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Abstract

Let V be a set of n points in Rd, called voters. A point p ∈ Rd is a plurality point for V when the
following holds: for every q ∈ Rd the number of voters closer to p than to q is at least the number of
voters closer to q than to p. Thus, in a vote where each v ∈ V votes for the nearest proposal (and
voters for which the proposals are at equal distance abstain), proposal p will not lose against any
alternative proposal q. For most voter sets a plurality point does not exist. We therefore introduce
the concept of β-plurality points, which are defined similarly to regular plurality points except that
the distance of each voter to p (but not to q) is scaled by a factor β, for some constant 0 < β 6 1.
We investigate the existence and computation of β-plurality points, and obtain the following results.

Define β∗d := sup{β : any finite multiset V in Rd admits a β-plurality point}. We prove that
β∗2 =

√
3/2, and that 1/

√
d 6 β∗d 6

√
3/2 for all d > 3.

Define β(V ) := sup{β : V admits a β-plurality point}. We present an algorithm that, given a
voter set V in Rd, computes an (1− ε) · β(V ) plurality point in time O( n2

ε3d−2 · log n
εd−1 · log2 1

ε
).
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7:2 On β-Plurality Points in Spatial Voting Games
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Figure 1 (i) The US presidential candidates 2016 modelled in the spatial voting model, according to
The Political Compass (https://politicalcompass.org/uselection2016). Note that the points
representing voters are not shown. (ii) The point set satisfies the generalized Plott symmetry
conditions and therefore admits a plurality point.

1 Introduction

Background. Voting theory is concerned with mechanisms to combine preferences of in-
dividual voters into a collective decision. A desirable property of such a collective decision
is that it is stable, in the sense that no alternative is preferred by more voters. In spatial
voting games [6,10] this is formalized as follows; see Fig. 1(i) for an example in a political
context. The space of all possible decisions is modeled as Rd and every voter is represented
by a point in Rd, where the dimensions represent different aspects of the decision and the
point representing a voter corresponds to the ideal decision for that voter. A voter v now
prefers a proposed decision p ∈ Rd over some alternative proposal q ∈ Rd when v is closer
to p than to q. Thus a point p ∈ Rd represents a stable decision for a given finite set V of
voters if, for any alternative q ∈ Rd, we have

∣∣{v ∈ V : |vp| < |vq|}
∣∣ > ∣∣{v ∈ V : |vq| < |vp|}

∣∣.
Such a point p is called a plurality point.1

For d = 1, a plurality point always exists, since in R1 a median of V is a plurality point.
This is not true in higher dimensions, however. Define a median hyperplane for a set V of
voters to be a hyperplane h such that both open half-spaces defined by h contain fewer than
|V |/2 voters. For d > 2 a plurality point in Rd exists if and only if all median hyperplanes
for V meet in a common point; see Fig. 1(ii). This condition is known as generalized Plott
symmetry conditions [12,23]; see also the papers by Wu et al. [28] and de Berg et al. [5], who
present algorithms to determine the existence of a plurality point for a given set of voters.

It is very unlikely that voters are distributed in such a way that all median hyperplanes
have a common intersection. (Indeed, if this happens, then a slightest generic perturbation
of a single voter destroys the existence of the plurality point.) When a plurality point
does not exist, we may want to find a point that is close to being a plurality point. One
way to formalize this is to consider the center of the yolk (or plurality ball) of V , where
the yolk [14,17,21,22] is the smallest ball intersecting every median hyperplane of V . We
introduce β-plurality points as an alternative way to relax the requirements for a plurality
point, and study several combinatorial and algorithmic questions regarding β-plurality points.

1 One can also require p to be strictly more popular than any alternative q. This is sometimes called a
strong plurality point, in contrast to the weak plurality points that we consider.

https://politicalcompass.org/uselection2016
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β-Plurality points: definition and main questions. Let V be a multiset2 of n voters in Rd
in arbitrary, possibly coinciding, positions. In the traditional setting a proposed point p ∈ Rd
wins a voter v ∈ V against an alternative q if |pv| < |qv|. We relax this by fixing a parameter β
with 0 < β 6 1 and letting p win v against q if β · |pv| < |qv|. Thus we give an advantage to
the initial proposal p by scaling distances to p by a factor β 6 1. We now define

V [p �β q] := {v ∈ V : β · |pv| < |qv|} and V [p ≺β q] := {v ∈ V : β · |pv| > |qv|}

to be the multisets of voters won by p over q and lost by p against q, respectively. Finally,
we say that a point p ∈ Rd is a β-plurality point for V when∣∣V [p �β q]

∣∣ > ∣∣V [p ≺β q]
∣∣ , for any point q ∈ Rd.

Observe that β-plurality is monotone in the sense that if p is a β-plurality point then p is
also a β′-plurality point for all β′ < β.

The spatial voting model was popularised by Black [6] and Down [10] in the 1950s.
Stokes [26] criticized its simplicity and was the first to highlight the importance of taking
non-spatial aspects into consideration. The reasoning is that voters may evaluate a candidate
not only on their policies – their position in the policy space – but also take their so-called
valence into account: charisma, competence, or other desirable qualities in the public’s
mind [13]. A candidate can also increase her valence by a stronger party support [27] or
campaign spending [18]. Several models have been proposed to bring the spatial model closer
to a more realistic voting approach; see [15, 16, 24] as examples. A common model is the
multiplicative model, introduced by Hollard and Rossignol [19], which is closely related to
the concept of a β-plurality point. The multiplicative model augments the existing spatial
utility function by scaling the candidate’s valence by a multiplicative factor. Note that in the
2-player game considered in this paper the multiplicative model is the same as our β-plurality
model. From a computational point of view very little is known about the multiplicative
model. We are only aware of a result by Chung [7], who studied the problem of positioning a
new candidate in an existing space of voters and candidates, so that the valence required to
win at least a given number of voters is minimized.

