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Abstract
We extend the constructive differential game logic (CdGL) of hybrid games with a refinement
connective that relates two hybrid games. In addition to CdGL’s ability to prove the existence of
winning strategies for specific postconditions of hybrid games, game refinements relate two games to
one another. That makes it possible to prove that any winning strategy for any postcondition of
one game carries over to a winning strategy for the other. Since CdGL is constructive, a computable
winning strategy can be extracted from a proof that a player wins a game. A folk theorem says that
any such winning strategy for a hybrid game gives rise to a corresponding hybrid system satisfying
the same property. We make this precise using CdGL’s game refinements and prove correct the
construction of hybrid systems from winning strategies of hybrid games.
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1 Introduction

Cyber-physical systems (CPSs) such as transportation systems, medical devices, and power
systems are often modeled with hybrid systems and hybrid games. Hybrid systems combine
discrete computation with continuous differential equations (ODEs), to which hybrid games
add adversarial dynamics. Differential Game Logic (dGL) [44] and its systems fragment
dL [46] provide formal proofs of correctness properties such as safety and liveness for hybrid
games and systems. Theorems of dGL answer: does a winning strategy exist for a given
player to achieve a given postcondition in a given game? Because safety-critical CPSs must
remain reliable even in adversarial environments, these rigorous correctness guarantees for
adversarial models are essential. Despite the importance of games, verification and synthesis
technology for hybrid games are less mature than for hybrid systems. For example, the
end-to-end verified monitor synthesizer VeriPhy [13] only supports systems.

This paper studies the gap between hybrid games and systems and proposes a reduction,
which in principle enables hybrid game synthesis via existing hybrid system tools. To study
this gap, we use a program refinement calculus, which is the fundamental tool for comparing
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14:2 Refining Constructive Hybrid Games

programs. Refinement and equivalence reasoning have repeatedly proven fruitful for programs
generally and for CPS models specifically:

Equivalences of programs are the fundamental building block for KAT [34].
Differential refinement logic dRL [36] has reduced the human labor required for verification
of classical hybrid systems by relating one hybrid system to another.
Differential game refinements in dGL [45] provide a relational reasoning technique for
differential games (as opposed to hybrid games).

Because we are motivated by code synthesis, we develop our refinement calculus for
Constructive Differential Game Logic (CdGL) [11], which ensures winning strategies are
computable. Having defined refinements for CdGL, we bridge the gap between hybrid games
and systems by defining an operation we call reification. The reification operation takes as its
input a hybrid game α, its correctness condition ϕ, and a CdGL proof that α satisfies ϕ. The
reified output is a hybrid system which implements the strategy expressed in the correctness
proof. Refinement allows us to prove the relationship between a game and its reified system:
the output system refines the input game so that every safety theorem of the output is
a theorem of the input. Conversely, the output also satisfies ϕ. To our knowledge, prior
works [5] only feature ad-hoc discussions of reification; we give the first rigorous algorithm
and correctness theorems. It may be surprising that game strategies can be reduced to
systems, because games are known [44] to be more expressive than systems. Our result
does not contradict this fact: only once a winning strategy is known can we bridge this
expressiveness gap. Reification makes several practical applications possible:

i) End-to-end correctness for hybrid game synthesis could be implemented by reifying
winning strategies as a preprocessing step to VeriPhy [13].

ii) Interactive proof languages are better understood for systems than for games. A proof
language for CdGL could be developed which combines systems reasoning with refinement.
Experience with dRL [36] suggests refinement-based proof may be more productive.

iii) Reification and refinement give an intensional view of strategy equality: two strategies
are “the same” if their reification produces equivalent systems.

iv) Refinement may enable comparing the efficacy of two controllers: does one controller
always achieve its goal faster?

In Section 2, we discuss additional related work. In Section 3, we recall the syntax of
CdGL, demonstrate the syntax with a toy example, and add a refinement connective. In
Section 4, we recall the semantics of CdGL, generalizing them to support refinement. In
Section 5, we give a calculus for CdGL refinements. In Section 6, we discuss theoretical results
about soundness and reification. The paper concludes with Section 7.

2 Related Work

Our most closely related works are refinement logics. Other related works include constructive
modal logics, synthesis, and games in logic.

Refinement

Refinement calculi have been studied extensively, and previous studies [5] have given examples
of how programs can be refined from games, but have not given an explicit reification algorithm
let alone its correctness theorems. We give an explicit reification algorithm and prove that it
captures the winning strategy of a game in a system. Our proofs are not formalized because
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they rely on features which are unsupported or experimental in prominent proof assistants
such as Coq. Specifically, we construct inductive families whose well-foundedness requires
inductive proof and we make significant use of universe polymorphism.

We build directly on classical refinement reasoning for hybrid systems from dRL [36]
and also on (propositional discrete) game algebra [28]. Game algebra equivalences are
not contextual because contextual reasoning is uniquely challenging for games, which are
subnormal. dRL supports contextual reasoning but not games. Our refinement calculus
subsumes both game algebra and dRL by mixing games rules with contextual rules for systems.
Even for rules which look the same as prior work, our constructive semantics demand novel
soundness proofs. Event-B [2] uses refinement for practical verification by verifying simpler
models, then refining them to more complex models. Extensions of Event-B have been
proposed for hybrid systems [6] but not hybrid games.

Games in Logic

Propositional GL was introduced by Parikh [41]. The first-order GL of hybrid games is
dGL [44]. We build on CdGL [10, 11], the constructive dialect of dGL. GL formulas have been
reduced to µ-calculus [41, 33] and game algebras have been reduced [28] to propositional
modal logic. In contrast, we translate game logic proofs, which lets us translate CdGL into a
less expressive logical fragment.

GLs are unique in their clear delegation of strategy to the proof language rather than the
model language, allowing succinct, trustworthy game specifications with sophisticated winning
strategies. Relatives without this separation of concerns include Constructive Concurrent
Dynamic Logic [59], SL [16], ATL [4], CATL [55], SDGL [27], structured strategies [48],
DEL [52, 54, 51], evidence logic [53], and Angelic Hoare Logic [38].

Completeness of game logics is a notoriously difficult problem, which has recently been
shown in the propositional case [22]. dGL is undecidable, but is relatively complete [44].
Game logics can be expressed in game refinement logics, so game refinement completeness is
at least as difficult. Game algebra is complete for games containing only choices, sequencing,
and duality [28]. This paper does not pursue a completeness theorem, but we subsume game
algebra, incorporate dGL-like rules, and exercise a broad range of refinement reasoning in
our theorems on reification. These facts bode well for the expressiveness of our calculus. As
with other refinement calculi, we expect that limitations arise when reasoning with ghost
variables or reasoning about two games whose structures are entirely different.

