
Latticepathology and Symmetric Functions
(Extended Abstract)
Cyril Banderier
Université Paris 13, LIPN, UMR CNRS 7030, France
https://lipn.fr/~banderier

Marie-Louise Lackner
Christian Doppler Laboratory for Artificial Intelligence and Optimization for Planning and
Scheduling, DBAI, TU Wien, Austria
http://marielouise.lackner.xyz

Michael Wallner
Université de Bordeaux, LaBRI, UMR CNRS 5800, France
Institute for Discrete Mathematics and Geometry, TU Wien, Austria
https://dmg.tuwien.ac.at/mwallner

Abstract
In this article, we revisit and extend a list of formulas based on lattice path surgery: cut-and-
paste methods, factorizations, the kernel method, etc. For this purpose, we focus on the natural
model of directed lattice paths (also called generalized Dyck paths). We introduce the notion of
prime walks, which appear to be the key structure to get natural decompositions of excursions,
meanders, bridges, directly leading to the associated context-free grammars. This allows us to
give bijective proofs of bivariate versions of Spitzer/Sparre Andersen/Wiener–Hopf formulas, thus
capturing joint distributions. We also show that each of the fundamental families of symmetric
polynomials corresponds to a lattice path generating function, and that these symmetric polynomials
are accordingly needed to express the asymptotic enumeration of these paths and some parameters
of limit laws. En passant, we give two other small results which have their own interest for folklore
conjectures of lattice paths (non-analyticity of the small roots in the kernel method, and universal
positivity of the variability condition occurring in many Gaussian limit law schemes).
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1 Introduction and definitions

The recursive nature of lattice paths makes them amenable to context-free grammar tech-
niques; their geometric nature makes them amenable to cut-and-paste bijections; their
step-by-step nature makes them amenable to functional equations solvable by the kernel
method (see e.g. [3–5,8–11,16,30,32,35] for many applications of these ideas). We present in
a unified way some consequences of these observations in Section 2 on context-free grammars
(where we introduce the fruitful notion of prime walks) and in Section 3 on Spitzer and
Wiener–Hopf identities. Additionally, we give new connections with symmetric functions in
Section 4, see Table 2. All of this allows us to greatly extend the enumerative formulas and
asymptotics given in [4], and gives us access to some limit laws, as shown in Section 5.

I Definition 1 (Jumps and lattice paths). A step set S is a finite subset of Z. The elements of
S are called steps or jumps. An n-step lattice path or walk ω is a sequence pj1, . . . , jnq P Sn.
The length |ω| of this lattice path is its number n of jumps.

Such sequences are one-dimensional objects. Geometrically, they can be interpreted as two-
dimensional objects which justifies the name lattice path. Indeed, pj1, . . . , jnq may be seen as
a sequence of points pω0, ω1, . . . , ωnq, where ω0 is the starting point and ωi ´ ωi´1 “ p1, jiq

for i “ 1, . . . , n. Except when mentioned differently, the starting point ω0 of these lattice
paths is p0, 0q.

Let σk :“
řk

i“1 ji be the partial sum of the first k steps of the walk ω. We define the
height or maximum of ω as maxk σk, and the final altitude of ω as σn. For example, the first
walk in Table 1 has height 3 and final altitude 1. Table 1 and Figure 1 are also illustrating
the four following classical types of paths:

I Definition 2 (Excursions, arches, meanders, bridges).
Excursions are paths never going below the x-axis and ending on the x-axis;
Arches are excursions that only touch the x-axis twice: at the beginning and at the end;
Meanders are prefixes of excursions, i.e., paths never going below the x-axis;
Bridges are paths ending on the x-axis (allowed to cross the x-axis any number of times).

Let c :“ ´min S be the maximal negative step, and let d :“ max S be the maximal
positive step. To avoid trivial cases we assume min S ă 0 ă max S. Furthermore we associate
to each step i P S a weight si. These weights si are typically real numbers, like probabilities
or non-negative integers encoding the multiplicity of each jump. The weight of a lattice path
is the product of the weights of its steps. Then we associate to this set of steps the following
step polynomial:

Spuq “
d
ÿ

i“´c

siu
i.