One reason for introducing β-plurality was that a set V of voters in Rd, for d > 2,
generally does not admit a plurality point. This immediately raises the question: Is it true
that, for β small enough, any set V admits a β-plurality point? If so, we want to know the
largest β such that any voter set V admits a β-plurality point, that is, we wish to determine

β∗d := sup{β : any finite multiset V in Rd admits a β-plurality point}.

Note that β∗1 = 1, since any set V in R1 admits a plurality point and 1-plurality is equivalent
to the traditional notion of plurality.

After studying this combinatorial problem in Section 2, we turn our attention to the
following algorithmic question: given a voter set V , find a point p that is a β-plurality point
for the largest possible value β. In other words, if we define

β(V ) := sup{β : V admits a β-plurality point}

and

β(p, V ) := sup{β : p is a β-plurality point for V }

then we want to find a point p such that β(p, V ) = β(V ).

2 Even though we allow V to be a multiset, we sometimes refer to it as a “set” to ease the reading. When
the fact that V is a multiset requires special treatment, we explicitly address this.
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Figure 2 (i) The set V = {v1, v2, v3} of voters and the point p used in the proof of Lemma 2.2.
(ii) The ellipse E is tangent to the Voronoi cell V(v3).

Outline. In Section 2 we prove that β∗d 6
√

3/2 for all d > 2. To this end we first show that
β∗d is non-increasing in d, and then we exhibit a voter set V in R2 such that β(V ) 6

√
3/2.

We also show how to construct, for any given V in R2, a (
√

3/2)-plurality point, thus proving
that β∗2 =

√
3/2. For d > 3 we show how to construct a (1/

√
d)-plurality point.

In Section 3 we study the problem of computing, for a given voter set V of n points in Rd,
a β-plurality point for the largest possible β. (Here we assume d to be a fixed constant.)
While such a point can be found in polynomial time, the resulting running time is quite high.
We therefore focus our attention on finding an approximately optimal point p, that is, a
point p such that β(p, V ) > (1− ε) · β(V ). We show that such a point can be computed in
O( n2

ε3d−2 · log n
εd−1 · log2 1

ε ) time.

Notation. We denote the open ball of radius ρ centered at a point q ∈ Rd by B(q, ρ) and,
for a point p ∈ Rd and a voter v, we define Dβ(p, v) := B(v, β · |pv|). Observe that p wins v
against a competitor q if and only if q is strictly outside Dβ(p, v), while q wins v if and
only if q is strictly inside Dβ(p, v). Hence, V [p ≺β q] = {v ∈ V : q ∈ Dβ(p, v)}. We define
Dβ(p) := {Dβ(p, v) : v ∈ V } – here we assume V is clear from the context – and let A(Dβ(p))
denote the arrangement induced by Dβ(p). The competitor point q that wins the most voters
against p will thus lie in the cell of A(Dβ(p)) of the greatest depth or, more precisely, the
cell contained in the maximum number of disks Dβ(p, v).

2 Bounds on β∗d
In this section we will prove bounds on β∗d , the supremum of all β such that any finite set
V ⊂ Rd admits a β-plurality point. We start with an observation that allows us to apply
bounds on β∗d to those on β∗d′ for d′ > d. Let conv(V ) denote the convex hull of V .

I Observation 2.1. Let V be a finite multiset of voters in Rd.
(i) Suppose a point p ∈ Rd is not a β-plurality point for V . Then there is a point

q ∈ conv(V ) such that
∣∣V [p �β q]

∣∣ < ∣∣V [p ≺β q]
∣∣.

(ii) For any p′ 6∈ conv(V ), there is a point p ∈ conv(V ) with β(p, V ) > β(p′, V ).
(iii) For any d′ > d we have β∗d′ 6 β∗d .

The proof is available in the full version [1]. We can now prove an upper bound on β∗d .

I Lemma 2.2. β∗d 6
√

3/2, for d > 2.

Proof. By Observation 2.1(iii), it suffices to prove the lemma for d = 2. To this end let
V = {v1, v2, v3} consist of three voters that form an equilateral triangle ∆ of side length 2
in R2; see Fig. 2(i).
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Figure 3 The cone C+
3 used in the proof of Lemma 2.3.

Let p denote the center of ∆. We will first argue that β(p, V ) =
√

3/2. Note that
|pvi| = 2/

√
3 for all three voters vi. Hence, for β =

√
3/2, the open balls Dβ(vi, p) are

pairwise disjoint and touching at the mid-points of the edges of ∆. Therefore any competitor q
either wins one voter and loses the remaining two, or wins no voter and loses at least one.
The former happens when q lies inside one of the three balls Dβ(vi, p); the later happens
when q does not lie inside any of the balls, because in that case q can be on the boundary of
at most two of the balls. Thus, for β =

√
3/2, the point p always wins more voters than q

does. On the other hand, for β >
√

3/2, any two balls Dβ(vi, p), Dβ(vj , p) intersect and so a
point q located in such a pairwise intersection wins two voters and beats p. We conclude
that β(p, V ) =

√
3/2, as claimed.

The lemma now follows if we can show that β(p′, V ) 6
√

3/2 for any p′ 6= p. Let Vor(V )
be the Voronoi diagram of V , and let V(vi) be the closed Voronoi cell of vi, as shown in
Fig. 2(ii). Assume without loss of generality that p′ lies in V(v3). Let E be the ellipse with
foci v1 and v2 that passes through p. Thus

E := {z ∈ R2 : |zv1|+ |zv2| = 4/
√

3}.