Constructive Modal Logics

The task of assigning a semantics to games should not be confused with game semantics [1],
which give a semantics to programs in terms of games. The main semantic approaches for
constructive modal logics are intuitionistic Kripke semantics [58] and realizability seman-
tics [56, 35]. We follow the type theoretic semantics which were introduced for CdGL [11]. A
related approach to our type-theoretic semantics is Hoare Type Theory [40], which provides
a type-theoretic connective for Hoare triples, but does not consider games or refinement.

Constructive (modal) program logics are less studied than classical ones. A few authors [10,
31] develop a Curry-Howard correspondence with proof terms, the latter for a simple fragment
of dynamic logic. Other works [59, 20, 15] address only fragments and do not explore Curry-
Howard in the same depth. In contrast to these, we support constructive refinement, which
is also of interest for constructive program logics generally. We do not discuss proof terms
here for the sake of space. Our treatment of constructive real arithmetic follows CdGL, which
follows Bishop [8, 14] using constructive formalizations [19, 37].
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Hybrid Systems Synthesis

Synthesis for hybrid systems is an active research area. Fully automated synthesis relies on
restrictions such as simple fragments [32, 49] or discrete abstractions [25, 24]. ModelPlex [39]
exploits interactive safety proofs in dL [46], the systems fragment of dGL, for monitor synthesis.
Not only can proof-based synthesis synthesize every provable model, but it gives the user
more control: to generate a less restrictive monitor, simply revise the proof to use less
restrictive assumptions. ModelPlex supports an especially rigorous end-to-end verification
approach [13]. We aim to provide a reduction through which ModelPlex could support games.
Synthesis of high-level plans is also studied [7, 23].

3 Constructive Differential Game Logic

We recall the language of CdGL [11], introduce refinement formulas, and give an example.

3.1 Syntax
The language of CdGL consists of terms f, g, games α, β, and formulas ϕ, ψ, φ. Games are
perfect-information, zero-sum, and with two players. Take note of our terminology for players,
which is particularly subtle for constructive games. We use the name Angel for the player
whose choices are quantified existentially (“us”) and Demon for the player whose choices
are quantified universally (“them”). The players alternate turns, and at any moment one
player is active (making decisions) while the opponent is dormant (waiting for their turn).
In an unfortunate subtlety, a formula, proof, refinement, etc. is called Angelic whenever it is
existential and Demonic whenever it is universal, regardless of which player is active. The
simplest terms are (game) variables x, y ∈ V where V is the set of variable identifiers. All
variables are mutable and globally scoped. Their values correspond to the state of the game.
For every base game variable x there is a primed counterpart x′ whose purpose within an
ODE is to track the time-derivative of x. The state consists of reals, which are uncountable,
but the value of a term is computable as a function of the state.

▶ Definition 1 (Terms). We define scalar terms f, g inductively, where c ∈ R is a real literal,
x a game variable, f + g a sum, and f · g a product:

f, g ::= · · · | c | x | f + g | f · g | (f)′

In a practical implementation within a theorem prover, one might prefer to reuse terms from
the metalogic. It suffices that the interpretation of every term is a (Type-2 [57]) computable
function. Type-2 computability means the interpretation of f must be computable to arbitrary
precision when the values of variables are represented as streams of bits. We occasionally
use terms which return tuples of reals, which are computable when every component is
computable. The total spatial differential of term f is written (f)′ and agrees with the time
derivative of f during an ODE.

Because CdGL is constructive, strategies must represent Angel’s choices computably.
While Demon is playing, Angel simply monitors whether Demon’s choices obey the rules of
the game, and does not care whether choices were computable. We informally discuss how a
game is played here, then give full winning conditions in Section 4. The definitions of games
and formulas are simultaneously inductive.

▶ Definition 2 (Games). The language of games α, β is defined recursively as such:

α, β ::= ?ϕ | x := f | x := ∗ | x′ = f &ψ | α ∪ β | α;β | α∗ | αd
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The test game ?ϕ, is a no-op if the active player can present a proof of ϕ, else the dormant
player wins by default since the active player “broke the rules”. A deterministic assignment
x := f updates variable x to the value of term f . Nondeterministic assignments x := ∗ ask
the active player to compute the new value of x : R, i.e. they are witnessed by a term that
computes a new value of x. The ODE game x′ = f &ψ evolves the ODE x′ = f for some
duration d ≥ 0 chosen by the active player such that the active player proves ψ throughout.

All terms f are effectively locally Lipschitz continuous, meaning that a neighborhood
N and real L for each state can be constructed such that L is a Lipschitz constant of f on
N . Effective local Lipschitz continuity ensures that constructive Picard-Lindelöf [37] can
construct the unique solution of each ODE, which need not have a closed form. ODEs are
explicit-form, meaning that f and ψ do not mention any primed variables y′. Except when
otherwise stated, we present ODEs with a single equation x′ = f for the sake of readability.
In the choice game α ∪ β, the active player chooses whether to play game α or game β. In
the sequential game α;β, game α is played first, then β from the resulting state (unless a
player broke the rules during α). In the repetition game α∗, the active player chooses after
each repetition of α whether to continue playing, but repetitions must be well-founded and
thus terminating. The exact number of iterations does not need to be computed in advance
but can depend on the opponent’s moves. The dual game αd plays α with the active and
dormant roles reversed. We parenthesize games with braces {α} when necessary.

▶ Definition 3 (CdGL Formulas). The language of CdGL formulas ϕ, ψ, φ is given recursively
by the following grammar, where ∼ ∈{≤, <,=, ̸=, >,≥} are comparison predicates:

ϕ ::= ⟨α⟩ϕ | [α]ϕ | f ∼ g | α ≤ i
[ ] β

Modalities ⟨α⟩ϕ and [α]ϕ say Angel wins α with postcondition ϕ, starting as the active or
dormant player respectively. Modality ⟨α⟩ϕ is Angelic in the sense that decisions are resolved
Angelically: Angel is the one currently making choices. Modality [α]ϕ is Demonic in the
sense that decisions are resolved Demonically: Angel has no control until a dual operator
is encountered. We will deal mainly in box modalities [α]ϕ, with Angel’s moves appearing
inside dualities αd and Demon’s moves outside dualities.

To define refinements, we introduce the rank R(α or ϕ) of a game or formula, a technical
device which represents the smallest predicative universe in which α has a semantics, see
Section 4. Game refinements come in two standard [28] kinds: Angelic and Demonic. Demonic
refinement α ≤ i

[ ] β of rank i holds if for every ϕ with R(ϕ) ≤ i, dormant winning strategies of
[α]ϕ can be mapped constructively into winning strategies of [β]ϕ. Angelic refinement α ≤ i

⟨⟩ β

maps active winning strategies of ⟨α⟩ϕ constructively into winning strategies of ⟨β⟩ϕ. Note
this difference carefully: Angelic refinement may be more familiar to the reader, but we take
the Demonic presentation as primary, in large part because the theorems we wish to prove
are Demonic. Angelic and Demonic refinement are interdefinable: α ≤ i

⟨⟩ β ↔ αd ≤ i
[ ] β

d and
vice versa. You may wish to ignore rank on the first reading: it can be inferred automatically,
and we write α ≤[ ] β when rank is unimportant.

