
Combinatorial Lower Bounds for 3-Query LDCs
Arnab Bhattacharyya
National University of Singapore, Singapore
arnabb@nus.edu.sg

L. Sunil Chandran
Indian Institute of Science, Bangalore, India
sunil@iisc.ac.in

Suprovat Ghoshal
Indian Institute of Science, Bangalore, India
suprovat@iisc.ac.in

Abstract
A code is called a q-query locally decodable code (LDC) if there is a randomized decoding algorithm
that, given an index i and a received word w close to an encoding of a message x, outputs xi by
querying only at most q coordinates of w. Understanding the tradeoffs between the dimension, length
and query complexity of LDCs is a fascinating and unresolved research challenge. In particular, for
3-query binary LDC’s of dimension k and length n, the best known bounds are: 2ko(1)

≥ n ≥ Ω̃(k2).
In this work, we take a second look at binary 3-query LDCs. We investigate a class of 3-uniform

hypergraphs that are equivalent to strong binary 3-query LDCs. We prove an upper bound on the
number of edges in these hypergraphs, reproducing the known lower bound of Ω̃(k2) for the length
of strong 3-query LDCs. In contrast to previous work, our techniques are purely combinatorial and
do not rely on a direct reduction to 2-query LDCs, opening up a potentially different approach to
analyzing 3-query LDCs.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Coding theory, Graph theory, Hypergraphs

Digital Object Identifier 10.4230/LIPIcs.ITCS.2020.85

Funding Arnab Bhattacharyya: Partially supported by NUS Startup Grant R-252-000-A33-133.

Acknowledgements AB thanks Sivakanth Gopi, Nikhil Srivastava, and Luca Trevisan for many
useful discussions about this problem.

1 Introduction

A code C is said to be a q-query locally decodable code (LDC) if it is possible to recover
any symbol xi of a message x by querying C(x) on at most q locations, such that even if a
constant fraction of C(x) is corrupted, the decoder returns xi with high probability. LDCs
already appeared in the PCP literature (e.g., implicitly in [1]) but they were first explicitly
formulated by Katz and Trevisan in [10]. LDCs have attracted attention not only because of
their immediate relevance to data transmission and data storage but also because of their
surprising connections to complexity theory and cryptography ([3, 13, 8, 11]). In more recent
years, the analysis of LDCs has led to a greater understanding of basic problems in incidence
geometry, the construction of design matrices and the theory of matrix scaling, e.g. [2, 7, 6].

Although LDCs have been studied now for two decades, some basic questions remain
stubbornly open. In particular, we have the following open question for 3-query LDCs:

I Open Question 1. What is the length of the shortest 3-query LDC that can encode all
k-bit binary messages?

© Arnab Bhattacharyya, L. Sunil Chandran, and Suprovat Ghoshal;
licensed under Creative Commons License CC-BY

11th Innovations in Theoretical Computer Science Conference (ITCS 2020).
Editor: Thomas Vidick; Article No. 85; pp. 85:1–85:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arnabb@nus.edu.sg
mailto:sunil@iisc.ac.in
mailto:suprovat@iisc.ac.in
https://doi.org/10.4230/LIPIcs.ITCS.2020.85
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

85:2 Combinatorial Lower Bounds for 3-Query LDCs

A wild variety of techniques have been used to study the problem. For a while, it was believed
that the length n should be exponential in k for 3-query LDCs (indeed, for any constant num-
ber of queries). This belief was shattered by a breakthrough work of Yekhanin that designed
3-query LDCs of length subexponential in k (conditional on some number-theoretic conjec-
tures). Subsequent work ([9, 5] reformulated the construction in terms of matching vector codes
and established an unconditional upper bound of exp

(
exp(O(

√
log k log log k))

)
= exp(ko(1))

on the length.
As for lower bounds on the length of 3-query LDCs, which is the focus of this work,

Katz and Trevisan [10] first gave a super linear lower bound of Ω(k3/2), which was then
improved to Ω

(
k2/(log k)2) by Kerenedis and de Wolf [12] using quantum information

theoretic techniques. The current state-of-the-art is due to Woodruff [14] from over a decade
ago where he showed that n ≥ Ω(k2/ log k).