The generating functions of directed lattice paths can be expressed in terms of the roots
of the kernel equation

1´ zSpuq “ 0. (1)

More precisely, this equation has c` d solutions in u. The small roots uipzq, for i “ 1, . . . , c,
are the c solutions with the property uipzq „ 0 for z „ 0. The remaining d solutions are
called large roots as they satisfy |vipzq| „ `8 for z „ 0. The generating functions of the four
classical types of lattice paths introduced above are shown in Table 1.
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Table 1 The four types of paths: walks, bridges, meanders and excursions, and the corresponding
generating functions for directed lattice paths. The functions uipzq for i “ 1, . . . , c are the roots of
the kernel equation 1´ zSpuq “ 0 such that limz“0 uipzq “ 0.

ending anywhere ending at 0

unconstrained

(on Z)
walk/path (W) bridge (B)

W pzq “ 1
1´zSp1q Bpzq “ z

c
ř

i“1

u1ipzq

uipzq

constrained

(on Z)
meander (M) excursion (E)

Mpzq “ 1
1´zSp1q

c
ś

i“1
p1´ uipzqq Epzq “ p´1qc´1

s´cz

c
ś

i“1
uipzq

These results follow from the expression for the bivariate generating function Mpz, uq of
meanders. Indeed, let mn,k be the number of meanders of length n going from altitude 0 to
altitude k, then we have

Mpz, uq “
ÿ

k

Mkpzqu
k “

ÿ

n,kě0
mn,kz

nuk “

śc
i“1pu´ uipzqq

ucp1´ zSpuqq . (2)

This last formula is obtained by the kernel method: this method starts with the func-
tional equation which mimics the recursive definition of meanders, namely Mpz, uq “

1 ` zSpuqMpz, uq ´ tuă0uzSpuqMpz, uq (where tuă0u extracts the monomials of negative
degree in u, as one does not want to allow a jump going below the x-axis). Note that
tuă0uSpuqMpz, uq is a linear combination (with coefficients in u and z) of c unknowns,
namely M0pzq, . . . ,Mc´1pzq. Then, substituting u “ uipzq (each of the c small roots of (1))
into this system leads to the closed form (2). This also directly gives the generating function
of excursions Epzq :“Mpz, 0q and meanders Mpzq :“Mpz, 1q. The generating function for
bridges follows from the link given in Theorem 8 hereafter. See [4, 10] for more details.

It should be stressed that the closed forms of Table 1 grant easy access to the asymptotics
of all these classes of paths after the localization of the dominant singularities:

I Theorem 3 (Radius of convergence of excursions, bridges, and meanders [4]). The radius of
convergence of excursions Epzq :“Mpz, 0q and of bridges Bpzq is given by ρ “ 1{Spτq, where
τ is the smallest positive real number such that S1pτq “ 0. For meanders Mpzq :“Mpz, 1q,
the radius depends on the drift δ :“ S1p1q: It is ρ if δ ă 0 and it is 1{Sp1q if δ ě 0.

We shall make use of all these facts in Section 5 on asympotitcs and limit laws, but,
before to do so, we now present several combinatorial decompositions which will be the key
to get these new asymptotic results.

AofA 2020
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2 Prime walks and context-free grammars

Context-free grammars are a powerful tool to tackle problems related to directed lattice
paths (we refer to [27] for a detailed presentation of grammar techniques). In this section,
we introduce some key families of lattice paths (generalized arches, prime walks), which will
also be used in the next section. Illustrating the philosophy of “latticepathology”, these new
families allow short concise visual proofs based on lattice path surgery: we give grammars
generating the most fundamental classes of lattice paths (excursions, bridges, meanders);
this generalizes and unifies results from [11,16,32,35].

All our grammars are non-ambiguous: there is only one way to generate each lattice path.
They require the introduction of two classes of paths: generalized arches and prime walks.

I Definition 4 (Generalized arches). An arch from i to j is a walk starting at altitude i
ending at altitude j and staying always strictly above altitude maxpi, jq except for its first
and final position; see Figure 1.

An important consequence of this definition is that generalized arches cannot have an
excursion as left or right factor. Note that an arch from i to j can be considered as an arch
from 0 to j ´ i. This justifies that we now focus on arches starting at 0. Let Ak be the
class of arches from 0 to k; see Figure 1. Following the tradition of several authors, we refer
to arches (omitting the start and end point) as arches from 0 to 0, see e.g. [4]. Thus, an
excursion is clearly a sequence of arches.

I Definition 5 (Prime walks). Given a set of steps S, with d “ max S, the set P of prime
walks is defined as the following sets of arches

P “

d
ď

k“0
Ak.

These prime walks are the key to get short proofs for the decomposition of several constrained
classes of paths (Section 3) and for meanders (Theorem 6). Note that these decompositions
hold for any set of jumps: it is straightforward to extend them to multiplicities (jumps with
different colours) or even to an infinite set of jumps.

