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Abstract
We study the fundamental list update problem in the paid exchange model P d. This cost model
was introduced by Manasse, McGeoch and Sleator [18] and Reingold, Westbrook and Sleator [24].
Here the given list of items may only be rearranged using paid exchanges; each swap of two adjacent
items in the list incurs a cost of d. Free exchanges of items are not allowed. The model is motivated
by the fact that, when executing search operations on a data structure, key comparisons are less
expensive than item swaps.

We develop a new randomized online algorithm that achieves an improved competitive ratio
against oblivious adversaries. For large d, the competitiveness tends to 2.2442. Technically, the
analysis of the algorithm relies on a new approach of partitioning request sequences and charging
expected cost. Furthermore, we devise lower bounds on the competitiveness of randomized algorithms
against oblivious adversaries. No such lower bounds were known before. Specifically, we prove
that no randomized online algorithm can achieve a competitive ratio smaller than 2 in the partial
cost model, where an access to the i-th item in the current list incurs a cost of i− 1 rather than i.
All algorithms proposed in the literature attain their competitiveness in the partial cost model.
Furthermore, we show that no randomized online algorithm can achieve a competitive ratio smaller
than 1.8654 in the standard full cost model. Again the lower bounds hold for large d.
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1 Introduction

In this paper we revisit the list update problem, one of the most basic problems in the theory
of online algorithms [7, 26]. The goal is to maintain an unsorted linear linked list of items so
that a sequence of accesses to these items can be served with low total cost. Unsorted linear
lists are sensible when one has to store a small dictionary consisting of a few dozen items.
Moreover, they have interesting applications in data compression. In fact, the standard
compression program bzip2 relies on a combination of the Burrows-Wheeler transform and
linear list encoding [9, 10, 19, 25].

Early work on the list update problem dates back to the 1960s [21]. Over the past decades
an extensive body of literature has been developed, see e.g. [1, 2, 5, 6, 7, 8, 11, 12, 14, 24, 26]
and references therein. List update in the standard model is well understood. In this
setting the cost of an access is equal to the depth of the referenced item in the current
list. Immediately after an access the requested item may be moved at no extra cost to any
position closer to the front of the list (free exchanges). Any other swap of two adjacent items
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12:2 New Bounds for Randomized List Update in the Paid Exchange Model

in the list incurs a cost of 1 and is called a paid exchange. During the last years, research on
the list update problem has explored (1) alternative cost models [13, 15, 20, 22], (2) refined
input models capturing locality of reference [2, 6, 11], and (3) the value of algorithmic service
abilities [8, 15, 17].

We investigate the list update problem in the P d model, i.e. the paid exchange model,
introduced by Manasse, McGeoch and Sleator [18] as well as Reingold, Westbrook and
Sleator [24]. In this model there are no free exchanges and each paid exchange, swapping a
pair of adjacent items in the list, incurs a cost of d, where d ≥ 1 is a real-valued constant.
The model is motivated by the fact that the execution time of a program swapping a pair
of adjacent items in the list is typically much higher than that of the program doing one
iteration of the search loop. Moreover, bringing a referenced element closer to the front of
the list does incur cost. As main result we develop nearly tight upper and lower bounds on
the competitive ratio achieved by randomized online algorithms.

Problem formulation

In the list update problem we are given an unsorted linear linked list L of n items. An
algorithm is presented with a sequence σ = σ(1), . . . , σ(m) of requests that must be served
in the order of occurrence. Each request σ(t), 1 ≤ t ≤ m, specifies an item in the list. In
order to serve a request, an algorithm has to access the requested item, i.e. it has to start
at the front of the list and search linearly through the items until the referenced item is
found. Hence an access to the i-th item in the list incurs a cost of i. In the standard model,
immediately after a request, the referenced item may be moved at no extra cost to any
position closer to the front of the list. These exchanges are called free exchanges. Moreover,
at any time, two adjacent items in the list may be swapped at a cost of 1. Such exchanges
are called paid exchanges.

In contrast, in the paid exchange model P d, there are no free exchanges. The list can
only be rearranged using paid exchanges. Each paid exchange incurs a cost of d, where d ≥ 1
is an arbitrary, real-valued constant. Following Reingold, Westbrook and Sleator [24] we
assume that the service of a request σ(t), 1 ≤ t ≤ m, proceeds as follows: First an algorithm
performs a number of paid exchanges; then the item referenced by σ(t) is accessed. In general,
in both the standard and the P d model, the goal is to serve a request sequence so that the
total cost is as small as possible.

An online algorithm has to serve each request without knowledge of any future requests.
Given a request sequence σ, let CA(σ) and COPT(σ) denote the costs incurred by an online
algorithm A and an optimal offline algorithm OPT in serving σ. A deterministic online
algorithm A is called c-competitive if there exists an α such that CA(σ) ≤ c · COPT(σ) + α

holds for all request sequences σ. The value α must be independent of the input σ but
may depend on the list length n. A randomized online algorithm A is c-competitive against
oblivious adversaries if there exists an α such that E[CA(σ)] ≤ c · COPT(σ) + α holds for
all σ. Here the expectation is taken over the random choices made by A.

Previous work

Due to the wealth of results on the list update problem, we only mention the most important
contributions relevant to our work. First we focus on the standard model. In their seminal
paper [26], Sleator and Tarjan showed that the deterministic MOVE-TO-FRONT algorithm is
2-competitive. This is the best competitiveness a deterministic online strategy can attain [16].
Subsequent research developed randomized online algorithms against oblivious adversaries.
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Irani [12] gave a SPLIT algorithm that is 1.9375-competitive. Reingold et al. [24] devised a
family of COUNTER algorithms and showed that the best of these achieve a competitive ratio
of 85/49 ≈ 1.7346. In the same paper a generalized RANDOM RESET algorithm attains a
competitive ratio of

√
3 ≈ 1.7321. A family of TIMESTAMP algorithms was developed in [1].

They attain a competitiveness equal to the Golden Ratio (1 +
√

5)/2 ≈ 1.6180. The best
randomized algorithm currently known is 1.6-competitive [3]. The algorithm is a combination
of specific instances of the COUNTER and TIMESTAMP families.