Given the state of affairs, it is natural to try to prove lower bounds for stronger variants1
of LDCs where the task should be easier. In this work, we study a restricted form of LDCs
which seem to capture most of the challenges associated with general LDCs.

I Definition 2. For a given δ ∈ (0, 1), a code C : {±1}k → {±1}n is a (3, δ)-strong LDC if
for every i ∈ [k], there exists a set Mi of ≥ δn disjoint triples in

([n]
3
)

such that for every
x ∈ {±1}k and for every triple (j1, j2, j3) ∈ Mi, xi = C(x)j1 · C(x)j2 · C(x)j3 . Moreover, if
i 6= i′, a triple in Mi intersects a triple in Mi′ in at most 1 coordinate.

Known constructions of 3-query LDCs are strong. Conceptually, the main2 restriction that
the above definition makes is that each triple in the matching Mi successfully decodes xi for
every x. On the other hand, Katz and Trevisan [10] show that general LDCs yield matchings
M1, . . . ,Mk such that each triple in the matching Mi sucessfully decodes xi for most (not
all) x’s.

We show a combinatorial proof of the known Ω(k2/ log k) lower bound for the length of
code words of 3-query strong LDCs. Here is the main theorem stating the lower bound.

I Theorem 3. Let C : {±1}k 7→ {±1}n be a (3, δ)-strong LDC. Then, n ≥ Ωδ(k2/ log k).

1.1 Proof Overview
As we already noted, Theorem 3 follows from [14]. Of more interest is our proof technique.
Woodruff’s lower bound reduces 3-query LDCs to 2-query LDCs and applies known analytic
proofs giving tight bounds for 2-query LDCs [12]. On the other hand, our proof is purely
combinatorial and does not seem to be a reduction to 2 queries.

Our starting point is the observation that strong 3-query LDCs are equivalent to even-
colored 3-uniform hypergraphs. A 3-uniform hypergraph is called linear if any two edges
intersect in at most one vertex.

I Definition 4. An (n, k, δ)-even-colored 3-uniform hypergraph is a linear edge-colored
hypergraph H on n vertices with each edge having a color in {1, . . . , k} such that:
(i) For each i ∈ [k], the edges of color i form a matching of size at least δn, and
(ii) If H ′ is a subgraph of H such that every vertex has even degree in H ′, then there are

an even number of edges of each color in H ′.

1 For instance, Woodruff in [15] gave an Ω(k2) lower bound for the special case of linear 3-query LDCs.
2 The decoding scheme of taking the product (xor) of the codeword bits is without loss of generality (see

[14]). The additional condition in Definition 2 about triples in different matchings intersecting only at
single coordinates is made for technical convenience and should be avoidable.

A. Bhattacharyya, L. S. Chandran, and S. Ghoshal 85:3

Given a (3, δ)-strong LDCs, define the hypergraph H which is the union of the matchings
M1, . . . ,Mk given by Definition 2, and let the color of an edge be the matching it comes
from. Then, it is easy to check that both conditions (i) and (ii) are met (see Claim 5). The
correspondence naturally goes in the other direction too, although this is not needed in the
present work.

We prove an upper bound k2 ≤ Oδ(n logn) for (n, k, δ)-even-colored 3-uniform hyper-
graphs, proving our main theorem. To motivate our proof, let us sketch the corresponding
argument for 2-query LDCs (which is also new to the best of our knowledge). Suppose
we have a (2-uniform) graph which is the union of k matchings, with edges from the i’th
matching having color i. Analogously to condition (ii) of Definition 4, also suppose that any
cycle contains an even number of edges of each color. Then, we prove that the number of
vertices n is at least exp(k). For simplicity, suppose the matchings of each color are perfect.
Our argument is through coding (ironically!). Fix an arbitrary vertex s. For any vertex
v 6= s, let its signature S(v) be defined as (n1, . . . , nk) where ni is the parity of the number
of edges of color i on a path P from s to v. We claim that S(v) does not depend on the path
chosen. This is because if two paths from s to v gave different signatures, this would yield a
cycle in which some color occurred an odd number of times. On the other hand, there are at
least 2k different signatures because for any signature (s1, . . . , sk) ∈ {0, 1}k, there is a path
from s with exactly si edges of color i (since the matchings are perfect). Hence, the number
of vertices is at least exp(k).

