Optimal Register Construction in M&M Systems

Vassos Hadzilacos
Department of Computer Science, University of Toronto, Canada
vassos@cs.toronto.edu

Xing Hu
Department of Computer Science, University of Toronto, Canada
xing@cs.toronto.edu

Sam Toueg
Department of Computer Science, University of Toronto, Canada
sam@cs.toronto.edu

Abstract
Motivated by recent distributed systems technology, Aguilera et al. introduced a hybrid model of distributed computing, called message-and-memory model or m&m model for short [1]. In this model, processes can communicate by message passing and also by accessing some shared memory. We consider the basic problem of implementing an atomic single-writer multi-reader (SWMR) register shared by all the processes in m&m systems. Specifically, we give an algorithm that implements such a register in m&m systems and show that it is optimal in the number of process crashes that it can tolerate. This generalizes the well-known implementation of an atomic SWMR register in a pure message-passing system [4].

2012 ACM Subject Classification Theory of computation → Concurrency; Theory of computation → Parallel computing models; Theory of computation → Distributed computing models

Keywords and phrases asynchronous distributed system, shared memory, message passing

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.28

Funding This research was partially funded by the Natural Sciences and Engineering Research Council of Canada.

1 Introduction
Motivated by recent distributed systems technology [9, 12, 13, 19, 22], Aguilera et al. introduced a hybrid model of distributed computing, called message-and-memory model or m&m model for short [1]. In this model processes can communicate by message passing and also by accessing some shared memory. Since it is impractical to share memory among all processes in large distributed systems [8, 14, 15, 24], the m&m model allows us to specify which subsets of processes share which sets of registers. Among other results, Aguilera et al. show that it is possible to leverage the advantages of the two communication mechanisms (message-passing and share-memory) to improve the fault-tolerance of randomized consensus algorithms compared to a pure message-passing system [1].

In this paper, we consider the more basic problem of implementing an atomic single-writer multi-reader (SWMR) register shared by all the processes in m&m systems, and we give an algorithm that is optimal in the number of process crashes that it can tolerate. This generalizes the well-known implementation of an atomic SWMR register in a pure message-passing system [4]. We now describe our results in more detail.

A general m&m system $S_L$ is specified by a set of $n$ asynchronous processes that can send messages to each other over asynchronous reliable links, and by a collection $L = \{S_1, S_2, \ldots, S_m\}$ where each $S_i$ is a subset of processes: for each $S_i$, there is a set of atomic registers that can be shared by processes in $S_i$ and only by them. Even though
the m&m model allows the collection \( L \) to be arbitrary, in practice hardware technology imposes a structure on \( L \) [8, 14]: for processes to share memory, they must establish a connection between them (e.g., an RDMA connection). These connections are naturally modelled by an undirected shared-memory graph \( G \) whose nodes are the processes and whose edges are shared-memory connections [1]. Such a graph \( G \) defines what Aguilera et al. call a uniform m&m system \( S_G \), where each process has atomic registers that it can share with its neighbours in \( G \) (and only with them). Note that \( S_G \) is the instance of the general m&m system \( S_L \) with \( L = \{ S_1, S_2, \ldots, S_n \} \) where each \( S_i \) consists of a process and its neighbours in \( G \). Furthermore, if \( G \) is the trivial graph with \( n \) nodes but no edges, the m&m system \( S_G \) that \( G \) induces is just a pure message-passing asynchronous system with \( n \) processes.

We consider the implementation of an atomic SWMR register \( R \), shared by all the processes, in both general and uniform m&m systems. For each general m&m system \( S_L \), we determine the maximum number of crashes \( t_L \) for which it is possible to implement \( R \) in \( S_L \): we give an algorithm that tolerates \( t_L \) crashes and prove that no algorithm can tolerate more than \( t_L \) crashes. Similarly, for each shared-memory graph \( G \) and its corresponding uniform m&m system \( S_G \), we use the topology of \( G \) to determine the maximum number of crashes \( t_G \) for which it is possible to implement \( R \) in \( S_G \). By specifying \( t_G \) in terms of the topology of \( G \), one can leverage results from graph theory to design m&m systems that can implement \( R \) with high fault tolerance and relatively few RDMA connections per process. For example, it allows us to design an m&m system with 50 processes that can implement a wait-free \( R \) (i.e., this implementation can tolerate any number of process crashes) with only 7 RDMA connections per process; as explained in Section 4, this is optimal in some precise sense.

An important remark is now in order. In this paper we consider RDMA systems where process crashes do not affect the accessibility of the shared registers of that system. This is the case in systems where the CPU, the DRAM (main memory), and the NIC (Network Interface Controller) are separate entities: for example, in the InfiniBand cluster evaluated in [21], the crash of a CPU, and of the processes that it hosts, does not prevent other processes from accessing its DRAM because it can use the NIC without involving the CPU; see also [8, 10, 26].

## 2 Model outline

We consider m&m systems with a set of \( n \) asynchronous processes \( \Pi = \{ p_1, p_2, \ldots, p_n \} \) that may crash. To define these systems we first recall the definition of atomic SWMR registers.

### 2.1 Atomic SWMR registers

A SWMR register \( R \) shared by a set \( S \) of processes is a register that can be written (sequentially) by exactly one process \( w \in S \) and can be read by all processes in \( S \); we say that \( w \) is the writer of \( R \) [18].

We now define an atomic SWMR register [4, 18] in terms of two simple properties that they must satisfy. To do so, we first define what it means for a (read or write) operation to precede another operation, and for two operations to be concurrent. We say that an operation \( o \) precedes another operation \( o' \) if and only if \( o \) completes before \( o' \) starts. A write operation \( o \) immediately precedes a read operation \( r \) if and only if \( o \) precedes \( r \), and there is no write operation \( o' \) such that \( o \) precedes \( o' \) and \( o' \) precedes \( r \). Operations \( o \) and \( o' \) are concurrent if and only if neither precedes the other.
We assume, without loss of generality, that the values successively written by the single
writer \( w \) of a SWMR register \( R \) are distinct, and different from the initial value of \( R \).\(^1\) Let \( v_0 \) denote the initial value of \( R \), and \( v_k \) denote the value written by the \( k \)-th write operation
of \( w \). A SWMR register \( R \) is atomic if and only if it satisfies the following two properties:

**Property 1.** If a read operation \( r \) returns the value \( v \) then:
1. there is a write \( v \) operation that immediately precedes \( r \) or is concurrent with \( r \), or
2. no write operation precedes \( r \) and \( v = v_0 \).

