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Abstract
We revisit the k-mismatch problem in the streaming model on a pattern of length m and a streaming
text of length n, both over a size-σ alphabet. The current state-of-the-art algorithm for the streaming
k-mismatch problem, by Clifford et al. [SODA 2019], uses Õ(k) space and Õ

(√
k
)
worst-case time

per character. The space complexity is known to be (unconditionally) optimal, and the worst-case
time per character matches a conditional lower bound. However, there is a gap between the total
time cost of the algorithm, which is Õ(n

√
k), and the fastest known offline algorithm, which costs

Õ
(
n + min

(
nk√
m
, σn
))

time. Moreover, it is not known whether improvements over the Õ(n
√
k)

total time are possible when using more than O(k) space.
We address these gaps by designing a randomized streaming algorithm for the k-mismatch problem

that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space and costs Õ
(
n+ min

(
nk2

m
, nk√

s
, σnm

s

))
total time. For s = m, the total runtime becomes Õ

(
n+ min

(
nk√
m
, σn
))
, which matches the time

cost of the fastest offline algorithm. Moreover, the worst-case time cost per character is still Õ
(√

k
)
.
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1 Introduction

In the fundamental Hamming distance problem, given two same-length strings X and Y ,
the goal is to compute Ham(X,Y ), which is the number of aligned mismatches between
X and Y . In the pattern matching version of the Hamming distance problem, the input
is a pattern P of length m and a text T of length n, both over a size-σ alphabet, and
the goal is to compute the Hamming distance between P and every length-m substring
of T . In this paper, we focus on a well studied generalization known as the k-mismatch
problem [1, 2, 4, 7, 10, 11, 12, 15, 18, 19, 22], which is the “fixed-threshold” version of the
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15:2 The Streaming k-Mismatch Problem: Tradeoffs Between Space and Total Time

pattern matching Hamming distance problem: for a given parameter k, for each length-m
substring S of T , if Ham(P, S) ≤ k, then compute Ham(P, S), and otherwise, report that
Ham(P, S) > k. Currently, the state-of-the-art (offline) algorithms for the k-mismatch
problem are: (1) the algorithm of Fischer and Paterson [11], whose runtime is Õ(σn), and (2)
the algorithm of Gawrychowski and Uznański [15], whose runtime is Õ

(
n+ nk√

m

)
; see also [4].

The online and streaming models. The growing size of strings to be processed, often
exceeding the available memory limits, motivated the study of pattern matching in the
streaming model, where the characters of T arrive in a stream one at a time, and every
occurrence of P needs to be identified as soon as the last character of the occurrence
arrives [3, 4, 6, 7, 8, 13, 16, 17, 21, 20, 23]. In the streaming k-mismatch problem, the goal is
to compute the Hamming distance between P and the current length-m suffix of T after each
new character arrives, unless the Hamming distance is larger than k (which the algorithm
reports in this case). Algorithms in the streaming model are typically required to use space
of size sublinear in m. A closely related model is the online model, where the space usage of
the algorithm is no longer explicitly limited.

Porat and Porat [20] introduced the first streaming k-mismatch algorithm using Õ(k2)
time per character and Õ(k3) space. Subsequent improvements [7, 16] culminated in an
algorithm by Clifford et al. [8], which solves the streaming k-mismatch problem in Õ

(√
k
)

time per character using Õ(k) space. The total time cost of Õ
(
n
√
k
)
matches the time

cost of the offline algorithm of Amir et al. [2], and the worst-case per-character running
time matches a recent lower bound (valid for σ = Ω

(√
k
)
even with unlimited space usage)

by Gawrychowski and Uznański [14], conditioned on the combinatorial Boolean matrix
multiplication conjecture. However, the Õ

(
n+ nk√

m

)
total time cost of the offline algorithm

of Gawrychowski and Uznański [15] is smaller, and the Õ(σn) total time cost of the offline
algorithm of Fischer and Paterson [11] is smaller for small σ.

In the online model, where O(m) space usage is allowed, the fastest algorithms follow
from a generic reduction by Clifford et al. [5], which shows that if the offline k-mismatch
problem can be solved in O(n · t(m, k)) time, then the online k-mismatch problem can be
solved in O(n

∑dlogme
i=0 t(2i, k)) time. In particular, this yields online algorithms with a

total runtime of Õ
(
n
√
k
)
and Õ(nσ). Nevertheless, this approach cannot benefit from the

state-of-the-art the offline algorithm of Gawrychowski and Uznański [15] since the running
time of this algorithm degrades as m decreases. Thus, a natural question arises:

I Question 1. Is there an online/streaming algorithm for the k-mismatch problem whose
total time cost is Õ

(
n+ min

(
nk√
m
, σn

))
?

Space usage. It is straightforward to show that any streaming algorithm for the k-mismatch
problem must use Ω(k) space [8]. Thus, the space usage of the algorithm of Clifford et al. [8]
is optimal. Remarkably, we are unaware of any other tradeoffs between (sublinear) space
usage and runtime for the k-mismatch problem. This leads to the following natural question.

I Question 2. Is there a time-space tradeoff algorithm for the k-mismatch problem, using
s ≥ Ω(k) space?

Our results. We address both Question 1 and Question 2 by proving the following theorem.
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I Theorem 3. There exists a randomized streaming algorithm for the k-mismatch problem
that, given an integer parameter k ≤ s ≤ m, costs Õ

(
n+ min

(
nk2

m , nk√
s
, σnms

))
total time and

uses Õ(s) space. Moreover, the worst-case time cost per character is Õ(
√
k). The algorithm

is correct with high probability1.

Theorem 3 answers Question 2 directly. However, for Question 1, Theorem 3 only addresses
the online setting, where s = m can be set: since k <

√
m yields n > nk√

m
> nk2

m , the total
time cost is Õ

(
n + min

(
nk2

m , nk√
m
, σnmm

))
= Õ

(
n + min

(
nk√
m
, σn

))
. However, Question 1

remains open for the streaming model.
Another natural research direction is to extend Theorem 3 so that the pattern P could

also be processed in a streaming fashion using Õ(s) space, Õ(
√
k) time per character, and

Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
time in total. To the best of our knowledge, among the existing

streaming k-mismatch algorithms, only that of Clifford et al. [8] is accompanied with an
efficient streaming procedure for preprocessing the pattern.