As for lower bounds, Teia [27] showed that no randomized online algorithm can be
better than 1.5-competitive against oblivious adversaries. Ambühl et al. [5] showed that no
projective randomized online algorithm can be better than 1.6-competitive against oblivious
adversaries in the partial cost model. In the partial cost model an access to the i-th item in
the list incurs a cost of i− 1 rather than i. Moreover, an algorithm is projective if it suffices
to consider pairs of items. Specifically, the relative order of any two items in the list only
depends on the previous requests to those elements. All the algorithms mentioned above,
except for SPLIT, are projective.

Recent research on the standard model has proposed models capturing locality of reference
in request sequences [2, 6, 11]. Furthermore, Lopez-Ortiz et al. [17] analyzed the value of
paid exchanges. They showed a lower bound of 12/11 on the worst-case ratio between the
performance of an offline algorithm that uses only free exchanges and that of an offline
algorithm that uses both paid and free exchanges. The optimal offline algorithm does not
need to use free exchanges [23]. Boyar et al. [8] analyzed the list update problem with advice,
where an online algorithm has partial information on future requests.

We next consider the P d model. So far only COUNTER and RANDOM RESET
algorithms have been studied. The best deterministic online algorithm currently known
achieves a competitive ratio of (5 +

√
17)/2 ≈ 4.5616 [4]. No deterministic online algorithm

can be better than 3-competitive [24]. Reingold et al. [24] gave a randomized COUNTER
algorithm. For d = 1, the algorithm is 2.75-competitive against oblivious adversaries. For
increasing d, the competitiveness decreases and tends to (5 +

√
17)/4 ≈ 2.2808. For small

values of d, their RANDOM RESET algorithm achieves competitive ratios that are slightly
smaller than those of the COUNTER algorithm. No lower bounds on the performance of
randomized online algorithms against oblivious adversaries are known.

As for other cost models, Munro [22] and Kamali et al. [13] proposed settings that allow
rearranging large parts of a list at lower costs. Specifically, after an access to the i-th item in
the list, all items up to position i can be rearranged at a cost proportional to i. In an even
stronger model of Kamali et al. [13], which is interesting in data compression applications,
the whole list can be rearranged free of charge, while accessing an item in the ith position
only incurs cost Θ(lg i).

Our contribution

We present a comprehensive study of the list update problem in the P d model. First in
Section 3 we develop a new randomized online algorithm TIMESTAMP(l, p), which is defined
for any positive integer l and any probability p, 0 ≤ p ≤ 1. The strategy incorporates features
of the TIMESTAMP algorithm in the standard model and the COUNTER algorithm in the
P d model. In the P d model one cannot afford to move a referenced item closer to the front of
the list on every request to that item. Therefore, for every item in the list, TIMESTAMP(l, p)
maintains a mod l counter. These counters are initialized independently and uniformly at
random. When an item is requested, its counter value is decremented by 1. If the counter
switches from 0 to l − 1, we say that a master request to that item occurs. On a master
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12:4 New Bounds for Randomized List Update in the Paid Exchange Model

request to x, with probability p, item x is moved to the front of the list. Otherwise, with
probability 1− p, item x is inserted in front of the first item y in the list such that (a) at
most one master request to y occurred since the last master request to x and (b) the possible
master request to y was also handled according to this latter policy, i.e. y was not moved to
the front.

TIMESTAMP(l, p) achieves an improved competitive ratio of c < 2.2442 against oblivious
adversaries, as d grows. A main contribution of this paper is a new analysis technique.
TIMESTAMP(l, p) is projective so that it can be analyzed on pairs of items. However in the
P d model, in contrast to the standard model, it is hard to keep track of the optimal offline
algorithm. Specifically, it does not hold true anymore that after two consecutive requests to
the same item, that item precedes the other item in the optimum list. Therefore we define a
more general phase partitioning of request sequences. A phase ends whenever the optimum
offline algorithm OPT changes the relative order of the two considered items in the list.
Hence the analysis is guided by OPT’s moves. In particular, each phase can be assigned
the cost of one paid exchange performed by OPT. The challenge is to estimate the cost of
TIMESTAMP(l, p) without making any assumptions on the request pattern at the end of a
phase. In order to analyze any phase, we also devise a new framework to charge expected
service cost.

In Section 4 we develop lower bounds. We prove that, against oblivious adversaries
and as d goes to infinity, no randomized online algorithm can achieve a competitive ratio
smaller than 1.8654. Furthermore, we show that no randomized online algorithm can attain
a competitiveness smaller than 2− 1/(2d) against oblivious adversaries in the partial cost
model, for general d. No lower bound against oblivious adversaries was known before.

In order to establish our lower bounds, we devise a probability distribution on request
sequences: The items of a given list are requested in cyclic order. The number of consecutive
requests to the same item is distributed geometrically with mean 2d. We then compare
expected online and offline cost. The analysis of the expected cost incurred by OPT is quite
involved. In the partial cost model we partition a request sequence into phases, each ending
with a certain surplus of requests to the same item, so that OPT will move that item to
the front of its list. As for the lower bound in the full cost model, we prove that we may
restrict ourselves to the partial cost model and request sequences referencing two items,
provided that we consider projective offline algorithms. Unfortunately, OPT is not projective.
Therefore, we define a family of projective offline algorithms and analyze their cost using a
Markov chain.

Although the competitive ratio of c < 2.2442 achieved by TIMESTAMP(l, p) is a relatively
small improvement over the previous best bound of 2.2808, our work – together with the
lower bounds – significantly tightens the gap on the best competitiveness of randomized
online algorithms in the P d model.