The standard connectives of first-order constructive logic are definable from games and
comparisons. Verum (tt) is defined 1 > 0 and falsum (ff) is 0 > 1. Conjunction ϕ ∧ ψ is
defined ⟨?ϕ⟩ψ, disjunction ϕ∨ψ is ⟨?ϕ∪?ψ⟩tt, implication ϕ → ψ is [?ϕ]ψ, universal quantifi-
cation ∀xϕ is defined [x := ∗]ϕ, and existential quantification ∃xϕ is ⟨x := ∗⟩ϕ. Equivalence
ϕ ↔ ψ is (ϕ → ψ) ∧ (ψ → ϕ). As usual in constructive logics, negation ¬ϕ is defined ϕ → ff,
and inequality is defined by f ̸= g ≡ ¬(f = g). The defined game skip is the trivial test
?tt. While these constructs are derivable, and thus it suffices to provide semantics and
proof rules for the core constructs, we find it useful to consider the core and derived forms
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syntactically distinct. It will also aid in understanding of the semantics to keep the definitions
above in mind, because the semantics for many first-order programs mirror those from their
counterpart in first-order constructive logic.

3.2 Example Game
As a simple example, consider a push-pull cart [46] on a 1 dimensional playing field with
boundaries xl ≤ x ≤ xr where x is the position of the cart and xl < xr strictly. The initial
position is written x0. These preconditions are in formula pre. Demon is at the left of the cart
and Angel at its right. Each player chooses to pull or push the cart, then the (oversimplified)
physics say velocity is proportional to the sum of forces. Physics can evolve so long as the
boundary xl ≤ x ≤ xr is respected, with duration chosen by Demon.

pre ≡ xl < xr ∧ xl ≤ x0 = x ≤ xr

PP ≡ {{L := −1 ∪ L := 1}; {R := −1 ∪R := 1}d; {x′ = L+R&xl ≤ x ≤ xr}}∗

A simple safety theorem for the push-pull game says that Angel has a strategy to ensure
position x remains constant (x = x0) no matter how Demon plays:

pre → [PP]x = x0 (1)

The winning strategy that proves (1) is a simple mirroring strategy: Angel observes Demon’s
choice of L and plays the opposite value of R so that L+R = 0. Because L+R = 0, the
ODE simplifies to x′ = 0 &xl ≤ x ≤ xr, which has the trivial solution x(t) = x(0) for all
times t ∈ R≥0. Angel shows the safety theorem by replacing the ODE with its solution and
observing that x = x0 holds for all possible durations.

In addition to solution reasoning, CdGL supports differential invariant [46] reasoning
which appeals to the derivative of a term and differential ghost [46] reasoning which augments
an ODE with a new continuous variable. Solution reasoning suffices for this toy example,
but invariant reasoning is essential for CdGL games whose ODEs have non-polynomial, even
non-elementary solutions. Ghost reasoning allows proving differential invariants which are
not inductive [47], which cannot be proved otherwise [43]. For these reasons, our proof
calculus (Section 5) includes solution, invariant, and ghost rules.

In contrast to a safety theorem, a liveness theorem would be shown by a progress argument.
Suppose that Angel could set L = 2 but Demon can only choose R ∈ {−1, 1}. Then Angel’s
liveness theorem might say she can achieve x = xr if she as allowed to choose ODE duration,
because the choice L = 2 ensures at least 1 unit of progress in x for each unit of time.

4 Type-theoretic Semantics

We generalize the type-theoretic semantics of CdGL [11]. We define the semantics of the new
refinement formulas α ≤ i

[ ] β and employ an infinite tower of type universes, in support of
refinements. We first give our assumptions on the underlying type theory.

4.1 Type Theory Assumptions
We assume a Calculus of Inductive and Coinductive Constructions (CIC)-like type the-
ory [17, 18, 50] with dependency and an infinite tower of cumulative predicative universes.
Predicativity is essential because our semantics are a large elimination, which would interact
dangerously with impredicative quantification. We assume first-class anonymous constructors
for (indexed [21]) inductive and coinductive types. We write M,N for type-theoretic terms,
τ for type families, and κ for kinds (those type families inhabited by other type families).
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We write Πx : τ1. τ2 for a dependent function type with argument named x of type τ1
where return type τ2 may mention x. We write Σx : τ1. τ2 for a dependent pair type with left
component named x of type τ1 and right component of type τ2, possibly mentioning x. These
specialize to the simple types τ1 ⇒ τ2 and τ1 * τ2 respectively when x is not mentioned in τ2.
Lambdas (λx : τ. M) inhabit dependent function types. Pairs (M,N) inhabit dependent pair
types. Let-binding unpacks pairs and πLM and πRM are left and right projection. We write
τ1 + τ2 for disjoint unions inhabited by ℓ ·M and r ·M, and write case A of ℓ ⇒ B | r ⇒ C

for case analysis for τ1 + τ2, where ℓ and r are variables over proofs.
We assume a type R for real numbers and type S for Euclidean state vectors supporting

scalar and vector sums, products, scalar inverses, and units. States s, ŝ : S assign values
to every variable x ∈ V and support the operations s x for retrieving the value of x and
set s x v for updating the value of x to v. Likewise, set s (x, y) (v, w) sets both x and y to v
and w, respectively. The usual axioms of setters and getters [26] are satisfied.

We write Ti for the i’th predicative universe. We use P,Q : S ⇒ Ti for variables over
regions, e.g., the interpretations of formulas. Inductive type families are written µP : κ. τ,
which denotes the smallest solution ty of kind κ to the fixed-point equation ty = [ty/P ]τ.
Coinductive type families are written ρP : κ. τ, which denotes the largest solution ty of kind
κ to the fixed-point equation ty = [ty/P ]τ. The type expression τ must be monotone in
P to ensure that smallest and largest solutions exist, per Knaster-Tarski [29, Thm. 1.12].
Monotonicity of τ will require inductive proof in our case.

4.2 Semantics of CdGL
The interpretation of terms f, g as functions of type S ⇒ R is standard. Games α and
formulas ϕ require a notion of rank R(α or ϕ) indicating the smallest universe where α or ϕ
has semantics. Universes are cumulative, so the semantics also belong to all universes Ti such
that i ≥ R(α). Refinement quantifies over types of a lower universe, which is predicative.
A refinement formula’s rank is given by its annotation: R(α ≤ i

[ ] β) = 1 + i, requiring
R(α),R(β) ≤ i. In all other cases, the rank is the maximum of ranks of subexpressions.