Our proof for 3-uniform hypergraphs is in a similar spirit. Instead of a path to define
a signature, we use a sequence of cherries, borrowing an idea from [4]. A cherry is a pair
of hyperedges which uniquely intersect at a hyperedge; see Figure 1. We observe that if
the number of edges is sufficiently large, then there are many cherries. We then use this
structure to show that there are even subgraphs (i.e., subgraphs in which all vertices have
even degrees) which have an odd number of edges of some color. Namely, we construct a
“cycle of cherries” in which we know there is a color that appears on a unique edge, yielding
the contradiction. More details follow.

Formally, given an (n, k, δ)-even colored hypergraph H which is a union of matchings
M1, . . . ,Mk, define the signature graph G = (V ′, E′) as follows. The vertex set V ′ = V × V ,
and there is an edge in G between the vertices (u1, v1) and (u2, v2) ∈ V ′ whenever there
exists a w ∈ V such that {u1, u2, w} and {v1, v2, w} are hyperedges forming a cherry in
H. Moreover, such an edge is labeled by the pair of colors {i1, i2} if {u1, u2, w} ∈Mi1 and
{v1, v2, w} ∈Mi2 . The signature graph enjoys the following useful structural property:

For any vertex x in G and for any color i ∈ [k], there are at most 4 edges incident to
x that have i in their label. (?)

The proof of (?) follows from the definition of G in terms of cherries (see Claim 8) .

Figure 1 A cherry formed from the edges {u1, w, u2} and {v1, w, v2} intersecting at w.

ITCS 2020

85:4 Combinatorial Lower Bounds for 3-Query LDCs

For the sake of contradiction, assume that k ≥
√
Cn logn for some large constant C. This,

along with a standard averaging argument, implies that there exists a large subgraph G′ of the
signature graph with minimum degree at least k2n/4n2 ≥ (C/4) logn. Now fixing an arbitrary
vertex r ∈ V (G′) as root, we iteratively grow a sequence of trees T1, T2, . . . , T`+1 using edges
in G′, while maintaining the following rainbow condition: For any vertex x ∈ V (Ti), no color
appears more than once among the colors labeling the unique path from r to x in Ti.

We explain how to construct Ti+1 from Ti so that the above rainbow condition is met.
Let Li denote the leaves of the tree Ti, and let Ni denote the neighbors y of vertices x ∈ Li
so that the colors labeling the edge (x, y) do not occur on the path from the root r to x in
Ti. A short argument (Claim 9) allows us to deduce that Ni must be disjoint from V (Ti),
because otherwise, condition (ii) of Definition 4 is violated. Hence, the next tree Ti+1 can be
built by letting Li+1 = Ni and adding one edge from each vertex in Li+1 to a vertex in Li.

We continue this process until |L`| < 2|L`−1| for some iteration `. We now sketch how
to arrive at a contradiction. From the stopping criteria, we know that for every i < `− 1
we have |Li+1| ≥ 2|Li| ≥ 2i+1, and therefore the depth of the tree is at most ` = O(logn).
Therefore, for any x ∈ L`−1, the number of colors labeling the path from r to x is at most
O(logn). From property (?), we get that there are at least (C/4) logn−O(logn) = C ′ logn
neighbors of x that are in L` (for some other constant C ′). Since |L`| < 2|L`−1|, there exists
a vertex w ∈ L` with at least (C ′/2) logn neighbors in L`−1. Again, invoking property (?),
for C ′ large enough, there will be a neighbor w′ ∈ L`−1 such that that the colors labeling
(w,w′) do not appear among the O(logn) labels of the path from r to w. From here, we can
conclude that the unique path between w and w′ in T` along with the edge (w,w′) forms
a cycle in G in which some color appears exactly once. This structure corresponds to a
subgraph in H that violates condition (ii) of Definition 4.

In the rest of the paper, we present the argument formally with all the details. It is
unclear currently how to extend the analysis to q-query LDCs or how to improve the analysis
for 3-query LDCs. But we remain hopeful that by looking at more intricate combinatorial
structures than cherries, we can make some progress.