2 Algorithmic Overview and Organization

A string S of length |S| = n is a sequence of characters S[0]S[1] · · ·S[n− 1] over an alphabet
Σ. A substring of S is denoted by S[i . . j] = S[i]S[i+ 1] · · ·S[j] for 0 ≤ i ≤ j < n. If i = 0,
the substring is called a prefix of S, and if j = n− 1, the substring is called a suffix of S.
For two strings S and S′ of the same length |S| = n = |S′|, we denote by Ham(S, S′) the
Hamming distance of S and S′, that is, Ham(S, S′) = |{0 ≤ i ≤ n − 1 : S[i] 6= S′[i]}|. An
integer ρ is a d-period of a string S if Ham(S[0 . . n− ρ− 1], S[ρ . . n− 1]) ≤ d.

2.1 Overview
To prove Theorem 3, we consider two cases, depending on whether or not there exists an
integer ρ ≤ k that is a d-period of P for some d = O(k). If such a ρ exists, then we say that
P is periodic2, and otherwise P is said to be aperiodic.

Tail partitioning. In both cases of whether P is periodic or not, our algorithms use the
well-known tail partitioning technique [6, 7, 8, 9, 17], which decomposes P into two substrings:
a suffix Ptail and the complementary prefix Phead of length m − |Ptail|. Accordingly, the
algorithm has two components. The first component computes the Hamming distance of
Phead and every length-|Phead| substring of T with some delay: the reporting of Ham(Phead,
T [i − |P | + 1 . . i − |Ptail|]) is required to be completed before the arrival of T [i]. The
second component computes the Hamming distance of Ptail and carefully selected length-
|Ptail| substrings of T . The decision mechanism for selecting substrings for the second
component is required to guarantee that whenever Ham(Phead, T [i−|P |+ 1 . . i−|Ptail|]) ≤ k:
if Ham(Ptail, T [i − |Ptail| + 1 . . i]) ≤ k then the second component computes Ham(Ptail,
T [i−|Ptail|+1 . . i]); otherwise, the second component reports Ham(Ptail, T [i−|Ptail|+1 . . i]) >
k. The second component has no delay.

1 An event E happens with high probability if Pr[E ] ≥ 1− n−c for a constant parameter c ≥ 1.
2 The classic notion of periodicity is usually much simpler than the one we define here. However, since in

this paper we do not use the classic notion of periodicity, we slightly abuse the terminology.

CPM 2020



15:4 The Streaming k-Mismatch Problem: Tradeoffs Between Space and Total Time

Notice that if either Ham(Phead, T [i − |P | . . i − |Ptail|]) > k, which is detected by the
first component, or Ham(Ptail, T [i − |Ptail| + 1 . . i]) > k, which is detected by the second
component, then it must be that Ham(P, T [i−|P | . . i]) > k. Otherwise, Ham(P, T [i−|P | . . i])
is computed by summing Ham(Phead, T [i−|P | . . i−|Ptail|]) and Ham(Ptail, T [i−|Ptail|+1 . . i]).
In either case, the information is available for the algorithm right after T [i] arrives.

Thus, our algorithm has four main components, depending on whether P is periodic or
not, and depending on the head or tail case of the tail partitioning technique.

The aperiodic case. The algorithms for the aperiodic case are a combination of straight-
forward modifications of previous work together with the naïve algorithm; the details are
given in Section 7. Nevertheless, we provide an overview below. In this case, |Ptail| = 2k.

The algorithm for Phead in the aperiodic case is a slight modification of an algorithm
designed by Golan et al. [16], which reduces the streaming k-mismatch problem to the
problem of finding occurrences of multiple patterns in multiple text-streams.

The algorithm for Ptail in the aperiodic case is the naïve algorithm of comparing all
aligned pairs of characters. While in general the naïve algorithm could cost O(|Ptail|) time
per character, in our setting the algorithm uses the output of the algorithm on Phead as
a filter, and so the algorithm computes Ham(Ptail, T [i− |Ptail|+ 1 . . i]) only if Ham(Phead,
T [i− |P |+ 1 . . i− |Ptail|]) ≤ k. Since P is aperiodic, we are able to show that occurrences of
Phead are distant enough so that the naïve algorithm for Ptail costs Õ(1) worst-case time per
character. In order for the filter to be effective, instead of guaranteeing that the algorithm for
computing Ham(Phead, T [i−|P |+1 . . i−|Ptail|]) is completed before T [i] arrives, we refine the
tail partitioning technique so that the computation of Ham(Phead, T [i− |P |+ 1 . . i− |Ptail|])
completes before T [i− 1

2 |Ptail|] arrives, and if the naïve algorithm should be used, the execution
takes place through the arrivals of the subsequent 1

2 |Ptail| characters T [i− 1
2 |Ptail|+ 1 . . i].

The effects of this refinement on the runtime is only by constant multiplicative factors.

The periodic case. We begin by first assuming that P and T have a common O(k)-period
ρ ≤ k, and that n ≤ 3

2m. In this case, we represent the strings as characteristic functions
(one function for each character in Σ). Since both P and T are assumed to be periodic, each
characteristic function, when treated as a string, is also periodic. Next, we use the notion
of backward differences: for any function f : Z→ Z, the backward difference of f due to ρ
is ∆ρ[f ](i) = f(i)− f(i− ρ). Clifford et al. [8] showed that the Hamming distance of two
strings can be derived from a summation of convolutions of backward differences due to ρ of
characteristic functions; see Section 3.

In the case of Phead, a delay of up to 2s characters is allowed. To solve this case, we define
the problem of computing the convolutions of the backward differences in batches; the details
for this case are given in Section 4. Our solution uses an offline algorithm for computing the
convolutions described in Section 3.1. In the case of Ptail, we use a solution for the online
version of computing the convolutions of the backward differences, which is adapted from
Clifford et al. [5]; the details are given in Section 5. In both cases, since we assume that P
and T are periodic, our algorithms leverage the fact that the backward differences of the
characteristic functions have a small number of non-zero entries. This lets the algorithms
compute the Hamming distance of Ptail and every substring of T which has length |Ptail|.