Formulas ϕ are interpreted as predicates over states, i.e., type families ⌜ϕ⌝ : S ⇒ TR(ϕ).
We say the formula ϕ is valid if there exists a CIC term M : (Πs : S. ⌜ϕ⌝ s). CIC term M is
allowed to inspect state s, but only using computable operations. A natural deduction sequent
(Γ ⊢ ϕ) is valid iff implication formula

∧
Γ → ϕ with conjunction

∧
Γ is valid. The formula

semantics are defined in terms of the active and dormant semantics of games, which determine
how Angel wins a game α whose postcondition is a formula ϕ whose semantics are the goal
region ⌜ϕ⌝ (variable P in Definition 5). We write ⟨⟨α⟩⟩ : (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) for
the active semantics of α and [[α]] : (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) for its dormant semantics,
which capture Angel’s winning strategies when Angel is active or dormant, respectively. In
contrast to classical game logics, the diamond and box modalities are not interdefinable
constructively. The rank of an expression is only relevant in the refinement cases.

▶ Definition 4 (Formula semantics). Interpretation ⌜ϕ⌝ : S ⇒ TR(ϕ) is defined by

⌜[α]ϕ⌝ s = [[α]] ⌜ϕ⌝ s
⌜⟨α⟩ϕ⌝ s = ⟨⟨α⟩⟩ ⌜ϕ⌝ s ⌜f ∼ g⌝ s =

(
(f s) ∼ (g s)

)
⌜
α ≤ i

[ ] β
⌝
s =

(
ΠP : (S ⇒ Ti).

(
[[α]] P s ⇒ [[β]] P s

))
The modality ⟨α⟩ϕ is true in state s when active Angel has a strategy ⟨⟨α⟩⟩ ⌜ϕ⌝ s for game α
from state s to reach the region ⌜ϕ⌝ on which ϕ has a proof. The modality [α]ϕ is true in state
s when dormant Angel has a strategy [[α]] for game α from state s to reach the region ⌜ϕ⌝ on
which ϕ has a proof. For comparison operators ∼ ∈ {≤, <,=, ̸=, >,≥}, the values of f and
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g are compared at state s. Game α demonically refines β (α ≤[ ] β) from a state s if for all
goal regions P there exists an effective mapping from dormant strategies [[α]] P s to dormant
strategies [[β]] P s. The (defined) meaning of angelic refinement α ≤⟨⟩ β is symmetric using
diamond semantics ⟨⟨α⟩⟩. That is, refinements may depend on the state (they are local or
contextual), but must hold for all goal regions P , as refinements consider the general game
form itself, not a game fixed to a particular postcondition. Because refinement formulas are
first-class, quantifiers may appear nested and in arbitrary positions, not necessarily prenex
form. We ensure predicativity by requiring that refinements quantify only over postconditions
of lower rank. Rank can be inferred in practice by inspecting a proof: each rank annotation
need only be as large as the rank of every postcondition in every application of rules R⟨·⟩
and R[·] from Section 5.

The semantics of games are simultaneously inductive with those for formulas and with
one another. In each case, the connectives which define [[α]] and ⟨⟨α⟩⟩ are duals, because [α]ϕ
and ⟨α⟩ϕ are dual. Below, P is the goal region and s is the initial state.

▶ Definition 5 (Active semantics). The active interpretation ⟨⟨α⟩⟩ of the hybrid game α has
kind (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) and is defined by

⟨⟨?ψ⟩⟩ P s = ⌜ψ⌝ s * P s

⟨⟨x := f⟩⟩ P s = P (set s x (f s))
⟨⟨x := ∗⟩⟩ P s = Σv : R. (P (set s x v))
⟨⟨α ∪ β⟩⟩ P s = ⟨⟨α⟩⟩ P s + ⟨⟨β⟩⟩ P s

⟨⟨α;β⟩⟩ P s = ⟨⟨α⟩⟩ (⟨⟨β⟩⟩ P ) s

⟨⟨αd⟩⟩ P s = [[α]] P s

⟨⟨x′ = f &ψ⟩⟩ P s = Σd : R≥0.Σsol : ([0, d] ⇒ R).
(sol, s, d ⊨ x′ = f)

* (Πt : [0, d]. ⌜ψ⌝ (set s x (sol t)))

*P
(
set s (x, x′)

(sol d, f (set s x (sol d)))
)

⟨⟨α∗⟩⟩ P s =
(
µQ : (S ⇒ TR(α)). λŝ : S. (P ŝ ⇒ Q ŝ) + (⟨⟨α⟩⟩ Q ŝ ⇒ Q ŝ)

)
s

Angel wins ?ψ by proving both ψ and P at s. Angel wins the deterministic assignment
x := f by executing it, then proving P . Angel wins nondeterministic assignment x := ∗
by choosing a new value v, then proving P . Angel wins α ∪ β by choosing to play game
α or β, then winning it. Angel wins α;β by winning α with the postcondition of winning
β. Angel wins αd if she wins α in the dormant role. Angel wins ODE game x′ = f &ψ

by choosing some solution y of some duration d for which she proves domain constraint ψ
throughout and the goal region P at time d. While top-level postconditions rarely mention
x′, intermediate proof steps do, thus x and x′ are both updated in the postcondition. The
construct (sol, s, d ⊨ x′ = f) says sol solves x′ = f from state s for time d [12, App. A].
Active Angel strategies for α∗ are inductively defined: either stop the loop and prove P now,
else play a round of α and repeat inductively. By Knaster-Tarski [29, Thm. 1.12], this least
fixed point exists since games’ semantics are monotone in the postcondition [11, Lem. 7].

▶ Definition 6 (Dormant semantics). The dormant interpretation [[α]] of the hybrid game α
has kind (S ⇒ TR(α)) ⇒ (S ⇒ TR(α)) and is defined by

[[?ψ]] P s = ⌜ψ⌝ s ⇒ P s

[[x := f ]] P s = P (set s x (f s))
[[x := ∗]] P s = Πv : R. (P (set s x v))
[[α ∪ β]] P s = [[α]] P s * [[β]] P s

[[α;β]] P s = [[α]] ([[β]] P ) s

[[αd]] P s = ⟨⟨α⟩⟩ P s

[[x′ = f &ψ]] P s = Πd : R≥0.Πsol : ([0, d] ⇒ R).
(sol, s, d ⊨ x′ = f)

⇒
(
Πt : [0, d]. ⌜ψ⌝ (set s x (sol t))

)
⇒P

(
set s (x, x′)

(sol d, f (set s x (sol d)))
)

[[α∗]] P s =
(
ρQ : (S ⇒ TR(α)). λŝ : S. (Q ŝ ⇒ [[α]] Q ŝ) * (Q ŝ ⇒ P ŝ)

)
s
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Angel wins ?ψ by proving P under assumption ψ, which Demon must provide. Deterministic
assignment is unchanged. Angel wins x := ∗ by proving P for every choice of x. Angel
wins α ∪ β with a pair of winning strategies, since Demon chooses whether to play α or β.
Angel wins α;β by winning α with a postcondition of winning β. Angel wins αd if she can
win α actively. Angel wins x′ = f &ψ if for an arbitrary duration and arbitrary solution
which satisfy the domain constraint, Angel can prove the postcondition. Dormant repetition
strategies are coinductive using some invariant region Q. When Demon decides to stop the
loop, Angel responds by proving P from Q. Whenever Demon chooses to continue, Angel
proves that Q is preserved. Greatest fixed points exist by Knaster-Tarski [29, Thm. 1.12]
using monotonicity [11, Lem. 7].