2 Preliminaries

In this section and later, we do not invoke the notion of even-colored subgraphs, and we
define objects directly in reference to strong 3-query LDCs.

Given a (3, γ)-strong LDC, we define the recovery hypergraph H, where V (H) = [n]
and E(H) := ∪i∈[k]Mi to be the 3-uniform hypergraph which is the union of matchings
M1,M2, . . . ,Mk. For any edge e ∈ E(H), we say that the color of the hyperedge e is i if e
belongs to matching Mi. We use the notation col(e) to denote the color of the hyperedge e.
We additionally assume that H is linear, i.e. no two hyperedges of H intersect in more than
one element.

Let L be a hypergraph. Then we define an augmentation L′ of L as follows: V (L′) = V (L)
and E(L′) is a multiset where each member e ∈ E(L′) also belongs to E(L) but can possibly
have a higher multiplicity than the multiplicity of e in E(L). With respect to a hypergraph L
where a hyperedge e is allowed to have multiplicity greater than 1, we denote by multL(e) the
multiplicity of e in E(L). We may drop the subscript L, if the hypergraph under consideration
is clear from the context. Also for v ∈ V (L),degL(v) :=

∑
e∈E(L):v∈e multL(e). If for all

v ∈ V (L),degL(v) is even, then L is called an even hypergraph. We use col(L) to denote the
multiset of colors associated with edges in E(L).

If L is an augmentation of the recovery hypergraph H, for 1 ≤ i ≤ k, we define

λL(i) :=
∑

e∈E(L):col(e)=i

multL(e).

A. Bhattacharyya, L. S. Chandran, and S. Ghoshal 85:5

B Claim 5. Let L be an augmentation of the recovery hypergraph H. If L is even, then for
1 ≤ i ≤ k, λL(i) is even.

Proof. Suppose for contradiction that there exists i, 1 ≤ i ≤ k such that λL(i) is odd. Recall
that the indices of the code word bits correspond to the vertices of the recovery hypergraph.
Let us assume that y = (y1, y2, . . . , yn) is the code word of a message (x1, x2, . . . , xk), where
xi = −1 and xj = 1 for j 6= i. For an edge e = {a, b, c} of the recovery hypergraph,
Y e = ya.yb.yc. Now it is clear that

∏
e∈E(L) Y

e = 1 , since L is an even augmentation of H.
On the other hand, by definition of the recovery hypergraph, if col(e) = t, then Y e = xt

for 1 ≤ t ≤ k. Therefore
∏
e∈E(L) Y

e =
∏

1≤t≤k x
λL(t)
t . Clearly since for the selected message

xj = 1 for j 6= i, we infer that
∏
e∈E(L) Y

e = x
λL(i)
i = −1, if λL(i) is odd. This is a

contradiction. We conclude that for 1 ≤ i ≤ k, λL(i) is even. C

The Signature Graph

We define a graph called the signature graph G as follows: V (G) = {(u, v) : u, v ∈ V (H);u 6=
v} and an edge exists between two vertices (u1, v1) and (u2, v2) of G if and only if {u1, v1} ∩
{u2, v2} = ∅ and there exists a vertex w ∈ V (H) such that {u1, u2, w}, {v1, v2, w} ∈ E(H).
Note that since the recovery hypergraphH is linear, if there exists an edge between two vertices
(u1, v1) and (u2, v2), there is a unique vertex w such that {u1, u2, w}, {v1, v2, w} ∈ E(H).
We may say that the vertex w causes the edge ((u1, v1), (u2, v2)). Given an edge e ∈ E(G),
we define T (e) = ({u1, u2, w}, {v1, v2, w}) if w causes the edge e. We may abuse the notation
and use T (e) to denote the corresponding unordered set. We define col(e) = {i1, i2} if
(u1, u2, w) ∈Mi1 and (v1, v2, w) ∈Mi2 . Note that i1 6= i2 since w cannot be in two different
edges of the same matching.

B Claim 6. The number of edges in the signature graph G is at least 12γ2nk2.

