticated samplers, however it
is tricky to ensure that satisfiable formulas remain satisfiable when the sampler is applied.

4 On Universal Succinct PRGs

We first state our main conjecture formally.

I Conjecture 19 (Universality Conjecture). For every ε < 1, there is a universal SIZE(2εn)-
succinct PRG with non-trivial seed length.

We need the standard fact that a PRG can be stretched by iteration.

I Lemma 20. For each 0 < ε < 1, if there is a PRG with non-trivial seed length, there is a
PRG with seed length N ε.

We also need the construction of succinct PRGs from PRGs due to [20].

I Lemma 21 ([20]). For each ε > δ < 1, if there is a PRG with seed length Nδ, there is a
SIZE[2εn]-succinct PRG

I Theorem 22. Under Conjecture 19, the following are equivalent:
1. There is a one-way function secure against SIZE(poly).
2. There is an non-uniform one-way function secure against SIZE(poly).
3. There is a SIZE[2δn]-succinct HSGs secure against SIZE[poly(N)], for some 0 < δ < 1.
4. There are SIZE[2εn]-succinct HSGs secure against SIZE[poly(N)], for any 0 < ε < 1.
5. There is a PRG secure against SIZE[poly(N)] with non-trivial seed length.
6. MCSP[2δn] is hard on average against SIZE[poly(N)] for some 0 < δ < 1.
7. MCSP[2εn] is hard on average against SIZE[poly(N)] for every 0 < ε < 1.
8. There are no SIZE(poly)-natural proofs against SIZE(2εn) for any ε > 0.
9. Polynomial-size circuits cannot be PAC-learned with membership queries over the uniform

distribution in polynomial time.

Proof. We establish the equivalence through a series of implications.
(3) implies (6): Follows from Proposition 10.
(6) implies (5): By setting k(N) to be a sufficiently small power of N in Theorem 16,

we get that there are SIZE[2δ′n]-succinct pseudorandom distributions with error 1/Nγ for
some γ > 0. Using Conjecture 19 we get that there is a PRG G with non-trivial seed length
and error 1/Nγ . The PRG G yields a weak one-way function, and by using the standard
conversion from weak to strong one-way functions [54, 19], and then applying the HILL
construction [22], we get a PRG with non-trivial seed length and negligible error.
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(5) implies (4): By using Lemma 20 and Lemma 21, we get SIZE[2εn]-succinct PRGs for
any ε > 0. This trivially implies SIZE[2εn]-succinct HSGs for any ε > 0.

(4) implies (7): Again follows from Proposition 10.
(7) implies (3): Trivial.
(7) equivalent to (8): Shown in [24].
(1) equivalent to (5): Shown in [22].
(1) implies (2): Trivial.
(2) implies (8): Given any infinite set I of auxiliary inputs, by applying the constructions

of [22] and [20] to auxiliary-input one-way functions, for any ε > 0, we get a SIZE[2εn]-succinct
distribution which can be distinguished from uniform by SIZE(poly)-natural proofs against
SIZE(2εn). This implies that the auxiliary-input one-way function can be inverted on I, in
contradiction to the assumption that for each poly-size adversary, there is some infinite set
of inputs on which the function is hard to invert.

(6) equivalent to (8): Shown in [13]. J

Theorem 22 can easily be seen to imply all the items in Theorem 3.
The equivalences above give a fairly clean picture of connections between various fun-

damental notions, modulo Conjecture 19. We now discuss some of the more interesting
individual connections in more detail.

The connection between auxiliary-input one-way functions and one-way functions has
been an important question in cryptography since the former notion was introduced in [42].
The notion of auxiliary-input one-way functions has played an important role in the study of
zero-knowledge [42, 48] and learning [10]. In particular, it follows from the main result of
[42] that under Conjecture 19, if there is a language with zero-knowledge proofs that is not
in polynomial size, then one-way functions exist1.