**Property 2.** If two read operations \( r \) and \( r' \) return values \( v_k \) and \( v_{k'} \), respectively, and \( r \) precedes \( r' \), then \( k \leq k' \).

### 2.2 General m&m systems

Let \( L = \{ S_1, S_2, \ldots, S_m \} \) be any bag of non-empty subsets of \( \Pi = \{ p_1, p_2, \ldots, p_n \} \).

**Definition 3.** \( \mathcal{M}_L \) is the class of m&m systems (induced by \( L \)), each consisting of:
1. The processes in \( \Pi \).
2. Reliable asynchronous communication links between every pair of processes in \( \Pi \).
3. The following set of registers: For each subset of processes \( S_i \) in \( L \), a non-empty set of
   atomic registers that are shared by the processes in \( S_i \) (and only by them).

Note that \( \mathcal{M}_L \) includes m&m systems that differ by the type and number of registers
shared by the processes in each \( S_i \); for example they could be sharing multi-writer multi-reader
atomic registers.

Since we are interested in implementing atomic SWMR registers (shared by all processes
in the system), here we focus on an m&m system of \( \mathcal{M}_L \) in which the set of registers shared
by the processes in each set \( S_i \) are atomic SWMR registers. More precisely, we focus on the
m&m system \( S_L \) defined below:

**Definition 4.** The general m&m system \( S_L \) (induced by \( L \)) consists of:
1. The processes in \( \Pi \).
2. Reliable asynchronous communication links between every pair of processes in \( \Pi \).
3. The following set of registers: For each subset of processes \( S_i \) in \( L \) and each process
   \( p \in S_i \), an atomic SWMR register, denoted \( R_i[p] \), that can be written by \( p \) and read by all
   processes in \( S_i \) (and only by them).

In this paper, for every \( L \), we give an algorithm that implements atomic SWMR registers
shared by all processes in the m&m system \( S_L \), and we show that this algorithm is optimal
in the number of process crashes that can be tolerated. In fact we prove that any algorithm
that implements such registers in *any* m&m system in \( \mathcal{M}_L \), (not only in \( S_L \)) cannot tolerate
more crashes. This justifies our focus on \( S_L \): considering members of \( \mathcal{M}_L \) with more or
stronger registers than \( S_L \) does not improve the fault tolerance of implementing atomic
SWMR registers shared by all.

Without loss of generality we assume the following:

**Assumption 5.** The bag \( L = \{ S_1, S_2, \ldots, S_m \} \) of subsets of \( \Pi = \{ p_1, p_2, \ldots, p_n \} \) is such
that every process in \( \Pi \) is in at least one of the subsets \( S_j \) of \( L \).

---

\(^1\) This can be ensured by the writer \( w \) writing values of the form \( \langle sn, v \rangle \) where \( sn \) is the value of a counter
that \( w \) increments before each write.
This assumption can be made without loss of generality because it does not strengthen the system $S_L$ induced by $L$. In fact, given a bag $L$ that does not satisfy the above assumption, we can construct a bag that satisfies the assumption as follows: for every process $p_i$ in $L$ that is not contained in any $S_j$ of $L$, we can add the singleton set $\{p_i\}$ to $L$. Let $L'$ be the resulting bag. By Definition 4(3) above, adding $\{p_i\}$ to $L$ results in adding only a local register to the induced system $S_{L'}$, namely, an atomic register that $p_i$ (trivially) shares only with itself. So $S_{L'}$ is just $S_L$ with some additional local registers. Note that a pure message-passing system (with no shared memory) with $n$ processes $p_1, p_2, \ldots, p_n$ is modelled by the system $S_L$ where $L = \{\{p_1\}, \{p_2\}, \ldots, \{p_n\}\}$.

### 2.3 Uniform m&m systems

Let $G = (V, E)$ be an undirected graph such that $V = \Pi$, i.e., the nodes of $G$ are the $n$ processes $p_1, p_2, \ldots, p_n$ of the system. For each $p_i \in V$, let $N(p_i) = \{p_j \mid (p_i, p_j) \in E\}$ be the neighbours of $p_i$ in $G$, and let $N^+(p_i) = N(p_i) \cup \{p_i\}$.

- **Definition 6.** The uniform m&m system $S_G$ (induced by $G$) is the m&m system $S_L$ where $L = \{S_1, S_2, \ldots, S_n\}$ with $S_i = N^+(p_i)$.\(^2\)

The graph $G$ induces the uniform m&m system $S_G$ where processes can communicate by message passing (via reliable asynchronous communication links), and also by shared memory as follows: for each process $p_i$ and every neighbour $p$ of $p_i$ in $G$ (including $p_i$) there is an atomic SWMR register $R_i[p]$ that can be written by $p$ and read by every neighbour of $p_i$ in $G$ (including $p_i$). We can think of the registers $R_i[\ast]$ as being physically located in the DRAM of the host of $p_i$, and every neighbour of $p_i$ accessing these registers over its RDMA connection to $p_i$ (which is modelled by an edge of $G$).\(^3\)

For example, in Figures 1 and 2 we show a graph $G$ and the uniform m&m system $S_G$ induced by $G$. Here $G$ has five nodes representing processes $p_1, p_2, p_3, p_4, p_5$; the edges of $G$ represent the RDMA connections that allow these processes to share registers. The uniform m&m system $S_G$ induced by $G$ is the system $S_L$ for $L = \{S_1, S_2, S_3, S_4, S_5\}$ where

\(^2\) Note that $L$ satisfies Assumption 5 because each $S_i = N^+(p_i)$ contains $p_i$.

\(^3\) As we mentioned in the introduction, we assume that the crash of $p_i$ does not prevent the neighbours of $p_i$ from accessing the shared registers $R_i[\ast]$. 
each $S_i$ consists of $p_i$ and its neighbours in $G$: specifically, $S_1 = \{p_1, p_2\}$, $S_2 = \{p_1, p_2, p_3\}$, $S_3 = \{p_2, p_3, p_4, p_5\}$, and $S_4 = \{p_1, p_4, p_5\}$. The box adjacent to each process $p_i$ in $S_G$ represents the atomic SWMR registers that are shared among $p_i$ and its neighbours in $G$ (intuitively these registers are located at $p_i$). For example, in the box adjacent to process $p_2$, the component labelled $p_1$ represents the register $R_2[p_1]$ that can be written by $p_1$ and read by all the neighbours of $p_2$ in $G$, namely $p_1, p_2,$ and $p_3$. Similarly, registers $R_2[p_2]$ and $R_2[p_3]$ can be written by $p_2$ and $p_3$, respectively, and read by $p_1, p_2,$ and $p_3$. The dashed lines in Figure 2 represent the asynchronous message-passing links between the processes of $S_G$.