I Theorem 6 (The universal context-free grammar for directed lattice paths). Meanders and
excursions are generated by the following grammar:

M Ñ ε` P M (meanders),
E Ñ ε`A0E (excursions),

which can be rephrased as “meanders are sequences of prime walks”: M “ Seq
´

řd
k“0 Ak

¯

and “excursions are sequences of arches”: E “ SeqpA0q, where the arches Ak from 0 to k
are generated by

Ak Ñ k `
d
ÿ

j“k`1
Aj E Ak´j parches for k ě 0q,

Ak Ñ k `
k´1
ÿ

j“´c

Ak´j E Aj parches for k ă 0q,

with the convention that, in these two rules, the part Ak Ñ k is omitted whenever k R S.
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5 −3 1 0 −2 0 2 1 −3 1 −1 4 0 −5 3 −2 −1

A0 E
A1 E A−1 A0

A2 A−1 A0 E A4 E A−5 A1 A−1
A5 A−3 A1 E A−2 A0 E A0 A3 A−2

A0 A2 A−2 A0

A1 A−3 A1 A−1

Figure 1 Example of our non-ambiguous decomposition of an excursion into generalized arches.
Similar decompositions hold for the factorization of meanders into prime walks.

Proof. Let us start with arches Ak from 0 to k ě 0. (The results for A´k follow analogously.)
For such arches of length ą 1, we cut them at the first and the last time their minimal
altitude (not taking end points into account) is attained. The first factor goes from 0 to j
and stays in-between always strictly above j, and therefore is given by Aj . The second factor
is a (possibly empty) excursion. The last factor is an arch from j to k given by Ak´j . This
gives Ak “ AjEAk´j . From this, it is immediate to get the grammar for excursions, as they
are a sequence of arches A0; thus E “ ε`A0E .

Now take any meander and cut it at the last time it touches altitude 0. The first part is
a (possibly empty) sequence of arches. We cut the second part at the first point where its
minimal altitude ą 0 is attained. The remaining part is again a meander. This gives the
factorization M “ E `

řd
k“1 E Ak M, which is in turn equivalent to M “ seqpPq.

All these decompositions are clearly 1-to-1 correspondences, as exemplified in Figure 1. J

We end this section with the grammar of bridges. It uses another class of walks: the
negative arches from 0 to k, denoted by sAk. These stay always strictly below minp0, kq.
Their grammar is just the mirror of the one for Ak given in Theorem 6.

I Theorem 7. Bridges B “ B0 are generated by the following grammar:

B0 Ñ ε`
ÿ

kPS
kB´k,

where Bk stands for the “bridges ending at k”, i.e. walks on Z from 0 to k, given by

Bk Ñ

0
ÿ

j“´c

Aj Bk´j pif k ą 0q,

Bk Ñ

d
ÿ

j“0

sAj Bk´j pif k ă 0q.

AofA 2020
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In the next section we present some applications of our decompositions (obtained above in
the framework of the non-commutative world of words) to famous identities from probability
theory (stated below in the framework of the commutative world of generating functions).

3 Latticepathology and surgery of paths

The decompositions of lattice paths mentioned in the previous section find application in the
bivariate versions of the Spitzer/Sparre Andersen1/Wiener–Hopf formulas [2,25,26,34,37].
It gives for free elegant short proofs for these fundamental results which were definitively
missing in [4], neatly illustrating the latticepathology philosophy!

I Theorem 8 (Bivariate version of Spitzer/Sparre Andersen’s identities). The generating
function W`pz, uq “

ř

n w
`
n puqz

n of walks on Z ending at an altitude ě 0 and the generating
function Mpz, uq “

ř

n mnpuqz
n of meanders (where u encodes the final altitude and z

encodes the length of the lattice path) are related by the formulas

W`pz, uq “ 1` zM
1pz, uq

Mpz, uq
or, equivalently, (3a)

Mpz, uq “ exp
ˆ
ż z

0

W`pt, uq ´ 1
t

dt

˙

“ exp
˜

ÿ

ně1

w`n puq

n
tn

¸

. (3b)

Proof (Sketch). We give a bijective proof. It consists in factorizing any non-empty walk
ω ending at an altitude ě 0 into 3 factors: ω “ φ1.m.φ2 where m is the longest meander
starting at the first minimum of the walk and such that φ2.φ1 is a prime walk (pointed, in
order to remember where to split it); see Figure 2. The fact that this factorization exists
and is unique follows from the positivity of ω and from the grammar for meanders from
Theorem 6. This decomposition directly keeps track of the last altitude of each of its factors:

W`pz, uq ´ 1 “Mpz, uqz
B

Bz

ˆ

1´ 1
Mpz, uq

˙

. J

I Remark 9 (Spitzer/Sparre Andersen’s identities for excursions and bridges). Extracting the
constant coefficient with respect to u in the above identities leads to the following links
between bridges and excursions (these specific identities were also proven in [4]).