Proof. Since each matching is of size at least γn, the number of hyperedges m in H is at least
γnk. It follows that

∑
v∈V (H) deg(v) = 3m ≥ 3γnk. For any vertex w ∈ V (H) consider a pair

of incident edges, say {u1, u2, w} and {v1, v2, w}. Since H is linear, {u1, u2} ∩ {v1, v2} = ∅.
It is easy to see that based on this pair of incident edges, w can cause 4 distinct edges of
the signature graph G. Therefore the vertex w causes 4

(
d(v)

2
)
distinct edges of G, where

d(v) = deg(v). As we have mentioned earlier, two different vertices w and w′ cannot cause
the same edge in G. Therefore |E(G)| ≥ 4

∑
v∈V (H)

(
d(v)

2
)

= 2
∑
v∈V (H)(d(v)2−d(v)). Recall

that
∑
v∈V (H) d(v) = 3m. Using Cauchy-Schwarz inequality, 3 we get

∑
v∈V (H)(d(v)2) ≥ 9m2

n .
It follows that |E(G)| ≥ 6m

n (3m− n) ≥ 12m2

n ≥ 12γ2nk2. Here we have used m ≥ γnk and
m ≥ n, since γk ≥ 1. C

For a subgraph J of the signature graph G, we define HJ to be the augmentation of H,
with V (HJ) = V (H) and E(HJ) = ∪e∈E(J)T (e). Note that when we take the union here, we
retain multiple copies of a hyperedge if that hyperedge appears in multiple sets T (e) taking
part in the union operation. Thus E(HJ) is by definition a multi-set. We extend some of
the notation used for hypergraphs to subgraphs of signature graphs also in the following
way: We use col(J) to denote the multiset col(HJ). A hypergraph H ′ is rainbow colored
with respect to an edge coloring if there exist no two hyperedges having the same color. (In

3 For vectors X, Y , the Cauchy-Schwarz inequality states that ‖X‖ · ‖Y ‖ ≥ X>Y . Now take X =
(d(v1), d(v2), . . . , d(vn))>, where V (H) = {v1, v2, . . . , vn} and Y = (1, 1, . . . , 1)T to get the required
lower bound.

ITCS 2020

85:6 Combinatorial Lower Bounds for 3-Query LDCs

particular, there will not be any hyperedge with multiplicity greater than 1.) A subgraph J
of the signature graph is rainbow colored, if HJ is rainbow colored. We may also say J (or
H) is rainbow, shortening the phrase rainbow colored.

B Claim 7. Let J be an even subgraph of the signature graph G, i.e. ∀v ∈ V (J), deg(v) is
even. Then HJ is an even augmentation of H.

Proof. Recall that each edge e = ((u1, v1), (u2, v2)) ∈ E(G) corresponds to exactly 2 edges
in E(HJ), namely the two edges of T (e) = {{u1, u2, w}, {v1, v2, w}}, where w is the unique
vertex which caused the edge e. We say that w appears in the role of an intermediate vertex
and u1, v1, u2 and v2 appear in the role of signature vertices in T (e). It is easy to see that
since in T (e) itself the degree(w) is even, each vertex plays the role of an intermediate vertex
an even number of times. Noting that in T (e) each vertex appears in the role of a signature
vertex exactly once, it is easy to see that if x = (u, v) is a vertex of J , then u (also v)
plays the role of a signature vertex in ∪e∈EJ (x)T (e) (where EJ(x) denotes the set of edges
incident on x in J) exactly degJ(x) times. Since degJ(x) is even, it follows that degHJ

(u)
and degHJ

(v) are even numbers. C

B Claim 8. Let x be a vertex of the signature graph G and let E(x) be the set of edges
incident on x in G. Let C ⊆ [k] be a subset of colors. Let E(x, C) = {e ∈ E(x) : col(e)∩C 6= ∅}.
Then |E(x, C)| ≤ 4|C|.