3 Atomic SWMR register implementation in general m&m systems

Let $S_L$ be the general m&m system induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$. Recall that in system $S_L$, for every $S_i$ in $L$, the processes in $S_i$ share some atomic SWMR registers that can be read only by the processes in $S_i$ (recall that it is impractical to share registers among all processes in large distributed systems [8, 14, 15, 24]). In the rest of the paper, we determine the maximum number of process crashes that may occur in $S_L$ such that it is possible to implement in $S_L$ a shared atomic SWMR register readable by all processes in $S_L$. Intuitively, if $t \leq t_L$ processes may crash, then any two subsets of processes of size $n - t$ either intersect, or they each contain a process that can communicate with the other via a shared SWMR register that it can write and the other can read. If $t > t_L$ processes may crash, then there are two subsets of processes of size $n - t$ that are disjoint and cannot communicate via shared SWMR register.

Definition 7. Given a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$, $t_L$ is the maximum integer $t$ such that the following condition holds: For all disjoint subsets $P$ and $P'$ of $\Pi$ of size $n - t$ each, some set $S_i$ in $L$ contains both a process in $P$ and a process in $P'$.

Note that if $t \leq \lfloor (n - 1)/2 \rfloor$ then there are no disjoint subsets $P$ and $P'$ of $\Pi$ of size $n - t$ each, and so the above condition is vacuously true. Therefore $t_L \geq \lfloor (n - 1)/2 \rfloor$. Recall that for a pure message-passing system, $L = \{\{p_1\}, \{p_2\}, \ldots, \{p_n\}\}$, so in this system $t_L = \lfloor (n - 1)/2 \rfloor$.

To illustrate Definition 7, suppose $\Pi = \{p_1, p_2, p_3, p_4, p_5\}$ and $L = \{S_1, S_2, S_3\}$ where $S_1 = \{p_1, p_2\}$, $S_2 = \{p_1, p_4\}$, and $S_3 = \{p_2, p_4, p_5\}$. By the definition of $t_L$: (1) $t_L \geq 3$ because for any two disjoint subsets of $\Pi$ of size $5 - 3 = 2$ each, there exists a set $S_i$ in $L$ that intersects both subsets; e.g., for subsets $\{p_1, p_3\}$ and $\{p_1, p_4\}$, the set $S_2 = \{p_1, p_4\}$ intersects both of them. (2) $t_L < 4$ because there are two disjoint subsets $\{p_1\}, \{p_5\}$ of size $5 - 4 = 1$ each, such that no set $S_i$ in $L$ contains both $p_1$ and $p_5$. So in this example $n = 5$ and $t_L = 3 > \lfloor (5 - 1)/2 \rfloor = 2$.

We now prove that in the general m&m system $S_L$, it is possible to implement an atomic SWMR register readable by all processes if and only if at most $t_L$ processes may crash in $S_L$.

More precisely:

Theorem 8. Let $S_L$ be the general m&m system induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$.

- If at most $t_L$ processes crash in $S_L$, then for every process $w$ in $S_L$, it is possible to implement an atomic SWMR register writable by $w$ and readable by all processes in $S_L$.
- If more than $t_L$ processes crash in $S_L$, then for some process $w$ in $S_L$, it is impossible to implement an atomic SWMR register writable by $w$ and readable by all processes in $S_L$.

The above theorem is a direct corollary of Theorem 18 (Section 3.1) and Theorem 19 (Section 3.2).
3.1 Algorithm

We now show how to implement an atomic SWMR register $R$, that can be written by an arbitrary fixed process $w$ and read by all processes, in an $m&m$ system $S_L$ where at most $t_L$ processes may crash. This implementation is given in terms of the procedures $\text{WRITE()}$ and $\text{READ()}$ shown in Algorithm 1.

Without loss of generality we assume that for all $i \geq 1$, the $i$-th value that the writer writes is of the form $(i, val)$, and the initial value of the register $R$ is $(0, u_0)$. To write $(i, val)$ into $R$, the writer $w$ calls the procedure $\text{WRITE}((i, val))$. To read $R$, a process $q$ calls the procedure $\text{READ()}$ which returns a value of the form $(i, val)$. The sequence number $i$ makes the values written to $R$ unique.

Algorithm 1 Implementation of an atomic SWMR register writeable by process $w$ and readable by all processes in $S_L$, provided that at most $t_L$ processes crash.

**Shared variables**

For all $S_i$ in $L$ and all $p$ in $S_i$: $R_i[p]$ : atomic SWMR register writeable by $p$ and readable by every process in $S_i \in L$; initialized to $(0, u_0)$.

$\text{WRITE}((sn_w, u))$: $\triangleright$ executed by the writer $w$

1. $\text{send } (W, (sn_w, u)) \text{ to every process } p \text{ in } S_L$
2. $\text{wait for } (\text{ACK-W, } sn_w) \text{ messages from } n - t_L \text{ distinct processes}$
3. $\text{return}$
4. $\triangleright$ executed by every process $p$ in $S_L$

$\text{upon receipt of a } (W, (sn_w, u)) \text{ message from process } w:$
5. $\text{for every } i \text{ in } \{1, \ldots, m\} \text{ such that } p \in S_i \text{ do}$
6. $\langle sn, - \rangle \leftarrow R_i[p]$
7. $\text{if } sn_w > sn \text{ then}$
8. $R_i[p] \leftarrow (sn_w, u)$
9. $\text{send } (\text{ACK-W, } sn_w) \text{ to process } w$

$\text{READ}()$: $\triangleright$ executed by any process $q$

10. $sn_r \leftarrow sn_r + 1$
11. $\text{send } (R, sn_r) \text{ to every process } p \text{ in } S_L$
12. $\text{wait for } (\text{ACK-R, } sn_r, \langle -, - \rangle) \text{ messages from } n - t_L \text{ distinct processes}$
13. $(seq, val) \leftarrow \max\{ (r_{-sn_r, r_{-u}}) \mid \text{received a } (\text{ACK-R, } sn_r, \langle r_{-sn_r, r_{-u}} \rangle) \text{ message} \}$
14. $\text{WRITE}((seq, val))$
15. $\text{return } (seq, val)$
16. $\triangleright$ executed by every process $p$ in $S_L$