Bpzq “ 1` Epzqz B
Bz

ˆ

1´ 1
Epzq

˙

“ 1` zE
1pzq

Epzq
or, equivalently, (4a)

Epzq “ exp
ˆ
ż z

0

Bptq ´ 1
t

dt

˙

“ exp
˜

ÿ

ně1

bn

n
tn

¸

. (4b)

Nota bene: Spitzer’s formula is often given as a variant of Formula (3b), stated in terms of
characteristic functions instead of generating functions, and also keeping track of the height of
the path (see e.g. [37,39,42]). More generally, in Brownian motion theory, path decompositions
are also useful for Vervaat transformations, quantile transforms [13, 33, 40], Ray–Knight
theorems for local times and Lamperti, Jeulin, Bougerol, Donati-Martin identities [1,7,15,28].

We now illustrate such approaches with one more important surgery of lattice paths. (This
requires the natural classes of positive and negative meanders, see Definition 12 hereafter.)

1 Funnily, in the literature, this identity of Erik Albrecht Sparre Andersen (Andersen is the family name)
is often called the “Sparre Andersen identity”, probably as he was often signing E. Sparre Andersen.
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φ1 φ2M(z, u)

W+(z, u)

Figure 2 The bijection at the heart of Spitzer/Sparre Andersen identity decomposes a walk
ω P W` into ω “ φ1.m.φ2, where the meander m P M starts at the first minimum of ω and ends at
the rightmost point such that φ2.φ1 ends at altitude ě 0 (and φ2.φ1 is thus a prime walk).

I Theorem 10 (Bivariate version of Wiener–Hopf formula). The bivariate generating functions
W`hpz, uq and W´hpz, uq of walks on Z with u marking the positive and negative height (not
the altitude!) are related to the bivariate generating functions M`pz, uq of positive meanders
and M´pz, uq of negative meanders (with u marking the final altitude, see Figure 3):

W`hpz, uq “M´pzqEpzqM`pz, uq “ ´
1
sdz

˜

c
ź

j“1

1
1´ ujpzq

¸˜

d
ź

`“1

1
u´ v`pzq

¸

,

W´hpz, uq “M´pz, uqEpzqM`pzq “ ´
1
sdz

˜

c
ź

j“1

1
1´ ujpzq{u

¸˜

d
ź

`“1

1
1´ v`pzq

¸

.

This Wiener–Hopf factorization W “M´EM` thus gives

M´pzq “
W pzq

Mpzq
“

c
ź

j“1

1
1´ ujpzq

and M`pzq “
Mpzq

Epzq
“

d
ź

`“1

1
1´ 1{v`pzq

.

Proof (Sketch). The proof follows from the decomposition illustrated in Figure 3. Cutting
at the first and last maxima of the walk gives the factorization W “ M`EM´, where the
positive meander and the excursion are obtained after a 180o rotation, and it is thus clear
that the final altitude of this positive meander is the height of the initial walk. Similarly,
cutting the walk at its first and last minima gives the factorization W “ M´EM`. J

4 Lattice paths and symmetric functions

Building on the quantities introduced in the previous sections, we now show that three
fundamental classes of symmetric polynomials evaluated at the small roots of the kernel have
a natural combinatorial interpretation in terms of directed lattice paths. En passant, this
also gives the generating function of generalized arches. For our main results see Table 2.
We first recall the definitions of these symmetric polynomials (see e.g. [38] for more on these
objects).

I Definition 11. The complete homogeneous symmetric polynomials hk of degree k in the d
variables x1, . . . , xd are defined as

hkpx1, . . . , xdq “
ÿ

1ďi1ď¨¨¨ďikďd

xi1 ¨ ¨ ¨xik
, thus

ÿ

kě0
hkpx1, . . . , xdqu

k “

d
ź

i“1

1
1´ uxi

. (5)

AofA 2020
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W (z, u)

M−(z, u) M+(z)

{

M+(z, u)

W (z, u)

M−(z)

positive height for W (z, u)
= final altitude for M+(z, u)

negative height for W (z, u)
= final altitude for M−(z, u)

E(z)

E(z)

Figure 3 The Wiener–Hopf decomposition of a walk: W “ M´EM`, a product of a negative
meander, an excursion, and a positive meander. See e.g. [25] for the importance of this factorization
for lattice path enumeration. It offers a link between two important parameters (height and final
altitude): the proof uses a 180o rotation of some of the factors (the ones indicated by a right to left
arrow in the picture). The above picture crystallizes the key idea behind the theorems given by Feller
in his nice introduction to the Wiener–Hopf factorization [19, Chapter XVIII.3 and XVIII.4]. It also
explains why this decomposition holds for Lévy processes, which can be seen as the continuous time
and space version of lattice paths, see [31].