In Section 6, we remove the periodicity assumption on T by applying a technique by
Clifford et al. [7] which identifies at most one periodic region of T that contains all the
k-mismatch occurrences of P . Moreover, we drop the n ≤ 3

2m assumption using a standard
trick of partitioning T into overlapping fragments of length 3

2m.
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3 Hamming Distance and the Convolution Summation Problem

Recall that the support of a function f is supp(f) := {x | f(x) 6= 0}. Let |f | = |supp(f)|.
Throughout, we only consider functions with finite support mapping Z to Z. The convolution
of two functions f, g : Z→ Z is a function f ∗ g : Z→ Z such that

[f ∗ g](i) =
∑
j∈Z

f(j) · g(i− j).

For a string X and a character c ∈ Σ, the characteristic function of X and c is Xc : Z→
{0, 1} such that Xc(i) = 1 if and only if X[i] = c. For a string X, let XR be X reversed.
The cross-correlation of strings X and Y over Σ is a function X ⊗ Y : Z→ Z such that

X ⊗ Y =
∑
c∈Σ

Xc ∗ Y Rc .

I Lemma 4 ([8, Fact 7.1]). Let P, T be strings. For |P | − 1 ≤ i < |T |, we have [T ⊗ P ](i) =
|P | − Ham(P, T [i− |P |+ 1 . . i]). For i < 0 and for i ≥ |P |+ |T |, we have [T ⊗ P ](i) = 0.

By Lemma 4, in order to compute Ham(P, T [i−|P |+ 1 . . i]), it suffices to compute [T ⊗P ](i).
The backward difference of a function f : Z→ Z due to ρ is ∆ρ[f ](i) = f(i)− f(i− ρ).

IObservation 5 ([8, Obs. 7.2]). If a string X has a d-period ρ, then
∑
c∈Σ |∆ρ[Xc]| ≤ 2(d+ρ).

Our computation of T ⊗ P in a streaming fashion is based on the following lemma:

I Lemma 6 (Based on [8, Fact 7.4 and Corollary 7.5]). For every i ∈ Z and ρ ∈ Z+, we have
[T ⊗ P ](i) =

[∑
c∈Σ ∆ρ[Tc] ∗∆ρ[PRc ]

]
(i)− [T ⊗ P ](i− 2ρ) + 2[T ⊗ P ](i− ρ).

When computing [T ⊗ P ](i), if the algorithm maintains a buffer of the last 2ρ values of
T ⊗P , then the algorithm already has the values of [T ⊗P ](i− ρ) and [T ⊗P ](i− 2ρ). Thus,
in order to construct T ⊗ P , the focus is on constructing

∑
c∈Σ ∆ρ[Tc] ∗∆ρ[PRc ].

3.1 Convolution Summation Problem
We express the task of constructing

∑
c∈Σ ∆ρ[Tc] ∗ ∆ρ[PRc ] in terms of a more abstract

convolution summation problem stated as follows. The input is two sequences of functions
F = (f1, f2, . . . , ft) and G = (g1, g2, . . . gt) such that for every 1 ≤ i ≤ t we have fi : Z→ Z
and gi : Z→ Z, and the goal is to construct the function F ⊗ G =

∑t
j=1(fj ∗ gj).

Let H be a sequence of functions. We define the support ofH as supp(H) =
⋃
h∈H supp(h).

The total number of non-zero entries in all of the functions ofH is denoted by ‖H‖ =
∑
h∈H |h|.

The diameter of a function f is diam(f) = max(supp(f))−min(supp(f)) + 1 if supp(f) 6= ∅,
and diam(f) = 0 otherwise. We define the diameter of a sequence of functions H as
diam(H) = max {diam(h) | h ∈ H}.

In our setting, the input for the convolution summation problem is two sequences of
sparse functions, which are functions that have a small support. Thus, we assume that
the input functions are given in an efficient sparse representation, e.g., a linked list (of the
non-zero functions) of linked lists (of non-zero entries).

Algorithm for the offline convolution summation problem. The following lemma, proved
in the full version of the paper, provides an algorithm that efficiently computes F ⊗ G for
two sequences of functions F and G which are given in a sparse representation. Notice that
the output of the algorithm is also restricted to the non-zero values of F ⊗ G only.

CPM 2020
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I Lemma 7 (Based on [4, Lemma 7.5]). Let F = (f1, . . . , ft) and G = (g1, . . . , gt) be two
sequences of functions, such that diam(F), diam(G) ∈ [1 . . n], and also diam(F ⊗ G) = O(n).
Then there exists an (offline) algorithm that computes the non-zero entries of F ⊗ G using
O(n) space, whose time cost is

Ψ(F ,G) = Õ

(
‖F‖+‖G‖+

t∑
j=1

min(|fj ||gj |, n)
)

= Õ
(
min

(
tn, ‖F‖ · ‖G‖, (‖F‖+ ‖G‖)

√
n
))
.

4 Periodic Pattern and Text – with Delay

Our approach is based on the reduction to the convolution summation problem of Section 3.
The text arrives online, so we consider a similar setting for convolution summation.

4.1 The Incremental Batched Convolution Summation Problem
In the incremental batched version of the convolution summation problem, the algorithm
is given two sequences of t functions F and G, where both supp(F), supp(G) ⊆ [0 . . n− 1].
The sparse representation of G is available for preprocessing, whereas F is revealed online in
batches of diameter s: the ith batch consists of all of the non-zero entries of the functions of
F in the range [(i− 1) · s . . i · s), also in a sparse representation. After each update, the goal
is to compute the values of F ⊗ G in the same range as the input, [(i− 1) · s . . i · s). In the
rest of this section, we prove the following lemma.