The notion of HSGs has not been much studied in cryptography, and this is perhaps
because it is not obvious how to use HSGs in crypto applications. One of the issues is that
it is not clear how to stretch a HSG, i.e., increase the gap between seed length and output
length. As a consequence of the Conjecture, succinct HSGs are stretchable. It remains
unclear whether the same is true for standard HSGs under plausible assumptions.

One of the main questions about MCSP is how robust its complexity is with respect to the
size parameter s. Known results about the complexity of the problem are not very sensitive to
the size parameter, but there are no known equivalences between the complexity of MCSP[s]
and the complexity of MCSP[s′] for s and s′ that are different. As a consequence of the
Conjecture, we get such an equivalence in the average-case setting. It would be interesting
to try to establish this equivalence unconditionally.

The equivalence we get between hardness of learning and one-way functions (modulo
the Conjecture) is the first such equivalence of which we are aware for a natural worst-case
notion of learning. It is shown in [11] that hardness of PAC-learning on average implies the
existence of one-way functions. The question of whether the hardness of PAC-learning (over
any distribution, and without membership queries) implies the existence of one-way functions
is posed in [10]. It would be nice if we could use the Conjecture to resolve this question.

Perhaps the most interesting connection is the equivalence between the average-case
hardness of MCSP over the uniform distribution and the existence of one-way functions. This
has potential applications for the construction of a natural universal one-way function [37].
One also wonders if under the Conjecture, there are other natural problems and distributions

1 Note that we are using security against non-uniform adversaries throughout our work.
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such that the average-case hardness of the problem under the distibution is equivalent to
the existence of one-way functions. One would like a richer theory of reducibility between
average-case problems, and equivalences of this sort might help.

5 MCSP and Circuit Lower Bounds against Weak Classes

Pseudorandomness is intimately connected to circuit lower bounds. Complexity-theoretic
PRGs are equivalent to circuit lower bounds for E, and cryptographic PRGs are equivalent to
one-way functions and hence imply circuit lower bounds for NP. In this section, we consider
“weak” circuit classes, i.e., circuit classes C for which there are natural proofs useful against
C[poly]. We show that for weak circuit classes C, succinct hitting sets imply lower bounds
for P against C[poly]. Using the connection between succinct hitting sets and average-case
hardness for MCSP, we show that zero-error average-case lower bounds for MCSP[poly]
against C[poly] imply lower bounds for P against C[poly]. This is surprising in that we
establish a hardness consequence for P based on a hardness assumption about a problem not
believed to be in P. Indeed, we show that our result is inherently non-black box if one-way
functions exist.

I Lemma 23. Let C be a weak circuit class closed under projections. If there is a constant
k such that there are SIZE(nk)-succinct hitting sets against C[poly], then P 6⊆ C[poly]

Proof. Let C be a weak circuit class closed under projections. Suppose there is a constant
k such that there are SIZE(nk)-succinct hitting sets against C[poly]. Using Proposition 9,
we have that there is a SIZE(nk)-succinct HSG U with seed length quasi-nk against C[poly].
Now consider the following function f(x, i), where i is of length n and x is of length quasi-nk.
f(x, i) is defined to be 1 iff the i’th bit of G(x)=1. Now, since Boolean circuits are a standard
class, given seed x to G and index i of G(x), the i’th bit of G(x) is computable in time
quasi-s(n), which is quasi-nk. Thus f ∈ P.

Now we use a win-win analysis. If P 6⊆ C[poly], we are done. Hence we can assume that
P ⊆ C[poly]. This implies that f ∈ C[nk′ ] for some constant k′. Since C is closed under
projections, it follows that every string in the range of U is the truth table of a function with
C-circuits of size at most nk′ .

Since C is weak, there are natural proofs useful against C[poly]. This implies that there is
a set A ⊆ SIZE(poly) of density 1/2 such that no string y for which fn(y) is in C[nk′ ] belongs
to A .