The elementary homogeneous symmetric polynomials ek of degree k in the d variables
x1, . . . , xd are defined as

ekpx1, . . . , xdq “
ÿ

1ďi1ă¨¨¨ăikďd

xi1 ¨ ¨ ¨xik
, thus

c
ÿ

k“0
ekpx1, . . . , xdqu

k “

d
ź

i“1
p1` uxiq. (6)

The power sum homogeneous symmetric polynomials pk of degree k in the d variables x1, . . . , xd

are defined as

pkpx1, . . . , xdq “

d
ÿ

i“1
xk

i , thus
ÿ

kě0
pkpx1, . . . , xdqu

k “

d
ÿ

i“1

1
1´ uxi

. (7)

Many variants of directed lattice paths satisfy functional equations which are solvable by
the kernel method and lead to formulas involving a quotient of Vandermonde-like determinants,
see e.g. [4]. It is thus natural that Schur polynomials intervene, they e.g. play an important
role for lattice paths in a strip, see [5, 9]. It is nice that the other symmetric polynomials
also have a combinatorial interpretation, as presented in the following table.

Let us now give a more formal definition of the corresponding objects and a proof of the
formulas for the associated generating functions.

I Definition 12. A positive meander is a path from ` ě 0 to k ě 0 staying strictly above the
x-axis (and possibly touching it at at most one of its end points). The generating function
is denoted by M`

`,kpzq. Negative meanders are defined similarly, with the condition to stay
strictly below the x-axis.

In Table 2, we focus on positive meanders from 0 to k and from k to 0. Note that it
suffices to consider the paths from 0 to k as by time-reversion they are mapped to each other.
In particular, let uipzq and vjpzq be the small and large roots of the initial model. Then,
after time-reversion the small roots are 1

vjpzq
and the large roots are 1

uipzq
. More details are

given in the long version.
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Table 2 In this article, we show that the fundamental symmetric polynomials (of the complete
homogeneous, elementary, and power sum type) are counting families of positive meanders (walks
touching the x-axis only at one of the end points and staying always above the x-axis). The functions
vjpzq for j “ 1, . . . , d are the roots of the kernel equation 1´ zSpuq “ 0 with limz“0 |vjpzq| “ `8,
whereas the functions uipzq for i “ 1, . . . , c are the roots such that limz“0 uipzq “ 0.

from 0 to k from k to 0

k k
positive
meander

M`
0,kpzq“hk

´

1
v1pzq

, . . . , 1
vdpzq

¯

M`
k,0pzq“hk pu1pzq, . . . , ucpzqq

k k

positive
meander
avoiding
p0, kq

Mě
0,kpzq“p´1qk´1ek

´

1
v1pzq

, . . . , 1
vdpzq

¯

Mě
k,0pzq“p´1qk´1ek pu1pzq, . . . , ucpzqq

}
}
}

k

}
}

k

positive
meander
marked
below the
minimum

M ‚
0,kpzq“pk

´

1
v1pzq

, . . . , 1
vdpzq

¯

M ‚
k,0pzq“pk pu1pzq, . . . , ucpzqq

I Theorem 13 (Generating function of positive meanders).

M`
0,kpzq “ hk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof. Observe that a meander ending at altitude k can be uniquely decomposed into
an initial excursion followed by a positive meander from 0 to k. By [4, Theorem 2]
their generating function is the coefficient of uk in

śd
j“1

1
1´u{vjpzq

. Consequently, by Equa-
tion (5) this is the generating function of the complete homogeneous symmetric polynomials
hkp1{v1pzq, . . . , 1{vdpzqq. J

This theorem gives a shorter proof of [4, Corollary 3]:

I Corollary 14. The generating function Mkpzq of meanders ending at altitude k are given
by

Mkpzq “ Epzqhk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

“
1
sdz

d
ÿ

`“1

´

ź

j‰`

1
vjpzq ´ v`pzq

¯ 1
v`pzqk`1 .

AofA 2020
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Proof. As in the proof of Theorem 13, we use that positive meanders are classical meanders
factored by excursions. Then a partial fraction decomposition of (5) yields the result. J

The last class we consider is the one of elementary symmetric polynomials. These are
associated to a decorated class of paths.

I Definition 15. A positive meander avoiding a strip of width k is a positive meander from 0
to k that always stays above any point of altitude j ă k except for its start point. The
generating function is denoted by Mě

0,kpzq.

I Theorem 16 (Positive meanders avoiding the strip r0, ks).

Mě
0,kpzq “ p´1qk´1ek

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof. We proceed by induction on k. The base case k “ 1 holds due toMě
0,1pzq “M`

0,1pzq “

1{v1pzq ` ¨ ¨ ¨ ` 1{vdpzq. Next assume the claim holds for Mě
0,1pzq, . . . ,M

ě
0,k´1pzq.