I Lemma 8. There exists a deterministic algorithm that solves the incremental batched
convolution summation problem for s = Ω(‖F‖+ ‖G‖), using O(s) space, Õ((‖F‖+ ‖G‖)

√
s)

time per batch arrival and Õ
(
n+ min

(
‖F‖ · ‖G‖, n(‖F‖+‖G‖)√

s
, tn

2

s

))
total time.

A natural approach for proving Lemma 8 is to utilize the algorithm of Lemma 7, whose
runtime depends on the diameters of a pair of sequences of functions. Thus, in order to use
this approach, we design a mechanism for reducing the diameters of F and G while still being
able to properly compute the values of F ⊗ G.

Reducing the diameter. For a function h : Z→ Z and a domain D ⊆ Z, let h|D : Z→ Z be
a function where h|D(i) = h(i) for i ∈ D and h|D(i) = 0 for i /∈ D. For a sequence of functions
H = (h1, h2, . . . , ht), denote the sequence of functions restricted to domain D as H|D =
(h1|D, h2|D, . . . , ht|D). For a, b ∈ Z, let us define integer intervals Γa = [s · (a−1) . . s · (a+ 1))
and Φb = [s · (b− 1) . . s · b)3.

I Observation 9. Each integer is in exactly one range Φb and in exactly two ranges Γa.

Notice that the ith batch consists of F|Φi . In response to the ith batch, the algorithm
needs to compute [F ⊗ G]|Φi . For this, we express Fi = F|[0. .si) = F|Φ1∪Φ2∪···∪Φi (which is
the aggregate of all the batches received so far) and G in terms of two sequences of functions
F∗i and G∗, so that [F ⊗ G]|Φi = [F∗i ⊗ G∗]|Φi . The motivation for using F∗i and G∗ is to
reduce the diameter, which comes at the price of increasing the number of functions.

Let q =
⌈
n
s

⌉
, and define

F∗i =
(
f1|Φi−0 , . . . , ft|Φi−0 , f1|Φi−1 , . . . , ft|Φi−1 , . . . . . . . . . , f1|Φi−(q−1) , . . . , ft|Φi−(q−1)

)
,

G∗ =
(
g1|Γ0 , . . . , gt|Γ0 , g1|Γ1 , . . . , gt|Γ1 , . . . . . . . . . , g1|Γq−1 , . . . , gt|Γq−1

)
.

3 Note that the Γ intervals are used for partitioning G while Φ intervals are used for partitioning F .
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I Lemma 10. For any i ∈ [1 . . q] we have [F ⊗ G]|Φi = [F∗i ⊗ G∗]|Φi .

Proof. For two sets X,Y ⊆ Z, we denote X − Y = {x− y | x ∈ X and y ∈ Y }. For any pair
of functions f, g : Z→ Z and any j ∈ Φi, since the ranges Φb for b ∈ Z form a partition of Z,
we have that (f ∗ g)(j) =

∑
a∈Z(f |Φi−a ∗ g)(j). Moreover, by the definition of the convolution

operator and since Φi − Φi−a ⊆ Γa, we have
∑
a∈Z(f |Φi−a ∗ g)(j) =

∑
a∈Z(f |Φi−a ∗ g|Γa)(j).

Hence, [F⊗G]|Φi =
∑
a∈Z[F|Φi−a⊗G|Γa ]|Φi . However, since supp(F) ⊆ [0 . . qs), we have that

for every b ≤ 0 and every f ∈ F , it must be that f |Φb = 0. Similarly, since supp(G) ⊆ [0 . . qs),
we have that for every a < 0 and every g ∈ G, it must be that g|Γa = 0. Thus, for a /∈ [0 . . q−1],
we have that F|Φi−a ⊗ G|Γa = 0, and so [F ⊗ G]|Φi =

∑q−1
a=0[F|Φi−a ⊗ G|Γa ]|Φi . Finally, since

F∗i is the concatenation of F|Φi−a for a ∈ [0 . . q − 1], and G∗ is the concatenation of G|Γa for
a ∈ [0 . . q − 1], the lemma follows. J

The following is a consequence of the definitions of F∗ and G∗, and Observation 9. Recall
that the diameter of a sequence of functions H is diam(H) = max {diam(h) | h ∈ H}.

I Observation 11. The sequences F∗i and G∗ consist of t · q functions each. Moreover,
diam(F∗i ) ≤ s, diam(G∗) ≤ 2s, ‖F∗i ‖ ≤ ‖F‖, and ‖G∗‖ ≤ 2 · ‖G‖.

The algorithm. During the preprocessing phase, the algorithm transforms G into G∗, and
constructs F∗0 , which is an empty linked list.

Upon receiving the ith batch, which is F|Φi , the algorithm computes F∗i as follows:
First, the algorithm concatenates F|Φi with F∗i−1 and truncates the last t functions from the
resulting sequence of (q + 1)t functions. It is easy to implement the concatenation (including
updating indices in the sparse representation) with a time cost which is linear in the number
of non-zero functions in F|Φi and F∗i−1, and is at most O(‖F‖). The implementation of the
truncation is void since only the first (i− 1) · t ≤ (q − 1) · t functions of F∗i−1 are non-zero4.

Next, the algorithm applies the procedure of Lemma 7 in order to compute F∗i ⊗ G∗.
Finally, the algorithm returns [F∗i ⊗ G∗]|Φi which, by Lemma 10, is [F ⊗ G]|Φi .

Complexities. The preprocessing phase is done in O(‖G‖) time using O(s) space.
For the ith batch, the computation of F∗i costs O(‖F‖) time, which is O(q‖F‖) =

O(ns ‖F‖) = O(n) time in total because s = Ω(‖F‖ + ‖G‖). Then, the computation of
F∗i ⊗ G∗ with the procedure of Lemma 7 costs O(Ψ(F∗i ,G∗)) = Õ((‖F∗i ‖ + ‖G∗‖)

√
s) =

Õ((‖F‖+‖G‖)
√
s) time. In the following, we derive several upper bounds on

∑q
i=1 Ψ(F∗i ,G∗),

which together upper bound the total time cost.