$\text{upon receipt of a } (R, sn_r) \text{ message from a process } q:$
17. $(r_{-sn_r, r_{-u}}) \leftarrow \max\{ (sn, u) \mid \exists i \in \{1, \ldots, m\}, p \in S_i \text{ and } \exists p' \in S_i, R_i[p'] = (sn, u) \}$
18. $\text{send } (\text{ACK-R, } sn_r, \langle r_{-sn_r, r_{-u}} \rangle) \text{ to process } q$
Algorithm 1 generalizes the well-known implementation of an atomic SWMR register in pure message-passing systems [4]. To write a new value into $R$, the writer $w$ sends messages to all processes asking them to write the new value into all the shared SWMR registers that they can write in $S_L$. The writer then waits for acknowledgments from $n-t_L$ processes indicating that they have done so. To read $R$, a process sends messages to all processes asking them for the most up-to-date value that they can find in all the shared SWMR registers that they can read. The reader waits for $n-t_L$ responses, selects the most up-to-date value among them, writes back that value (using the same procedure that the writer uses), and returns it. From the definition of $t_L$ it follows that every write of $R$ “intersects” with every read of $R$ at some shared SWMR register of $S_L$. Note that since at most $t_L$ processes crash, the waiting mentioned above does not block any process.

We now show that the procedure $\text{WRITE}(\cdot)$, called by the writer $w$, and the procedure $\text{READ}(\cdot)$, called by any process $q$ in $S_L$, implement an atomic SWMR register $R$. To do so, we show that the calls of $\text{WRITE}(\cdot)$ by $w$ and of $\text{READ}(\cdot)$ by any process satisfy Properties 1 and 2 of atomic SWMR registers given in Section 2.1.

$\textbf{Definition 9.}$ The operation $\text{write}(v)$ is the execution of $\text{WRITE}(v)$ by the writer $w$ for some tuple $v = (s_1, \ldots, s_n)$: this operation starts when $w$ calls $\text{WRITE}(v)$ and it completes if and when this call returns. An operation $\text{read}(v)$ is an execution of $\text{READ}(\cdot)$ that returns $v$ to some process $q$: this operation starts when $q$ calls $\text{READ}(\cdot)$ and it completes when this call returns $v$ to $q$.

Let $v_0 = (0, u_0)$ be the initial value of the implemented register $R$, and, for $k \geq 1$, let $v_k = (k, -)$ denote the $k$-th value written by the writer $w$ on $R$. Note that all $v_k$’s are distinct: for all $i \neq j \geq 0$, $v_i \neq v_j$.

Let $S_L$ be the general $m & m$ system induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$. To prove the correctness of the SWMR implementation shown in Algorithm 1, we now consider an arbitrary execution of this implementation in $S_L$ under the assumption that at most $t_L$ processes crash.

$\textbf{Lemma 10.}$ Any $\text{read}(-)$ or $\text{write}(-)$ operation executed by a process that does not crash completes.

$\textbf{Proof.}$ The only statements that could prevent the completion of a $\text{read}(-)$ or $\text{write}(-)$ operation are the $\text{wait}$ statements of line 2 and line 12. But since communication links are reliable, these wait statements are for $n-t_L$ acknowledgements, and at most $t_L$ processes out of the $n$ processes of $S_L$ may crash, it is clear that these wait statements cannot block. ▶

We first note that every read operation returns some $v_k$ for $k \geq 0$.

$\textbf{Lemma 11.}$ If $r$ is a $\text{read}(v)$ operation in the execution, then $v = v_k$ for some $k \geq 0$.

$\textbf{Proof.}$ This proof is straightforward and omitted here. ▶

The next lemma says that no read operation can read a “future” value, i.e., a value that is written after the read completes.

$\textbf{Lemma 12.}$ If $r$ is a $\text{read}(v)$ operation in the execution, then either $v = v_0$, or $v = v_k$ such that the operation $\text{write}(v_k)$ precedes $r$ or is concurrent with $r$.

$\textbf{Proof.}$ This proof is straightforward and omitted here. ▶
Note that the guard in lines 6-8 (which is the only place where the shared SWMR registers are updated) ensures that the content of each shared SWMR register in $S_L$ is non-decreasing in the following sense:

**Observation 13.** [Register monotonicity] For all $1 \leq i \leq m$ and all $p \in S_i$, if $R_i[p] = \langle k, - \rangle$ at some time $t$ and $R_i[p] = \langle k', - \rangle$ at some time $t' \geq t$ then $k' \geq k$.

**Lemma 14.** For all $k \geq 1$, if a call to the procedure $\text{WRITE}(v_k)$ returns before a $\text{read}(v)$ operation starts, then $v = v_\ell$ for some $\ell \geq k$.

**Proof.** Suppose a call to $\text{WRITE}(v_k)$ returns before a $\text{read}(v)$ operation starts; we must show that $v = v_\ell$ with $\ell \geq k$. Note that before this call of $\text{WRITE}(v_k)$ returns, $\langle \text{ACK-W}, k \rangle$ messages are received from a set $P$ of $n - t_L$ distinct processes (see line 2 of the $\text{WRITE}()$ procedure). From lines 5-8, which are executed before these $\langle \text{ACK-W}, k \rangle$ messages are sent, and by Observation 13, it is now clear that the following holds:

**Claim 14.1.** By the time $\text{WRITE}(v_k)$ returns, every shared SWMR register in $S_L$ that can be written by a process in $P$ contains a tuple $\langle k', - \rangle$ with $k' \geq k$.

Now consider the $\text{read}(v)$ operation, say it is by process $q$. Recall that $\text{read}(v)$ is an execution of the $\text{READ}()$ procedure that returns $v$ to $q$. When $q$ calls $\text{READ}()$, it increments a local counter $s_n$ and asks every process $p$ in $S_L$ to do the following: (a) read every SWMR register that $p$ can read, and (b) reply to $q$ with a $\langle \text{ACK-R}, s_n, \langle r_{-s_n}, r_{-u} \rangle \rangle$ message such that $\langle r_{-s_n}, r_{-u} \rangle$ is the tuple with the maximum $r_{-s_n}$ that $p$ read. By line 12 of the $\text{READ}()$ procedure, $q$ waits to receive such $\langle \text{ACK-R}, s_n, \langle -,- \rangle \rangle$ messages from a set $P'$ of $n - t_L$ distinct processes, and $q$ uses these messages to select the value $v$ as follows:

$$v \leftarrow \max \{ \langle r_{-s_n}, r_{-u} \rangle \mid q \text{ received some } \langle \text{ACK-R}, s_n, \langle r_{-s_n}, r_{-u} \rangle \rangle \text{ from a process in } P' \}$$

Thus, by Lemma 11, it is clear that:

**Claim 14.2.** $v = v_\ell$ where $\ell = \max \{ j \mid q \text{ received a } \langle \text{ACK-R}, s_n, \langle j, - \rangle \rangle \text{ message from a process in } P' \}$.