2 Preliminaries

Given any algorithm A for list update in the P d model, let CA(σ) denote its costs incurred
in serving a request sequence σ. We will consider both the full cost model and the partial
cost model. Again, in the former model, an access to the i-th item in the current list incurs a
cost of i. In the latter one the access cost is i− 1 only. Observe that for every algorithm the
total full cost exceeds the total partial cost by precisely m = |σ|, the length of σ. Hence, if
an online algorithm is c-competitive in the partial cost model, it is also c-competitive in the
full cost model, too. Therefore, we will analyze TIMESTAMP(l, p) in the partial cost model.
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We will prove in Section 3 that TIMESTAMP(l, p) is projective so that it can be analyzed
using item pairs. An algorithm is projective if, for any request sequences σ and any pair x, y
of items, the relative order of x and y in the list is always the same as if only references
to x and y were served on the respective two-item list. Formally consider an algorithm A,
a list L and two distinct items x, y ∈ L. Let σ be an arbitrary request sequence. Starting
from an initial list configuration L(0), let LA(σ) be the list state immediately after A has
served σ. Let LA(σ)xy be the list obtained from LA(σ) by deleting all items other than x
and y. Next consider the projected request sequence σxy, obtained from σ by deleting all
requests that are neither to x nor to y. Moreover, let L(0)xy be the list derived from L(0) by
removing all items, except for x and y. Finally, starting with L(0)xy, let LA(σxy) be the list
immediately after A has served σxy. If A is a randomized algorithm, its random choices on
σxy are identical to those on the requests to x and y in σ.

I Definition 1. An algorithm A is projective if and only if, for any request sequence σ,
starting list L and any pair x, y ∈ L of distinct items, LA(σ)xy = LA(σxy).

This property is desirable since it reduces the analysis to two-item lists. Formally, the
following holds:

I Proposition 2. Consider the partial cost model. A projective online algorithm A is c-
competitive if and only if it is c-competitive on request sequences referencing only two items,
which are served on a two-item list.

Since this proposition is well known in the literature, we give the proof in the full version of
the paper. We call an algorithm A strictly c-competitive on σ if we have CA(σ) ≤ c ·COPT(σ).
We will also apply this notion to subsequences λ = σ(t) . . . σ(t′) of σ. It is an obvious but
very useful fact that A is strictly c-competitive on a sequence σ if we can divide σ into
subsequences σ = λ1 . . . λh such that A is strictly c-competitive for each λi, 1 ≤ i ≤ h.
Here we assume that OPT serves the entire sequence σ and evaluate OPT’s cost on each
subsequence λ1, . . . , λh.

3 The TIMESTAMP(l, p)-algorithm

3.1 The algorithm
Our new algorithm TIMESTAMP(l, p), we refer to it by TS(l, p) or TS for short, is the
generalization of TIMESTAMP(p) for the standard cost model [1]. In the P d model item
exchanges are expensive and one can afford them only once in a while. Therefore, for every
item x in the given list L, our algorithm maintains a mod l counter c(x), taking values in
{0, . . . , l − 1}, for some positive integer l. The counter is initialized uniformly at random
and independently of other items.

Consider a request σ(t), referencing item x. There are two cases. If c(x) > 0 before the
request, then c(x) is decremented by 1 and the position of x remains unchanged in the current
list. On the other hand, if c(x) = 0, then a master request occurs. TIMESTAMP(l, p) resets
c(x) to l − 1 and moves x closer to the front of the list, choosing among two policies. With
probability p, item x is simply moved to the front of the list (Policy 1). With probability
1− p, item x is moved more reluctantly (Policy 2). Specifically, the algorithm determines the
longest suffix λ(t) of the request sequence ending with σ(t) such that λ(t) contains exactly
one master request to x, namely the one at σ(t). The algorithm then identifies the first
item z in the current list such that at most one master request to z occurs in λ(t) and
additionally the possible master request, if existent, was served using Policy 2. The algorithm
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12:6 New Bounds for Randomized List Update in the Paid Exchange Model

TIMESTAMP(l, p) moves x in front of z in the list. Observe that x satisfies the conditions
formulated for item z. If z = x the item is not moved. In particular, x does never move
backward in the list, which is sensible. The intuition of Policy 2 is to pass items whose
request frequency, measured in terms of master requests, is not higher than that of x. A
pseudo-code description of TIMESTAMP(l, p) is given in Algorithm 1.

Note that, for any item x, two master requests are separated by l − 1 regular requests
to x so that the item is not moved too often. Since c(x) is initialized uniformly at random,
the cycles consisting of a master request followed by l− 1 regular requests to x are shifted in
a random fashion in σ. In particular, with probability 1/l a request to x happens to be a
master request.

Algorithm 1 TIMESTAMP(l, p).

1: Let σ(t) = x;
2: if c(x) > 0 then
3: c(x)← c(x)− 1;
4: else // σ(t) is a master request
5: c(x)← l − 1;
6: With probability p, serve σ(t) using Policy 1 and

with probability 1− p serve it using Policy 2;
7: Policy 1: Move x to the front of the list.
8: Policy 2: Let λ(t) be the longest suffix of the sequence ending with σ(t) in which

exactly one master request to x occurs. Let z be the first item in the current list for
which at most one master request occurs in λ(t) and the possible master request was
served using Policy 2. If z 6= x move x in front of z in the list.

Theorem 3 gives the competitive ratio of TS(l, p), which is the maximum of six expressions.
Nonetheless, the maximum can be determined exactly and truly optimal, algebraic values
for p, l and hence the competitive ratio c can be computed. Details are given in the full
paper. By plugging in p = 0.45787 and ϕ = l/d = 1.19390, the reader can verify that indeed
c < 2.2442. For the optimal choice of p and ϕ, we have c1 = c2 = c3 while the other ratios
are smaller.

I Theorem 3. Let ϕ = l
d . TS(l, p) is c-competitive, where c is the maximum of the following

expressions:

c1 = 1 +
( 1

2 + max{1, 2p}(1− p)
)
ϕ c2 = 7−3p

4 + 1
ϕ c3 = 1 + 3p

2 − p
2 + 2p

ϕ

c4 = 3−p+p2

2 + 2(1−2p+2p2)
ϕ c5 = 3+p−p2

2 + 2p2

ϕ c6 = 2− p+ 1−p
ϕ .

As d goes to infinity, c < 2.2442, when choosing p ≈ 0.45787 and l such that ϕ ≈ 1.19390.

Figure 1 depicts the max-function we wish to minimize, considering two ranges for p and ϕ
each. A thorough analysis shows indeed that it is identical to the function max{c1, . . . , c4}.

3.2 The analysis
We will prove that TS(l, p) is c-competitive in the partial cost model, for the ratio c stated in
Theorem 3. As explained in Section 2 this immediately implies c-competitiveness in the full
cost model. In [1] it is shown that TS(l, p) is projective for l = 1. This is easily generalized
to the case of arbitrary l. A proof of the following proposition is contained in the full paper.