In general, Angel strategies are constructive but permit Demon to play classically. In the
cyber-physical setting, Demon is indeed rarely a computer.

5 Refinement Proof Calculus

We give a natural deduction calculus for hybrid game refinements. Refinement is relative to
a context Γ of CdGL formulas, which may include refinements. All rules are expressed as
Demonic refinements α ≤ i

[ ] β, but an Angelic refinement α ≤ i
⟨⟩ β is supported by refining

the duals αd ≤ i
[ ] β

d. Remember that in a Demonic refinement, the Angelic (existential)
connectives appear under dualities αd. We write α ∼= β for α ≤[ ] β ∧ β ≤[ ] α. Recall that
hybrid systems are hybrid games which do not contain the dual operator αd.

The refinement elimination rules R⟨·⟩ and R[·] say every true postcondition ϕ of a game
α is a true postcondition of every β which α refines. The side condition for R⟨·⟩ and R[·] is
that R(ϕ) ≤ i where i is the rank annotation of the refinement. These are the only rules
which care about rank, so ranks can be inferred from proofs by inspecting the uses of these
rules. While rank is of little practical import, it ensures a predicative formal foundation.

Figure 1 gives the refinement rules for discrete connectives. Soundness of game refinement
rules is subtle because games are subnormal. Sound game refinement rules can be divided into
two classes: either refine games globally by requiring an empty context (;G), or restrict some
subgames to be systems (;S). The formal approach follows game algebra [28] and is required
when comparing two games. The latter approach generalizes dRL [36] and is necessary when
reifying sequential games. By combining both approaches, our calculus is strictly more
complete than both game algebra and dRL. Unlike dRL [36], we face the challenge that game
logics are subnormal and subregular [30]: For a game α, formula [α](ϕ ∧ ψ) need not hold
when both [α]ϕ and [α]ψ do.

Bold variables only range over systems, e.g., α and α1 in rules ;S and un∗. One sequence
refines another piecewise in the ;S rule, which is contextual: refinement of the second
component exploits the fact that the first component has been executed. Rule ;G is a variant
of ;S which says α1 can be an arbitrary game, but only if β1 ≤[ ] β2 holds in the empty
context. System α1 in the second premiss of ;S could soundly be α2, but in practical proofs it
is often more convenient to work with [α1] because it is a system modality, which is normal.
Rules ⟨?⟩ and [?] refine tests by weakening or strengthening test conditions. The left and
right rules for choices are dual. Rules ⟨∪⟩R1 and ⟨∪⟩R2 say each branch refines an Angelic
choice, while [∪]R says a Demonic choice is refined by refining both branches. Rules ⟨:∗⟩
and [:∗] say that deterministic assignments refine nondeterministic ones. Rule un∗ compares
loops by comparing their bodies and rolll allows unrolling a loop before refining. Rules skipd,
:=d, and ;d say skip and x := f are self-dual and the dual of a sequence is a sequence of duals.
Double duals cancel by DDE.
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R⟨·⟩
Γ ⊢ ⟨α⟩ϕ Γ ⊢ α ≤ i

⟨⟩ β

Γ ⊢ ⟨β⟩ϕ
1

;S
Γ ⊢ α1 ≤[ ] α2 Γ ⊢ [α1]β1 ≤[ ] β2

Γ ⊢ α1;β1 ≤[ ] α2;β2
2

;G
Γ ⊢ α1 ≤[ ] α2 · ⊢ β1 ≤[ ] β2

Γ ⊢ α1;β1 ≤[ ] α2;β2

[∪]L1 Γ ⊢ α ∪ β ≤[ ] α

[∪]L2 Γ ⊢ α ∪ β ≤[ ] β

[∪]R
Γ ⊢ α ≤[ ] β Γ ⊢ α ≤[ ] γ

Γ ⊢ α ≤[ ] β ∪ γ

⟨:∗⟩ Γ ⊢ x := fd ≤[ ] x := ∗d

[:∗] Γ ⊢ x := ∗ ≤[ ] x := f

R[·]
Γ ⊢ [α]ϕ Γ ⊢ α ≤ i

[ ] β

Γ ⊢ [β]ϕ
2

⟨?⟩
Γ ⊢ ϕ → ψ

Γ ⊢?ϕd ≤[ ]?ψd

[?]
Γ ⊢ ψ → ϕ

Γ ⊢?ϕ ≤[ ]?ψ
⟨∪⟩R1 Γ ⊢ αd ≤[ ] {α ∪ β}d

⟨∪⟩R2 Γ ⊢ βd ≤[ ] {α ∪ β}d

⟨∪⟩L
Γ ⊢ αd ≤[ ] γ Γ ⊢ βd ≤[ ] γ

Γ ⊢ {α ∪ β}d ≤[ ] γ

un∗
Γ ⊢ [α∗](α ≤[ ] β)

Γ ⊢ α∗ ≤[ ] β
∗

2

rolll Γ ⊢ skip ∪ {α;α∗} ∼= α∗

skipd skipd ∼= skip ;d {α;β}d ∼= αd;βd :=d x := fd ∼= x := f DDE {αd}d ∼= α

1 assuming R(ϕ) ≤ i
2 α1 respectively α is a hybrid system

Figure 1 Refinement of discrete connectives.

trans
Γ ⊢ α ≤[ ] β Γ ⊢ β ≤[ ] γ

Γ ⊢ α ≤[ ] γ

refl Γ ⊢ α ≤[ ] α

;idl Γ ⊢ {skip;α} ∼= α

;idr Γ ⊢ {α; skip} ∼= α

annihl Γ ⊢?ff;α ∼= ?ff

:=nop Γ ⊢ {x := x} ∼= skip

;dr Γ ⊢ {α ∪ β}; γ ∼= {α; γ} ∪ {β; γ}

;A Γ ⊢ {α;β}; γ ∼= α; {β; γ}

:=:= Γ ⊢ x := f ;x := g ∼= x := g 1

∪A Γ ⊢ {α ∪ β} ∪ γ ∼= α ∪ {β ∪ γ}

∪c Γ ⊢ α ∪ β ∼= β ∪ α

∪idem Γ ⊢ α ∪ α ∼= α

1 for x /∈ FV(g)