Note that E is tangent to V(v3) at the point p. Hence, any point p′ 6= p in V(v3) has
|p′v1| + |p′v2| > 4/

√
3. This implies that for β >

√
3/2 we have β · |p′v1| + β · |p′v2| > 2,

and so the disks Dβ(p′, v1) and Dβ(p′, v2) intersect. It follows that for β >
√

3/2 there is
a competitor q that wins two voters against p′, which implies β(p′, V ) 6

√
3/2 and thus

finishes the proof of the lemma. J

We now prove lower bounds on β∗d . We first prove that β∗d > 1/
√
d for any d > 2, and

then we improve the lower bound to
√

3/2 for d = 2. The latter bound is tight by Lemma 2.2.

Let V be a finite multiset of n voters in Rd. We call a hyperplane h balanced with respect
to V , if both open half-spaces defined by h contain at most n/2 voters from V . Note the
difference with median hyperplanes, which are required to have fewer than n/2 voters in
both open half-spaces. Clearly, for any 1 6 i 6 d there is a balanced hyperplane orthogonal
to the xi-axis, namely the hyperplane xi = mi, where mi is a median in the multiset of all
xi-coordinates of the voters in V . (In fact, for any direction ~d there is a balanced hyperplane
orthogonal to ~d.)

I Lemma 2.3. Let d > 2. For any finite multi-set V of voters in Rd there exists a point p ∈ Rd
such that β(p, V ) = 1/

√
d. Moreover, such a point p can be computed in O(n) time.

Proof. Let H := {h1, . . . , hd} be a set of balanced hyperplanes with respect to V such that
hi is orthogonal to the xi-axis, and assume without loss of generality that hi : xi = 0. We
will prove that the point p located at the origin is a β-plurality point for V for any β < 1/

√
d,

thus showing that β(p, V ) > 1/
√
d.

SoCG 2020



7:6 On β-Plurality Points in Spatial Voting Games

Let q = (q1, . . . , qd) be any competitor of p. We can assume without loss of generality
that max16i6d |qi| = qd > 0. Thus q lies in the closed cone C+

d defined as

C+
d := { (x1, . . . , xd) ∈ Rd : xd > |xj | for all j 6= d }.

Note that C+
d is bounded by portions of the 2(d− 1) hyperplanes xd = ±xj with j 6= d; see

Fig. 3.
Because hd : xd = 0 is a balanced hyperplane, the open halfspace h+

d : xd > 0 contains at
most n/2 voters, which implies that the closed halfspace cl(h−d ) : xd 6 0 contains at least
n/2 voters. Hence, it suffices to argue that for any β < 1/

√
d the point p wins all the voters

in cl(h−d ) against q. For this we need the following claim, proved in the full version [1].

B Claim 2.4. For any voter v ∈ cl(h−d ) with v 6= p, we have that sin (∠qpv) > 1/
√
d with

equality if and only if q lies on an edge of C+
d and v lies on the orthogonal projection of this

edge onto hd.

We can now use the Law of Sines and the claim above to derive that for any β < 1/
√
d and

any voter v ∈ cl(h−d ) with v 6= p we have

β · |pv| < 1√
d
· |pv| = 1√

d
· |qv| · sin (∠pqv)

sin (∠qpv) 6 |qv| · sin (∠pqv) 6 |qv| .

Hence, p wins every point in cl(h−d ). This proves the first part of the lemma since cl(h−d )
contains at least n/2 voters, as already remarked.

Computing the point p is trivial once we have the balanced hyperplanes hi, which can be
found in O(n) time by computing a median xi-coordinate for each 1 6 i 6 d. J

In R2 we can improve the above bound: for any voter set V in the plane we can find a
point p such that β(p, V ) =

√
3/2. By Lemma 2.2 this bound is tight. The improvement is

based on Lemma 2.5 below. This lemma – in fact a stronger version, stating that any two
opposite cones defined by the three concurrent lines contain the same number of points –
has been proved for even n by Dumitrescu et al. [11]. Our proof of Lemma 2.5 is similar
to their proof. We give it because we also need it for odd n, and because we will need an
understanding of the proof to describe our algorithm for computing the concurrent triple in
the lemma. Our algorithm will run in O(n log2 n) time, a significant improvement over the
O(n4/3 log1+ε n) running time obtained (for the case of even n) by Dumitrescu et al. [11].

I Lemma 2.5. Given a multiset V of n voters in R2, there exists a triple of concurrent
balanced lines (`1, `2, `3) such that the smaller angle between any two of them is π

3 .

Proof. Define the orientation of a line to be the counterclockwise angle it makes with the
positive y-axis. Recall that for any given orientation θ there exists at least one balanced
line with orientation θ. When n is odd this line is unique: it passes through the median
of the voter set V when V is projected orthogonally onto a line orthogonal to the lines of
orientation θ. In the rest of the proof it will be convenient to have a unique balanced line
for any orientation θ. To achieve this when n is even, we simply delete an arbitrary voter
from V . (If there are other voters at the same location, these voters are not deleted.) This is
allowed because when |V | is even, a balanced line for V \ {v} is also a balanced line for V .