I Proposition 4. The algorithm TS(l, p) is projective.
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Figure 1 The function of Theorem 3. (The plot is colored.)

Therefore, we may consider an arbitrary request sequence σ, referencing two items x
and y that is served on a two-item list. We will compare the expected cost incurred by
TS(l, p) to the cost of OPT on σ.

A simple observation is that at any time while TS(l, p) serves σ, the counter value of
any item is uniformly distributed over {0, . . . , l − 1}, independently of the counters of other
items. This holds true because the counter value of an item, at any time, is equal to its
initial value minus the number of requests to that item served so far modulo l. We will use
this fact repeatedly. Of course, care needs to be taken since the choices of TS(l, p) are highly
correlated with the counter values.

The analysis of TS(l, p) crucially relies on a new phase partitioning of σ, together with a
sophisticated cost charging scheme. More precisely, the service cost of a request to an item is
paid at the next master request to that item, provided it occurs in the current phase. Extra
care needs to be taken about items where this master request belongs to the next phase. The
cost will then be further redistributed so that the expected service cost within a phase can
be analyzed independently of counter values at the beginning or during the phase.

Phases and pre-refined cost
Phase partitioning

Given an arbitrary request sequence σ, we partition it into phases. The first phase starts
with the first request in σ. Whenever OPT exchanges the two items x and y, the current
phase ends and a new phase starts with the request to the item just moved forward. Recall
that in response to a request, an algorithm may first exchange items. Then the request is
served. Hence, when OPT swaps x and y, the most recent request served is the final one of
the current phase. The upcoming request is the first one in the new phase. The last phase
ends with the last request in σ.

Suppose that σ has been partitioned into phases λ1, . . . , λk. We will prove that, for
any phase λi, TS(l, p)’s expected cost is bounded from above by c times the cost paid by
OPT, where c is the ratio given in Theorem 3. This establishes the theorem. In analyzing
a phase, we charge OPT a cost of d for the item swap at the end of the phase, in addition
to the service costs. We will charge this cost of d also in the last phase λk. This way we
overestimate OPT’s cost on σ by d, which does not affect the competitive ratio.

Now consider an arbitrary phase λ = λi. In what follows, y denotes the item stored at
the first position in OPT’s list. Item x is the one stored at the second position, behind y.
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12:8 New Bounds for Randomized List Update in the Paid Exchange Model

Thus OPT incurs a service cost of 1 for each reference to x. Requests to y cost 0. Item x

will be the good item because its service cost can be used to balance TS(l, p)’s cost. Item y

will be the bad item.

Pre-refined cost

We wish to evaluate the algorithms’ cost in λ without considering neighboring phases and
by focusing on master requests. Therefore, in a series of two steps, we will pass over to
the refined cost setting. First, we define the pre-refined cost for TS(l, p). The service cost
incurred by TS(l, p) on a request to an item z ∈ {x, y} is charged at the next master request
to z in the phase, if it exists. This charging scheme is applied even if the reference to z itself
is a master request. We still have to take care of service cost incurred on requests that are
not followed by a master request in the phase.

For the item y, we simply append l requests to y at the end of the phase, right before
OPT moves the element y to the back of its list. Then an additional master request to
y occurs at the end of the phase and the service cost of previous, unpaid requests to y is
covered. Indeed we will add 2l requests to y so that any phase ends with two master requests
to y. This will be convenient in the further phase analysis. The service cost of OPT does
not increase by the addition of requests to y. We remark that in analyzing a phase, we will
make no assumptions regarding the end of the preceding phase. In particular, the analysis
will not assume that 2l requests to x (or y) where appended to the preceding phase as this
would impact the behavior of TS(l, p).

As for the requests to x that are not followed by a master request to x in the phase, we
have to be more careful. Adding additional requests to x at the end of the phase is infeasible,
since it would increase the costs of OPT. Therefore, regarding requests to x that are not
followed by a master request to x in a given phase, we ignore their cost. Instead, at the first
master request to x in the phase, if it exists, we charge TS(l, p) a cost of l no matter how
many non-master requests have occurred so far. We show in the full paper that TS(l, p)’s
expected cost does not decrease when changing over to the pre-refined cost setting. For
further reference, the following definition summarizes this cost charging scheme.

I Definition 5. In the pre-refined cost setting, 2l requests to the bad item y are appended at
the end of a given phase. TS(l, p)’s cost incurred at a request to z ∈ {x, y} is charged to the
next master request to z in the phase, if such a request exists. At the first master request to
the good item x in the phase, if it exists, a cost of l is charged to TS(l, p).

I Lemma 6. TS(l, p)’s expected cost in a phase does not decrease when passing over to the
pre-refined cost setting.

The proof is given in the full paper. The main idea is to show that, for item x, the expected
extra cost charged at the first master request covers the expected cost ignored at the end
of the phase. Note that there might be no master request to x in a phase consisting of less
than l requests to x. In this case every request to x is a master request with probability 1/l
and thus pessimistically charged cost 1/l · l = 1 in expectation. From now on we evaluate
TS(l, p)’s cost in the pre-refined cost setting.

Counter fixing for x and refined cost
Given a phase λ, we split OPT’s cost so that OPT also incurs service cost at the master
requests to x, in addition to the cost for the paid exchange. In particular, this will allow
us to fix the counter value of x at the beginning of λ and compare the cost of TS(l, p) to
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that of OPT. Let E[CTS(λ)] denote TS(l, p)’s expected cost in λ. Moreover, let cx be the
counter value of x at the beginning of λ. Finally E[CcTS(λ)] denotes TS(l, p)’s expected cost
conditioned on cx = c. Since cx takes any value in {0, . . . , l − 1} with equal probability 1/l,
E[CTS(λ)] = 1/l ·

∑l−1
c=0 E[CcTS(λ)].

Assume that λ contains kl + j requests to x, for some k ≥ 0 and 0 ≤ j ≤ l − 1. Then
OPT’s cost in λ is equal to COPT(λ) = d+ kl + j. Let kc be the number of master requests
to x in λ conditioned on cx = c. If c < j, then kc = k + 1; otherwise kc = k.

