On β -Plurality Points in Spatial Voting Games

Boris Aronov 💿

Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA boris.aronov@nyu.edu

Mark de Berg 💿

Department of Computing Science, TU Eindhoven, 5600 MB Eindhoven, The Netherlands m.t.d.berg@tue.nl

Joachim Gudmundsson 💿

School of Computer Science, University of Sydney, Sydney, NSW 2006, Australia joachim.gudmundsson@sydney.edu.au

Michael Horton

Sportlogiq, Inc., Montreal, Quebec H2T 3B3, Canada michael.horton@sportlogiq.com

- Abstract

Let V be a set of n points in \mathbb{R}^d , called *voters*. A point $p \in \mathbb{R}^d$ is a *plurality point* for V when the following holds: for every $q \in \mathbb{R}^d$ the number of voters closer to p than to q is at least the number of voters closer to q than to p. Thus, in a vote where each $v \in V$ votes for the nearest proposal (and voters for which the proposals are at equal distance abstain), proposal p will not lose against any alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce the concept of β -plurality points, which are defined similarly to regular plurality points except that the distance of each voter to p (but not to q) is scaled by a factor β , for some constant $0 < \beta \leq 1$. We investigate the existence and computation of β -plurality points, and obtain the following results.

- Define $\beta_d^* \coloneqq \sup\{\beta : \text{any finite multiset } V \text{ in } \mathbb{R}^d \text{ admits a } \beta\text{-plurality point}\}$. We prove that $\beta_2^* = \sqrt{3}/2$, and that $1/\sqrt{d} \leq \beta_d^* \leq \sqrt{3}/2$ for all $d \ge 3$.
- Define $\beta(V) \coloneqq \sup\{\beta : V \text{ admits a } \beta\text{-plurality point}\}$. We present an algorithm that, given a voter set V in \mathbb{R}^d , computes an $(1-\varepsilon) \cdot \beta(V)$ plurality point in time $O(\frac{n^2}{\varepsilon^{3d-2}} \cdot \log \frac{n}{\varepsilon^{d-1}} \cdot \log^2 \frac{1}{\varepsilon})$.

2012 ACM Subject Classification Theory of computation \rightarrow Design and analysis of algorithms

Keywords and phrases Computational geometry, Spatial voting theory, Plurality point, Computational social choice

Digital Object Identifier 10.4230/LIPIcs.SoCG.2020.7

Related Version A full version of the paper is available at [1] https://arxiv.org/abs/2003.07513.

Funding Boris Aronov: Partially supported by NSF grant CCF-15-40656 and by grant 2014/170 from the US-Israel Binational Science Foundation.

Mark de Berg: Supported by the Netherlands' Organisation for Scientific Research (NWO) under project no. 024.002.003.

Joachim Gudmundsson: Supported under the Australian Research Council Discovery Projects funding scheme (project numbers DP150101134 and DP180102870).

Michael Horton: Part of the work performed on this paper was done while visiting NYU, supported by NSF grant CCF 12-18791.

Acknowledgements The authors would like to thank Sampson Wong for improving an earlier version of Lemma 2.6.

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

7:2 On β -Plurality Points in Spatial Voting Games

Figure 1 (i) The US presidential candidates 2016 modelled in the spatial voting model, according to The Political Compass (https://politicalcompass.org/uselection2016). Note that the points representing voters are not shown. (ii) The point set satisfies the generalized Plott symmetry conditions and therefore admits a plurality point.

1 Introduction

Background. Voting theory is concerned with mechanisms to combine preferences of individual voters into a collective decision. A desirable property of such a collective decision is that it is stable, in the sense that no alternative is preferred by more voters. In spatial voting games [6,10] this is formalized as follows; see Fig. 1(i) for an example in a political context. The space of all possible decisions is modeled as \mathbb{R}^d and every voter is represented by a point in \mathbb{R}^d , where the dimensions represent different aspects of the decision and the point representing a voter corresponds to the ideal decision for that voter. A voter v now prefers a proposed decision $p \in \mathbb{R}^d$ over some alternative proposal $q \in \mathbb{R}^d$ when v is closer to p than to q. Thus a point $p \in \mathbb{R}^d$ represents a stable decision for a given finite set V of voters if, for any alternative $q \in \mathbb{R}^d$, we have $|\{v \in V : |vp| < |vq|\}| \ge |\{v \in V : |vq| < |vp|\}|$. Such a point p is called a *plurality point*.¹

For d = 1, a plurality point always exists, since in \mathbb{R}^1 a median of V is a plurality point. This is not true in higher dimensions, however. Define a *median hyperplane* for a set V of voters to be a hyperplane h such that both open half-spaces defined by h contain fewer than |V|/2 voters. For $d \ge 2$ a plurality point in \mathbb{R}^d exists if and only if all median hyperplanes for V meet in a common point; see Fig. 1(ii). This condition is known as *generalized Plott symmetry* conditions [12,23]; see also the papers by Wu *et al.* [28] and de Berg *et al.* [5], who present algorithms to determine the existence of a plurality point for a given set of voters.

It is very unlikely that voters are distributed in such a way that all median hyperplanes have a common intersection. (Indeed, if this happens, then a slightest generic perturbation of a single voter destroys the existence of the plurality point.) When a plurality point does not exist, we may want to find a point that is close to being a plurality point. One way to formalize this is to consider the center of the *yolk* (or *plurality ball*) of V, where the yolk [14,17,21,22] is the smallest ball intersecting every median hyperplane of V. We introduce β -plurality points as an alternative way to relax the requirements for a plurality point, and study several combinatorial and algorithmic questions regarding β -plurality points.

¹ One can also require p to be strictly more popular than any alternative q. This is sometimes called a *strong* plurality point, in contrast to the *weak* plurality points that we consider.

 β -Plurality points: definition and main questions. Let V be a multiset² of n voters in \mathbb{R}^d in arbitrary, possibly coinciding, positions. In the traditional setting a proposed point $p \in \mathbb{R}^d$ wins a voter $v \in V$ against an alternative q if |pv| < |qv|. We relax this by fixing a parameter β with $0 < \beta \leq 1$ and letting p win v against q if $\beta \cdot |pv| < |qv|$. Thus we give an advantage to the initial proposal p by scaling distances to p by a factor $\beta \leq 1$. We now define

 $V[p \succ_{\beta} q] \coloneqq \{v \in V : \beta \cdot |pv| < |qv|\} \text{ and } V[p \prec_{\beta} q] \coloneqq \{v \in V : \beta \cdot |pv| > |qv|\}$

to be the multisets of voters won by p over q and lost by p against q, respectively. Finally, we say that a point $p \in \mathbb{R}^d$ is a β -plurality point for V when

 $|V[p \succ_{\beta} q]| \ge |V[p \prec_{\beta} q]|, \text{ for any point } q \in \mathbb{R}^d.$

Observe that β -plurality is *monotone* in the sense that if p is a β -plurality point then p is also a β' -plurality point for all $\beta' < \beta$.

The spatial voting model was popularised by Black [6] and Down [10] in the 1950s. Stokes [26] criticized its simplicity and was the first to highlight the importance of taking non-spatial aspects into consideration. The reasoning is that voters may evaluate a candidate not only on their policies – their position in the policy space – but also take their so-called valence into account: charisma, competence, or other desirable qualities in the public's mind [13]. A candidate can also increase her valence by a stronger party support [27] or campaign spending [18]. Several models have been proposed to bring the spatial model closer to a more realistic voting approach; see [15, 16, 24] as examples. A common model is the multiplicative model, introduced by Hollard and Rossignol [19], which is closely related to the concept of a β -plurality point. The multiplicative model augments the existing spatial utility function by scaling the candidate's valence by a multiplicative factor. Note that in the 2-player game considered in this paper the multiplicative model is the same as our β -plurality model. From a computational point of view very little is known about the multiplicative model. We are only aware of a result by Chung [7], who studied the problem of positioning a new candidate in an existing space of voters and candidates, so that the valence required to win at least a given number of voters is minimized.