Now let µ be the function that maps an angle value θ to the unique balanced line µ(θ); see
Figure 4(i). Note that µ is continuous for 0 6 θ < π. Let `1(θ) := µ(θ), and `2(θ) := µ(θ+ π

3 ),
and `3(θ) := µ(θ + 2π

3 ). For i 6= j, let pij(θ) := `i(θ) ∩ `j(θ) be the intersection point
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θ

µ(θ)(i) (ii)

p23(0)

p13(0)

`1(0)

`2(0)

`3(0)

Figure 4 (i) The balanced line µ(θ). (ii) If p23 is to the left of the directed line `1(0) then p13(0)
is to the right of `2(0).

between `i(θ) and `j(θ). If p23(0) ∈ `1(0) then the lines `1(0), `2(0), `3(0) are concurrent and
we are done. Otherwise, consider the situation at θ = 0 and imagine `1(0) and `2(0) to be
directed in the positive y-direction, as in Fig. 4(ii). Clearly, if p23(0) is to the left of the
directed line `1(0) then p13(0) is to the right of the directed line `2(0), and vice versa. Now
increase θ from 0 to π/3, and note that `1(π/3) = `2(0) and p23(π/3) = p13(0). Hence, p23(θ)
lies to a different side of the directed line `1(θ) for θ = 0 than it does for θ = π/3. Since both
`1(θ) and p23(θ) move continuously, this implies that for some θ ∈ (0, π/3) the point p23(θ)
crosses the line `1(θ), and so the lines `1(θ), `2(θ), `3(θ) are concurrent. J

Next we show how to efficiently compute a triple as in Lemma 2.5. We follow the definitions
and notation from the proof of Lemma 2.5. We will assume that n is odd, which, as argued,
is without loss of generality.

To find a concurrent triple of balanced lines, we first compute the lines `1(0), `2(0), `3(0)
in O(n) time. If they are concurrent, we are done. Otherwise, there is a θ ∈ (0, π/3) such
that `1(θ), `2(θ), `3(θ) are concurrent. To find this value θ, we dualize the voter set V , using
the standard duality transform that maps a point (a, b) to the line y = ax + b, and vice
versa. Let v∗ denote the dual line of the voter v, and let V ∗ := {v∗ : v ∈ V }. Note that,
for θ ∈ (0, π/3), the lines `1(θ), `2(θ), `3(θ) are all non-vertical, therefore their duals `∗i (θ)
are well-defined.

Consider the arrangement A(V ∗) defined by the duals of the voters. For θ 6= 0, define
slope(θ) to be the slope of the lines with orientation θ. Then µ∗(θ), the dual of µ(θ), is the
intersection point of the vertical line x = slope(θ) with Lmed, the median level in A(V ∗).
(The median level of A(V ∗) is the set of points q such that there are fewer than n/2 lines
below q and fewer than n/2 lines above q; this is well defined since we assume n is odd. The
median level forms an x-monotone polygonal curve along edges of A(V ∗).)

Now consider the duals `∗1(θ), `∗2(θ), `∗3(θ), which all lie on Lmed. For θ ∈ (0, π/3), the
x-coordinate of `∗1(θ) lies in (−∞,−1/

√
3), the x-coordinate of `∗2(θ) lies in (−1/

√
3, 1/
√

3),
and the x-coordinate of `∗3(θ) lies in (1/

√
3,∞). We split Lmed into three pieces corresponding

to these ranges of x-coordinate. Let E1, E2, and E3 denote the sets of edges forming the
parts of Lmed in the first, second, and third range, respectively, where edges crossing the
vertical lines x = −1/

√
3 and x = 1/

√
3 are split; see Fig. 5.

x = −1/
√
3 x = 1/

√
3

Lmed

E1 E2 E3

Figure 5 The edge sets E1, E2, and E3 of Lmed, the median level in A(V ∗).
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7:8 On β-Plurality Points in Spatial Voting Games

Recall that we want to find a value θ ∈ (0, π/3) such that `1(θ), `2(θ), `3(θ) are concurrent
(or, in other words, such that the points `∗1(θ), `∗2(θ), `∗3(θ) are collinear). Also recall that,
for any θ ∈ (0, π/3), the point `∗i (θ) lies on an edge in Ei, for i = 1, 2, 3. One way to find θ
would be to explicitly compute Lmed, and then increase θ (starting at θ = 0) and see how
the points `∗i (θ) move over Ei, until we reach a value where `1(θ), `2(θ), `3(θ) are concurrent.
Since the best known bounds on the complexity of the median level is O(n4/3) [9] we will
proceed differently, as follows.
1. Find an interval (θ1, θ

′
1) ⊆ (0, π/3) for which there is a θ with the desired properties and

such that `∗1(θ) lies on the same edge of E1 for all θ ∈ (θ1, θ
′
1).

2. Find an interval (θ2, θ
′
2) ⊆ (θ1, θ

′
1) for which there is a θ with the desired properties and

such that `∗2(θ) lies on the same edge of E2 for all θ ∈ (θ2, θ
′
2).

3. Find an interval (θ3, θ
′
3) ⊆ (θ2, θ

′
2) for which there is a θ with the desired properties and

such that `∗3(θ) lies on the same edge of E3 for all θ ∈ (θ3, θ
′
3).

4. After Step 3 we have an interval (θ3, θ
′
3) ⊆ (0, π/3) for which there is a θ with the desired

properties and such that `∗1(θ), `∗2(θ), and `∗3(θ) each lie on a fixed edge of Lmed. Let v1,
v2, and v3 denote the voters whose dual lines contain these three edges. We know that
for any θ ∈ (θ3, θ

′
3), the line through v1 with orientation θ is a balanced line. Similarly,

for any θ ∈ (θ3, θ
′
3) the line through v2 with orientation θ + π/3 is a balanced line, and

the line through v3 with orientation θ + 2π/3 is a balanced line. Finding a θ ∈ (θ3, θ
′
3)

with the desired properties thus only requires finding a θ ∈ (θ3, θ
′
3) for which these three

lines are concurrent. Such a θ is guaranteed to exist by construction, and finding it is a
constant-time operation.