Total time Õ
(

n(‖F‖+‖G‖)√
s

)
. Recall that q = O(ns ), and, by Observation 11, for any

i ∈ [1 . . q] we have ‖F∗i ‖ ≤ ‖F‖ and ‖G∗‖ ≤ 2‖G‖. Thus,

q∑
i=1

Ψ(F∗i ,G∗) =
q∑
i=1

Õ
(
(‖F∗i ‖+ ‖G∗‖)

√
s
)

= Õ

(
q∑
i=1

(‖F‖+ ‖G‖)
√
s

)
=

Õ
(
q · (‖F‖+ ‖G‖)

√
s
)

= Õ(ns · (‖F‖+ ‖G‖)
√
s) = Õ

(
n(‖F‖+‖G‖)√

s

)
.

4 The reason for mentioning the truncation, even though it is void, is in order to guarantee that F∗i
matches the mathematical definition introduced above.
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Total time Õ
(

tn2

s

)
. Recall that for any i ∈ [1 . . q] the sequences G∗ and F∗i consist of q · t

functions of diameter O(s), and q = O(ns ). Thus,

q∑
i=1

Ψ(F∗i ,G∗) =
q∑
i=1

Õ (q · t · s) = Õ
(
q2 · t · s

)
= Õ

(
n2

s2 · t · s
)

= Õ
(
tn2

s

)

Total time Õ(n + ‖F‖ · ‖G‖). Let X = {x1, x2, . . . , xτ} and Y = {y1, y2, . . . , yτ} be two
sequences of τ functions from Z to Z, and let ν = max(diam(X ), diam(Y)). Recall that

Ψ(X ,Y) = Õ

‖X‖+ ‖Y‖+
τ∑
j=1

min(|xj ||yj |, ν)

 = Õ

‖X‖+ ‖Y‖+
τ∑
j=1
|xj ||yj |

 .

In our case, the run time is
∑q
i=1 Ψ(F∗i ,G∗). Recall that the functions in F∗i are fj |Φi−a ,

and the functions in G∗ are gj |Γa , both for a ∈ [0 . . q) and j ∈ [1 . . t]. Thus,

q∑
i=1

Ψ(F∗i ,G∗) =
q∑
i=1

Õ

‖F∗i ‖+ ‖G∗‖+
q−1∑
a=0

t∑
j=1

∣∣∣fj |Φi−a ∣∣∣∣∣∣gj |Γa ∣∣∣


=
q∑
i=1

Õ (‖F‖+ ‖G‖) + Õ

 t∑
j=1

q−1∑
a=0

∣∣∣gj |Γa ∣∣∣ q∑
i=1

∣∣∣fj |Φi−a ∣∣∣
 . by Obs. 11

= Õ(ns s) + Õ

 t∑
j=1

q−1∑
a=0

∣∣∣gj |Γa ∣∣∣∣∣∣fj∣∣∣
 . by Obs. 9

= Õ(n) + Õ

 t∑
j=1

∣∣∣gj∣∣∣∣∣∣fj∣∣∣
 . by Obs. 9

= Õ(n) + Õ

‖G‖ t∑
j=1

∣∣∣fj∣∣∣
 = Õ(n) + Õ (‖G‖ · ‖F‖) = Õ(n+ ‖F‖ · ‖G‖)

This completes the proof of Lemma 8. J

4.2 Reduction from Hamming Distance to Incremental Batch Sparse
Convolution Summation Problem

Now we show how to compute the Hamming distance between P and substrings of T with
delay of 2s, based on the algorithm of Lemma 8. Our result is stated in the following lemma.

I Lemma 12. Suppose that there exists ρ ≤ k which is a d-period of both P and T for
some d = O(k). Then, there exists a deterministic streaming algorithm for the k-mismatch
problem with n = 3

2m that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space and costs
Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
total time. Moreover, the worst-case time cost per character is

Õ(
√
k). The algorithm has delay of 2s characters.

Proof. The algorithm receives the characters of T one by one and splits them into blocks of
length s so that the indices in the bth block form Φb, as defined in Section 4.1. The last O(s)
characters of T and the last O(s) values of T ⊗ P are buffered in O(s) space.
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For Σ = {c1, c2, . . . , cσ}, define sequences of functions G = (∆ρ[PRc1
],∆ρ[PRc2

], . . . ,∆ρ[PRcσ ])
and F = (∆ρ[Tc1 ],∆ρ[Tc2 ], . . . ,∆ρ[Tcσ ]). The algorithm initializes an instance of the proce-
dure of Lemma 8 with G during the arrival of the first block. During the arrival of the bth block,
the algorithm creates the batch F|Φb as follows: after the arrival of T [i], if T [i] 6= T [i− ρ],
then the algorithm sets ∆ρ[TT [i]](i) to be 1 and ∆ρ[TT [i−ρ]](i) to be −1. During the arrival of
the (b+1)th block, the batch F|Φb is processed using Lemma 8 in order to compute [F⊗G]|Φb .
Finally, for all i ∈ Φb, the algorithm uses the buffer of T ⊗ P together with the values of
[F⊗G]|Φb in order to report the values [T⊗P ](i) = [F⊗G](i)−[T⊗P ](i−2ρ)+2[T⊗P ](i−ρ)
(see Lemma 6).

Complexities. For each incoming character of T , updating the text buffer and the functions
∆ρ[Tc] for all c ∈ Σ costs O(1) time since changes are needed in ∆ρ[Tc] for at most two
characters c. Since ρ ≤ k is a d-period of both P and T , Observation 5 yields ‖G‖ ≤
2(k + d) = O(k) and ‖F‖ ≤ 2(k + d) = O(k). Thus, the initialization of the procedure
of Lemma 8 costs O(‖G‖) = O(k) time, and executing the procedure of Lemma 8 on the
bth batch F|Φb costs Õ((‖F‖ + ‖G‖)

√
s) = Õ(k

√
s) time. Hence, applying the algorithm

of Lemma 8 during the arrival of any block costs Õ(k + k
√
s) = Õ(k

√
s) time, which, by a

standard de-amortization, is Õ
( 1
s · k
√
s
)

= Õ
(
k√
s

)
= Õ(

√
k) time per character.