**Claim 14.3.** Some set $S_i$ in $L$ contains both a process in $P$ and a process in $P'$.

**Proof of Claim 14.3.** If $P$ and $P'$ are disjoint, the claim follows directly from Definition 7 of $t_L$. If $P$ and $P'$ intersect, let $p$ be a process in both $P$ and $P'$. By Assumption 5, $p$ is in some set $S_i$ in $L$, and the claim follows.

By the above claim, some set $S_i$ in $L$ contains a process $p$ in $P$ and a process $p'$ in $P'$. Since $p \in S_i$ and $p' \in S_i$, $R_i[p]$ is one of the SWMR registers that can be written by $p$ and read by $p'$. From Claim 14.1, by the time the call to $\text{WRITE}(v_k)$ returns, $R_i[p]$ contains a tuple $\langle k', - \rangle$ such that $k' \geq k$ (*). Since $p' \in P'$, during the execution of $\text{read}(v)$ by $q$, $p'$ reads all the shared SWMR registers that it can read, including $R_i[p]$. Since $\text{read}(v)$ starts after $\text{WRITE}(v_k)$ returns, $p'$ reads $R_i[p]$ after $\text{WRITE}(v_k)$ returns. Thus, by (*) and the monotonicity of $R_i[p]$ (Observation 13), $p'$ reads from $R_i[p]$ a tuple $\langle r_{-s_n}, - \rangle$ with $r_{-s_n} \geq k' \geq k$. Then $p'$ selects the tuple $\langle j, - \rangle$ with the maximum $s_n$ among all the $\langle s_n, - \rangle$ tuples that it read (see line 17); note that $j \geq k$. So the $\langle \text{ACK-R}, s_n, \langle j, - \rangle \rangle$ message that $p'$ sends to $q$, and $q$ uses to select $v$, is such that $j \geq k$. So, by Claim 14.2, $v = v_\ell$ such that $\ell \geq j \geq k$.

Lemma 14 immediately implies the following:
Corollary 15. For all $k \geq 1$, if a $\text{write}(v_k)$ operation precedes a $\text{read}(v)$ operation then $v = v_\ell$ with $\ell \geq k$.

We now show that Algorithm 1 satisfies Property 1 and 2 of atomic SWMR registers.

Lemma 16. The $\text{write}(-)$ and $\text{read}(-)$ operations satisfy Property 1.

Proof. Suppose for contradiction that Property 1 does not hold. Thus there is a read operation $r = \text{read}(v)$ such that:
(a) there is no $\text{write}(v)$ operation that immediately precedes $r$ or is concurrent with $r$, and
(b) some $\text{write}(-)$ operation precedes $r$, or $v \neq v_0$.

There are two cases.
1. $v = v_0$. By (b) above, some $\text{write}(-)$ operation, say $\text{write}(v_k)$, precedes $r$. Thus $\text{write}(v_k)$ precedes $\text{read}(v_0)$. Since $k \geq 1$ this contradicts Corollary 15.
2. $v \neq v_0$. By Lemma 12, $v = v_k$ such that the operation $\text{write}(v_k)$ precedes $r$, or $\text{write}(v_k)$ is concurrent with $r$. By (a) above, $\text{write}(v_k)$ does not immediately precede $r$, and $\text{write}(v_k)$ is not concurrent with $r$. Thus, $\text{write}(v_k)$ precedes, but not immediately, $r$. Let $\text{write}(v_k)$ be the write operation that immediately precedes $r$. Note that $\text{write}(v_k)$ precedes $\text{write}(v_k')$, so $k < k'$. Since $\text{write}(v_k')$ precedes $r = \text{read}(v)$, by Corollary 15, $v = v_\ell$ with $\ell \geq k'$, so $\ell > k$. This contradicts that $v = v_k$.
Since both cases lead to a contradiction, Property 1 holds.

Lemma 17. The $\text{write}(-)$ and $\text{read}(-)$ operations satisfy Property 2.

Proof. We have to show that if a $\text{read}(v_k)$ operation precedes a $\text{read}(v_{k'})$ operation then $k \leq k'$. Suppose $\text{read}(v_k)$ precedes $\text{read}(v_{k'})$. Note that during the $\text{read}(v_k)$ operation, namely in line 14, there is a call to the procedure $\text{WRITE}(v_k)$ which returns before the $\text{read}(v_k)$ operation completes. So this call to $\text{WRITE}(v_k)$ returns before the $\text{read}(v_{k'})$ operation starts. By Lemma 12, $k \leq k'$.

Lemmas 10, 16 and 17 immediately imply:

Theorem 18. Let $S_L$ be the general m&m system induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$. If at most $t_L$ processes crash in $S_L$, for every process $w$ in $S_L$, Algorithm 1 implements an atomic SWMR register writable by $w$ and readable by all processes in $S_L$.

3.2 Lower bound

Theorem 19. Let $S_L$ be the general m&m system induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$. If more than $t_L$ processes crash in $S_L$, for some process $w$ in $S_L$, there is no algorithm that implements an atomic SWMR register writable by $w$ and readable by all processes in $S_L$ (*).

Proof. Let $S_L$ be the general m&m system induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$. Suppose for contradiction that $t > t_L$ processes can crash in $S_L$, but for every process $w$ in $S_L$, there is an algorithm $A_w$ that implements an atomic SWMR register writable by $w$ and readable by all processes in $S_L$ (**).

Since $t > t_L$, by the Definition 7 of $t_L$ there are two disjoint subsets $P$ and $P'$ of $\Pi$, of size $n - t$ each, such that: no set $S_i$ in $L$ contains both a process in $P$ and a process in $P'$ (**). Since $P$ and $P'$ are disjoint, the sets $P$, $P'$, and $Q = \Pi - (P \cup P')$ form a partition of $\Pi$. 