One reason for introducing β -plurality was that a set V of voters in \mathbb{R}^d , for $d \ge 2$, generally does not admit a plurality point. This immediately raises the question: Is it true that, for β small enough, any set V admits a β -plurality point? If so, we want to know the largest β such that any voter set V admits a β -plurality point, that is, we wish to determine

 $\beta_d^* \coloneqq \sup\{\beta : \text{any finite multiset } V \text{ in } \mathbb{R}^d \text{ admits a } \beta \text{-plurality point}\}.$

Note that $\beta_1^* = 1$, since any set V in \mathbb{R}^1 admits a plurality point and 1-plurality is equivalent to the traditional notion of plurality.

After studying this combinatorial problem in Section 2, we turn our attention to the following algorithmic question: given a voter set V, find a point p that is a β -plurality point for the largest possible value β . In other words, if we define

 $\beta(V) \coloneqq \sup\{\beta : V \text{ admits a } \beta \text{-plurality point}\}\$

and

 $\beta(p, V) \coloneqq \sup\{\beta : p \text{ is a } \beta \text{-plurality point for } V\}$

then we want to find a point p such that $\beta(p, V) = \beta(V)$.

² Even though we allow V to be a multiset, we sometimes refer to it as a "set" to ease the reading. When the fact that V is a multiset requires special treatment, we explicitly address this.

Figure 2 (i) The set V = {v₁, v₂, v₃} of voters and the point p used in the proof of Lemma 2.2.
(ii) The ellipse E is tangent to the Voronoi cell V(v₃).

Outline. In Section 2 we prove that $\beta_d^* \leq \sqrt{3}/2$ for all $d \geq 2$. To this end we first show that β_d^* is non-increasing in d, and then we exhibit a voter set V in \mathbb{R}^2 such that $\beta(V) \leq \sqrt{3}/2$. We also show how to construct, for any given V in \mathbb{R}^2 , a $(\sqrt{3}/2)$ -plurality point, thus proving that $\beta_2^* = \sqrt{3}/2$. For $d \geq 3$ we show how to construct a $(1/\sqrt{d})$ -plurality point.

In Section 3 we study the problem of computing, for a given voter set V of n points in \mathbb{R}^d , a β -plurality point for the largest possible β . (Here we assume d to be a fixed constant.) While such a point can be found in polynomial time, the resulting running time is quite high. We therefore focus our attention on finding an approximately optimal point p, that is, a point p such that $\beta(p, V) \ge (1 - \varepsilon) \cdot \beta(V)$. We show that such a point can be computed in $O(\frac{n^2}{\varepsilon^{3d-2}} \cdot \log \frac{n}{\varepsilon^{d-1}} \cdot \log^2 \frac{1}{\varepsilon})$ time.

Notation. We denote the *open* ball of radius ρ centered at a point $q \in \mathbb{R}^d$ by $B(q, \rho)$ and, for a point $p \in \mathbb{R}^d$ and a voter v, we define $D_\beta(p, v) \coloneqq B(v, \beta \cdot |pv|)$. Observe that p wins vagainst a competitor q if and only if q is strictly outside $D_\beta(p, v)$, while q wins v if and only if q is strictly inside $D_\beta(p, v)$. Hence, $V[p \prec_\beta q] = \{v \in V : q \in D_\beta(p, v)\}$. We define $\mathcal{D}_\beta(p) \coloneqq \{D_\beta(p, v) : v \in V\}$ – here we assume V is clear from the context – and let $\mathcal{A}(\mathcal{D}_\beta(p))$ denote the arrangement induced by $\mathcal{D}_\beta(p)$. The competitor point q that wins the most voters against p will thus lie in the cell of $\mathcal{A}(\mathcal{D}_\beta(p))$ of the greatest depth or, more precisely, the cell contained in the maximum number of disks $D_\beta(p, v)$.

2 Bounds on β_d^*

In this section we will prove bounds on β_d^* , the supremum of all β such that any finite set $V \subset \mathbb{R}^d$ admits a β -plurality point. We start with an observation that allows us to apply bounds on β_d^* to those on $\beta_{d'}^*$ for d' > d. Let $\operatorname{conv}(V)$ denote the convex hull of V.

- ▶ Observation 2.1. Let V be a finite multiset of voters in \mathbb{R}^d .
 - (i) Suppose a point $p \in \mathbb{R}^d$ is not a β -plurality point for V. Then there is a point $q \in \operatorname{conv}(V)$ such that $|V[p \succ_\beta q]| < |V[p \prec_\beta q]|$.
- (ii) For any $p' \notin \operatorname{conv}(V)$, there is a point $p \in \operatorname{conv}(V)$ with $\beta(p, V) > \beta(p', V)$.
- (iii) For any d' > d we have $\beta_{d'}^* \leq \beta_d^*$.

The proof is available in the full version [1]. We can now prove an upper bound on β_d^* .

▶ Lemma 2.2. $\beta_d^* \leq \sqrt{3}/2$, for $d \geq 2$.

Proof. By Observation 2.1(iii), it suffices to prove the lemma for d = 2. To this end let $V = \{v_1, v_2, v_3\}$ consist of three voters that form an equilateral triangle Δ of side length 2 in \mathbb{R}^2 ; see Fig. 2(i).

Figure 3 The cone C_3^+ used in the proof of Lemma 2.3.

Let p denote the center of Δ . We will first argue that $\beta(p,V) = \sqrt{3}/2$. Note that $|pv_i| = 2/\sqrt{3}$ for all three voters v_i . Hence, for $\beta = \sqrt{3}/2$, the open balls $D_\beta(v_i, p)$ are pairwise disjoint and touching at the mid-points of the edges of Δ . Therefore any competitor q either wins one voter and loses the remaining two, or wins no voter and loses at least one. The former happens when q lies inside one of the three balls $D_\beta(v_i, p)$; the later happens when q does not lie inside any of the balls, because in that case q can be on the boundary of at most two of the balls. Thus, for $\beta = \sqrt{3}/2$, the point p always wins more voters than q does. On the other hand, for $\beta > \sqrt{3}/2$, any two balls $D_\beta(v_i, p)$, $D_\beta(v_j, p)$ intersect and so a point q located in such a pairwise intersection wins two voters and beats p. We conclude that $\beta(p, V) = \sqrt{3}/2$, as claimed.

The lemma now follows if we can show that $\beta(p', V) \leq \sqrt{3}/2$ for any $p' \neq p$. Let Vor(V) be the Voronoi diagram of V, and let $\mathcal{V}(v_i)$ be the closed Voronoi cell of v_i , as shown in Fig. 2(ii). Assume without loss of generality that p' lies in $\mathcal{V}(v_3)$. Let E be the ellipse with foci v_1 and v_2 that passes through p. Thus

$$E := \{ z \in \mathbb{R}^2 : |zv_1| + |zv_2| = 4/\sqrt{3} \}.$$

Note that E is tangent to $\mathcal{V}(v_3)$ at the point p. Hence, any point $p' \neq p$ in $\mathcal{V}(v_3)$ has $|p'v_1| + |p'v_2| > 4/\sqrt{3}$. This implies that for $\beta \geq \sqrt{3}/2$ we have $\beta \cdot |p'v_1| + \beta \cdot |p'v_2| > 2$, and so the disks $D_{\beta}(p', v_1)$ and $D_{\beta}(p', v_2)$ intersect. It follows that for $\beta \geq \sqrt{3}/2$ there is a competitor q that wins two voters against p', which implies $\beta(p', V) \leq \sqrt{3}/2$ and thus finishes the proof of the lemma.