Now again using the assumption that P ⊆ C[poly], we have that SIZEpoly ⊆ C[poly], and
hence A ∈ C[poly]. But now A is a set in C[poly] of density 1/2 which does not intersect
the range of U non-trivially, contradicting the assumption that U is a hitting set generator
against C[poly]. J

The smallest complexity class within which weakness of C is known to imply a super-
polynomial lower bound against C is ZPEXP [41]. Lemma 23 shows that if additionally there
are succinct hitting sets against C[poly], the function for which we get a lower bound is much
more explicit - it is in P.

Next we combine Lemma 23 with Proposition 10 to get a surprising implication.

I Theorem 24. Let C be a weak circuit class closed under projections. If there is a constant
k such that MCSP[nk] is zero-error average-case hard against C[poly], then P is not contained
in C[poly].
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Proof. if there is a constant k such that MCSP[nk] is zero-error average-case hard against
C[poly], then by Proposition 10, we get that there are SIZE(nk)-succinct hitting sets against
C[poly]. Now applying Lemma 23, we get the desired consequence. J

Theorem 24 is essentially a restatement of Theorem 4.
Theorem 24 is a partial converse to the following corollary to Theorem 2 from [41].

I Theorem 25. Let C[poly] be any circuit class closed under composition with poly-size AC0.
If there is a language in P that cannot be approximated on 1/2 + 1/ poly(n) fraction of inputs
by C-circuits of polynomial size, then MCSP[2n/2] is zero-error average-case hard against
C[poly].

Note that there are examples of weak circuit classes such as AC0 and AC0[p] which satisfy
the condition in Theorem 25.

Theorem 24 is a rare example of a non-black-box reduction between two problems - the
reduction does not work when the circuit class against which we are arguing is given access
to an oracle. Indeed, under standard crypto assumptions, there is no black-box reduction
from MCSP[nk] to P, for k chosen large enough.

I Theorem 26. Let C be any Boolean circuit class which contains the projection functions.
If there are one-way functions of exponential hardness, there is a constant k for which there
is no black-box reduction from zero-error average-case hardness of MCSP[nk] against C[poly]
to P 6⊆ C[poly].

Proof. If there were such a black-box reduction, then for each oracle A, P ⊆ CA[poly] would
imply MCSP[nk] is zero-error easy on average for CA[poly]. But now consider an oracle A that
is complete for P under projections. The antecedent trivially holds for such an oracle, but if
the consequent held, we would have MCSP[nk] is zero-error easy on average for SIZE[poly]
for any k, which by the “natural proofs” argument of Razborov and Rudich [44] would invert
any one-way function in sub-exponential time. J

6 An approximation to average-case reduction for AveMCSP

Finally, we observe that a certain search-to-decision reduction for a variant of MCSP given
in recent work [14] actually yields a non black-box approximation to average-case reduction.
We will use the following variant of the Nisan-Wigderson generator [14], for which the output
of the generator has small average-case circuit complexity for most seeds when the function
on which the generator is based has small average-case circuit complexity.

I Theorem 27 ([40, 14]). There is a fixed constant d > 1 such that for any constant c > d

there is a sequence of functions {Gm : {0, 1}mc × {0, 1}O(log(m)) → {0, 1}m} computable in
polynomial time such that
1. Given y ∈ {0, 1}mc and for any t = log(m)ω(1), if fn(y) can be computed correctly on 0.9

fraction of inputs by circuits of size t, then with probability 1− o(1) over choice of the
seed z ∈ {0, 1}O(log(m)), fn(Gm(y, z)) can be computed correctly on 0.9 fraction of inputs
by circuits of size t2.

2. Given y ∈ {0, 1}mc , if fn(y) cannot be computed correctly on 0.9 fraction of inputs by
circuits of size md, then Gm(y, ·) is a PRG with error 1/m against SIZE(m).