Proof. Let x = (u, v). For an edge e ∈ E(x), T (e) contains 2 hyperedges, exactly one of
which contains u and the other one contains v: Let us denote by T (e)1 and T (e)2 the
hyperedges in T (e) that contain u and v respectively. For 1 ≤ i ≤ k, E(x, C) = ∪i∈CEi1 ∪Ei2,
where Eij = {e ∈ E(x) : col(T (e)j) = i} for j = 1, 2. First we will show that |Ei1| ≤ 2. To
see this, note that if col(T (e)1) = i, then T (e)1 ∈ Mi and T (e)1 contains u as mentioned
earlier. There is a unique hyperedge with these properties since Mi is a matching. Let
T (e)1 = (u, a, b). Then either a or b could have caused the edge e. If a caused the edge e,
then T (e)2 contains both v and a, and there is a unique edge in E(H) that is a superset of
{v, a} since H is linear. Similarly if b caused e, then T (e)2 is uniquely determined, since it
should contain both v and b. It follows that |Ei1| ≤ 2 for all i, 1 ≤ i ≤ k. A similar argument
shows that |Ei2| ≤ 2. It follows that |E(x, C)| ≤ 4|C|. C

Now we are ready to prove Theorem 3.

3 Proof of Theorem 3

For contradiction, we shall assume that k2 > Cn logn where C = C(γ) is a sufficiently large
constant. We can then lower bound the average degree of G as follows. From claim 6, we
know that |E(G)| ≥ 12γ2nk2. On the other hand, the number of vertices in G is at most
n2. Therefore, for k2 ≥ Cn logn, for C large enough, the average degree of G is at least
(2C ′) logn so that we can find a subgraph G′ ⊆ G with minimum degree at least C ′ logn,
where C ′ is a sufficiently large constant.

Now we fix a vertex r ∈ V (G′), and we grow a rainbow tree rooted at r in G′ level by
level as follows. Let T0 be the tree consisting only of the root r and T1 be the tree consisting
of r and all its neighbors. At the ith stage, we will have a tree Ti where V (Ti) = ∪̇ii=0Li
where Li is the set of vertices in level i. Note that V0 = L0 = {r} and T1 consists of 2 levels,
L0 = {r} and L1 = NG′(r). For two vertices x and y, the unique path in Ti from x to y will
be denoted by P (x, y).

Moreover at the ith stage, we will make sure that the tree Ti satisfies the following
property:

For any vertex x ∈ V (Ti), P (r, x) is a rainbow path. (1)

A. Bhattacharyya, L. S. Chandran, and S. Ghoshal 85:7

B Claim 9. If Ti satisfies property (1), and if e = (x, y) is an edge of G′ such that x ∈ Li
and y ∈ Lj , where i ≥ j, then col(e) ∩ col(P (r, x)) 6= ∅.

Proof. Suppose not. Let z be the least common ancestor of x and y in Ti. Since P (z, x) ⊆
P (r, x) is a rainbow path by property (1), P (z, x)∪{(x, y)} is also rainbow. Since |P (z, y)| ≤
|P (z, x)|, clearly we have |col(P (z, x) ∪ {(x, y)})| > |col(P (z, y)|. It follows that there is
at least one matching color, say i in the cycle C = P (z, x) ∪ {(x, y)} ∪ P (y, z), such that
λHC

(i) = 1. But since C is an even subgraph of G, HC is an even augmentation of H by
Claim 7. Then by Claim 5, λHC

(i) should be an even number, a contradiction. C

Now we describe how to construct Ti+1 from Ti by adding a new level Li+1. For a
vertex x ∈ Li define N ′(x) = {y ∈ NG′(x) : col(x, y) ∩ col(P (r, x)) = ∅}. Observe that
N ′(x) ∩ V (Ti) = ∅: This follows from Claim 9, since if there is an edge in G′ from a vertex
x ∈ Li to a vertex y ∈ Lj , j ≤ i then col(x, y) ∩ col(P (r, x)) 6= ∅, and therefore y /∈ N ′(x).
Define Li+1 = ∪x∈LiN

′(x). Clearly Li+1 ∩ V (Ti) = ∅. If Li+1 6= ∅, define a bipartite graph
Bi = (Li, Li+1) such that for x ∈ Li and y ∈ Li+1, (x, y) ∈ E(Bi) if and only if y ∈ N ′(x).
Now for each y ∈ Li+1, select one vertex y′ from Li such that (y, y′) ∈ E(Bi) to be its parent
thus obtaining the new tree Ti+1. From the way we defined N ′(x) for x ∈ Li, it is clear
that property (1) is satisfied by Ti+1. If |Li+1| ≥ 2|Li|, we proceed to add the next level.
Otherwise we stop the procedure and define the final tree T to be Ti+1.