We now prove lower bounds on β_d^* . We first prove that $\beta_d^* \ge 1/\sqrt{d}$ for any $d \ge 2$, and then we improve the lower bound to $\sqrt{3}/2$ for d = 2. The latter bound is tight by Lemma 2.2.

Let V be a finite multiset of n voters in \mathbb{R}^d . We call a hyperplane h balanced with respect to V, if both open half-spaces defined by h contain at most n/2 voters from V. Note the difference with median hyperplanes, which are required to have fewer than n/2 voters in both open half-spaces. Clearly, for any $1 \leq i \leq d$ there is a balanced hyperplane orthogonal to the x_i -axis, namely the hyperplane $x_i = m_i$, where m_i is a median in the multiset of all x_i -coordinates of the voters in V. (In fact, for any direction \vec{d} there is a balanced hyperplane orthogonal to \vec{d} .)

▶ Lemma 2.3. Let $d \ge 2$. For any finite multi-set V of voters in \mathbb{R}^d there exists a point $p \in \mathbb{R}^d$ such that $\beta(p, V) = 1/\sqrt{d}$. Moreover, such a point p can be computed in O(n) time.

Proof. Let $\mathcal{H} \coloneqq \{h_1, \ldots, h_d\}$ be a set of balanced hyperplanes with respect to V such that h_i is orthogonal to the x_i -axis, and assume without loss of generality that $h_i: x_i = 0$. We will prove that the point p located at the origin is a β -plurality point for V for any $\beta < 1/\sqrt{d}$, thus showing that $\beta(p, V) \ge 1/\sqrt{d}$.

7:6 On β -Plurality Points in Spatial Voting Games

Let $q = (q_1, \ldots, q_d)$ be any competitor of p. We can assume without loss of generality that $\max_{1 \leq i \leq d} |q_i| = q_d > 0$. Thus q lies in the closed cone C_d^+ defined as

$$C_d^+ \coloneqq \{ (x_1, \dots, x_d) \in \mathbb{R}^d : x_d \ge |x_j| \text{ for all } j \ne d \}.$$

Note that C_d^+ is bounded by portions of the 2(d-1) hyperplanes $x_d = \pm x_j$ with $j \neq d$; see Fig. 3.

Because $h_d: x_d = 0$ is a balanced hyperplane, the open halfspace $h_d^+: x_d > 0$ contains at most n/2 voters, which implies that the closed halfspace $cl(h_d^-): x_d \leq 0$ contains at least n/2 voters. Hence, it suffices to argue that for any $\beta < 1/\sqrt{d}$ the point p wins all the voters in $cl(h_d^-)$ against q. For this we need the following claim, proved in the full version [1].

 \triangleright Claim 2.4. For any voter $v \in cl(h_d^-)$ with $v \neq p$, we have that $sin(\angle qpv) \ge 1/\sqrt{d}$ with equality if and only if q lies on an edge of C_d^+ and v lies on the orthogonal projection of this edge onto h_d .

We can now use the Law of Sines and the claim above to derive that for any $\beta < 1/\sqrt{d}$ and any voter $v \in cl(h_d^-)$ with $v \neq p$ we have

$$\beta \cdot |pv| < \frac{1}{\sqrt{d}} \cdot |pv| = \frac{1}{\sqrt{d}} \cdot \frac{|qv| \cdot \sin(\angle pqv)}{\sin(\angle qpv)} \le |qv| \cdot \sin(\angle pqv) \le |qv|.$$

Hence, p wins every point in $cl(h_d^-)$. This proves the first part of the lemma since $cl(h_d^-)$ contains at least n/2 voters, as already remarked.

Computing the point p is trivial once we have the balanced hyperplanes h_i , which can be found in O(n) time by computing a median x_i -coordinate for each $1 \leq i \leq d$.

In \mathbb{R}^2 we can improve the above bound: for any voter set V in the plane we can find a point p such that $\beta(p, V) = \sqrt{3}/2$. By Lemma 2.2 this bound is tight. The improvement is based on Lemma 2.5 below. This lemma – in fact a stronger version, stating that any two opposite cones defined by the three concurrent lines contain the same number of points – has been proved for even n by Dumitrescu *et al.* [11]. Our proof of Lemma 2.5 is similar to their proof. We give it because we also need it for odd n, and because we will need an understanding of the proof to describe our algorithm for computing the concurrent triple in the lemma. Our algorithm will run in $O(n \log^2 n)$ time, a significant improvement over the $O(n^{4/3} \log^{1+\varepsilon} n)$ running time obtained (for the case of even n) by Dumitrescu *et al.* [11].

▶ Lemma 2.5. Given a multiset V of n voters in \mathbb{R}^2 , there exists a triple of concurrent balanced lines (ℓ_1, ℓ_2, ℓ_3) such that the smaller angle between any two of them is $\frac{\pi}{3}$.

Proof. Define the *orientation* of a line to be the counterclockwise angle it makes with the positive y-axis. Recall that for any given orientation θ there exists at least one balanced line with orientation θ . When n is odd this line is unique: it passes through the median of the voter set V when V is projected orthogonally onto a line orthogonal to the lines of orientation θ . In the rest of the proof it will be convenient to have a unique balanced line for any orientation θ . To achieve this when n is even, we simply delete an arbitrary voter from V. (If there are other voters at the same location, these voters are not deleted.) This is allowed because when |V| is even, a balanced line for $V \setminus \{v\}$ is also a balanced line for V.

Now let μ be the function that maps an angle value θ to the unique balanced line $\mu(\theta)$; see Figure 4(i). Note that μ is continuous for $0 \leq \theta < \pi$. Let $\ell_1(\theta) := \mu(\theta)$, and $\ell_2(\theta) := \mu(\theta + \frac{\pi}{3})$, and $\ell_3(\theta) := \mu(\theta + \frac{2\pi}{3})$. For $i \neq j$, let $p_{ij}(\theta) := \ell_i(\theta) \cap \ell_j(\theta)$ be the intersection point

Figure 4 (i) The balanced line $\mu(\theta)$. (ii) If p_{23} is to the left of the directed line $\ell_1(0)$ then $p_{13}(0)$ is to the right of $\ell_2(0)$.

between $\ell_i(\theta)$ and $\ell_j(\theta)$. If $p_{23}(0) \in \ell_1(0)$ then the lines $\ell_1(0), \ell_2(0), \ell_3(0)$ are concurrent and we are done. Otherwise, consider the situation at $\theta = 0$ and imagine $\ell_1(0)$ and $\ell_2(0)$ to be directed in the positive y-direction, as in Fig. 4(ii). Clearly, if $p_{23}(0)$ is to the left of the directed line $\ell_1(0)$ then $p_{13}(0)$ is to the right of the directed line $\ell_2(0)$, and vice versa. Now increase θ from 0 to $\pi/3$, and note that $\ell_1(\pi/3) = \ell_2(0)$ and $p_{23}(\pi/3) = p_{13}(0)$. Hence, $p_{23}(\theta)$ lies to a different side of the directed line $\ell_1(\theta)$ for $\theta = 0$ than it does for $\theta = \pi/3$. Since both $\ell_1(\theta)$ and $p_{23}(\theta)$ move continuously, this implies that for some $\overline{\theta} \in (0, \pi/3)$ the point $p_{23}(\overline{\theta})$ crosses the line $\ell_1(\overline{\theta})$, and so the lines $\ell_1(\overline{\theta}), \ell_2(\overline{\theta}), \ell_3(\overline{\theta})$ are concurrent.