Figure 2 Algebraic rules (selected).
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DC
Γ ⊢ [x′ = f &ϕ]ψ

Γ ⊢ {x′ = f &ϕ} ∼= {x′ = f &ϕ ∧ ψ}
DW Γ ⊢ {x := ∗;x′ := f ; ?ψ} ≤[ ] {x′ = f &ψ}

solve
Γ ⊢ [t := ∗; ?0 ≤ t ≤ d;x := sln]ψ

Γ, t = 0, d ≥ 0 ⊢ {t := d;x := sln; t′ := 1;x′ := f} ≤[ ] {t′ = 1, x′ = f &ψ}d
1

DG Γ ⊢ {y := f0;x′ = f, y′ = a(x)y + b(x) &ψ} ≤[ ] {x′ = f &ψ; {y := ∗; y′ := ∗}d}

1 sln solves ODE, {t, t′, x, x′} ∩ FV (d) = ∅

Figure 3 Differential equation refinements.

The rules in Figure 2 are selected algebraic properties which will be used in the proof of
Theorem 10. These rules generalize known game equalities [28] to refinement. Some rules
of dRL [36] are reused here, but other rules of dRL, such as those for repetitions α∗ are not
sound for arbitrary games. Rules refl and trans say refinement is a partial order. Sequential
composition has identities (;idl and ;idr). Rule :=:= deduplicates a double assignment if
the first assignment does not influence the second: FV(f) are the free variables mentioned
in f . Choice (∪A) and sequence (;A) are associative, and choice is commutative (∪c) and
idempotent (∪idem), while sequence is right-distributive (;dr). Impossible tests can annihilate
any following program (annihl). Assigning a variable to itself is a no-op (:=nop).

Figure 3 gives the ODE refinement rules. Differential cut DC says the domain constraints
ϕ and ϕ∧ψ are equivalent if ψ holds as a postcondition under domain constraint ϕ. Differential
weakening DW says an ODE is overapproximated by the program which assumes only the
domain constraint. Differential solution solve says that a solvable Angelic ODE x′ = f &ψ

with syntactic solution term sln is refined by a deterministic program which assigns the
solution to x after through which the domain constraint holds, specified by a term d which is
constant throughout the ODE. Here sln = (λs : S. (sol (s t))) is the term corresponding to
the semantic solution sol at time t. Differential ghosts DG soundly augments an ODE with
a fresh dimension y so long as the solution for y exists as long as that of x, and is known [47]
to enable proofs of otherwise unprovable [43] properties. The right-hand side for y is required
to be linear in y because this suffices to ensure sufficient duration. Axiom DG is not an
equivalence because linear ODEs do not suffice to reach every of the nondeterministically
assigned final values for y and y′ [42].

6 Theory

We develop theoretical results about CdGL refinements: soundness and the relationship
between games and systems. Proofs are in a companion report [12].

6.1 Soundness
The sine qua non condition of any logic is soundness. We show that every formula provable
in the CdGL refinement calculus is true in the type-theoretic semantics.

▶ Theorem 7 (Soundness). If Γ ⊢ ϕ is provable then the sequent (Γ ⊢ ϕ) is valid.

6.2 Reification
A game α describes what actions are allowed for each player but not how Angel selects
among them given an adversarial Demon. Every game modality proof, whether of [α]ϕ or
⟨α⟩ϕ, lets Demon make arbitrary (universally-quantified) moves within the confines of the
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game, and describes Angel’s strategy to achieve a given postcondition ϕ. Whereas a given
game can contain both Angelic and Demonic choices, a system can only contain one or the
other: modality [α]ϕ treats a system α as Demonic while ⟨α⟩ϕ treats a system as Angelic.

A folklore theorem describes the relation between hybrid games and hybrid systems:
given a proof (winning strategy) for a hybrid game, one can reify Angel’s strategy to produce
a hybrid system which implements that strategy. The constructivity of CdGL ensures that
Angel’s choices are implementable by computable functions. Since Demonic choices survive
reification, it is simplest to work with Demonic game modalities [α]ϕ here, but every Angelic
game modality ⟨α⟩ϕ could equivalently be expressed as [αd]ϕ. In this section, we formally
define the reification operation and prove its relation to the source game using refinements
and a derivation A in the CdGL (non-refinement) proof calculus. For the sake of space, we
present CdGL rules informally as we define reification. Our presentation differs in insignificant
ways from the full calculus from prior work [11]; it is convenient for our purposes that
premisses eliminate as many connectives as possible, as is common in natural-deduction style.
Let A be a CdGL proof of some CdGL formula [α]ϕ in context Γ, i.e., let Γ ⊢ A : [α]ϕ. We
then write A⇝ α to say the (unique) result of reifying the strategy given by A into hybrid
game α is the hybrid system α. The system α needs to commit to Angel’s strategy according
to A while retaining all available choices of Demon. What properties ought α satisfy?

Committing to a safe Angel strategy should never make the system less safe. The safety
postcondition ϕ should transfer to α, i.e., the following property should hold:

If Γ ⊢ A : [α]ϕ and A⇝ α then (Γ ⊢ [α]ϕ) is provable.

Transfer alone does not capture reification, e.g., defining α = ?ff for all α and A would
vacuously satisfy the transfer property but certainly not capture the meaning of strategy A.

We, thus, guarantee a converse direction. The reified hybrid system α is a safety
refinement of hybrid game α, so every postcondition ψ satisfying [α]ψ also satisfies [α]ψ:

If Γ ⊢ A : [α]ϕ and A⇝ α then (Γ ⊢ α ≤[ ] α) is provable.

Intuitively, [α]ψ says postcondition ψ holds for every Demon behavior of α, while [α]ψ
holds if there exists an Angel strategy that ensures ψ for every Demon behavior of α.
Since derivation A is designed to satisfy ψ, there certainly exists a strategy that satisfies ψ.
Refinement captures the notion that Angelic choices in α are made more strictly than in α,

while Demonic choices are only made more loosely.
Even transfer and refinement do not fully validate the reification operation, since defining

α = α suffices to ensure both. This leads to a third, most obvious property: α must be a
system when α is a game. Not only are systemhood, transfer, and refinement all desirable
properties for reification, but their combination is an appealing specification because there
is no trivial operation which satisfies all three. If the above three properties hold, they
also imply a sound version of the normal modal logic axiom K that is elusive in games:
If Γ ⊢ A : [α]ϕ and Γ ⊢ [α]ψ is provable for A ⇝ α, then Γ ⊢ [α](ϕ ∧ ψ) is provable.
Additionally, transfer and systemhood suggest that game synthesis can “export” a game
proof to a systems proof, for which synthesis tools already exist [39, 13]. We discuss some
technicalities first.