I Theorem 28. For any δ > 0 and k > 0, there is ε > 0 such that if AveMCSP[2n/2] is
zero-error easy on average for circuits of size Nk, then AveMCSP[2εn, 2δn] has polynomial-size
circuits.
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Proof. Suppose there is k > 0 such that AveMCSP[2n/2] is zero-error easy on average for
circuits of size Nk. Without loss of generality, this means that there exists a set A ⊆ {0, 1}∗
with circuits of size Nk such that A has density at least 0.01 and A does not contain any
strings y for which fn(y) has circuits of size at most 2n/2.

We show how to solve AveMCSP[2εn, 2δn] in polynomial size, for some ε fixed during
the argument which depends on δ and k. Given an input z of length N , our non-uniform
polynomial time algorithm runs as follows. First it finds m such that mc = N , where d is
the fixed constant given by Theorem 27, and c is chosen to be 2kd/δ in the construction of
Theorem 27. It then computes Gmk (z, x) for each x ∈ {0, 1}O(log(m)) in polynomial time,
truncating each output string to its first m bits. It calculates the fraction η of these strings
that belong to A. If η ≥ 0.005, it rejects, else it accepts. This algorithm can clearly be
implemented by circuits of polynomial size.

In the following argument, we use “average-case circuit complexity” to mean the size of
the smallest circuit computing the function correctly on a 0.9 fraction of inputs.

We argue that when fn(z) has average-case circuit complexity at least Nδ, the algorithm
rejects, and that when fn(z) has average-case circuit complexity at most N ε for appropriately
chosen ε, the algorithm accepts. For the first item, note that when fn(z) has average-case
circuit complexity at least Nδ, by the second part of Theorem 27, Gmk (z, ·) is a 1/mk-error
PRG against circuits of size mk. Since A has circuits of size mk and also has density at least
0.01, this means that Gmk (z, ·) fools A, and hence the fraction η calculated by the algorithm
in this case is at least 0.01− o(1), which is at least 0.005 for large enough N .

Now if fn(z) has average-case circuit complexity at most N ε, where we are yet to fixe ε,
we have from the first part of Theorem of Theorem 27, for at least a 1− o(1) fraction of seeds
x, Gmk (z, x) has average-case circuit complexity at most N2ε. Note that we are truncating
the output of the PRG to the first m bits, hence the function represented by the output has
length m = Nδ/2kd. If ε is chosen so that ε < δ/8kd, we have that with probability 1− o(1)
over choice of seed x, the truncated output of the PRG has average-case circuit complexity at
most 2n/2. Since A does not contain any strings y for which fn(y) has circuits of size at most
2n/2, we have that the fraction η is calculated to be o(1) < 0.005 for large enough N . J

Theorem 28 is a formal version of Theorem 5.
Note that the approximation to average-case reduction in Theorem 28 has a very unusual

feature - the gap in the approximation version depends on the complexity of the average-case
algorithm. In particular, this reduction is not black-box, meaning that the reduction does
not extend to the case where the average-case algorithm uses an oracle.

7 Future Work

The Universality Conjecture opens up several directions for future work. The first is to derive
further interesting implications from the Conjecture. For example, is the Learning is Hard
assumption of [10] equivalent to the non-existence of natural proofs under the Conjecture?

The second is to establish the connections and equivalences we seek unconditionally, or
under weaker forms of the Conjecture. Our unconditional results such as Theorem 1 are a
step in this direction.

The third is to develop approaches to proving the Conjecture. A useful step here would
be to come up with an explicit candidate for universal succinct PRGs.

A fourth direction is to explore consequences of the Conjecture being false. As mentioned
before, the Conjecture holds if one-way functions exist, and therefore the failure of the
Conjecture would imply the non-existence of one-way functions. But perhaps even stronger
consequences follow from the failure of the Conjecture, lending further support to it?
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More generally, there are other pathways to connecting average-case hardness of MCSP
to the existence of one-way functions. In this work, we have explored average-case hardness
in the zero-error sense. But perhaps it would be easier to use average-case hardness of MCSP
in the bounded-error sense to construct one-way functions. One question here is to come up
with a natural distribution under which MCSP is hard on average in the bounded-error sense
– clearly the uniform distribution is not a valid candidate.
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