Next we show how to efficiently compute a triple as in Lemma 2.5. We follow the definitions and notation from the proof of Lemma 2.5. We will assume that n is odd, which, as argued, is without loss of generality.

To find a concurrent triple of balanced lines, we first compute the lines $\ell_1(0), \ell_2(0), \ell_3(0)$ in O(n) time. If they are concurrent, we are done. Otherwise, there is a $\overline{\theta} \in (0, \pi/3)$ such that $\ell_1(\overline{\theta}), \ell_2(\overline{\theta}), \ell_3(\overline{\theta})$ are concurrent. To find this value $\overline{\theta}$, we dualize the voter set V, using the standard duality transform that maps a point (a, b) to the line y = ax + b, and vice versa. Let v^* denote the dual line of the voter v, and let $V^* := \{v^* : v \in V\}$. Note that, for $\theta \in (0, \pi/3)$, the lines $\ell_1(\theta), \ell_2(\theta), \ell_3(\theta)$ are all non-vertical, therefore their duals $\ell_i^*(\theta)$ are well-defined.

Consider the arrangement $\mathcal{A}(V^*)$ defined by the duals of the voters. For $\theta \neq 0$, define $\operatorname{slope}(\theta)$ to be the slope of the lines with orientation θ . Then $\mu^*(\theta)$, the dual of $\mu(\theta)$, is the intersection point of the vertical line $x = \operatorname{slope}(\theta)$ with L_{med} , the median level in $\mathcal{A}(V^*)$. (The median level of $\mathcal{A}(V^*)$ is the set of points q such that there are fewer than n/2 lines below q and fewer than n/2 lines above q; this is well defined since we assume n is odd. The median level forms an x-monotone polygonal curve along edges of $\mathcal{A}(V^*)$.)

Now consider the duals $\ell_1^*(\theta), \ell_2^*(\theta), \ell_3^*(\theta)$, which all lie on L_{med} . For $\theta \in (0, \pi/3)$, the *x*-coordinate of $\ell_1^*(\theta)$ lies in $(-\infty, -1/\sqrt{3})$, the *x*-coordinate of $\ell_2^*(\theta)$ lies in $(-1/\sqrt{3}, 1/\sqrt{3})$, and the *x*-coordinate of $\ell_3^*(\theta)$ lies in $(1/\sqrt{3}, \infty)$. We split L_{med} into three pieces corresponding to these ranges of *x*-coordinate. Let E_1, E_2 , and E_3 denote the sets of edges forming the parts of L_{med} in the first, second, and third range, respectively, where edges crossing the vertical lines $x = -1/\sqrt{3}$ and $x = 1/\sqrt{3}$ are split; see Fig. 5.

Figure 5 The edge sets E_1 , E_2 , and E_3 of L_{med} , the median level in $\mathcal{A}(V^*)$.

7:8 On β -Plurality Points in Spatial Voting Games

Recall that we want to find a value $\overline{\theta} \in (0, \pi/3)$ such that $\ell_1(\overline{\theta}), \ell_2(\overline{\theta}), \ell_3(\overline{\theta})$ are concurrent (or, in other words, such that the points $\ell_1^*(\overline{\theta}), \ell_2^*(\overline{\theta}), \ell_3^*(\overline{\theta})$ are collinear). Also recall that, for any $\theta \in (0, \pi/3)$, the point $\ell_i^*(\theta)$ lies on an edge in E_i , for i = 1, 2, 3. One way to find $\overline{\theta}$ would be to explicitly compute L_{med} , and then increase θ (starting at $\theta = 0$) and see how the points $\ell_i^*(\theta)$ move over E_i , until we reach a value where $\ell_1(\overline{\theta}), \ell_2(\overline{\theta}), \ell_3(\overline{\theta})$ are concurrent. Since the best known bounds on the complexity of the median level is $O(n^{4/3})$ [9] we will proceed differently, as follows.

- 1. Find an interval $(\theta_1, \theta'_1) \subseteq (0, \pi/3)$ for which there is a $\overline{\theta}$ with the desired properties and such that $\ell_1^*(\theta)$ lies on the same edge of E_1 for all $\theta \in (\theta_1, \theta'_1)$.
- 2. Find an interval $(\theta_2, \theta'_2) \subseteq (\theta_1, \theta'_1)$ for which there is a $\overline{\theta}$ with the desired properties and such that $\ell_2^*(\theta)$ lies on the same edge of E_2 for all $\theta \in (\theta_2, \theta'_2)$.
- **3.** Find an interval $(\theta_3, \theta'_3) \subseteq (\theta_2, \theta'_2)$ for which there is a $\overline{\theta}$ with the desired properties and such that $\ell_3^*(\theta)$ lies on the same edge of E_3 for all $\theta \in (\theta_3, \theta'_3)$.
- 4. After Step 3 we have an interval $(\theta_3, \theta'_3) \subseteq (0, \pi/3)$ for which there is a $\overline{\theta}$ with the desired properties and such that $\ell_1^*(\overline{\theta}), \ell_2^*(\overline{\theta})$, and $\ell_3^*(\overline{\theta})$ each lie on a fixed edge of L_{med} . Let v_1 , v_2 , and v_3 denote the voters whose dual lines contain these three edges. We know that for any $\theta \in (\theta_3, \theta'_3)$, the line through v_1 with orientation θ is a balanced line. Similarly, for any $\theta \in (\theta_3, \theta'_3)$ the line through v_2 with orientation $\theta + \pi/3$ is a balanced line, and the line through v_3 with orientation $\theta + 2\pi/3$ is a balanced line. Finding a $\overline{\theta} \in (\theta_3, \theta'_3)$ with the desired properties thus only requires finding a $\overline{\theta} \in (\theta_3, \theta'_3)$ for which these three lines are concurrent. Such a $\overline{\theta}$ is guaranteed to exist by construction, and finding it is a constant-time operation.

It remains to explain how to perform Steps 1–3. Below we describe this for Step 1; the other steps can be implemented in a similar way.

To implement Step 1 we perform a binary search over the x-coordinates of the vertices of $\mathcal{A}(V^*)$ in the slab $(-\infty, -1/\sqrt{3}) \times (-\infty, \infty)$, as follows. In a generic step of this binary search we have an interval $(\theta_{\min}, \theta_{\max})$ such that $p_{23}(\theta)$ lies to a different side of the directed line $\ell_1(\theta)$ for $\theta = \theta_{\min}$ than for $\theta = \theta_{\max}$. (Recall that this implies that there is a $\overline{\theta} \in (\theta_{\min}, \theta_{\max})$ with the desired property.) This interval corresponds to the slab $(\operatorname{slope}(\theta_{\min}), \operatorname{slope}(\theta_{\max})) \times (-\infty, \infty)$ in the dual plane. Let X be the set of x-coordinates of the vertices of $\mathcal{A}(V^*)$ inside this slab. We can find the median x_{med} of X in $O(n \log n)$ time using the algorithm by Cole *et al.* [8]. We then compute the three balanced lines $\ell_i(\theta_{\mathrm{med}})$, where θ_{med} is such that $\operatorname{slope}(\theta_{\mathrm{med}}) = x_{\mathrm{med}}$. If these three lines are concurrent we are immediately done, and we can stop. Otherwise we determine where $p_{23}(\theta_{\mathrm{med}})$ lies relative to $\ell_1(\theta_{\mathrm{med}})$, and based on that decide whether to recurse on $(\theta_{\min}, \theta_{\mathrm{med}})$ or on $(\theta_{\mathrm{med}}, \theta_{\mathrm{max}})$. We continue until the slab $(\operatorname{slope}(\theta_{\min}), \operatorname{slope}(\theta_{\mathrm{max}})) \times (-\infty, \infty)$ contains no more vertices of $\mathcal{A}(V^*)$. We then finish Step 1 by setting $(\theta_1, \theta'_1) \coloneqq (\theta_{\min}, \theta_{\max})$.