Let L` be the last level added to the tree. Clearly ` > 2. We observe that ` ≤ logn+ 1.
Otherwise |L`−1| ≥ 2t−1 > n, since |Li+1| ≥ 2|Li| for i ≤ `− 2. Now consider the bipartite
graph B`−1: For each vertex x ∈ L`−1, we know by applying Claim 8 with C = col(P (r, x))
that E(x, C) ≤ 4|col(P (r, x))| ≤ 8 logn. But |EG′(x)| = degG′(x) ≥ C ′ logn and therefore
|N ′(x)| ≥ (C ′ − 8) logn. Therefore B`−1 has at least |L`−1|(C ′ − 8) logn edges. Since
|L`| < 2|L`−1|, there exists a vertex w ∈ L` such that its degree in B`−1 is at least
(C ′/2 − 4) logn. Again by applying Claim 8, this time with C = col(P (r, w)), at most
8(logn+ 1) of these edges can have a common color with any edge in P (r, w). It follows that
if C is taken large enough, w has a neighbor w′ ∈ L`−1 such that col(w,w′)∩col(P (r, w)) = ∅.
This contradicts Claim 9 applied to the tree T = T`. The situation is depicted in Figure 2.
Thus we infer that k2 ≤ Cn logn, which in turn implies that n = Ω

(
k2

log k

)
.

Figure 2 The cycle formed by the concatenation of P (z, w′), P (z, w), and (w, w′) corresponds to
an even subgraph in H with an odd number of edges having a particular color.

ITCS 2020

85:8 Combinatorial Lower Bounds for 3-Query LDCs

References
1 Laszlo Babai, Lance Fortnow, Leonid Levin, and Mario Szegedy. Checking computations

in polylogarithmic time. In Proceedings of the 23rd Annual ACM Symposium on Theory of
Computing, pages 21–31, 1991.

2 Boaz Barak, Zeev Dvir, Amir Yehudayoff, and Avi Wigderson. Rank bounds for design matrices
with applications to combinatorial geometry and locally correctable codes. In Proceedings of
the 43rd annual ACM symposium on Theory of computing, pages 519–528. ACM, 2011.

3 Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. Journal of the ACM (JACM), 45(6):965–981, 1998.

4 D Dellamonica, P Haxell, Tomasz Łuczak, Dhruv Mubayi, Brendan Nagle, Yury Person,
Vojtech Rödl, Mathias Schacht, and Jacques Verstraëte. On even-degree subgraphs of linear
hypergraphs. Combinatorics, Probability and Computing, 21(1-2):113–127, 2012.

5 Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM Journal
on Computing, 40(4):1154–1178, 2011.

6 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Breaking the quadratic barrier for 3-LCC’s
over the reals. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pages 784–793. ACM, 2014.

7 Zeev Dvir, Shubhangi Saraf, and Avi Wigderson. Improved rank bounds for design matrices
and a new proof of Kelly’s theorem. In Forum of Mathematics, Sigma, volume 2, page e4.
Cambridge Univ Press, 2014.

8 Zeev Dvir and Amir Shpilka. Locally decodable codes with two queries and polynomial identity
testing for depth 3 circuits. sicomp, 36(5):1404–1434, 2007.

9 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM Journal on
Computing, 41(6):1694–1703, 2012.

10 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the 32nd annual ACM symposium on Theory of Computing,
pages 80–86. ACM, 2000.

11 Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth 3 circuits.
In Proceedings of the 50th annual IEEE symposium on Foundations of Computer Science,
pages 198–207. IEEE, 2009.

12 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. In Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing, pages 106–115. ACM, 2003.

13 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom Generators without the XOR
Lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

14 David Woodruff. New lower bounds for general locally decodable codes. In Electronic
Colloquium on Computational Complexity (ECCC), number 006 in 14, 2007.

15 David P. Woodruff. A Quadratic Lower Bound for Three-Query Linear Locally Decodable
Codes over Any Field. Journal of Computer Science Technology, 27(4):678–686, 2012.

	Introduction
	Proof Overview

	Preliminaries
	Proof of Theorem 3