Note that supp(G) ⊆ [0 . .m+ ρ] = [0 . . O(m)] and supp(F) ⊆ [0 . . 3
2m+ ρ] = [0 . . O(m)].

Moreover, both F and G are sequences of σ functions. Hence, the total time cost of applying
the algorithm of Lemma 8, updating the buffers, and computing the functions ∆ρ[Tc] is
Õ
(
m+ min

(
‖F‖ · ‖G‖, m(‖F‖+‖G‖)√

s
, σm

2

s

))
= Õ

(
m+ min

(
k2, mk√

s
, σm

2

s

))
.

Delay. For any index i ∈ Φb, after the arrival of T [i], at most s character arrivals take
place until the call to the procedure of Lemma 8 involving F|Φb . Moreover, due to the
de-amortization, the computation of all the results [T ⊗ P ]|Φb takes place during the arrivals
of another s characters. Hence, the delay of the algorithm is at most 2s character arrivals. J

5 Periodic Pattern and Text – without Delay

In this section, we show how to compute the distances between P and substrings of T without
any delay, assuming that ρ ≤ k is a d-period of both P and T for some d = O(k). Our approach
is to use the tail partition technique, described in Section 2. To do so, we set |Ptail| = 2s
and use the algorithm of Lemma 12 on Phead (notice that ρ is a d-period of both Phead and
Ptail). The remaining task is to describe how to compute Ham(Ptail, T [i− 2s+ 1 . . i]).

In the online version of the convolution summation problem, the algorithm is given two
sequences of functions F and G, where supp(F) ⊆ [0 . . n)] and supp(G) ⊆ [0 . .m). The
sparse representation of G is available for preprocessing, whereas F is revealed online index
by index: At the ith update, the algorithm receives F|{i}, i.e., all the non-zero entries f(i)
for f ∈ F , and the task is to compute [F ⊗ G](i). The procedure we use for this problem is
based on the algorithm of Clifford et al. [5]. Nevertheless, since we state the procedure in
terms of the convolution summation problem, whereas [5] states the algorithm in terms of
pattern matching problems, we describe the details in the full version.

I Lemma 13 (Based on [5, Theorem 1]). Let F and G be two sequences of t functions each
such that supp(F) ⊆ [0 . . n), supp(G) ⊆ [0 . .m), and δ = max(maxi ‖F|{i}‖,maxi ‖G|{i}‖) is
the maximum number of non-zero entries at a single index. There exists an online algorithm
that upon receiving F|{i} for subsequent indices i computes [F ⊗ G](i) using O(δm) space in
Õ
(√

δ(‖F‖+ ‖G‖)
)
time per index. Moreover, the total running time of the algorithm is

Õ(min(nδ + (‖F‖+ ‖G‖)
√
n, nt)).
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Using the algorithm of Lemma 13 and the reduction from computing Hamming distance
to the convolution summation problem defined in Section 3, we achieve the following lemma.

I Lemma 14. Suppose that there exists ρ ≤ k which is a d-period of both P and T for some
d = O(k). Then, there exists a deterministic online algorithm for the k-mismatch problem
that uses Õ(m) space and costs Õ (n+ min (k

√
n, nσ)) total time. Moreover, the worst-case

time cost per character is Õ(
√
k).

Proof. The algorithm maintains a buffer of the last 2ρ values of T ⊗ P and a buffer of the
last ρ characters of T . Define sequences of functions G = (∆ρ[PRc1

],∆ρ[PRc2
], . . . ,∆ρ[PRcσ ]) and

F = (∆ρ[Tc1 ],∆ρ[Tc2 ], . . . ,∆ρ[Tcσ ]), where Σ = {c1, c2, . . . , cσ}. The algorithm initializes an
instance of the procedure of Lemma 13. After the arrival of T [i], if T [i] 6= T [i− ρ], then the
algorithm sets ∆ρ[TT [i]](i) to be 1 and ∆ρ[TT [i−ρ]](i) to be −1. The algorithm transfers these
values to the procedure of Lemma 13, which responds with the value of [F ⊗ G](i). Then,
the algorithm reports [T ⊗ P ](i), which equals [F ⊗ G](i)− [T ⊗ P ](i− 2ρ) + 2[T ⊗ P ](i− ρ)
by Lemma 6. In this expression, the first term is returned by the procedure of Lemma 13
and the other two terms are retrieved from the buffer.

The update of the text buffer and ∆ρ[Tc] for at most two characters c after the arrival
of any text character costs O(1) time per character and O(n) time in total. Note that by
Observation 5, since ρ ≤ k is a d-period of both P and T , we have that ‖G‖ ≤ 2(d+ k) =
O(k) and ‖F‖ ≤ 2(d + k) = O(k). Moreover, δ = max(maxi ‖F|{i}‖,maxi ‖G|{i}‖) ≤ 2.
Consequently, the algorithm of Lemma 13 uses Õ(m) space and costs Õ(

√
k) time per

character and Õ(min(n+ k
√
n, nσ)) time in total. All the other parts of the algorithm cost

O(1) time per character and O(n) time in total. J

Thus, by combining Lemma 12 and Lemma 14, we obtain an algorithm that, given ρ
which is is a d-period of both P and T , computes the Hamming distances up to k for every
substring of the text without delay.

I Lemma 15. Suppose that there exists ρ ≤ k which is a d-period of both P and T for
some d = O(k). Then, there exists a deterministic streaming algorithm for the k-mismatch
problem with n = 3

2m that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space, and costs
Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
total time and Õ(

√
k) time per character in the worst case.

Proof. Let Ptail be the suffix of P of length 2s, and let Phead be the complementary
prefix of P . Note that ρ is a d-period of both Phead and Ptail. We run the algorithm
of Lemma 12 with Phead as a pattern. The results of the algorithm of Lemma 12 are
added into a buffer of length 2s. Thus, right after the arrival of T [i], it is guaranteed that
Ham(Phead, T [i− |P |+ 1 . . i− |Ptail|]) is already computed and available for the algorithm.
In addition, the algorithm of Lemma 14 is executed with Ptail as pattern, and this algorithm
computes Ham(Ptail, T [i − |Ptail| + 1 . . i]) right after the arrival of T [i], if this value is
at most k. After the arrival of T [i], the algorithm reports Ham(P, T [i − |P | + 1 . . i]) =
Ham(Phead, T [i− |P |+ 1 . . i− |Ptail|]) + Ham(Ptail, T [i− |Ptail|+ 1 . . i]).