OPODIS 2019
Let the writer \( w \) be any process in \( P \). Let \( A \) be an algorithm that tolerates \( t > t_L \) process crashes in \( S_L \) and implements an atomic SWMR register \( R \) that is writable by \( w \) and readable by all processes in \( S_L \); this algorithm exists by our initial assumption (*)

Since \( |P \cup Q \cup P'| = n \), clearly \( |P \cup Q| = |P' \cup Q| = n - (n - t) = t \). Since algorithm \( A \) tolerates \( t \) crashes, it works correctly in every execution in which all the processes in \( P \cup Q \) or \( P' \cup Q \) crash.

We now define three executions \( E_1, E_2, \) and \( E_3 \) of algorithm \( A \). These are illustrated in Figure 3.

![Figure 3 Scenarios for Theorem 19.](image)

Execution \( E_1 \) of algorithm \( A \) is defined as follows:
- The processes in \( P' \cup Q \) crash from the beginning of the execution; they take no steps in \( E_1 \).
- At some time \( t^w_r \) the writer \( w \) starts an operation to write the value \( v \) into the implemented register \( R \), for some \( v \neq v_0 \), where \( v_0 \) is the initial value of \( R \). Since the number of processes that crash in \( E_1 \) is \( |P' \cup Q| = t \), and the algorithm \( A \) tolerates \( t \) crashes, this write operation eventually terminates, say at time \( t^e_w \).
- After this write terminates, no process takes a step up to and including some time \( t^e_r > t^e_w \).
- Note that in \( E_1 \), processes in \( P \) are the only ones that take steps up to time \( t^e_r \).

Execution \( E_2 \) of algorithm \( A \) is defined as follows:
- The processes in \( P \cup Q \) crash from the beginning of the execution; they take no steps in \( E_2 \).
- At time \( t^e_r \), some process \( r \in P' \) starts a read operation on the implemented register \( R \).
- Since the number of processes that crash in \( E_2 \) is \( |P \cup Q| = t \), and the algorithm \( A \) tolerates \( t \) crashes, this read operation terminates, say at time \( t^e_r \).

Since no write operation precedes the read operation in \( E_2 \), Property 1 of atomic SWMR registers implies:

\[ \textbf{Claim 19.1.} \text{ At time } t^e_r \text{ in } E_2 \text{ the read operation returns the initial value } v_0 \text{ of } R. \]
We now construct an execution $E_3$ of the algorithm $A$ that merges $E_1$ and $E_2$, and
contradicts the atomicity of the implemented $R$. $E_3$ is identical to $E_1$ up to time $t^*_s$, and it
is identical to $E_2$ from time $t^*_s$ to $t^*_e$ (note that in $E_3$ processes in $Q$ can only take steps after
time $t^*_e$). To obtain this merged run $E_3$, intuitively we delay the messages sent by processes
in $P$ to processes in $P'$ to after time $t^*_e$, and we also use the fact that processes in $P'$ cannot
read any of the shared registers in $S_L$ that processes in $P$ may have written by time $t^*_e$ (this
is because of (**)).

\textbf{Claim 19.2.} There is an execution $E_3$ of algorithm $A$ such that
(a) up to and including time $t^*_w$, $E_3$ is indistinguishable from $E_1$ to all processes.
(b) up to and including time $t^*_e$, $E_3$ is indistinguishable from $E_2$ to all processes in $P'$.
(c) No process crashes in $E_3$.

\textbf{Proof of Claim 19.2.} Until time $t^*_s$, $E_3$ is identical to $E_1$. We now show that it is possible
to extend $E_3$ in the time interval $[t^*_s, t^*_e]$ with the sequence of steps that the processes in $P'$
executed during the same time interval in $E_2$.\footnote{A \textit{step} of $A$ executed by process $p$ is one of the following: $p$ sending or receiving a message, or $p$ applying
a write or a read operation to a shared register in $S_L$.} More precisely, let $s^1, s^2, \ldots, s^f$ be the
sequence of steps executed during the time interval $[t^*_s, t^*_e]$ in $E_2$. Since only processes in $P'$
take steps in $E_2$, $s^1, s^2, \ldots, s^f$ are all steps of processes in $P'$. Let $C^2_3$ be the configuration
of the system $S_L$ at time $t^*_s$ in $E_2$,\footnote{The \textit{configuration} of $S_L$ at time $t$ in execution $E$ consists of the state of each process, the set of messages
sent but not yet received, and the value of each shared register in $S_L$ at time $t$ in $E$.} and let $C^2_2$ be the
configuration that results from applying step $s^i$ to configuration $C^2_{i-1}$, for all $i$ such that $1 \leq i \leq f$. We will prove that there are
configurations $C^3_0, C^3_1, \ldots, C^3_4$ of $S_L$ extending $E_3$ at time $t^*_e$ such that:
(i) every process in $P'$ has the same state in $C^3_3$ as in $C^3_4$;
(ii) the set of messages sent by processes in $P'$ to processes in $P'$, but not yet received, is
the same in $C^3_3$ as in $C^3_4$;
(iii) every shared register readable by processes in $P'$ has the same value in $C^3_3$ as in $C^3_4$; and
(iv) if $i \neq 0$, $C^3_i$ is the result of applying step $s^i$ to configuration $C^3_{i-1}$.

This is shown by induction on $i$.

For the basis of the induction, $i = 0$, we take $C^3_0$ to be the configuration of the system just
before time $t^*_s$ in $E_3$. Since no process in $P'$ takes a step before time $t^*_s$ in either $E_2$ or $E_3$,
$C^3_0$ satisfies properties (i) and (ii).

\textbf{Claim 19.3.} At time $t^*_e$ in $E_3$ the shared registers that can be read by processes in $P'$ have
their initial values.

\textbf{Proof of Claim 19.3.} Suppose, for contradiction, that at time $t^*_e$ in $E_3$, some shared register
$R$ that can be read by a process $p'$ in $P'$ does not have its initial value. By construction, $E_3$
is identical to $E_1$ until time $t^*_s$, and so only processes in $P$ take steps before time $t^*_e$ in $E_3$.
Thus, register $R$ was written by some process $p$ in $P$ by time $t^*_e$ in $E_3$. Since $R$ is readable
by $p'$ in $P'$ and is written by $p \in P$, $R$ is shared by both $p$ and $p'$. Thus, there must be a set
$S_i$ in $L$ that contains both $p$ and $p'$ – a contradiction to (**).