It remains to explain how to perform Steps 1–3. Below we describe this for Step 1; the other
steps can be implemented in a similar way.

To implement Step 1 we perform a binary search over the x-coordinates of the ver-
tices of A(V ∗) in the slab (−∞,−1/

√
3) × (−∞,∞), as follows. In a generic step of this

binary search we have an interval (θmin, θmax) such that p23(θ) lies to a different side of
the directed line `1(θ) for θ = θmin than for θ = θmax. (Recall that this implies that
there is a θ ∈ (θmin, θmax) with the desired property.) This interval corresponds to the
slab (slope(θmin), slope(θmax))×(−∞,∞) in the dual plane. Let X be the set of x-coordinates
of the vertices of A(V ∗) inside this slab. We can find the median xmed of X in O(n logn)
time using the algorithm by Cole et al. [8]. We then compute the three balanced lines
`i(θmed), where θmed is such that slope(θmed) = xmed. If these three lines are concurrent we
are immediately done, and we can stop. Otherwise we determine where p23(θmed) lies relative
to `1(θmed), and based on that decide whether to recurse on (θmin, θmed) or on (θmed, θmax).
We continue until the slab (slope(θmin), slope(θmax))× (−∞,∞) contains no more vertices
of A(V ∗). We then finish Step 1 by setting (θ1, θ

′
1) := (θmin, θmax).

Each iteration of the binary search takes O(n logn) time, so Step 1 takes O(n log2 n) time.
Steps 2 and 3 can be done in a similar fashion, so we can find a concurrent triple of balanced
lines as in Lemma 2.5 in O(n log2 n) time. In [1] we show that the common intersection of
these three lines is a (

√
3/2)-plurality point, thus proving the following lemma.

I Lemma 2.6. For any finite multi-set V of voters in R2 there exists a point p ∈ R2 such
that β(p, V ) >

√
3/2. Moreover, such a point p can be computed in O(n log2 n) time.

The following theorem summarizes the results of this section.

I Theorem 2.7.
(i) We have β∗2 =

√
3/2. Moreover, for any multiset V of n voters in R2 we can compute

a point p such that β(p, V ) =
√

3/2 in O(n log2 n) time.
(ii) For d > 2, we have 1/

√
d 6 β∗d 6

√
3/2. Moreover, for any multiset V of n voters in

Rd we can compute a point p such that β(p, V ) = 1/
√
d in O(n) time.



B. Aronov, M. de Berg, J. Gudmundsson, and M. Horton 7:9

3 Finding a point that maximizes β(p, V )

We know from Theorem 2.7 that, for any multiset V of n voters in Rd, we can compute a
point p with β(p, V ) ≥ 1/

√
d (even with β(p, V ) ≥

√
3/2, in the plane). However, a given

voter multiset V may admit a β-plurality point for larger values of β – possibly even for
β = 1. In this section we study the problem of computing a point p that maximizes β(p, V ),
that is, a point p with β(p, V ) = β(V ).

3.1 An exact algorithm

Below we sketch an exact algorithm to compute β(V ) together with a point p such that
β(p, V ) = β(V ). Our goal is to show that, for constant d, this can be done in polynomial
time. We do not make a special effort to optimize the exponent in the running time; it may
be possible to speed up the algorithm, but it seems clear that it will remain impractical,
because of the asymptotic running time, and also because of algebraic issues.

Note that we can efficiently check whether a true plurality point exists (i.e., β = 1 can be
achieved) in time O(n logn) by an algorithm of De Berg et al. [5], and if so, identify this
point. Therefore, hereafter β = 1 is used as a sentinel value, and our algorithm proceeds on
the assumption that β(p, V ) < 1 for any point p.

For a voter v ∈ V , a candidate p ∈ Rd, and an alternative candidate q ∈ Rd, define
fv(p, q) := min(|qv|/|pv|, 1) when p 6= v, and define fv(p, q) := 1 otherwise. Observe that for
fv(p, q) < 1 we have

q wins voter v over p if and only if β > fv(p, q),
q and p have a tie over voter v if and only if β = fv(p, q), and
p wins voter v over q if and only if β < fv(p, q).

For fv(p, q) = 1 this is not quite true: when p = q = v we always have a tie, and when
|pv| < |qv| then p wins v even when β = fv(p, q) = 1. When p = q there is a tie for all voters,
so the final conclusion (namely that

∣∣V [p �β q]
∣∣ > ∣∣V [p ≺β q]

∣∣) is still correct. The fact that
we incorrectly conclude that there is a tie when |pv| < |qv| and β = fv(p, q) = 1 does not
present a problem either, since we assume β(p, V ) < 1. Hence, we can pretend that checking
if β > fv(p, q), or β = fv(p, q), or β < fv(p, q) tells us whether q wins v, or there’s a tie, or p
wins v, respectively.