Each iteration of the binary search takes $O(n \log n)$ time, so Step 1 takes $O(n \log^2 n)$ time. Steps 2 and 3 can be done in a similar fashion, so we can find a concurrent triple of balanced lines as in Lemma 2.5 in $O(n \log^2 n)$ time. In [1] we show that the common intersection of these three lines is a $(\sqrt{3}/2)$ -plurality point, thus proving the following lemma.

▶ Lemma 2.6. For any finite multi-set V of voters in \mathbb{R}^2 there exists a point $p \in \mathbb{R}^2$ such that $\beta(p, V) \ge \sqrt{3}/2$. Moreover, such a point p can be computed in $O(n \log^2 n)$ time.

The following theorem summarizes the results of this section.

▶ Theorem 2.7.

- (i) We have β₂^{*} = √3/2. Moreover, for any multiset V of n voters in ℝ² we can compute a point p such that β(p, V) = √3/2 in O(n log² n) time.
- (ii) For $d \ge 2$, we have $1/\sqrt{d} \le \beta_d^* \le \sqrt{3}/2$. Moreover, for any multiset V of n voters in \mathbb{R}^d we can compute a point p such that $\beta(p, V) = 1/\sqrt{d}$ in O(n) time.

3 Finding a point that maximizes $\beta(p, V)$

We know from Theorem 2.7 that, for any multiset V of n voters in \mathbb{R}^d , we can compute a point p with $\beta(p, V) \geq 1/\sqrt{d}$ (even with $\beta(p, V) \geq \sqrt{3}/2$, in the plane). However, a given voter multiset V may admit a β -plurality point for larger values of β – possibly even for $\beta = 1$. In this section we study the problem of computing a point p that maximizes $\beta(p, V)$, that is, a point p with $\beta(p, V) = \beta(V)$.

3.1 An exact algorithm

Below we sketch an exact algorithm to compute $\beta(V)$ together with a point p such that $\beta(p, V) = \beta(V)$. Our goal is to show that, for constant d, this can be done in polynomial time. We do not make a special effort to optimize the exponent in the running time; it may be possible to speed up the algorithm, but it seems clear that it will remain impractical, because of the asymptotic running time, and also because of algebraic issues.

Note that we can efficiently check whether a true plurality point exists (i.e., $\beta = 1$ can be achieved) in time $O(n \log n)$ by an algorithm of De Berg *et al.* [5], and if so, identify this point. Therefore, hereafter $\beta = 1$ is used as a sentinel value, and our algorithm proceeds on the assumption that $\beta(p, V) < 1$ for any point p.

For a voter $v \in V$, a candidate $p \in \mathbb{R}^d$, and an alternative candidate $q \in \mathbb{R}^d$, define $f_v(p,q) := \min(|qv|/|pv|, 1)$ when $p \neq v$, and define $f_v(p,q) := 1$ otherwise. Observe that for $f_v(p,q) < 1$ we have

 $= q \text{ wins voter } v \text{ over } p \text{ if and only if } \beta > f_v(p,q),$

q and p have a tie over voter v if and only if $\beta = f_v(p,q)$, and

p wins voter v over q if and only if $\beta < f_v(p,q)$.

For $f_v(p,q) = 1$ this is not quite true: when p = q = v we always have a tie, and when |pv| < |qv| then p wins v even when $\beta = f_v(p,q) = 1$. When p = q there is a tie for all voters, so the final conclusion (namely that $|V[p \succ_\beta q]| \ge |V[p \prec_\beta q]|)$ is still correct. The fact that we incorrectly conclude that there is a tie when |pv| < |qv| and $\beta = f_v(p,q) = 1$ does not present a problem either, since we assume $\beta(p, V) < 1$. Hence, we can pretend that checking if $\beta > f_v(p,q)$, or $\beta = f_v(p,q)$, or $\beta < f_v(p,q)$ tells us whether q wins v, or there's a tie, or p wins v, respectively.

Hereafter we identify $f_v : \mathbb{R}^{2d} \to \mathbb{R}$ with its graph $\{(p, q, f_v(p, q))\} \subset \mathbb{R}^{2d+1}$, which is a d-dimensional surface. Let f_v^+ be the set of points lying above this graph, and f_v^- be the set of points lying below it. Thus f_v^+ is precisely the set of combinations of (p, q, β) where q wins v over p, while f_v is the set where p ties with q, and f_v^- is the set where q loses v to p. Consider the arrangement $\mathcal{A} := \mathcal{A}(F)$ defined by the set of surfaces $F := \{f_v : v \in V\}$. Each face C in \mathcal{A} is a maximal connected set of points with the property that all points of C are contained in, lie below, or lie above, the same subset of surfaces of F. (Note that we consider faces of all dimensions, not just full-dimensional cells.) Thus for all $(p, q, \beta) \in C$, exactly one of the following holds: $|V[p \succ_\beta q]| < |V[p \prec_\beta q]|$, or $|V[p \succ_\beta q]| = |V[p \prec_\beta q]|$, or $|V[p \succ_\beta q]| > |V[p \prec_\beta q]|$. Let L be the union of all faces C of $\mathcal{A}(F)$ such that $|V[p \succ_\beta q]| < |V[p \prec_\beta q]|$, that is, such that p loses against q for all (p, q, β) in C. We can construct \mathcal{A} and L in time $O(n^{2d+1})$ using standard machinery, as \mathcal{A} is an arrangement of degree-4 semi-algebraic surfaces of constant description complexity [3, 4]. We are interested in the set

 $W \coloneqq \{(p,\beta) : |V[p \succ_{\beta} q]| \ge |V[p \prec_{\beta} q]| \text{ for any competitor } q \} \subset \mathbb{R}^{d+1}.$

What is the relationship between W and L? A point (p,β) is in W precisely when, for every choice of $q \in \mathbb{R}^d$, p wins at least as many voters as q (for the given β). In other words,

 $W = \{(p, \beta) \mid \text{there is no } q \text{ such that } (p, q, \beta) \in L\}.$

That is, W is the complement of the projection of L to the space \mathbb{R}^{d+1} representing the pairs (p, β) . The most straightforward way to implement the projection would involve constructing semi-algebraic formulas describing individual faces and invoking quantifier elimination on the resulting formulas [3]. Below we outline a more obviously polynomial-time alternative.

Construct the vertical decomposition $vd(\mathcal{A})$ of \mathcal{A} , which is a refinement of \mathcal{A} into pieces ("subfaces" τ), each bounded by at most 2(2d + 1) surfaces of constant degree and therefore of constant complexity; see [25]. A vertical decomposition is specified by ordering the coordinates – we put the coordinates corresponding to q last. Since $vd(\mathcal{A})$ is a refinement of \mathcal{A} , the set L is the union of subfaces τ of $vd(\mathcal{A})$ fully contained in L. Since \mathcal{A} is an arrangement of n well-behaved surfaces in $2d + 1 \ge 5$ dimensions, the complexity of $vd(\mathcal{A})$ is $O(n^{2(2d+1)-4+\varepsilon}) = O(n^{4d-2+\varepsilon})$, for any $\varepsilon > 0$ [20]. In particular, L comprises $\ell := O(n^{4d-2+\varepsilon})$ subfaces.