Take an arbitrary positive meander from 0 to k. Either it is a positive meander avoiding
the strip of width k, or at least one of its lattice points has an altitude smaller than k.

Let 0 ă i ă k be the altitude of the last step below altitude k. Then the path can be
uniquely decomposed into an initial part from altitude 0 to this altitude i and a part from
this point to the end. Note that by the construction the initial part starts at altitude 0 and
then always stays above the x-axis, whereas the last part avoids a strip of width k ´ i. In
terms of generating functions this gives

Mě
0,kpzq “M`

0,kpzq ´
k´1
ÿ

i“1
M`

0,ipzqM
ě
0,k´ipzq.

Inserting the known expressions, we get

Mě
0,kpzq “

k
ÿ

i“1
p´1qk´iek´i

ˆ

1
v1
, . . . ,

1
vd

˙

hi

ˆ

1
v1
, . . . ,

1
vd

˙

“ p´1qk´1ek

ˆ

1
v1
, . . . ,

1
vd

˙

,

thanks to the fundamental involution relation [38, Equation (7.13)] between elementary
symmetric polynomials and complete homogeneous symmetric polynomials. J

I Corollary 17. The generating functions of generalized arches (as introduced in Definition 4)
satisfy (for k ą 0)

Ak “
p´1qk´cs´cz

u1pzq ¨ ¨ ¨ucpzq
ek

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

,

A´k “
p´1qk´cs´cz

u1pzq ¨ ¨ ¨ucpzq
ek pu1pzq, . . . , ucpzqq.

Proof. This follows from Ak “Mě
0,k{E and A´k “Mě

k,0{E. J

We end our discussion with a third class of positive meanders.

I Definition 18. A positive meanders marked below the minimum is a positive meander with
an additional marker in t1, . . . ,mu where m is its minimal positive altitude. The generating
function for such paths from 0 to k is denoted by M ‚

0,kpzq.

For example it is immediate that M ‚
0,1pzq “Mě

0,1pzq “M`
0,1pzq as the only restriction is

to avoid the x-axis. Furthermore, M ‚
0,0pzq “ 0 while Mě

0,0pzq “M`
0,0pzq “ 1.
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I Theorem 19 (Positive meanders marked below the minimum).

M ‚
0,kpzq “ pk

ˆ

1
v1pzq

, . . . ,
1

vdpzq

˙

.

Proof (Sketch). Every path from 0 to k has to touch at least one of the altitudes 1, . . . , d,
as the largest possible up step is `d. We decompose any positive meander from 0 to k
into two parts by cutting at the unique last positive minimum m. The first part is an arch
avoiding the strip of width m, whereas the second part is a positive meander from m to k.
Translating this decomposition into generating functions, we get

M ‚
0,kpzq “

d
ÿ

m“1
mMě

0,mpzqM
`
0,k´mpzq,

where the factor m encodes the m possible ways to put a mark below the minimum, see
Definition 18. Note that Mě

0,kpzq “ 0 for k ą d. Thus, by Theorems 13 and 16 we get

ÿ

kě1
M ‚

0,kpzqu
k “

˜

u
B

Bu

ÿ

jě0
Mě

0,jpzqu
j

¸˜

ÿ

iě0
M`

0,ipzqu
i

¸

“

d
ÿ

i“1

u{vipzq

1´ u{vipzq
.

By Equation (7) this proves the claim. J

5 Asymptotics and limit laws

We end the discussion on the symmetric polynomial expressions by deriving their respective
asymptotics: this allows us to revisit some limit laws in which the appearance of symmetric
polynomials was so far unrecognized.

We only consider aperiodic step sets S, which are defined by gcdt|i´ j| : i, j P Su “ 1.
For the treatment of periodic step sets see [6]. We only treat paths from k to 0, as the
formulas are a bit simpler. The results for paths from 0 to k follow in an analogous fashion.
The principal small branch u1pzq and the principal large branch v1pzq are defined by the
property that they are real positive for near 0` and meet at z “ ρ; see [4].

In the next theorem we give the asymptotics of our three classes of positive meanders.

I Theorem 20. Consider an aperiodic step set S. Let τ be the structural constant determined
by S1pτq “ 0, τ ą 0. For the different variants of positive meanders given in Table 2, the
number of paths from k to 0 of size n has the following asymptotic expansions

rznsM`
k,0pzq “ α1

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α1 “
Bek

Bx1
pτ, u2pρq, . . . , ucpρqq.

The number of positive meanders avoiding p0, kq from k to 0 of size n satisfies

rznsMě
k,0pzq “ α2

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α2 “
Bhk

Bx1
pτ, u2pρq, . . . , ucpρqq.