Hereafter we identify fv : R2d → R with its graph {(p, q, fv(p, q))} ⊂ R2d+1, which is a
d-dimensional surface. Let f+

v be the set of points lying above this graph, and f−v be the set of
points lying below it. Thus f+

v is precisely the set of combinations of (p, q, β) where q wins v
over p, while fv is the set where p ties with q, and f−v is the set where q loses v to p. Consider
the arrangement A := A(F ) defined by the set of surfaces F := {fv : v ∈ V }. Each face C
in A is a maximal connected set of points with the property that all points of C are contained
in, lie below, or lie above, the same subset of surfaces of F . (Note that we consider faces of
all dimensions, not just full-dimensional cells.) Thus for all (p, q, β) ∈ C, exactly one of the
following holds:

∣∣V [p �β q]
∣∣ < ∣∣V [p ≺β q]

∣∣, or ∣∣V [p �β q]
∣∣ =

∣∣V [p ≺β q]
∣∣, or ∣∣V [p �β q]

∣∣ >∣∣V [p ≺β q]
∣∣. Let L be the union of all faces C of A(F ) such that

∣∣V [p �β q]
∣∣ < ∣∣V [p ≺β q]

∣∣,
that is, such that p loses against q for all (p, q, β) in C. We can construct A and L in
time O(n2d+1) using standard machinery, as A is an arrangement of degree-4 semi-algebraic
surfaces of constant description complexity [3, 4]. We are interested in the set

W := {(p, β) :
∣∣V [p �β q]

∣∣ > ∣∣V [p ≺β q]
∣∣ for any competitor q } ⊂ Rd+1.
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What is the relationship between W and L? A point (p, β) is in W precisely when, for every
choice of q ∈ Rd, p wins at least as many voters as q (for the given β). In other words,

W = {(p, β) | there is no q such that (p, q, β) ∈ L}.

That is, W is the complement of the projection of L to the space Rd+1 representing the
pairs (p, β). The most straightforward way to implement the projection would involve
constructing semi-algebraic formulas describing individual faces and invoking quantifier
elimination on the resulting formulas [3]. Below we outline a more obviously polynomial-time
alternative.

Construct the vertical decomposition vd(A) of A, which is a refinement of A into pieces
(“subfaces” τ), each bounded by at most 2(2d+ 1) surfaces of constant degree and therefore
of constant complexity; see [25]. A vertical decomposition is specified by ordering the
coordinates – we put the coordinates corresponding to q last. Since vd(A) is a refinement
of A, the set L is the union of subfaces τ of vd(A) fully contained in L. Since A is
an arrangement of n well-behaved surfaces in 2d + 1 > 5 dimensions, the complexity of
vd(A) is O(n2(2d+1)−4+ε) = O(n4d−2+ε), for any ε > 0 [20]. In particular, L comprises
` := O(n4d−2+ε) subfaces.

Since each τ ⊂ L is a subface of the vertical decomposition vd(A) in which the last
d coordinates correspond to q, the projection τ ′ of τ to Rd+1 is easy obtain (see [25]) in constant
time; indeed it can be obtained by discarding the constraints on these last d coordinates from
the description of τ . Thus, in time O(`) we can construct the family of all the projections
of the ` subfaces of L, each a constant-complexity semi-algebraic object in Rd+1. We now
construct the arrangement A′ of the resulting collection and its vertical decomposition vd(A′).
The complexity of vd(A′) is either O(`d+1+ε) or O(`2(d+1)−4+ε) = O(`2d−2+ε), depending on
whether d+ 1 6 4 or not, respectively [20]. Each subface in vd(A′) is either fully contained
in the projection of L or fully disjoint from it. Collecting all of the latter subfaces, we obtain
a representation of W as a union of at most O(`O(d)) = O(nO(d2)) constant-complexity
semi-algebraic objects.

Now if (p, β) ∈W is the point with the highest value of β, then β(V ) = β(p, V ) = β. It
can be found by enumerating all the subfaces of vd(A′) contained in the closure of W – we
take the closure because V (p, β) is defined as a supremum – and identifying their topmost
point or points. Since each face has constant complexity, this can be done in O(1) time per
subface.3 This completes our description of an O(nO(d2))-time algorithm to compute the
best β that can be achieved for a given set of voters V , and the candidate p (or the set of
candidates) that achieve this value.

3.2 An approximation algorithm
Since computing β(V ) exactly appears expensive, we now turn our attention to approximation
algorithms. In particular, given a voter set V in Rd and an ε ∈ (0, 1/2], we wish to compute
a point p such that β(p, V ) > (1− ε) · β(V ).

Our approximation algorithm works in two steps. In the first step, we compute a set P
of O(n/ε2d−1 log(1/ε)) candidates. P may not contain the true optimal point p, but we will
ensure that P contains a point p such that β(p, V ) > (1− ε/2) · β(V ). In the second step,
we approximate β(p′, V ) for each p′ ∈ P , to find an approximately best candidate.

3 Once again, the projection to the β coordinate is particularly easy to obtain if, when constructing
vd(A′), we set the coordinate corresponding to β first.
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vi

radius = dc/ε

Ai(C)
Aout

i (C)

vi

radius = εdCAin
i (C)

(i) (ii)

Figure 6 (i) The closed spherical shell Ai(C) defined by the two balls of radii ε · dC and dC/ε

around vi. (ii) The exponential grid Gi(C). The grid is defined by a collection of spheres centered
at vi, plus extreme rays of the cones with apex at vi. The spheres have radii (1 + ε/4)i · ε · dC for
0 6 i 6 log(1+ε/4)(1/ε2) = O((1/ε) log(1/ε)), and the interior angle of a cone is ε/2

√
d.

Constructing the candidate set P . To construct the candidate set P , we will generate,
for each voter vi ∈ V , a set Pi of O(1/ε2d−1 log(1/ε)) candidate points. Our final set P of
candidates will be the union of the sets P1, . . . , Pn. Next we describe how to construct Pi.

Partition Rd into a set C of O(1/εd−1) simplicial cones with apex at vi and opening angle
ε/(2
√
d), so that for every pair of points u and u′ in the same cone we have ∠uviu′ 6 ε/(2

√
d).