Since each $\tau \subset L$ is a subface of the vertical decomposition $vd(\mathcal{A})$ in which the last d coordinates correspond to q, the projection τ' of τ to \mathbb{R}^{d+1} is easy obtain (see [25]) in constant time; indeed it can be obtained by discarding the constraints on these last d coordinates from the description of τ . Thus, in time $O(\ell)$ we can construct the family of all the projections of the ℓ subfaces of L, each a constant-complexity semi-algebraic object in \mathbb{R}^{d+1} . We now construct the arrangement \mathcal{A}' of the resulting collection and its vertical decomposition $vd(\mathcal{A}')$. The complexity of $vd(\mathcal{A}')$ is either $O(\ell^{d+1+\varepsilon})$ or $O(\ell^{2(d+1)-4+\varepsilon}) = O(\ell^{2d-2+\varepsilon})$, depending on whether $d+1 \leq 4$ or not, respectively [20]. Each subface in $vd(\mathcal{A}')$ is either fully contained in the projection of L or fully disjoint from it. Collecting all of the latter subfaces, we obtain a representation of W as a union of at most $O(\ell^{O(d)}) = O(n^{O(d^2)})$ constant-complexity semi-algebraic objects.

Now if $(p, \beta) \in W$ is the point with the highest value of β , then $\beta(V) = \beta(p, V) = \beta$. It can be found by enumerating all the subfaces of $vd(\mathcal{A}')$ contained in the closure of W – we take the closure because $V(p, \beta)$ is defined as a supremum – and identifying their topmost point or points. Since each face has constant complexity, this can be done in O(1) time per subface.³ This completes our description of an $O(n^{O(d^2)})$ -time algorithm to compute the best β that can be achieved for a given set of voters V, and the candidate p (or the set of candidates) that achieve this value.

3.2 An approximation algorithm

Since computing $\beta(V)$ exactly appears expensive, we now turn our attention to approximation algorithms. In particular, given a voter set V in \mathbb{R}^d and an $\varepsilon \in (0, 1/2]$, we wish to compute a point \bar{p} such that $\beta(\bar{p}, V) \ge (1 - \varepsilon) \cdot \beta(V)$.

Our approximation algorithm works in two steps. In the first step, we compute a set P of $O(n/\varepsilon^{2d-1}\log(1/\varepsilon))$ candidates. P may not contain the true optimal point p, but we will ensure that P contains a point \bar{p} such that $\beta(\bar{p}, V) \ge (1 - \varepsilon/2) \cdot \beta(V)$. In the second step, we approximate $\beta(p', V)$ for each $p' \in P$, to find an approximately best candidate.

³ Once again, the projection to the β coordinate is particularly easy to obtain if, when constructing vd(A'), we set the coordinate corresponding to β first.

Figure 6 (i) The closed spherical shell $A_i(C)$ defined by the two balls of radii $\varepsilon \cdot d_C$ and d_C/ε around v_i . (ii) The exponential grid $G_i(C)$. The grid is defined by a collection of spheres centered at v_i , plus extreme rays of the cones with apex at v_i . The spheres have radii $(1 + \varepsilon/4)^i \cdot \varepsilon \cdot d_C$ for $0 \leq i \leq \log_{(1+\varepsilon/4)}(1/\varepsilon^2) = O((1/\varepsilon)\log(1/\varepsilon))$, and the interior angle of a cone is $\varepsilon/2\sqrt{d}$.

Constructing the candidate set P. To construct the candidate set P, we will generate, for each voter $v_i \in V$, a set P_i of $O(1/\varepsilon^{2d-1}\log(1/\varepsilon))$ candidate points. Our final set P of candidates will be the union of the sets P_1, \ldots, P_n . Next we describe how to construct P_i .

Partition \mathbb{R}^d into a set \mathcal{C} of $O(1/\varepsilon^{d-1})$ simplicial cones with apex at v_i and opening angle $\varepsilon/(2\sqrt{d})$, so that for every pair of points u and u' in the same cone we have $\angle uv_i u' \leq \varepsilon/(2\sqrt{d})$. We assume for simplicity (and can easily guarantee) that no voter in V lies on the boundary of any of the cones, except for v_i itself and any voters coinciding with v_i . Let $\mathcal{C}(v_i)$ denote the set of all cones in \mathcal{C} whose interior contains at least one voter. For each cone $C \in \mathcal{C}(v_i)$ we generate a candidate set $G_i(C)$ as explained next, and then we set $P_i := \bigcup_{C \in \mathcal{C}(v_i)} G_i(C) \cup \{v_i\}$.

Let d_C be the distance from v_i to the nearest other voter (not coinciding with v_i) in C. Let $A_i(C)$ be the closed spherical shell defined by the two spheres of radii $\varepsilon \cdot d_C$ and d_C/ε around v_i , as shown in Fig. 6(i). The open ball of radius $\varepsilon \cdot d_C$ is denoted by $A_i^{\text{in}}(C)$, and the complement of the closed ball of radius d_C/ε is denoted by $A_i^{\text{out}}(C)$. Let $G_i(C)$ be the vertices in an exponential grid defined by a collection of spheres centered at v_i , and the extreme rays of the cones in C; see Fig. 6(ii). The spheres have radii $(1 + \varepsilon/4)^i \cdot \varepsilon \cdot d_C$, for $0 \leq i \leq \log_{(1+\varepsilon/4)}(1/\varepsilon^2) = O((1/\varepsilon)\log(1/\varepsilon))$. Observe that $G_i(C)$ contains not only points in C, but in the entire spherical shell $A_i(C)$. The set $G_i(C)$ consists of $O(1/\varepsilon^d \log(1/\varepsilon))$ points, and it has the following property:

Let p be any point in the spherical shell $A_i(C)$, and let p' be a corner of the grid cell containing p and nearest to p. Then $|p'p| \leq \varepsilon \cdot |pv_i|$. (*)

To prove the property, let q be the point on pv_i such that $|qv_i| = |p'v_i|$. From the construction of the exponential grid we have $|pq| \leq \frac{\varepsilon}{4} \cdot |pv_i|$. Since p' and q lie in the same cone $\angle p'v_iq \leq \frac{\varepsilon}{2\sqrt{d}}$ and, consequently, $|p'q| \leq \frac{\varepsilon}{2} \cdot |qv_i| \leq (1 + \frac{\varepsilon}{4}) \cdot \frac{\varepsilon}{2} \cdot |pv_i|$. The property is now immediate since $|pp'| \leq |pq| + |qp'| < \varepsilon \cdot |pv_i|$.

As mentioned above, $P_i := \bigcup_{C \in \mathcal{C}(v_i)} G_i(C) \cup \{v_i\}$, and the final candidate set P is defined as $P := \bigcup_{v_i \in V} P_i$. Computing the sets P_i is easy: for each of the $O(1/\varepsilon^{d-1})$ cones $C \in \mathcal{C}(v_i)$, determine the nearest neighbor of v_i in C in O(n) time by brute force, and then generate $G_i(C)$ in $O((1/\varepsilon^{(d-1)}) \log(1/\varepsilon))$ time. (It is not hard to speed up the nearest-neighbor computation using appropriate data structures, but this will not improve the final running time in Theorem 3.4.) We obtain the following lemma.

7:12 On β -Plurality Points in Spatial Voting Games

Figure 7 Illustration for Case III.

▶ Lemma 3.1. The candidate set P has size $O(n/\varepsilon^{2d-1}\log(1/\varepsilon))$ and can be constructed in $O(n^2/\varepsilon^{d-1} + n/\varepsilon^{2d-1}\log(1/\varepsilon))$ time.

The next lemma is crucial to show that P is a good candidate set.

▶ Lemma 3.2. For any point $p \in \mathbb{R}^d$, there exists a point $p' \in P$ with the following property: for any voter $v_j \in V$, we have that $|p'v_j| \leq (1+2\varepsilon) \cdot |pv_j|$.