The number of positive meanders marked below the minimum from k to 0 of size n satisfies

rznsM ‚
k,0pzq “ α3

Spτqn

2
?
πn3

ˆ

1`O
ˆ

1
n

˙˙

, α3 “
Bpk

Bx1
pτ, u2pρq, . . . , ucpρqq.
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Proof. Let M`
k,0, Mě

k,0, and M ‚
k,0 be the sets of positive meanders, positive meanders

avoiding p0, kq, and positive meanders marked below the minimum, respectively; see Table 2.
Let ωk P Ak and ω´k P A´k be two generalized arches. Now, define the multiset Ek that
consists of d copies of the set tw : ωk ¨ w P Eu of excursions factored by ωk. Then, the
following chain of inclusions holds:

E ¨ ω´k Ď Mě
k,0 Ď M`

k,0 Ď M ‚
k,0 Ď Ek. (8)

The first inclusion holds as every walk e ¨ ω´k with e P E is a positive meander avoiding
p0, kq. The middle inclusions hold by definition (see Table 2). The last inclusion holds since,
for every m P M ‚

k,0, we have ωk ¨m P E after removing the marker from m. Therefore, the
exponential growth rates of the counting sequences of E ¨ ω´k and Ek are equal to the one
of classical excursions E , which has been explicitly computed in [4]. Hence, all 3 classes of
meanders in (8) have the same asymptotic growth Rn.

Next, we observe that the corresponding generating functions have non-negative coeffi-
cients, and whence Pringsheim’s Theorem [22, Theorem IV.6] guarantees the existence of a
dominant singularity on the positive real axis R`. By [4] this is the only dominant singularity
and we have ρ “ 1{R. Furthermore, it was shown that on the radius of convergence |z| “ ρ

only one root u1pzq is singular and has a square-root singularity, while the other ones are
analytic. Then, we combine this result with the explicit shape of the symmetric polynomials
from Definition 11. This gives the Puiseux expansion at z “ ρ on which we apply singularity
analysis to derive the claimed formulas. J

Before we continue, let us comment on an often overlooked phenomenon concerning the
analyticity of the small branches.
I Remark 21 (Singularities of the small roots). The small roots (and, in particular the principal
small branch u1pzq) can have a singularity inside the disk of convergence of Epzq. For example,
for Spuq “ u ` 13{u ` 6{u2, one easily checks that the radius of convergence of Epzq is
ρ “ 8{61 while u1pzq and u2pzq are singular at z “ ´1{8. However, their product u1u2 is
regular for |z| ă ρ; more generally what is proven in [4] is that the product of the small roots
is always regular for 0 ă |z| ă ρ, while in general not each single small root is regular for
0 ă |z| ă ρ.

Many theorems leading to a Gaussian distribution require that a key quantity (let us call
it σ) is nonzero. In [22], this nonzero assumption is called “variability condition”; see therein
Theorem IX.8 (Quasi-power theorem), Theorem IX.9 (Meromorphic schema), Theorem
IX.10 (Positive rational systems). Now, many lattice path statistics have a variance with an
expansion σn` opnq, where σ is defined as in the following lemma, and is therefore nonzero.

I Lemma 22 (Universal positivity of the variability condition). For any Laurent series Spuq “
ř

iě´c siu
i, with si ě 0 (at least two si ą 0), one has σ :“ S2p1qSp1q`S1p1qSp1q´S1p1q2 ą 0.

Proof. The trick is to introduce σpuq :“ uS2puqSpuq ` S1puqSpuq ´ uS1puq2. Then, all the
monomials of σpuq have positive coefficients: this follows from rsisjsσpuq “ ui`j´1pi´jq2 ě 0,
and thus σpuq ą 0 for u ą 0. J

It is worth noting that an alternative version of this lemma is: « uSpuq{S1puq “ n has no
double root for u ą 0 »; this plays a role in the tuning of Boltzmann random generation [17].
Such considerations are also related to Harald Cramér’s trick of shifting the mean which
transforms a problem with drift into a problem with zero drift, via the modification of the
weights of the step set rSpuq :“ Spτuq{Spτq (and choosing τ such that S1pτq “ 0 indeed
implies that rS1p1q “ 0). Compare also with the proof of [21, Formula (2.37)].
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As a consequence, Lemma 22 guarantees that we can apply the quasi-power theorem [22,
Theorem IX.8], and obtain a Gaussian limit theorem. This explains why many statistics
related to lattice paths are Gaussian. E.g., for paths with positive or zero drift, it furnishes
a Gaussian limit theorem for the final altitude of meanders or for the height of walks. When
the drift is negative, one gets some discrete limit laws of parameter given by our symmetric
polynomial expressions:

I Theorem 23 ( [4, Theorem 6] and [41, Theorem 4.7]; negative drift cases). Assume a negative
drift δ “ S1p1q ă 0 and let ρ “ 1{P pτq and ρ1 “ 1{P p1q.
1. Let Xn be the random variable of the final altitude of a meander of length n. Then, the

limit law is discrete and given by

lim
nÑ8

PrpXn “ kq “ p1´ τ´1q

řk
i“0 τ

i´khipv1pρq
´1, . . . , vdpρq

´1q
ř

iě0 hipv1pρq´1, . . . , vdpρq´1q
.