We assume for simplicity (and can easily guarantee) that no voter in V lies on the boundary
of any of the cones, except for vi itself and any voters coinciding with vi. Let C(vi) denote
the set of all cones in C whose interior contains at least one voter. For each cone C ∈ C(vi) we
generate a candidate set Gi(C) as explained next, and then we set Pi :=

⋃
C∈C(vi) Gi(C)∪{vi}.

Let dC be the distance from vi to the nearest other voter (not coinciding with vi) in C.
Let Ai(C) be the closed spherical shell defined by the two spheres of radii ε · dC and dC/ε
around vi, as shown in Fig. 6(i). The open ball of radius ε · dC is denoted by Ain

i (C), and
the complement of the closed ball of radius dC/ε is denoted by Aout

i (C). Let Gi(C) be the
vertices in an exponential grid defined by a collection of spheres centered at vi, and the
extreme rays of the cones in C; see Fig. 6(ii). The spheres have radii (1 + ε/4)i · ε · dC ,
for 0 6 i 6 log(1+ε/4)(1/ε2) = O((1/ε) log(1/ε)). Observe that Gi(C) contains not only
points in C, but in the entire spherical shell Ai(C). The set Gi(C) consists of O(1/εd log(1/ε))
points, and it has the following property:

Let p be any point in the spherical shell Ai(C), and let p′ be a corner of the grid cell
containing p and nearest to p. Then |p′p| 6 ε · |pvi|. (∗)

To prove the property, let q be the point on pvi such that |qvi| = |p′vi|. From the construction
of the exponential grid we have |pq| 6 ε

4 ·|pvi|. Since p
′ and q lie in the same cone ∠p′viq 6 ε

2
√
d

and, consequently, |p′q| 6 ε
2 · |qvi| 6 (1 + ε

4 ) · ε2 · |pvi|. The property is now immediate since
|pp′| 6 |pq|+ |qp′| < ε · |pvi|.

As mentioned above, Pi :=
⋃
C∈C(vi) Gi(C) ∪ {vi}, and the final candidate set P is

defined as P :=
⋃
vi∈V Pi. Computing the sets Pi is easy: for each of the O(1/εd−1) cones

C ∈ C(vi), determine the nearest neighbor of vi in C in O(n) time by brute force, and
then generate Gi(C) in O((1/ε(d−1)) log(1/ε)) time. (It is not hard to speed up the nearest-
neighbor computation using appropriate data structures, but this will not improve the final
running time in Theorem 3.4.) We obtain the following lemma.
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≥ 1
2 (π − ε)
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Figure 7 Illustration for Case III.

I Lemma 3.1. The candidate set P has size O(n/ε2d−1 log(1/ε)) and can be constructed in
O(n2/εd−1 + n/ε2d−1 log(1/ε)) time.

The next lemma is crucial to show that P is a good candidate set.

I Lemma 3.2. For any point p ∈ Rd, there exists a point p′ ∈ P with the following property:
for any voter vj ∈ V , we have that |p′vj | 6 (1 + 2ε) · |pvj |.

Proof. Let vi be a voter nearest to p. We will argue that the set Pi contains a point p′ with
the desired property. We distinguish three cases.
Case I: There is a cone C ∈ C(vi) such that p lies in the spherical shell Ai(C). In this

case we pick p′ to be a point of Gi(C) nearest to p, that is, p′ is a corner nearest to p
of the grid cell containing p. By property (∗) we have

|p′vj | 6 |p′p|+ |pvj | 6 ε · |pvi|+ |pvj | 6 (1 + ε) · |pvj |,

where the last inequality follows from the fact that vi is a voter nearest to p.
Case II: Point p lies in Ain

i (C) for all C ∈ C(vi). In this case we pick p′ := vi. Clearly
|p′vj | = 0 6 (1 + ε) · |pvj | for j = i. For j 6= i, we argue as follows. Let C ∈ C(vi) be the
cone containing vj . Since we are in Case II we know that p ∈ Ain

i (C), and so

|p′vj | 6 |p′p|+ |pvj | 6 εdC + |pvj | 6 ε|p′vj |+ |pvj |. (1)

Moreover, we have

|pvj | > |p′vj | − |pp′| > |p′vj | − εdC > |p′vj |/2, (2)

where the last step uses that ε 6 1/2 and dC 6 |p′vj |. Combining (1) and (2), we obtain
|p′vj | 6 (1 + 2ε) · |pvj |.

Case III: Cases I and II do not apply. In this case there is at least one cone C such that
p ∈ Aout

i (C). Of all such cones, let C∗ be the one whose associated distance dC∗ is
maximized. Let p′′ be the point on the segment pvi at distance dC/ε from vi. Without
loss of generality, we will assume that p and vi only differ in the xd coordinate; see
Fig. 7(i).
We will prove that the point p′ of Gi(C∗) nearest to p′′ (refer to Fig. 7(i)) has the desired
property. Consider a voter vj . We distinguish three cases.
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When i = j, then we have

|p′vi| 6 |p′p′′|+ |p′′vi| 6 (1 + ε)|p′′vi| 6 (1 + ε)|pvi|,

where the second inequality follows from (∗).
When vj lies in a cone C such that p ∈ Ain

i (C), then we can use the same argument as
in Case II to show that |p′vj | 6 (1 + 2ε) · |pvj |.
In the remaining case vj lies in a cone C such that p ∈ Aout

i (C). Let vk be a voter in
C nearest to vi. Since |vivk| = dC , |pvi| > dC/ε, and |pvk| > |pvi|, we can deduce that
∠pvivk > π/2− ε/2, as illustrated in Fig. 7(ii). Furthermore, since vk and vj belong
to the same cone C the angle ∠vkvivj is bounded by ε/2

√
d 6 ε/2 according to the

construction. Putting the two angle bounds together we conclude that ∠pvivj > π
2 − ε.