The time per character of both the algorithm of Lemma 12 and the algorithm of Lemma 14
is Õ(

√
k). The total time cost of the algorithm of Lemma 12 is Õ

(
m+ min

(
k2, mk√

s
, σm

2

s

))
.

Furthermore, the total time cost of the algorithm of Lemma 14 is Õ (min (m+ k
√
m,mσ)) =

Õ
(
m+ min

(
k2, km√

s
, σm

2

s

))
due to k ≤ s ≤ m and m + k

√
m = O(m + k2). Hence, the

lemma follows. J
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6 Periodic Pattern and Arbitrary Text – without Delay

In this section, we generalize Lemma 15 to the case where ρ is not necessarily a d-period
of T , but ρ is still a d-period of P and n = 3

2m. We use ideas building upon Clifford et
al. [7, Lemma 6.2] to show that there exists a substring of T , denoted T ∗, such that ρ is a
(2d + 4k + ρ)-period of T ∗, and T ∗ contains all of the k-mismatch occurrences of P in T .
Our construction, specified below, exploits the following property of approximate periods.

I Observation 16. Let X and Y be two equal length strings. If ρ is a d-period of X and
Ham(X,Y ) ≤ x then ρ is a (d+ 2x)-period of Y .

Let TL be the longest suffix of T [0 . . 1
2m− 1] such that ρ is a (d+ 2k)-period of TL, and

let TR be the longest prefix of T [ 1
2m. . n− 1] such that ρ is a (d+ 2k)-period of TR. Finally,

let T ∗ be the concatenation T ∗ = TL · TR.

I Lemma 17. All the k-mismatch occurrences of P in T are contained within T ∗. Moreover,
ρ is a (2d+ 4k + ρ)-period of T ∗.

Proof. The second claim follows directly from the fact that T ∗ = TL · TR is a concatenation
of two strings with (d+ 2k)-period ρ (the extra ρ mismatches might occur at the boundary
between TL and TR). Henceforth, we focus on the first claim.

We assume that P has at least one k-mismatch occurrence in T ; otherwise, the claim
holds trivially. Let T [` . . r] be the smallest fragment of T containing all the k-mismatch
occurrences of P in T (so that the leftmost and the rightmost occurrences starts at positions
` and r −m+ 1, respectively). Our goal is to prove that T [` . . r] is contained within T ∗.

By Observation 16, since T [` . . ` + m − 1] is a k-mismatch occurrence of P and ρ is a
d-period of P , it must be that ρ is a (d + 2k)-period of T [` . . ` + m − 1]. In particular,
since ` + m ≥ 1

2m, we have that ρ is a (d + 2k)-period of T [` . . 1
2m − 1]. Hence, by its

maximality, TL must start at position ` or to the left of `. Similarly, by Observation 16,
since T [r−m+ 1 . . r] is a k-mismatch occurrence of P and ρ is an d-period of P , it must be
that ρ is a (d+ 2k)-period of T [r−m+ 1 . . r]. In particular, since r−m+ 1 ≤ n−m ≤ 1

2m,
we have that ρ is a (d+ 2k)-period of T [ 1

2m. . r]. Hence, by its maximality, TR must end at
position r or to the right of r. J

The algorithm works in two high-level phases. In the first phase, the algorithm receives
T [0 . . 1

2m− 1], and the goal is to compute TL. In the second phase, the algorithm receives
T [ 1

2m. . n − 1] and transfers T ∗ = TL · TR to the subroutine of Lemma 12. The transfer
starts with a delay of |TL| characters and a standard de-amortization speedup is applied to
reduce the delay to 0 by the time 2|TL| ≤ m characters are transferred, which is before the
subroutine of Lemma 12 may start producing output. The algorithm terminates as soon as it
reaches the end of TR, i.e., when it encounters more than d+ 2k mismatches in T [ 1

2m. . n−1].
The following periodic representation (similar to one by Clifford et al. [8]) is used for

storing substrings of T .

I Fact 18. For every positive integer ρ, there exists an algorithm that maintains a represen-
tation of T [` . . r] and supports the following operations in O(1) time each:
(a) Change the representation to represent T [`+ 1 . . r] and return T [`].
(b) Given T [r + 1] and T [r + 1− ρ], change the representation to represent T [` . . r + 1].
(c) Given `′ ≥ ` such that T [i] = T [i + ρ] for ` ≤ i < `′, change the representation to

represent T [`′ . . r].
If ρ is a d-period of T [` . . r] then the space usage is O(d+ ρ).
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Proof. T [` . . r] is represented by a string S of length ρ such that T [i] = S[i mod ρ] for
` ≤ i ≤ min(` + ρ − 1, r), and a list L = {(i, T [i]) : ` + ρ ≤ i ≤ r, T [i − ρ] 6= T [i]}. Notice
that if ρ is a d-period of T [` . . r], then this representation uses O(d+ ρ) space.

To implement operation (a), the algorithm first retrieves T [`] = S[` mod ρ]. The algorithm
then checks if the leading element of L is (`+ρ, T [`+ρ]). If so, the algorithm removes this pair
from L and sets S[` mod ρ] = T [`+ ρ]. To implement operation (b), the algorithm compares
T [r + 1] with T [r + 1− ρ]. If these values are different, then (r + 1, T [r + 1]) is appended to
L. The implementation of operation (c) is trivial (neither S nor L is changed). J

I Lemma 19. Suppose that there exists ρ ≤ k which is a d-period of P for some d =
O(k). Then, there exists a deterministic streaming algorithm for the k-mismatch problem
with n = 3

2m that, given an integer parameter k ≤ s ≤ m, uses Õ(s) space, and costs
Õ
(
m+ min

(
k2, mk√

s
, σm

2

s

))
total time and Õ(

√
k) time per character in the worst case.