By Claim 19.3, the shared registers readable by processes in $P'$ have the same value
(namely, their initial value) in $C^3_0$ as in $C^3_2$. So, $C^3_0$ also satisfies property (iii). Property (iv)
is vacuously true for $i = 0$. 

For the induction step, for each $i$ such that $1 \leq i \leq t$, we consider separately the cases of $s^i$ being a step to send a message, receive a message, write a shared register, and read a shared register. In each case, it is easy to verify that, assuming (inductively) that $C^i_{l-1}$ has properties (i)–(iv), step $s^i$ is applicable to $C^i_{l-1}$, and the resulting configuration $C^i_l$ has properties (i)–(iv).

To complete the definition of $E_3$, after time $t^c_r$ we let processes take steps in round-robin fashion. Whenever a process’s step is to receive a message, it receives the oldest one sent to it; this ensures that all messages are eventually received. Processes continue taking steps in this fashion according to algorithm $A$.

Since $E_3$ is identical to $E_1$ up to and including time $t^c_r$, $E_3$ is indistinguishable from $E_1$ up to and including time $t^c_w$ to all processes in $P$. This proves part (a) of the claim.

Note that in $E_3$ and $E_2$, the processes in $P'$: (a) take no steps before time $t^c_r$, and (b) during the time interval $[t^c_r, t^c_w]$, they execute exactly the same sequence of steps, and go through the same sequence of states. Thus, up to and including time $t^c_w$, $E_3$ is indistinguishable from $E_2$ to all processes in $P'$. This proves part (b) of the claim.

Finally, every process takes steps as required by the algorithm in $E_3$, so no process crashes. This proves part (c) of the claim.

By Claim $19.2$(a), up to and including time $t^c_w$, $E_3$ is indistinguishable from $E_1$ to the writer $w \in P$. So $E_3$ contains the write operation that writes $v \neq v_0$ into $R$, which starts at time $t^c_w$ and ends at time $t^c_r$. By Claim $19.2$(b), up to and including time $t^c_r$, $E_3$ is indistinguishable from $E_2$ to $r \in P'$. So $E_3$ contains the read operation that returns $v_0$, which starts at time $t^c_r$ and ends at time $t^c_w$. Since $t^c_w < t^c_r$, this read operation violates Property 1 of atomic SWMR registers. As there are no process crashes in $E_3$ (by Claim $19.2$(c)), this contradicts the assumption that $A$ is an implementation of an atomic SWMR register $R$ that tolerates $t > t_L$ crashes.

Note that the proof of Theorem 19 does not depend on the type or number of registers shared by the processes in each set $S_i$ of the bag $L$. So the result of this theorem applies not only to $S_L$ but also to every m&m system in $M_L$. In fact, the proof of Theorem 19 does not even depend on the type of objects that are shared by the processes in each set $S_i$; for example these objects could include queues, stacks, and consensus objects. Hence we have the following stronger result:

\textbf{Theorem 20.} Consider any m&m system $S$ induced by a bag $L = \{S_1, \ldots, S_m\}$ of subsets of $\Pi = \{p_1, p_2, \ldots, p_n\}$, where the processes in each $S_i$ share any number of arbitrary objects among themselves (and only among themselves). If more than $t_L$ processes crash in $S$, then for some process $w$ in $S$, there is no algorithm that implements an atomic SWMR register writable by $w$ and readable by all processes in $S$.

4 Atomic SWMR register implementation in uniform m&m systems

Let $G = (V, E)$ be an undirected graph where $V = \{p_1, p_2, \ldots, p_n\}$, i.e., the nodes of $G$ are the processes $p_1, p_2, \ldots, p_n$. Let $S_G$ be the uniform m&m system induced by $G$. Recall that in $S_G$, each process $p_i$ and its neighbours in $G$ share some atomic SWMR registers that can be read by (and only by) them.

We now use $G$ to determine the maximum number of process crashes that may occur in $S_G$ such that it is possible to implement a shared atomic SWMR register readable by all processes in $S_G$. To do so, we first recall the definition of the \textit{square of the graph} $G$: $G^2 = (V, E')$ where $E' = \{(u, v) \mid (u, v) \in E \text{ or } \exists k \in V \text{ such that } (u, k) \in E \text{ and } (k, v) \in E\}$. 
Definition 21. Given an undirected graph $G = (V, E)$ such that $V = \{p_1, p_2, \ldots, p_n\}$, $t_G$ is the maximum integer $t$ such that the following condition holds: For all disjoint subsets $P$ and $P'$ of $V$ of size $n - t$ each, some edge in $G^2$ connects a node in $P$ with a node in $P'$; i.e., $G^2$ has an edge $(u, v)$ such that $u \in P$ and $v \in P'$.

Note that $t_G \geq \lceil (n - 1)/2 \rceil$. Moreover, in a pure message-passing system (where $G$ and $G^2$ have no edges) $t_G = \lfloor (n - 1)/2 \rfloor$.

In Theorem 22 stated below, we prove that in the uniform m&m system $S_G$ induced by a graph $G$, it is possible to implement an atomic SWMR register readable by all processes if and only if at most $t_G$ processes may crash in $S_G$.

For example, consider the graph $G$ in Figure 4 where $V = \{p_1, p_2, p_3, p_4, p_5\}$. Figure 5 shows the corresponding $G^2$ graph. By the above definition of $t_G$: (a) $t_G \geq 3$ because for any two disjoint subsets of $V$ of size $5 - 3 = 2$ each, $G^2$ has an edge that “connects” these two subsets (e.g., for subsets $P = \{p_1, p_2\}$ and $P' = \{p_4, p_5\}$, the edge $(p_2, p_4)$ of $G^2$ connects a node of $P$ to a node of $P'$), and (b) $t_G < 4$ because there are two disjoint subsets $\{p_1\}, \{p_5\}$ of size $5 - 4 = 1$ each, such that no edge in $G^2$ connects $p_1$ and $p_5$. So in this example $n = 5$ and $t_G = 3 > \lfloor (5 - 1)/2 \rfloor = 2$.

Now consider the uniform m&m system $S_G$ of 5 processes induced by this graph $G$. In addition to message-passing links, $S_G$ has 4 pairwise RDMA connections. Since $t_G = 3$, by Theorem 22: (1) we can implement an atomic SWMR register readable by all 5 processes of $S_G$ even if 3 of them (i.e., more than the majority) may crash, and (2) no algorithm can implement such a register in $S_G$ if more than 3 processes may crash.