Proof. Let v_i be a voter nearest to p. We will argue that the set P_i contains a point p' with the desired property. We distinguish three cases.

Case I: There is a cone $C \in \mathcal{C}(v_i)$ such that p lies in the spherical shell $A_i(C)$. In this case we pick p' to be a point of $G_i(C)$ nearest to p, that is, p' is a corner nearest to p of the grid cell containing p. By property (*) we have

$$|p'v_j| \leq |p'p| + |pv_j| \leq \varepsilon \cdot |pv_i| + |pv_j| \leq (1+\varepsilon) \cdot |pv_j|$$

where the last inequality follows from the fact that v_i is a voter nearest to p.

Case II: Point p lies in $A_i^{\text{in}}(C)$ for all $C \in \mathcal{C}(v_i)$. In this case we pick $p' \coloneqq v_i$. Clearly $|p'v_j| = 0 \leq (1 + \varepsilon) \cdot |pv_j|$ for j = i. For $j \neq i$, we argue as follows. Let $C \in \mathcal{C}(v_i)$ be the cone containing v_j . Since we are in Case II we know that $p \in A_i^{\text{in}}(C)$, and so

$$|p'v_j| \leqslant |p'p| + |pv_j| \leqslant \varepsilon d_C + |pv_j| \leqslant \varepsilon |p'v_j| + |pv_j|.$$

$$\tag{1}$$

Moreover, we have

$$|pv_j| \ge |p'v_j| - |pp'| \ge |p'v_j| - \varepsilon d_C \ge |p'v_j|/2, \tag{2}$$

where the last step uses that $\varepsilon \leq 1/2$ and $d_C \leq |p'v_j|$. Combining (1) and (2), we obtain $|p'v_j| \leq (1+2\varepsilon) \cdot |pv_j|$.

Case III: Cases I and II do not apply. In this case there is at least one cone C such that $p \in A_i^{\text{out}}(C)$. Of all such cones, let C^* be the one whose associated distance d_{C^*} is maximized. Let p'' be the point on the segment pv_i at distance d_C/ε from v_i . Without loss of generality, we will assume that p and v_i only differ in the x_d coordinate; see Fig. 7(i).

We will prove that the point p' of $G_i(C^*)$ nearest to p'' (refer to Fig. 7(i)) has the desired property. Consider a voter v_j . We distinguish three cases.

When i = j, then we have

$$|p'v_i| \leq |p'p''| + |p''v_i| \leq (1+\varepsilon)|p''v_i| \leq (1+\varepsilon)|pv_i|,$$

where the second inequality follows from (*).

- When v_j lies in a cone C such that $p \in A_i^{\text{in}}(C)$, then we can use the same argument as in Case II to show that $|p'v_j| \leq (1+2\varepsilon) \cdot |pv_j|$.
- In the remaining case v_j lies in a cone C such that $p \in A_i^{\text{out}}(C)$. Let v_k be a voter in C nearest to v_i . Since $|v_i v_k| = d_C$, $|pv_i| \ge d_C/\varepsilon$, and $|pv_k| \ge |pv_i|$, we can deduce that $\angle pv_i v_k \ge \pi/2 \varepsilon/2$, as illustrated in Fig. 7(ii). Furthermore, since v_k and v_j belong to the same cone C the angle $\angle v_k v_i v_j$ is bounded by $\varepsilon/2\sqrt{d} \le \varepsilon/2$ according to the construction. Putting the two angle bounds together we conclude that $\angle pv_i v_j \ge \frac{\pi}{2} \varepsilon$. Now consider the triangle defined by p, v_i and v_j . From the Law of Sines we obtain

$$\frac{|v_i v_j|}{\sin \angle v_i p v_j} = \frac{|pv_j|}{\sin \angle p v_i v_j}, \quad \text{or} \quad |v_i v_j| = |pv_j| \cdot \frac{\sin \angle v_i p v_j}{\sin \angle p v_i v_j} \leqslant \frac{|pv_j|}{\cos \varepsilon} \leqslant (1+\varepsilon) \cdot |pv_j|,$$

for $\varepsilon < 1/2$. Since p'' lies on the line between p and v_i we have:

 $|p''v_j| \leq \max\{|pv_j|, |v_iv_j|\} \leq (1+\varepsilon) \cdot |pv_j|.$

Finally we get the claimed bound by noting that $|p'p''| \leq \varepsilon \cdot |p'v_i|$ (from (*)),

$$|p'v_j| \leqslant |p'p''| + |p''v_j| \leqslant \varepsilon \cdot |p'v_i| + (1+\varepsilon) \cdot |pv_j| \leqslant (1+2\varepsilon) \cdot |pv_j|.$$

An approximate decision algorithm. Given a point p, a positive real value ε and the voter multiset V, we say that an algorithm ALG is an ε -approximate decision algorithm if

- Alg answers yes if p is a β -plurality point, and
- ALG answers NO if p is not a $(1 \varepsilon)\beta$ -plurality point.

In the remaining cases, where $(1 - \varepsilon)\beta < \beta(p, V) < \beta$, ALG may answer YES or NO.

Next we propose an ε -approximate decision algorithm ALG. The algorithm will use the so-called Balanced Box-Decomposition (BBD) tree introduced by Arya and Mount [2]. BBD trees are hierarchical space-decomposition trees such that each node μ represents a region in \mathbb{R}^d , denoted by region(μ), which is a *d*-dimensional axis-aligned box or the difference of two such boxes. A BBD tree for a set P of n points in \mathbb{R}^d can be built in $O(n \log n)$ time using O(n) space. It supports $(1 + \varepsilon)$ -approximate range counting queries with convex query ranges in $O(\log n + \varepsilon^{1-d})$ time [2]. In our algorithm all query ranges will be balls, hence a $(1 + \varepsilon)$ -approximate range-counting query for a *d*-dimensional ball s(v, r) with center at v and radius r returns an integer I such that $|P \cap s(v, r)| \leq I \leq |P \cap s(v, (1 + \varepsilon)r)|$.

Our ε -approximate decision algorithm ALG works as follows.

- 1. Construct a set Q of $O(n/\varepsilon^{d-1})$ potential candidates competing against p, as follows. Let Q(v) be a set of $O(1/\varepsilon^{d-1})$ points distributed uniformly on the boundary of the ball $s(v, (1 - \varepsilon/2) \cdot \beta \cdot |pv|)$, such that the distance between any point on the boundary and its nearest neighbor in Q(v) is at most $\frac{\varepsilon}{4\sqrt{d}} \cdot |pv| \leq \frac{\varepsilon}{4} \cdot \beta \cdot |pv|$. In the last step we use the fact that $\beta \geq 1/\sqrt{d}$, according to Lemma 2.3. Set $Q \coloneqq Q(v_1) \cup \cdots \cup Q(v_n)$.
- 2. Build a BBD tree \mathcal{T} on Q. Add a counter $c(\mu)$ to each node μ in \mathcal{T} , initialized to zero.
- 3. For each voter $v \in V$ perform a $(1 + \varepsilon/4)$ -approximate range-counting query with $s(v, (1 \varepsilon/4) \cdot \beta \cdot |pv|)$ in \mathcal{T} . We modify the search in \mathcal{T} slightly as follows. If an internal node $\mu \in T$ is visited and expanded during the search, then for every non-expanded child μ' of μ with region (μ') entirely contained in $s(v, (1 + \varepsilon/4)(1 \varepsilon/4) \cdot \beta \cdot |pv|)) \subset s(v, \beta \cdot |pv|)$ we increment the counter $c(\mu')$. Similarly, if a leaf is visited then the counter is incremented if the point stored in the leaf lies within $s(v, (1 \varepsilon/4) \cdot \beta \cdot |pv|)$.