Proof. Based on the pattern P and the period ρ, the algorithm initializes an instance ALG of
the algorithm of Lemma 12. Then, the algorithm processes T in two phases, while maintaining
a buffer of ρ text characters and the representation of Fact 18 of a suffix T ′ of the already
processed prefix of T .

First Phase. During the first phase, when the algorithm receives T [0 . . 1
2m− 1], the suffix

T ′ is defined as the longest suffix for which ρ is a (d+ 2k)-period. Suppose T ′ is T [` . . i− 1]
after processing T [0 . . i− 1]. The algorithm first appends T [i] to T ′, extending it to T [` . . i]
using Fact 18(b). If ρ is still a (d + 2k)-period of T ′, i.e., the list L has at most d + 2k
elements, then the algorithm proceeds to the next character. Otherwise, T ′ is first trimmed
to T [`′ . . i], where (`′ + ρ, T [`′ + ρ]) is the first element of L, using Fact 18(c), and then to
T [`′ + 1 . . i] using Fact 18(a). The latter operation decrements the size of L to d+ 2k.

At the end of the first phase, T ′ is by definition equal to TL. The running time of the
algorithm in the first phase is O(1) per character, and the space complexity is O(d+k) = O(k).

Second Phase. At the second phase, the algorithm receives T [m2 . . n− 1], while counting
the number of mismatches with respect to ρ. As soon as this number exceeds d+ 2k, which
happens immediately after receiving the entire string TR, the algorithm stops. As long as
T ′ is non-empty, each input character is appended to T ′ using Fact 18(b), and the two
leading characters of T ′ are popped using Fact 18(a) and transferred to ALG. Once T ′
becomes empty (which is after ALG receives 2|TL| ≤ m characters), the input characters
are transferred directly to ALG. This process guarantees that the input to ALG is T ∗ and
that ALG is executed with no delay by the time the first m characters of T ∗ are passed. By
Lemma 17, all k-mismatch occurrences of P in T are contained in T ∗, so all these occurrences
are reported in a timely manner.

Since ρ is a (2d+ 4k+ ρ)-period of T ∗ (by Lemma 17) and T ′ is contained in T , then ρ is
also a (2d+ 4k + ρ)-period of T ′ at all times. Consequently, the space complexity is O(k) on
top of the space usage of ALG, which is Õ(s). Thus, in total, the algorithm uses Õ(s) space.

The per-character running time is dominated by the time cost of ALG, which is Õ(
√
k).

The total running time of the algorithm is also dominated by the total running time of ALG,
which, by Lemma 12, is Õ

(
m+ min

(
k2, mk√

s
, σm

2

s

))
. J

The following corollary is obtained from Lemma 19 by the standard trick of splitting the
text into O( nm ) substrings of length 3

2m with overlaps of length m.
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I Corollary 20. Suppose that there exists ρ ≤ k which is a d-period of P . Then, there
exists a deterministic streaming algorithm for the k-mismatch problem that, given an integer
parameter k ≤ s ≤ m, uses Õ(s) space and costs Õ

(
n + min

(
nk2

m , nk√
s
, σnms

))
total time.

Moreover, the worst-case time cost per character is Õ(
√
k).

7 Aperiodic Pattern and Arbitrary Text

The following lemma, proved in the full version, appears in [16] with small modifications.

I Lemma 21 (Based on [16, Theorem 5]). Suppose that the smallest 4k-period of the pattern
P is Ω(k). Then, there exists a randomized streaming algorithm for the k-mismatch problem
that uses Õ(k) space and costs Õ(1) time per character. The algorithm has delay of k
characters and is correct with high probability.

In order to improve the algorithm to report results without any delay, we use ideas similar
to those introduced in Section 5. The following fact appeared in [7].

I Fact 22 (Based on [7, Fact 3.1]). If ρ is the smallest d-period of a pattern P , then the
1
2d-mismatch occurrences of P in any text T start at least ρ positions apart.

I Lemma 23. Suppose that the smallest 6k-period of the pattern P is Ω(k). Then, there
exists a randomized streaming algorithm for the k-mismatch problem that uses Õ(k) space
and costs Õ(1) time per character. The algorithm is correct with high probability.

Proof. Let Ptail be the suffix of P of length 2k and let Phead be the complementary prefix
of P . Since the smallest 6k-period of P is Ω(k), |Ptail| = 2k, and 6k − 2k = 4k, the smallest
4k-period of Phead is also Ω(k). Thus, we execute the procedure of Lemma 21 with Phead.
Then, whenever the procedure reports Ham(Phead, T [i− |P |+ 1 . . i− 2k]) to be at most k,
the algorithm starts a process that computes Ham(Ptail, T [i− 2k + 1 . . i]). The procedure of
Lemma 21 reports Ham(Phead, T [i−|P |+ 1 . . i−2k]) before T [i−k+ 1] arrives. Hence, there
are still at least k character arrivals until Ham(P, T [i−|P |+1 . . i]) has to be reported. During
these character arrivals, the computation of Ham(Ptail, T [i− 2k + 1 . . i]) is done simply by
comparing pairs of characters. The total time of this computation is O(k), and by standard
de-amortization, this is O(1) time per character during the arrival of the k characters.

Since the smallest 4k-period of P is Ω(k), Fact 22 implies that any two k-mismatch
occurrences of P in T are at distance Ω(k). Therefore, the maximum number of processes
computing distances to Ptail at any time is O(1). Thus, the time cost per character of the
algorithm is dominated by the procedure of Lemma 21. J

8 Proof of Main Theorem

We conclude the paper with a proof of Theorem 3, which is our main result. In the
preprocessing, the shortest 6k-period ρ of the pattern P is determined. If ρ ≤ k, then the
text is processed using Corollary 20. This procedure uses Õ(s) space and costs Õ(

√
k) time

per character and Õ
(
n+min

(
nk2

m , nk√
s
, σnms

))
time in total. Otherwise, the text is processed

based on the Lemma 23. The space complexity in this case is Õ(k) = Õ(s), whereas the
running time is Õ(1) = Õ(

√
k) per character and Õ(n) in total.
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