Define CcOPT(λ) := d + kcl. Then 1/l ·
∑l−1
c=0 C

c
OPT(λ) = d +

∑l−1
c=0 kc = d + j(k + 1) +

(l − j)k = d+ kl + j = COPT(λ). This implies

E[CTS(λ)]
COPT(λ) =

1/l ·
∑l−1
c=0 E[CcTS(λ)]

1/l ·
∑l−1
c=0 C

c
OPT(λ)

≤ max
c

{
E[CcTS(λ)]
CcOPT(λ)

}
.

Hence in the following we consider a fixed cx = c and upper bound E[CcTS(λ)]/CcOPT(λ). We
emphasize that CcOPT(λ) charges service cost l to every master request to x.

We next partition a given phase λ into a prephase and a postphase, i.e. λ = λpreλpost.
The prephase λpre starts at the first request in λ and ends right before the first master
request to x in the phase. If no master request to x exists in λ, then λpre ends with the last
request in λ and the postphase is empty. Note that λpre cannot be empty, since the first
request of the phase must go to y. The cost of d the algorithm OPT incurs due to the paid
exchange made at the beginning of the phase accounts for the prephase, while the cost of l
the optimum algorithm pays at any master request to x is charged in the postphase.

The remainder of this section is devoted to evaluating TS(l, p)’s expected cost on λpre
and λpost. For the analysis on λpost, in a second step, we change over to a refined cost setting
that applies in λpost. In this framework TS(l, p) is charged a pessimistic cost of l at every
master request to x if item x is not at the front of the list when the request occurs. If after a
master request to x algorithm TS(l, p) has item x at the front of the list, then the request
is charged an additional cost of l/2 to pay the service cost of references to y until the next
master request to y occurs. A master request to y is assigned a cost of l if item y has been
at the back of TS(l, p)’s list since the last master request to y. This covers the remaining
cost for requests to y. Note in this case the preceding master request to y must have been
treated using Policy 2. Lemma 8 below shows that TS(l, p)’s expected cost does not decrease
when passing over to the refined cost.

I Definition 7. In the refined cost setting for TS(l, p) in λpost, a master request to x is
charged a base cost of l if the master request is the first one to x in λpost (and hence λ) or if
x is not at the front of TS(l, p)’s list when the request is presented. An additional cost of
l/2 is charged at the master request to x if, after service of the request, x is at the front of
TS(l, p)’s list. A master request to y in λpost is charged a bad cost of l if y has been at the
back of TS(l, p)’s list since the last master request to y.

I Lemma 8. The expected cost of TS(l, p) in λpost does not decrease when passing over to
the refined cost.

Proof. First consider a master request to either x or y, assuming that the referenced item is
at the front of TS(l, p)’s list when the request occurs. Then the item must have been at the
front of the list since the last master request to the item. Hence, no cost needs to be charged.

Next consider a master request to x and suppose that x is not at the front of TS(l, p)’s
list when the request occurs. The refined cost framework charges the maximum possible
service cost for l references to x. This reasoning also applies to the first master request to x
in λpost.
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We next examine a master request Y to item y, assuming that y is not at the front of
TS(l, p)’s list when Y occurs. If y has been at the back of TS(l, p)’s list since the last master
request to y, the refined cost framework charges a cost of l to Y , which is equal to the true
service cost for the last l requests to y. An overpayment might occur if the last master
request to y was in the previous phase.

The interesting case is the one where y was at the front of TS(l, p)’s list after the previous
master request to y was served. Then there must exist a master request X to item x where
TS(l, p) moved x to the front of the list. We now assign the cost to be paid at Y to X instead.
Let cXy denote the counter value of y at request X. There are cXy non-master requests to y,
each incurring a cost of 1, that need to be paid at Y . This cost is now assigned to X. In the
following we prove that the expected cost assigned to X, over TS(l, p)’s random choices and
the counter value of y at X, is bounded above by l/2 times the probability that x is at the
front of TS(l, p)’s list after X has been served. We remark that we analyze a slightly more
pessimistic cost charging scheme. Any master request X to x is charged a cost of cXy if x
resides at the front of TS(l, p)’s list after the service of X, independently of whether or not
x was just exchanged with y.

Given any master request X to x, let q(c) = qX(c) be the random variable denoting the
probability that item x is at the front of TS(l, p)’s list after X has been served, conditioned
on cXy = c. For simplicity we denote the counter cXy of y at X by cy. Then the expected cost
charged at X is exactly

Ecy [q(cy)cy] =
∑l−1
c=0 P [cy = c] P [x is at the front after serving X | cy = c] cy.

The probability of x being at the front of TS’s list after the service of X is

Ecy [q(cy)] =
∑l−1
c=0 P [cy = c] P [x is at the front after serving X | cy = c] .

In the refined cost framework, the expected additional cost charged at X is Ecy
[q(cy)] · l/2 ≥

Ecy [q(cy)] Ecy [cy]. Hence it remains to prove that Ecy [q(cy)cy] ≤ Ecy [q(cy)]Ecy [cy]. The
last inequality holds if and only if the covariance of the random variables cy and q(cy) is not
positive. The latter property in turn holds if q(cy) is (non-strictly) decreasing in cy. We
verify this property by giving a complete characterization of the function q(cy). Let r denote
the number of requests to y between X and the master request to x before that.

If cy < l − r, then the master request preceding X is to x and the probability of x being
at the front of the list after X is 1.
If l − r ≤ cy < 2l − r, then the two master requests preceding X are xy (in that order).
The element x is moved to the front if and only if either X is served with Policy 1 or the
preceding master request to y is served with Policy 2. Hence, the probability of x being
at the front of the list is q(cy) = p+ (1− p)2.
If 2l− r ≤ cy, then the two master requests preceding X both go to y and the probability
of x being at the front of the list after the service of X is exactly p, the probability that X
was handled by TS(l, p) using Policy 1.

In particular the function q(cy) is decreasing. J

The cost analysis of a phase
Consider an arbitrary phase λ. Let λpost be its postphase, which starts with a master request
to x and ends with at least two master requests to y, according to the phase adjustment
we did when changing over to the pre-refined cost. We next modify λpost so that we can
partition it into subphases, each ending with at least two master requests to y. For this
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purpose consider two consecutive master requests to x that are preceded by a single master
request to y. The next proposition shows that we can insert l new requests to y, thereby
generating a new master request to y, without decreasing the strict competitiveness on λpost.
The proof is given in the full version of the paper.