2. Let Yn be the random variable of the height of a walk of length n. Then, the limit law is
discrete and given by

lim
nÑ8

PrpYn “ kq “
hkpv1pρ1q

´1, . . . , vdpρ1q
´1q

ř

iě0 hipv1pρ1q´1, . . . , vdpρ1q´1q
.

Proof (Sketch). Recall that for a path represented by a sequence of points pω0, ω1, . . . , ωnq

the final altitude is ωn and the height is maxi ωi. In both cases the limit law follows from a
rewriting of the closed form of the discrete probability generating function which basically
consists of the generating function of hk (alternatively, M`) and proper rescaling. J

Note that the second case is an avatar of the Wiener–Hopf decomposition which links the
height of walks with the final altitude of meanders; see Theorem 10 and [41].

6 Conclusion and perspectives
In this article we introduced the notion of prime walks, a class of walks which leads to natural
decompositions of lattice paths and to concise proofs of several identities in probability
theory that we are even able to further generalize by capturing some additional statistics.
Moreover, these decompositions can keep track of some additional parameters (e.g. counting
the number of occurrences of some given patterns, see [3]), which then gives access to many
joint distribution studies, see e.g. [12].

Our work also offers new links with symmetric polynomials, adding to previous funda-
mental connections with algebraic combinatorics via Vandermonde determinants, the Jacobi–
Trudi identity, and Schur functions (see [5, 9]). In [6], we give an interpretation of Schur
polynomials (for some appropriate index) in terms of meanders ending at a given altitude.
Together with the results of the present work, this extends the table given in [38, Prop. 2.8.3]:
therein, Stanley gives some nice combinatorial expressions for the bases of symmetric func-
tions (Definition 11), when they are evaluated at specific values like xi “ 1 or xi “ qi. This
is what he calls the “principal specializations”. Our work shows that what we could call the
“kernel root specialization” of the symmetric function bases (i.e. evaluation at xi “ uipzq) is
leading to the enumeration of fundamental lattice path classes, holding for any set of jumps.

En passant, we illustrate the old Schützenberger philosophy: most of the identities in the
commutative world are images of structural identities in the non-commutative world. It is
natural to ask how far we can extend the link between lattice paths and the non-commutative
symmetric world; note that further non-commutative points of view are developed in [18,23,24].
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It is striking that astonishingly powerful formulas can be obtained by astonishingly simple
tools from symbolic combinatorics. Such formulas, e.g. the Spitzer formula for bridges, have
some unexpected avatars. Indeed, bridges of length n can be seen as ru0sSpuqn for some
Laurent polynomial Spuq and the same holds with multivariate polynomials; this leads to
some interesting connections between the non-commutative world, the Laurent phenomenon
(i.e. the fact that some expressions which by design are a priori rational functions are in fact
some Laurent polynomial), and lattice paths (see [14,29,36]).

On the computer algebra side, the so-called “Platypus algorithm” from [4] is a way to
get the algebraic equation satisfied by the generating function of excursions. Another nice
consequence of our formulas is that they permit a generalization of this “Platypus algorithm”:
starting from the generating functions of the symmetric polynomials given in Definition 11,
we show in the long version of this article how to get the algebraic equations of the different
families of constrained meanders, bridges, etc. This offers an effective alternative to an
approach by resultants or Gröbner bases, which are quickly time and memory consuming.

For Motzkin paths (that is, paths with step set S “ t´1, 0,`1u), the generating functions
associated to starting/final altitude constraints can be expressed as continued fractions,
and thus as quotients of orthogonal polynomials [20]. Our work, in one sense, gives the
generalization of these formulas as soon as one has steps ą `1 or ă ´1. Many combinatorial
structures related to the Motzkin paths have some asymptotics in which the “algebra of
orthogonal polynomials” plays a role (e.g. the height of binary trees, related to the Mandelbrot
fractal equation involves Chebyshev polynomials, see e.g. [22]). It is thus natural to ask if
there is a nice “algebra of symmetric polynomials” in which plugging the Puiseux expansions
offered by the kernel method could lead to the limit laws of many parameters of lattice paths?

In conclusion, our work largely complements and extends [4], being part of a wider
program illustrating how lattice path surgery (which we call latticepathology) leads directly
to many neat enumerative, probabilistic, computational, and asymptotic formulas.
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