Technicalities

Reification accepts a CdGL proof and returns a system. In each case of its inductive definition,
we write A,B, C for the proofs of each premiss and α,β,γ for corresponding output systems.
For simplicity, we reify nested modalities: reifying a proof of [α1][α2]ϕ results in a system α
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which refines α1;α2. Angelic programs are represented by duality αd and the reification of
first-order ϕ is a no-op skip. This style is interchangeable with normal-form CdGL proofs; we
elide the duality ([αd]ϕ ↔ ⟨α⟩ϕ) and skip ([skip]ϕ ↔ ϕ) steps which convert between the two.
Prior work [10] shows case-analysis, which is not canonical, is sometimes normal because
state-dependent cases are decided only at runtime. Normal case analyses are analogous to
case-tree normal forms in lambda calculi with coproducts [3]. Normal forms of (classical)
ODE proofs have been characterized [9]. We call a game system-test if all its tests and
domain constraints are system-test formulas. A formula is system-test if all modalities it
mentions are box system modalities, while a proof is system-test if every context in its proof
tree contains only system-test formulas. For the sake of defining system-test, the first-order
propositional connectives are considered distinct from game modalities, rather than defined,
i.e., first-order arithmetic expressions are permissible in the system-test fragment. Restricting
reification to the system-test fragment ensures the reification of the hypothesis rule hyp is
a system. System-test is stronger than weak-test (no modalities in tests) but weaker than
strong-test (arbitrary modalities in tests). In the proof rules that follow, · y

x is the renaming
of variable x to (usuallly fresh) variable y in a term, formula, game, or context.

Definitions

We define reification. Reification A ⇝ α is defined inductively on box CdGL proofs of
system-test games. We first give the reification of case-analysis and hypothesis proofs, the
only two normal proofs which are not introduction forms. In ∨E, A proves some first-order
disjunction ϕ ∨ ψ, since proper choice game modalities ⟨α ∪ β⟩ are not permitted in system-
test, normal-form proofs. In ∨E, the reified systems for the second and third premiss are β

and γ, likewise in every rule.

hyp
(if [α]ϕ ∈ Γ)

Γ ⊢ [α]ϕ ⇝ α ∨E
Γ ⊢ ϕ ∨ ψ Γ, ϕ ⊢ φ Γ, ψ ⊢ φ

Γ ⊢ φ
⇝ {?ϕ; β} ∪ {?ψ; γ}

Hypothesis proofs do not give a concrete strategy for α and thus trivially refine α to itself.
Case analysis allows Demon to choose either branch, so long as it is provable. The output is
nondeterministic if ϕ and ψ are not mutually exclusive. Both ϕ and ψ are game-free in the
system-test fragment and, in practical proofs, even quantifier-free first-order arithmetic. We
first give the discrete Angelic cases, which plug in the specific Angel strategy from proof A.

⟨[:=]⟩I
Γ y

x
, x = f y

x
⊢ ϕ

Γ ⊢ [{x := f}d]ϕ⇝ x := f ; α ⟨:∗⟩I
Γ y

x
, x = f y

x
⊢ ϕ

Γ ⊢ [{x := ∗}d]ϕ⇝ x := f ; α ⟨?⟩I
Γ ⊢ ϕ Γ ⊢ ψ

Γ ⊢ [{?ϕ}d]ψ ⇝ β

⟨[;]⟩I
Γ ⊢ [αd][βd]ϕ
Γ ⊢ [{α;β}d]ϕ⇝ α ⟨∪⟩IL

Γ ⊢ [αd]ϕ
Γ ⊢ [{α ∪ β}d]ϕ⇝ α ⟨∪⟩IR

Γ ⊢ [βd]ϕ
Γ ⊢ [{α ∪ β}d]ϕ⇝ α

⟨∗⟩I

Γ ⊢ φ

φ,M ≻ 0 ∧ M0 = M ⊢ [αd](φ ∧ M0 ≻ M) φ,0 ≽M ⊢ ϕ

Γ ⊢ [{α∗}d]ϕ ⇝ {?M ≻ 0; β}∗; ?0 ≽M; γ

Discrete assignments remain in the output. Nondeterministic assignments are proved by
providing a witness term f (rule ⟨:∗⟩), which is preserved by the inductive call α. Subtly,
Angelic tests can be eliminated by ⟨?⟩ because they are proven to succeed and because
we wish only to keep tests which Demon is required to pass. A normal-form proof for a
sequential composition α;β proves α with β in the postcondition. Normal Angelic choice
proofs are injections, so Angelic proofs reify by ⟨∪⟩R1 or ⟨∪⟩R2 according to one branch or
the other. Normal Angelic repetition proofs are by convergence: some metric M decreases to
terminal value 0 while maintaining invariant formula φ. Variable M0 remembers the value
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of M at the start of each loop iteration for comparison purposes. Hybrid systems loops are
nondeterministic, so Demon chooses the loop duration, but the Demonic test M ≻ 0 must
pass at each repetition and 0 ≽M must pass at the end, determinizing the loop duration.

To reify a discrete Demonic connective, we do not restrict Demon’s capabilities, but
recursively traverse the proof so that Angelic proofs can be reified.

⟨[:=]⟩I
Γ y

x , x = f y
x ⊢ ϕ

Γ ⊢ [x := f ]ϕ ⇝ x := f ; α [:∗]
Γ y

x ⊢ ϕ

Γ ⊢ [x := ∗]ϕ⇝ x := ∗; α ⟨[;]⟩I
Γ ⊢ [α][β]ϕ
Γ ⊢ [α;β]ϕ ⇝ α

[?]I
Γ, ψ ⊢ ϕ

Γ ⊢ [?ψ]ϕ⇝?ψ; α [∪]I
Γ ⊢ [α]ϕ Γ ⊢ [β]ϕ

Γ ⊢ [α ∪ β]ϕ ⇝ α ∪ β [∗]I
Γ ⊢ ψ ψ ⊢ [α]ψ ψ ⊢ ϕ

Γ ⊢ [α∗]ϕ ⇝ β∗; γ

Nondeterministic Demonic assignments, unlike Angelic ones, are not modified during reifi-
cation, because Demon retains the power to choose any value. Demonic tests introduce
assumptions, and must continue to do so in the reification system to avoid changing the
acceptable behavior. Demonic sequential compositions are like Angelic ones. Demonic choices
refine each branch. Note that reification of games with form {α ∪ β}; γ follows distributive
normal forms {α; γ} ∪ {β; γ}, which are equivalent by ;dr. Demonic repetitions keep the
loop, recalling that the coinductive loop invariant ψ justifies the postcondition by premiss C.

We give the reification cases for ODEs. The reification of an invariant-based Demonic proof
(dc and dw) is a relaxation of the ODE: the reified system need not follow the precise behavior
of the ODE so long as all invariants required for the proof are obeyed. Indeed, this is where
proof-based synthesis in ModelPlex [39] gains much of its power: real implementations never
follow an ODE with perfect precision, but usually do follow its invariant-based relaxation.