I Proposition 9. Consider a subsequence of consecutive master requests x0y1x1x2 in λpost
where master request zi goes to z, z ∈ {x, y}. Add l new requests to y before x1. TS(l, p)’s
expected refined cost on the resulting sequence of master requests x0y1y2x1x2 is at least as
high as that on the former sequence. OPT’s cost does not change.

Hence in λpost, whenever two master requests to x are preceded by exactly one master
request to y, we insert l new requests to y. Again, this creates a second master request to y.
We then partition λpost into subphases, each ending with two master requests to y. More
precisely, the first subphase starts with the first master request in λpost. A subphase ends
immediately before a master request to x that is preceded by at least two master requests
to y. Observe that whenever at least two consecutive master requests to x occur, they start
a new subphase. We obtain two types of subphases, specified by their master requests.

Type 1: x(yx)ky2+i for some i, k ≥ 0.
Type 2: x2+j(yx)ky2+i for some i, j, k ≥ 0.

In the following four lemmas we analyze TS(l, p) on any subphase. If the subphase is
the first one in λpost, we analyze it jointly with the preceding prephase λpre. Together the
four lemmas imply Theorem 3. The cost ratios ci, 1 ≤ i ≤ 6, stated in the lemmas are
identical to those of Theorem 3. In Lemma 10 we first consider Type 2 subphases as TS(l, p)’s
performance ratio on those phases can be bounded independent of the preceding master
requests. Then Lemmas 11, 12 and 13 address Type 1 subphases with the preceding master
requests. Lemma 11 considers the case that a Type 1 subphase is preceded by two master
requests to y. Note that this is, in particular, the case for any Type 1 subphase that is not
the first subphase in the given λ. Lemmas 12 and 13 address the special cases where a Type 1
subphase is preceded (a) by master requests to x and y, in this order, or (b) by a master
request to x. In both cases such a subphase must be the first one in λpost. Moreover, λpre
consists of less than two master requests to y in these special cases. In fact in case (b), there
is no master request in λpre. Proofs of all the lemmas are presented in the full paper.

I Lemma 10. TS(l, p) is strictly max{c1, c2, c4}-competitive on any subphase of Type 2,
including a possible preceding prephase.

I Lemma 11. TS(l, p) is strictly max{c1, c3, c4}-competitive on any subphase of Type 1,
including a possible prephase, if the subphase is preceded by two master requests to y.

I Lemma 12. TS(l, p) is strictly max{c1, c4, c5}-competitive on any subphase of Type 1 and
its leading prephase if the subphase is preceded by master requests to x and y in this order.

I Lemma 13. TS(l, p) is strictly max{c1, c4, c6}-competitive on any subphase of Type 1 and
its leading prephase if the subphase is preceded by a master request to x.

4 Lower bounds

We develop lower bounds in the partial cost and the full cost P d models.

I Theorem 14. Let A be a randomized online algorithm for list update in the partial cost
P d model. If A is c-competitive against oblivious adversaries, then c ≥ 2− 1

2d . This holds
even for request sequences referencing only two items.
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12:12 New Bounds for Randomized List Update in the Paid Exchange Model

We conjecture that a lower bound of 2 − 1
2d also holds for the full cost P d model. The

difficulty is to bound the cost of OPT from above on request sequences referencing a general
set of n items. We can establish the following lower bound in the full cost P d model.

I Theorem 15. Let A be a randomized online algorithm for list update in the full cost P d
model. If A is c-competitive against oblivious adversaries, then c is at least

1
1 + 2W

(−1
2e
) −O(1

d

)
≈ 1.8654.

Here W is the upper branch of the Lambert-W-function, i.e. W
(−1

2e
)
is largest value x

satisfying 2xex+1 = −1.

Table 1 presents the values of the lower bound of Theorem 15, for small values of d, up to
d = 100. For d = 1, i.e. the standard cost model, our bound matches the one by Teia [27].

Table 1 The lower bound in the full cost P d model for various d.

d c(d)
1 1.5
2 1.8036
3 1.8270
4 1.8337
5 1.8420

d c(d)
6 1.8438
7 1.8485
10 1.8531
20 1.8594
100 1.8642

A probability distribution on request sequences
For the proof of the two theorems above, we use Yao’s minimax principle [28]. We define
a probability distribution on request sequences and compare the expected cost incurred
by any (deterministic) online algorithm A to that of OPT. For the definition of our
probability distribution, we describe how to sample a request sequence according to it. Let
L(0) = [x0 . . . xn−1] be a starting list of n items; xi precedes xi+1 for i = 0, . . . , n − 2.
Throughout the sampling process the list is static, i.e. no rearrangement of items is done.
The items will be requested in a cyclic fashion, in decreasing order of index. Each item will
be referenced a certain number of times.

Formally, in addition to L(0), the sampling process takes as input a number N ∈ N and a
starting item x ∈ L(0). Typically, the starting item is equal to the last item xn−1 in the list
but the process is defined for any x ∈ L(0). The sampling process produces a request sequence
consisting of N segments. Throughout this section a segment is a maximal subsequence of
requests to the same item. Moreover, to simplify notation, we set xi = xi mod n, for all i ∈ Z.

Initially, the request sequence σ to be produced is equal to the empty string. In each
step of the sampling procedure, if N > 0, a request to the current item x is appended at
the end of σ. Then with probability p = 1/(2d), the value N is decremented and x = xi
is replaced by xi−1. Hence in this event the segment of requests to xi ends and a segment
of references to xi−1 starts. Note that the length of a segment is geometrically distributed
with p = 1/(2d) and thus equal to 2d in expectation. The process stops when N = 0. A
pseudo-code description of the sampling process is given in Algorithm 2. Let SN [x] denote
the resulting probability distribution on request sequences with starting item x. Furthermore,
let SN = SN [xn−1].
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The lower bound construction in the full cost model will work with sequences generated
according to this particular process. In the partial cost model we will have to extend the
process so that the request sequences admit a phase partitioning and end with a complete
phase.

Algorithm 2 SampleRequestSequence.