Now consider the triangle defined by p, vi and vj . From the Law of Sines we obtain

|vivj |
sin∠vipvj

= |pvj |
sin∠pvivj

, or |vivj | = |pvj | ·
sin∠vipvj
sin∠pvivj

6
|pvj |
cos ε 6 (1 + ε) · |pvj |,

for ε < 1/2. Since p′′ lies on the line between p and vi we have:

|p′′vj | 6 max{|pvj |, |vivj |} 6 (1 + ε) · |pvj |.

Finally we get the claimed bound by noting that |p′p′′| 6 ε · |p′vi| (from (*)),

|p′vj | 6 |p′p′′|+ |p′′vj | 6 ε · |p′vi|+ (1 + ε) · |pvj | 6 (1 + 2ε) · |pvj |. J

An approximate decision algorithm. Given a point p, a positive real value ε and the voter
multiset V , we say that an algorithm Alg is an ε-approximate decision algorithm if

Alg answers yes if p is a β-plurality point, and
Alg answers no if p is not a (1− ε)β-plurality point.

In the remaining cases, where (1− ε)β < β(p, V ) < β, Alg may answer yes or no.

Next we propose an ε-approximate decision algorithm Alg. The algorithm will use the
so-called Balanced Box-Decomposition (BBD) tree introduced by Arya and Mount [2]. BBD
trees are hierarchical space-decomposition trees such that each node µ represents a region
in Rd, denoted by region(µ), which is a d-dimensional axis-aligned box or the difference of
two such boxes. A BBD tree for a set P of n points in Rd can be built in O(n logn) time
using O(n) space. It supports (1 + ε)-approximate range counting queries with convex query
ranges in O(logn+ ε1−d) time [2]. In our algorithm all query ranges will be balls, hence a
(1 + ε)-approximate range-counting query for a d-dimensional ball s(v, r) with center at v
and radius r returns an integer I such that |P ∩ s(v, r)| 6 I 6 |P ∩ s(v, (1 + ε)r)|.

Our ε-approximate decision algorithm Alg works as follows.
1. Construct a set Q of O(n/εd−1) potential candidates competing against p, as follows.

Let Q(v) be a set of O(1/εd−1) points distributed uniformly on the boundary of the ball
s(v, (1− ε/2) · β · |pv|), such that the distance between any point on the boundary and
its nearest neighbor in Q(v) is at most ε

4
√
d
· |pv| 6 ε

4 · β · |pv|. In the last step we use the
fact that β > 1/

√
d, according to Lemma 2.3. Set Q := Q(v1) ∪ · · · ∪Q(vn).

2. Build a BBD tree T on Q. Add a counter c(µ) to each node µ in T , initialized to zero.
3. For each voter v ∈ V perform a (1 + ε/4)-approximate range-counting query with

s(v, (1− ε/4) · β · |pv|) in T . We modify the search in T slightly as follows. If an internal
node µ ∈ T is visited and expanded during the search, then for every non-expanded child
µ′ of µ with region(µ′) entirely contained in s(v, (1+ε/4)(1−ε/4) ·β · |pv|)) ⊂ s(v, β · |pv|)
we increment the counter c(µ′). Similarly, if a leaf is visited then the counter is incremented
if the point stored in the leaf lies within s(v, (1− ε/4) · β · |pv|).
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4. For a leaf µ in T , let M(µ) be the set of nodes in T on the path from the root to µ, and
let C(µ) =

∑
µ′∈M(µ) c(µ′). Compute C(µ) for all leaves µ in T by a pre-order traversal

of T , and set C := maxµ C(µ).
5. If C 6 n/2, then return yes, otherwise no.

The proof of the following lemma can be found in the full version of the paper [1].

I Lemma 3.3. Algorithm Alg ε-approximately decides if p is a β-plurality point in time
O( n

εd−1 log n
εd−1 ).

The algorithm. Now we have the tools required to approximate β(V ). First, generate the
set P of O( n

ε2d−1 log 1
ε ) candidate points. For each candidate point p ∈ P , perform a binary

search for an approximate β∗(p) in the interval [1/
√
d, 1], until the remaining search interval

has length at most ε/2 · 1/
√
d. For each p and β∗, (ε/2)-approximately decide if p is a

β∗-plurality point in V . Return the largest β∗ and the corresponding point p on which the
algorithm says yes.

I Theorem 3.4. Given a multiset V of voters in Rd, a ((1− ε) · β(V ))-plurality point can
be computed in O( n2

ε3d−2 · log n
εd−1 · log2 1

ε ).

4 Concluding Remarks

We proved that any finite set of voters in Rd admits a β-plurality point for β = 1/
√
d and

that some sets require β =
√

3/2. For d = 2 we managed to close the gap by showing that
β∗2 =

√
3/2. One of the main open problems is to close the gap for d > 2. We also presented

an approximation algorithm that finds, for a given V , a (1− ε) · β(V )-plurality point. The
algorithm runs in O∗(n2/ε3d−2) time. Another open problem is whether a subquadratic
approximation algorithm exists, and to prove lower bounds on the time to compute β(V ) or
β(p, V ) exactly. Finally, it will be interesting to study β-plurality points in other metrics,
for instance in the personalized L1-metric [5] for d > 2.
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