- 4. For a leaf μ in \mathcal{T} , let $M(\mu)$ be the set of nodes in \mathcal{T} on the path from the root to μ , and let $C(\mu) = \sum_{\mu' \in M(\mu)} c(\mu')$. Compute $C(\mu)$ for all leaves μ in \mathcal{T} by a pre-order traversal of \mathcal{T} , and set $C := \max_{\mu} C(\mu)$.
- **5.** If $C \leq n/2$, then return YES, otherwise NO.

The proof of the following lemma can be found in the full version of the paper [1].

▶ Lemma 3.3. Algorithm ALG ε -approximately decides if p is a β -plurality point in time $O(\frac{n}{\varepsilon^{d-1}} \log \frac{n}{\varepsilon^{d-1}}).$

The algorithm. Now we have the tools required to approximate $\beta(V)$. First, generate the set P of $O(\frac{n}{\varepsilon^{2d-1}} \log \frac{1}{\varepsilon})$ candidate points. For each candidate point $p \in P$, perform a binary search for an approximate $\beta^*(p)$ in the interval $[1/\sqrt{d}, 1]$, until the remaining search interval has length at most $\varepsilon/2 \cdot 1/\sqrt{d}$. For each p and β^* , $(\varepsilon/2)$ -approximately decide if p is a β^* -plurality point in V. Return the largest β^* and the corresponding point p on which the algorithm says YES.

▶ **Theorem 3.4.** Given a multiset V of voters in \mathbb{R}^d , a $((1 - \varepsilon) \cdot \beta(V))$ -plurality point can be computed in $O(\frac{n^2}{\varepsilon^{3d-2}} \cdot \log \frac{n}{\varepsilon^{d-1}} \cdot \log^2 \frac{1}{\varepsilon})$.

4 Concluding Remarks

We proved that any finite set of voters in \mathbb{R}^d admits a β -plurality point for $\beta = 1/\sqrt{d}$ and that some sets require $\beta = \sqrt{3}/2$. For d = 2 we managed to close the gap by showing that $\beta_2^* = \sqrt{3}/2$. One of the main open problems is to close the gap for d > 2. We also presented an approximation algorithm that finds, for a given V, a $(1 - \varepsilon) \cdot \beta(V)$ -plurality point. The algorithm runs in $O^*(n^2/\varepsilon^{3d-2})$ time. Another open problem is whether a subquadratic approximation algorithm exists, and to prove lower bounds on the time to compute $\beta(V)$ or $\beta(p, V)$ exactly. Finally, it will be interesting to study β -plurality points in other metrics, for instance in the personalized L_1 -metric [5] for d > 2.

— References

- 1 Boris Aronov, Mark de Berg, Joachim Gudmundsson, and Michael Horton. On β -plurality points in spatial voting games, 2020. arXiv:2003.07513.
- 2 Sunil Arya and David M. Mount. Approximate range searching. Computational Geometry Theory & Applications, 17(3):135–152, 2000.
- 3 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. Algorithms in Real Algebraic Geometry (Algorithms and Computation in Mathematics). Springer-Verlag, Berlin, Heidelberg, 2006.
- 4 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. *Computational Geometry: Algorithms and Applications*. Springer-Verlag, 3rd edition, 2008.
- 5 Mark De Berg, Joachim Gudmundsson, and Mehran Mehr. Faster algorithms for computing plurality points. *ACM Transactions on Algorithms*, 14(3), 2018.
- 6 Duncan Black. On the rationale of group decision-making. Journal of Political Economy, 56(1):23–34, 1948.
- 7 Jonathan Chung. Optimally locating a new candidate in spatial and valence models of voting games, 2018. Honours thesis, University of Sydney.
- 8 Richard Cole, Jeffrey S. Salowe, William L. Steiger, and Endre Szemerédi. An optimal-time algorithm for slope selection. *SIAM Journal on Computing*, 18(4):792–810, 1989.
- 9 Tamal K. Dey. Improved bounds for planar k-sets and related problems. Discrete and Computational Geometry, 19(3):373–382, 1998.

- 10 Anthony Downs. An Economic Theory of Political Action in a Democracy. Journal of Political Economy, 65(2):135–135, 1957.
- 11 Adrian Dumitrescu, János Pach, and Géza Tóth. Drawing Hamiltonian cycles with no large angles. *The Electronic Journal of Combinatorics*, 19(2):P31, 2012.
- 12 James Enelow and Melvin Hinisch. On Plott's pairwise symmetry condition for majority rule equilibrium. *Public Choice*, 40(3):317–321, 1983.
- 13 Haldun Evrenk. Valence politics. In Roger D. Congleton, Bernard Grofman, Stefan Voigt, and Haldun Evrenk, editors, Oxford Handbook of Public Choice, chapter 13. Oxford University Press, 2019.
- 14 Scott Feld, Bernard Grofman, and Nicholas Miller. Centripetal forces in spatial voting: On the size of the yolk. *Public Choice*, 59:37–50, October 1988.
- 15 Noah Giansiracusa and Cameron Ricciardi. Computational geometry and the U.S. supreme court. *Math. Soc. Sci.*, 98:1–9, 2019.
- 16 Fabian Gouret, Guillaume Hollard, and Stéphane Rossignol. An empirical analysis of valence in electoral competition. Social Choice and Welfare, 37(2):309–340, 2011.
- 17 Joachim Gudmundsson and Sampson Wong. Computing the yolk in spatial voting games without computing median lines. In *The 33rd AAAI Conference on Artificial Intelligence*, pages 2012–2019. AAAI Press, 2019.
- 18 Helios Herrera, David K. Levine, and César Martinelli. Policy platforms, campaign spending and voter participation. *Journal of Public Economics*, 92(3):501–513, 2008.
- 19 Guillaume Hollard and Stéphane Rossignol. An alternative approach to valence advantage in spatial competition. *Journal of Public Economic Theory*, 10(3):441–454, 2008.
- 20 Vladlen Koltun. Almost tight upper bounds for vertical decompositions in four dimensions. Journal of the ACM, 51(5):699–730, 2004.
- 21 Richard D. McKelvey. Covering, dominance, and institution-free properties of social choice. American Journal of Political Science, 30(2):283–314, 1986.
- 22 Nicholas R. Miller. The spatial model of social choice and voting. In Jac C. Heckelman and Nicholas R. Miller, editors, *Handbook of Social Choice and Voting*, chapter 10, pages 163–181. Edward Elgar Publishing, 2015.
- 23 Charles R. Plott. A notion of equilibrium and its possibility under majority rule. The American Economic Review, 57(4):787–806, 1967.
- 24 David Sanders, Harold D. Clarke, Marianne C. Stewart, and Paul Whiteley. Downs, stokes and the dynamics of electoral choice. *British Journal of Political Science*, 41(2):287–314, 2011.
- 25 Micha Sharir and Pankaj K. Agarwal. Davenport-Schinzel sequences and their geometric applications. Cambridge University Press, 1995.
- 26 Donald E. Stokes. Spatial models of party competition. *American Political Science Review*, 57(2):368–377, 1963.
- 27 Alan E. Wiseman. A theory of partian support and entry deterrence in electoral competition. Journal of Theoretical Politics, 18(2):123–158, 2006.
- 28 Yen-Wei Wu, Wei-Yin Lin, Hung-Lung Wang, and Kun-Mao Chao. Computing plurality points and condorcet points in Euclidean space. In Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC), volume 8283 of Lecture Notes in Computer Science, pages 688–698. Springer, 2013.