1: Input: L(0) = [x0 . . . xn−1], N ∈ N and x ∈ L(0).
2: σ := empty string;
3: while N > 0 do
4: Append x to σ;
5: With probability p = 1

2d , decrement N and replace x = xi by xi−1;
6: Return σ;

We next introduce the notion of an algorithm being uncompetitive. It will be particularly
useful when deriving our lower bound in the full cost model. Nonetheless, the notion applies
to both the partial and the full cost models and it will always be clear from the context
which model is used.

I Definition 16. Let c ≥ 1. An online algorithm A is c-uncompetitive against an offline
algorithm B if, for every ε > 0, there exists an initial list L(0) such that

lim
N→∞

Eσ∼SN
[CA(σ)]

Eσ∼SN
[CB(σ)] ≥ c− ε.

If B = OPT, algorithm A is simply c-uncompetitive. Finally, A is c-uncompetitive on
two-item sequences (against B) if the above condition holds with ε = 0, for lists consisting of
two items.

The terminology is relevant due to the following obvious fact.

I Lemma 17. If a (possibly randomized) online algorithm A is c-uncompetitive, then its
competitive ratio is not smaller than c.

In a first step we bound the expected cost incurred by any online algorithm A on request
sequences generated according to SN from below. In Theorem 14, we consider the partial
cost model and request sequences referencing two items. In the proof of Theorem 15, we
show that we may restrict ourselves to the partial cost model and, again, may focus on
two-item request sequences if we consider a projective offline algorithm. Therefore, the
following Lemma 18 will be essential in the proofs of Theorems 14 and 15. Let L(0) = [xy]
be a list consisting of two items x and y; where x is initially stored in front of y. Consider
the distribution SN = SN [y].

I Lemma 18. Let L(0) = [xy]. For every online algorithm A and every N , we have in the
partial cost model

Eσ∼SN
[CA(σ)] ≥ dN.

Proof. It suffices to prove the lemma for deterministic algorithms because any randomized
algorithm is a probability distribution over deterministic ones. Hence, let us assume for the
sake of a contradiction that there were a deterministic online algorithm A and an N ∈ N
such that

C = Eσ∼SN

[
Cpart
A (σ)

]
< dN.

STACS 2020
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Among all possible choices, we choose such a pair (A,N) with N minimal and, in case of
ties, C minimal. We clearly have N > 0. Given a sequence σ we denote by α(σ) the number
of leading requests to y and by β(σ) the number of requests to x following those.

We show that the algorithm A does not immediately move the element y to the front of
its list. Indeed, let us write σ = yα(σ)σ′. If we choose σ ∼ SN and pass over to σ′, it is the
same as choosing σ′ ∼ SN−1[x]. Now if A were to move the item y immediately to the front,
it would incur exactly cost d on the sequence yα(σ). Then, by the minimality of N , it will
incur an expected cost of at least d(N − 1) on σ′ and hence a total expected cost of at least
dN . This is a contradiction to the assumption that C < dN .

Hence we may assume that A does not immediately move y to the front of its list. For
σ ∼ SN we consider two cases. With probability 1

2d , the sequence σ starts with a single
request to y, i.e. we have α(σ) = 1. Then σ = yxβ(σ)σ′′. Note that we have σ” ∼ SN−2 if we
pick σ ∼ SN |α(σ)=1. On the sequence yxβ(σ) the algorithm A incurs cost of exactly 1 at the
first request. By the minimality of N we have for the remainder σ” of the sequence σ

Eσ” [CA(σ”)] ≥ d(N − 2).

Note that this is obviously true if N − 2 ≤ 0 holds.
On the other hand, with probability 1− 1

2d , we have α(σ) > 1. In this case the algorithm
A incurs cost 1 on the first request to y. We consider the algorithm B which behaves like the
algorithm A after having read a request to y, i.e. on the input sequence σ it behaves like A
would on the corresponding suffix of yσ. By the minimality of C we have Eσ∼SN

[CB(σ)] ≥ C.
Note that sampling σ from SN conditioned on it starting with at least two requests to y is
the same as sampling σ from SN and appending a request to y to its front. Hence we get

Eσ∼SN
[CA(σ) | α(σ) > 1] = 1 + Eσ∼SN

[CB(σ)] ≥ 1 + C.

In total we have

C = 1
2dEσ∼SN

[CA(σ) | α(σ) = 1] +
(
1− 1

2d
)

Eσ∼SN
[CA(σ) | α(σ) > 1]

≥ d(N−2)+1
2d +

(
1− 1

2d
)

(C + 1)
= dN

2d +
(
1− 1

2d
)
C.

The last inequality implies C ≥ dN . Again, we have reached the desired contradiction. J

The challenging part in the proofs of Theorems 14 and 15 is to bound the expected cost
incurred by OPT on sequences drawn according to SN . In the following we sketch some of
the main ideas. Full analyses are presented in the full paper.

Proof sketch for Theorem 14
We focus on request sequences referencing two items x and y, and hence on sequences σ ∼ SN
with initial list L(0) = [xy]. Such sequences consist of N segments that in turn reference y
and x. Given a sequence σ′ and an item z ∈ {x, y}, let |σ′|z be the number of requests to z
in σ′.

The optimal algorithm for two-item sequences is the following: We consider the case
where y is at the front of the list of OPT and x is at the back. The opposite case works
symmetrically. If y is requested next, OPT will obviously not move it to the back, but
wait, until x is requested. If x is requested next, OPT needs to decide whether to move
x to the front of its list. It does so if and only if there is a prefix σ′ of future requests
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with |σ′|x = |σ′|y + 2d and no (non-empty) prefix σ′′ of σ′ satisfies |σ′′|x ≤ |σ′′|y. There is
a special case if prefix σ′ comprises the entire sequence of future requests. Then we only
require in the first condition that |σ′|x ≥ |σ′|y +d holds true. In the following we will analyze
a simpler algorithm O, which omits this special case. While O is only close-to-optimal, it
still gives a good upper bound on OPT. Additionally, we will consider the algorithm Ō that
always keeps its list in opposite order, compared to the list of O. On each request in a given
sequence, exactly one of the two algorithms has a service cost of 1.