As another example, consider a pure message-passing system $S$ with 50 nodes. In $S$, one can implement an atomic SWMR register $R$ (readable by all the processes) only if at most 24 process crashes may occur. But if we allow each process of $S$ to establish 7 pairwise RDMA connections, one can implement $R$ in a way that tolerates any number of process crashes (i.e., $R$ is wait-free). This is because there is an undirected graph $G$ with $n = 50$ nodes, each with degree 7, such that $G^2$ has an edge between every pair of nodes ($G$ is the well-known Hoffman-Singleton graph [11] shown in Figure 6 [25]); so $G$ has $t_G = n - 1 = 49$, and thus by Theorem 22 it is possible to implement $R$ in the uniform m&m system $S_G$ in a way that tolerates up to 49 process crashes. Some simple graph theory arguments show that this is optimal in two ways: (a) one cannot implement a wait-free register $R$ that is shared by 50 processes with fewer than 7 RDMA connections per process (more precisely, with any such implementation, if a process has fewer than 7 RDMA connections there must be another process with more than 7 RDMA connections), and (b) with at most 7 RDMA connections per process, one cannot implement a wait-free register $R$ that is shared by more than 50 processes.
Theorem 22. Let $S_G$ be the uniform m&m system induced by an undirected graph $G = (V, E)$ where $V = \{p_1, p_2, \ldots, p_n\}$.

- If at most $t_G$ processes crash in $S_G$, then for every process $w$ in $S_G$, it is possible to implement an atomic SWMR register writable by $w$ and readable by all processes in $S_G$.
- If more than $t_G$ processes crash in $S_G$, then for some process $w$ in $S_G$, it is impossible to implement an atomic SWMR register writable by $w$ and readable by all processes in $S_G$.

Proof. By Definition 6, $S_G$ is the m&m system $S_l$ where $L = \{S_1, S_2, \ldots, S_n\}$ such that $S_i = N^+(p_i)$, i.e., for all $i$, $1 \leq i \leq n$, $S_i$ is the set of neighbours of $p_i$ (including $p_i$) in the graph $G$. Recall that $t_L$ is the maximum $t$ such that for all disjoint subsets $P$ and $P'$ of $V$ of size $n - t$ each, some set $S_i$ in $L$ contains both a node in $P$ and a node in $P'$.

Claim 22.1. $t_G = t_L$.

Proof of Claim 22.1. From the definitions of $t_G$ and $t_L$, it is clear that to prove the claim it suffices to show that for all disjoint subsets $P$ and $P'$ of $V$ of size $n - t$ each, the following holds: some edge in $G^2$ connects a node in $P$ with a node in $P'$ if and only if some set $S_i$ in $L$ contains both a node in $P$ and a node in $P'$.

[ONLY IF] Suppose $G^2$ has an edge $(p_i, p_j)$ such that $p_i \in P$ and $p_j \in P'$; since $P$ and $P'$ are disjoint, $p_i$ and $p_j$ are distinct. By definition of $G^2$, there are two cases:

1. $(p_i, p_j) \in E$. In this case, $p_i \in N^+(p_j)$ and $p_j \in N^+(p_i)$. So the set $S_k = N^+(p_k)$ in $L$ contains both node $p_i \in P$ and node $p_j \in P'$.
2. There is a node $p_k \in V$ such that $(p_i, p_k) \in E$ and $(p_k, p_j) \in E$. In this case, $p_i \in N^+(p_k)$ and $p_j \in N^+(p_k)$. So the set $S_k = N^+(p_k)$ in $L$ contains both $p_i \in P$ and $p_j \in P'$.

In both cases, some set $S_i$ in $L$ contains both a node in $P$ and a node in $P'$.

[IF] Suppose set $S_k$ in $L$ contains both a node $p_i \in P$ and a node $p_j \in P'$; since $P$ and $P'$ are disjoint, $p_i$ and $p_j$ are distinct. Recall that $S_k = N^+(p_k)$ for node $p_k \in V$.

There are two cases:

1. $p_i, p_j$ and $p_k$ are distinct. In this case, since $p_i$ and $p_j$ are in $S_k = N^+(p_k)$, $(p_i, p_k)$ and $(p_k, p_j)$ are edges of $G$, i.e., $(p_i, p_k) \in E$ and $(p_k, p_j) \in E$. Thus, by definition of $G^2$, $(p_i, p_j)$ is an edge of $G^2$; this edge connects $p_i \in P$ and $p_j \in P'$.
2. $p_k = p_i$ or $p_k = p_j$. Without loss of generality, assume that $p_k = p_i$. Since $p_i$ and $p_j$ are in $N^+(p_k) = N^+(p_i)$, $(p_i, p_j)$ must be an edge of $G$, i.e., $(p_i, p_j) \in E$. Thus, by definition of $G^2$, $(p_i, p_j)$ is an edge of $G^2$; this edge connects $p_i \in P$ and $p_j \in P'$.

So in both cases, some edge in $G^2$ connects a node in $P$ with a node in $P'$. ◀

The result now follows immediately from Claim 22.1 and Theorem 8. ◀

5 Concluding remarks

Hybrid systems that combine message passing and shared memory have long been a subject of study in the systems community [3, 5, 6, 7, 16, 17, 20, 23]. To the best of our knowledge, however, such systems have only recently been examined from a theoretical point of view. Aguilera et al. gave a rigorous model for hybrid systems, and studied how the combination of message passing and shared memory can be harnessed to improve solutions to certain fundamental problems: In particular, they show that, compared to a pure message-passing system, a hybrid system can improve the fault tolerance of randomized consensus algorithms and reduce the synchrony necessary to elect a leader [1]. A more recent paper by Aguilera et al. extends the hybrid model to Byzantine failures, and shows how to improve the inherent trade-off between fault tolerance and performance for consensus, for both Byzantine and
crash failures [2]. The present paper is another contribution to the theoretical study of hybrid systems: whereas the highly cited paper by Attiya et al. shows how to implement an atomic SWMR register with optimal fault tolerance in a pure message-passing system [4], here we solve the corresponding problem in hybrid systems. Extending our results to hybrid systems with Byzantine failures is a subject for future research.

References


Optimal Register Construction in M&M Systems


25. Figure by Uzyel - Own work, CC BY-SA 3.0. [https://commons.wikimedia.org/w/index.php?curid=10378641](https://commons.wikimedia.org/w/index.php?curid=10378641).