⟨′⟩

Γ ⊢ d ≥ 0 Γ y
x , 0 ≤ t ≤ d, x = sln y

x , x
′ = f ⊢ ψ

Γ y
x , 0 ≤ t = d, x = sln y

x , x
′ = f ⊢ ϕ

Γ ⊢ [t := 0; {t′ = 1, x′ = f &ψ}d]ϕ ⇝ t := d;x := sln;x′ := f ; γ

[′]
Γ y

x , t ≥ 0, ψ̂, x = sln y
x , x

′ = f ⊢ ϕ

Γ ⊢ [t := 0; {t′ = 1, x′ = f &ψ}]ϕ ⇝ t := 0; {t′ = 1, x′ = f &ψ}; α

dw
Γ y

x , ψ ⊢ ϕ

Γ ⊢ [x′ = f &ψ]ϕ⇝ x := ∗;x′ := f ; ?ψ; α

dc
Γ ⊢ [x′ = f &ψ]φ Γ ⊢ [x′ = f &ψ ∧ φ]ϕ

Γ ⊢ [x′ = f &ψ]ϕ ⇝ β

dg
Γ, y = f0 ⊢ [x′ = f, y′ = a(x)y + b(x) &ψ]ϕ

Γ ⊢ [x′ = f &ψ; {y := ∗; y′ := ∗}d]ϕ ⇝ y := f0; α

Variable y is fresh in ⟨′⟩, [′], and dg. In ⟨′⟩, the side condition requires that y is fresh, term
sln is the unique solution of the ODE, and chosen duration term d is constant throughout the
ODE. The Angelic domain constraint is comparable to an Angelic test: it is soundly omitted
in the reification because it is proven to pass. In Demonic ODE solutions ([′]), the duration
and domain constraint are assumptions, and formula ψ̂ ≡ ∀0 ≤ s ≤ t [t := s;x := sln]ψ says
the domain constraint ψ holds through time t where s is fresh. Since our ODEs are Lipschitz,
they have unique solutions and Demon could reify the unique solution of the ODE, as does
case (⟨′⟩). There is no obvious benefit to doing so, except that the reified system would fall
within discrete dynamic logic. Differential Cut (dc) reification introduces an assumption
in the domain constraint, and is sound by DC. By itself, dc strengthens a program, but in
combination with dw enables relaxation of ODEs. Differential Weakening (dw) relaxes an
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ODE by allowing x and x′ to change arbitrarily so long as the domain constraint ψ (and thus
invariants introduced by dc) remain true. Differential Ghost (dg) introduces a dimension to
the ODE and reifies according to the recursive call. The introduced dimension is linear in
order to soundly preserve the duration of the ODE. Assignment y := f0 sets the initial value
of the ghost variable to a chosen term.

Reification Example

Recall example PP and its safety property (1). Let APP be the proof of (1) with a mirroring
strategy described in Section 3.2. Then the reified result αPP is

αPP =
{

{L := −1;R := 1;x′ = L+R&xl ≤ x ≤ xr}

∪{L := 1;R := −1;x′ = L+R&xl ≤ x ≤ xr}
}∗

which we discuss step-by-step. Demonic repetition reification just repeats the body. Reifying
a Demonic choice follows the structure of the proof, not the source program, hence the ODE
occurs for each branch. Each branch commits to a choice of L, and each branch of APP resolves
the Angelic choice R to balance out L. When reifying an Angelic choice, only the branch
taken is emitted. In αPP, we assume that APP proves the ODE x′ = L+R&xl ≤ x ≤ xr by
replacing it with its solution, which is why the ODE appears verbatim in the refined system.
A differential invariant proof could also be used with a differential cut (DC) of x = x0, in
which case physics are represented by the program x := ∗;x′ := ∗; ?xl ≤ x ≤ xr ∧ x = x0 in
the result of reification. Different proofs generally give rise to different systems, some of which
are less restrictive than others. Differential invariants, especially inequational invariants,
(x ≥ x0 vs. x = x0) can be more easily monitored with finite-precision numbers.

Note that the system αPP is a refinement of PP and satisfies the same safety theorem
pre → [αPP]x = x0. Next, we show that this is the case for all reified strategies.

Metatheoretic Results

We state theorems (proven in our report [12]) showing how the reification of a game α refines
α. Recall that Γ, α, ϕ, and A are in the system-test fragment of CdGL.

▶ Theorem 8 (Systemhood). If Γ ⊢ A : [α]ϕ for system-test Γ,A, and hybrid game α and
A⇝ α then α is a system, i.e., it does not contain dualities.

▶ Theorem 9 (Reification transfer). If Γ ⊢ A : [α]ϕ for system-test Γ,A, and hybrid game α
and A⇝ α then Γ ⊢ [α]ϕ is provable in CdGL.

▶ Theorem 10 (Reification refinement). If Γ ⊢ A : [α]ϕ for system-test Γ,A, and hybrid game
α and A⇝ α then Γ ⊢ α ≤[ ] α is provable in CdGL.

Theorem 8 is proven by trivial induction on A. Theorem 9 is proven by inducting on A,
reusing its contents in a proof for α. Theorem 10 inducts on A and in each case appeals to
the corresponding refinement rule. The fact that Theorem 10 could be proved validates the
strength of CdGL’s refinement rules.

7 Conclusion

We developed a refinement calculus for Constructive Differential Game Logic (CdGL). Tech-
nical challenges in this development included the facts that game logic is subnormal and
that the constructive box and diamond modalities [α]ϕ and ⟨α⟩ϕ are not interdefinable.
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We introduced a new constructive semantics for refinement and proved soundness. We
formalized a reification operation and folklore theorem which reduce verified hybrid games
to hybrid systems by specializing a game to the commitments made by its winning strategy.
The immediate applications are synthesis tools and refinement-based proof tools for hybrid
games. Theorem 8 and Theorem 9 support synthesis by ensuring that the reified system is a
system which satisfies the same safety condition as the input game, which are respectively
required in order to use existing synthesis tools and to ensure an end-to-end safety guarantee.
Theorem 10 supports refinement-based proof technology: because the reified system refines
the input game, game safety can be shown by choosing a strategy and showing the strategy
safe. Once these tools are implemented, there are a wide array of applications studied in the
hybrid systems and hybrid games literature which would benefit from the modeling power
and synthesis guarantees that are possible with CdGL.

Our refinement calculus is of theoretical and practical interest beyond reducing games
to systems. We expect that refinements can be used to provide shorter proofs, to compare
the efficacy (dominance) of two strategies for the same game, and to determine when two
strategies or programs should be considered “the same”. These questions are worth pursuing
both for hybrid games and for games in general.
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