Given any sequence σ, let C̃O(σ) and C̃Ō(σ) be the pure service cost of O and Ō.
Furthermore, let DO(σ) be the cost incurred by O for paid exchanges. Define K(σ) =
C̃Ō(σ)− C̃O(σ)− 2DO(σ). For σ ∼ SN , K(σ) is a random variable, which we denote by EN .
We will show that Eσ∼SN

[CO(σ)] = dN −E[EN ]/2. Thus, by Lemma 18, the value E[EN ]/2
is a lower bound for the cost the algorithm O saves compared to any online algorithm. The
heart of the analysis is to estimate that limN→∞E[EN ]/N ≥ 2d(2d− 1)/(4d− 1). Together
with Lemmas 18, this implies that any online algorithm A is c-uncompetitive against OPT
with c ≥ dN/(dN − N

2
2d(2d−1)

4d−1 ) = 2− 1
2d . In particular, by Lemma 17 its competitive ratio

is at least 2− 1/(2d).
For the analysis of E[EN ], we partition a request sequence σ ∼ SN into phases. Each

phase λ consists of a series of subphases µ1, . . . , µl. We describe how to obtain µ1. At the
beginning of λ, let z ∈ {x, y} be the current item in the sampling process, i.e. the first
segment in λ consists of requests to z. Let z′ ∈ {x, y}, z′ 6= z, be the other item. Starting
at the beginning of λ we scan the generated requests, adding them to µ1 until one of the
following events occurs. (1) |µ1|z = |µ1|z′ or (2) |µ1|z = |µ1|z′ + 2d. In case (1) we call µ1 a
zero-subphase; in case (2) µ1 is an up-subphase. When event (1) or (2) occurs, the remaining
requests of the current segment are appended to µ1. These requests form the post-subphase.
Then µ1 ends. Each following subphase µi, for i > 1, is obtained in the same way, starting at
the end of µi−1. Phase λ ends when, for the first time, an up-subphase is obtained. Formally,
algorithm O moves item z to the front of the list right before the up-subphase.

We extend the sampling process so as to obtain sequences ending with a complete phase.
This induces a slightly related probability distribution of request sequences, which is not
critical though. For any λ, let C = K(λ) and let R = R(λ) be the number of segments
in λ. At the heart of the analysis, using a recurrence relation, we prove limN→∞E[EN ]/N ≥
E[C]/E[R]. We argue that E[C] is the total length of all post-subphases in λ. Then we show
E[C] = (2d− 1)/(1−P0) and E[R] = (4d− 1)/(2d(1−P0)), where P0 is the probability that
a subphase happens to be a zero-subphase. This yields the desired bound.

Proof sketch for Theorem 15
In this setting we are given a list L = L(0) with n items. Again, we focus on request sequences
generated according to SN (Algorithm 2). We first prove that we may restrict ourselves to the
partial cost model and two-item request sequences if we focus on projective offline algorithms:
If every deterministic online algorithm is c-uncompetitive on two-item sequences against
a projective offline algorithm B in the partial cost model, then every deterministic online
algorithm is c-uncompetitive against B in the full cost model. Nonetheless, the analysis of
the offline algorithm O developed for the proof of Theorem 15 cannot be employed because
O and OPT are not projective.

Therefore, we define a family of projective offline algorithms Bh, for 0 < h < 2d. Consider
a request sequence to be served on a list L consisting of n items. When presented with
any request, Bh works as follows: If the next h requests reference the same element z ∈ L,
algorithm Bh moves z to the front of its list. Otherwise it does not change the list. Algorithm
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Bh is projective, for sequences σ generated by SN , because items are requested in cyclic
order in σ and a projection to item pairs does not create longer subsequences of the same
item.

Given the result for projective offline algorithms stated above, it suffices to analyze Bh
on two-item sequences. Let L(0) = [xy] be the starting list. Technically, the main step is to
show that, for any σ ∼ SN , the expected cost incurred by Bh is

Eσ∼SN
[CBh

(σ)] =

(
1−(1−p)h

p − h(1− p)h−1
)

+ (1− p)h−1d

2− (1− p)h−1 N + o(N), (1)

where p = 1/(2d). In order to establish this equation, given σ ∼ SN , we write σ =
zα1

1 zα2
2 . . . zαN

N , where z1 = y and z2 = x. If we consider the algorithm Bh at the beginning
of the subsequence zαt

t , there can be three cases.
If zt is at the back of the list of Bh and αt ≥ h holds, we say the sequence zαt

t is of type h.
The algorithm Bh will incur a cost d on it because it immediately moves zt to the front.
If zt is at the back of the list of Bh and αt = j < h, we say the sequence zαt

t is of
type (j, 1). The algorithm Bh will incur cost j on it.
If zt is at the front of the list of Bh, the algorithm will incur no cost on it. Further we
have t > 1 and αt−1 = j < h, for some j. We say the sequence zαt

t is of type (j, 2).
For a type w ∈ Wh = {1, . . . , h − 1} × {1, 2} ∪ {h}, let P (t)w be the probability that the
sequence zαt

t is of this type if we sample σ ∼ SN . The process forms a Markov chain: From
type (j, 1), for j < h, we pass to the type (j, 2) with probability 1. From every other type w
we pass to type (j, 1), for j < h, with probability p(1− p)j−1 and to type h with probability
(1− p)h−1. Using basic Markov analysis we evaluate limt→∞ P (t)w, for w = (j, 1), w = (j, 2)
and w = h. Using the respective expressions, we obtain (1). Using this expression, we can
immediately verify the competitive ratios in table 1 using the following optimal choices of h.

Table 2 The best choices of h, for small values of d.

d c(d) h

1 1.5 1
2 1.8036 3
3 1.8270 5
4 1.8337 6
5 1.8420 8

d c(d) h

6 1.8438 10
7 1.8485 11
10 1.8531 16
20 1.8594 31
100 1.8642 154

To obtain the lower bound for d→∞ we set h = b2h̃dc for some h̃ > 0 to be determined
later. Then Eσ∼SN

[CBh
(σ)] is of the form (1 + 2h̃e−h̃

e−h̃−2 +O
( 1
d

)
)dN +o(N). Lemma 18 implies

that every online algorithm A is c-uncompetitive against the algorithm Bh in the full cost
model, where c is at least (1 + 2h̃e−h̃/(e−h̃ − 2))−1 as d→∞. Lemma 17 ensures that the
competitive ratio of A is not smaller than the above expression. Theorem 15 follows if we set
h̃ = W (−1/(2e)) + 1.
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