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Abstract
In this paper, we study the bicategory of profunctors with the free finite coproduct pseudo-comonad
and show that it constitutes a model of linear logic that generalizes the Scott model. We formalize
the connection between the two models as a change of base for enriched categories which induces a
pseudo-functor that preserves all the linear logic structure. We prove that morphisms in the co-Kleisli
bicategory correspond to the concept of strongly finitary functors (sifted colimits preserving functors)
between presheaf categories. We further show that this model provides solutions of recursive type
equations which provides 2-dimensional models of the pure lambda calculus and we also exhibit a
fixed point operator on terms.
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1 Introduction

1.1 Scott semantics and linear logic
Domain theory provides a mathematical structure to study computability with a notion
of approximation of information. The elements of a domain represent partial stages of
computation and the order relation represents increasing computational information. Among
the desired properties of the interpretation of a program are monotonicity and continuity, i.e.
the more a function has information on its input, the more it will provide information on its
output and any finite part of the output can be attained through a finite computation. These
features form the basis of Scott semantics of λ-calculus whose framework is Scott-continuous
functions (monotonous maps preserving directed suprema) between domains. A fundamental
property of Scott-continuous functions is that they admit a least fixed point which allows for
the study of recursively defined programs.

Linear logic (LL) arose from the analysis by Girard of denotational models of sys-
tem F (second order λ-calculus). It allows the study of how programs or proofs manage their
resources by using exponential modalities that distinguish linear arguments that can be used
exactly once and non-linear ones that can be used an arbitrary number of times [13]. One of
the most basic models of linear logic is the category of sets and relations Rel which provides
a quantitative semantics of LL as it allows to recover the number of times a program or a
proof uses its argument to compute a given output. In quantitative models of LL, non-linear
programs are thought of as analytic maps that are infinitely differentiable and represented
by power series which can be approximated by polynomials. Viewing programs as series,
a natural question was to understand the logical counterpart of differentiation, which led
Ehrhard and Regnier to introduce differential linear logic and the syntactic notion of Taylor
expansion which associates a formal sum of resource λ-terms to a given λ-term [7, 8].
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16:2 A Profunctorial Scott Semantics

Huth showed that the Scott model of λ-calculus can be extended to a model of LL where
the objects are prime algebraic complete lattices, the linear maps are functions preserving
all suprema and the co-Kleisli maps are Scott-continuous functions [14, 15]. Independently,
Winskel gave a simpler presentation based on preorders and ideal relations [22, 23]. In
both cases, the co-Kleisli category is equivalent to the category of prime algebraic complete
lattices and Scott-continuous functions between them. The obtained linear logic model
is qualitative in that it only provides information about which arguments were used to
compute a given output but not how many times. The qualitative Scott model is connected
to the quantitative differential relational model through an extensional collapse construction
discovered by Ehrhard [6]. This construction has been used in the context of intersection
types which characterize normalization properties of λ-calculus. The quantitative relational
model corresponds to a non-idempotent intersection type system whereas the qualitative
Scott model corresponds to an idempotent type system. The extensional collapse construction
provides a connection between the two type systems that allows to translate non-idempotent
normalization to the indempotent one [5].

1.2 Categorifying Scott semantics
When taking a categorical approach to domain theory, preorders are generalized to categories
and a morphism f : x→ y is now an explicit name to represent the fact that y contains more
computational information than x. This approach was extensively studied by Winskel among
others and has proved in many ways fruitful in the theory of concurrent computation [3, 24].
This analogy can be formalized in the setting of enriched categories. A preorder A = (|A| ,≤A)
corresponds to a category enriched over the two element lattice 2 = ({∅ ≤ 1},∧,1) where
for every a, a′ ∈ |A|, the homset A(a, a′) is equal to 1 if a ≤A a′ and is empty otherwise. A
2-functor between preorders A and B is simply an order-preserving function f : |A| → |B|
and the presheaf category of a preorder [Aop,2] corresponds to the set of down-closed subsets
of A ordered with by inclusion. An ideal relation between preorders A and B (a relation
up-closed in A and down-closed in B) corresponds to a monotone function A → [Bop,2].
Using the cartesian closed structure, it can be identified with a monotone map A×Bop → 2
which gives the direct correspondence with 2-profunctors.

Following this analogy, Cattani and Winskel showed that the bicategory of profunctors
with the finite colimit completion pseudo-comonad F forms a model of linear logic that
generalizes intuitions from the Scott model [3]. In their model, filtered colimits generalize
directed suprema and Scott-continuous functions correspond to finitary functors. More
recently, Fiore, Gambino, Hyland and Winskel used profunctors with the free symmetric
monoidal completion pseudo-comonad S and showed that it forms a differential model of
linear logic that generalizes the theory of combinatorial species of structures [10]. The
monoidal structure of the exponential modality S encodes linear substitution and S-species
can be considered as a categorified version of the differential relational model.

In this paper, we study the free coproduct completion pseudo-comonad C (which corre-
sponds to the finite Fam-construction) which models non-linear operations such as duplication
and erasure. In the setting of algebraic theories and operads, symmetric operads are monads
in the category of combinatorial species [S 1,Set] with the Day convolution product and a
Lawvere theory is a monad in the category [FinSet,Set] ' [C 1,Set] with the substitution
product. This analogy extends to the many-sorted case where symmetric many-sorted operads
correspond to monads in the bicategory of S-species [10]. Similarly, monads for C-species
correspond to many-sorted Lawvere theories. C-species are also related to the cartesian closed
bicategory of cartesian profunctors studied by Fiore and Joyal [12] where C-species can be
obtained by restricting to free cartesian categories.
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Our motivation is two-fold: firstly, when we take C as a pseudo-comonad to interpret the
exponential modality, we obtain a model of linear logic that generalizes the Scott model.
There is indeed a monoidal functor from Set to the two-element lattice 2 that induces a
change of base pseudo-functor from C-species to the Scott model which commutes with all the
constructions of linear logic. The obtained model of C-species gives a different perspective on
how to categorify Scott-continuity: directed suprema now correspond to sifted colimits and
Scott-continuous functions correspond to strongly finitary functors. These correspondences
are summarized in the table below:

a preorder A = (|A| ,≤A) a small category A
a monotonous function f : A→ B a functor F : A→ B

a down-closed subset x ⊆ |A| a presheaf X : Aop → Set
an ideal relation R ⊆ A×B a profunctor F : A −7→ B

inclusion of relations a natural transformation
a directed supremum a sifted colimit

a Scott-continuous function a strongly finitary functor

Secondly, since S-species categorify the relational model and C-species categorify the Scott-
model, our future goal is to connect them using a construction in the spirit of the extensional
collapse mentionned above and to explore the intersection type counterpart of this construction
in the profunctorial setting.

Contributions
In Section 3, we show that the model of profunctors with the finite coproduct pseudo-
comonad C is a model of linear logic which is a generalization of the qualitative Scott
model with Rel.
The connection is formalized by exhibiting a change of base pseudo-functor that commutes
with the linear logic structure (Section 5).
We prove in Section 4 that morphisms in the associated co-Kleisli bicategory correspond
to the notion of functors preserving sifted colimits by providing a biequivalence between
the two structures.
Lastly, we show in Section 6 that every recursive type equation built from linear logic
connectives has a least fixed point solution, and we exhibit a fixed point operator on
terms which allows for the study of recursively defined terms.

Notation
For an integer n ∈ N, we write n for the set {1, . . . , n}.
The length of a finite sequence of elements u = 〈a1, . . . , an〉 is denoted by |u|.
Categories will be denoted in boldface whereas simple text will be used for sets. For a
small category A, we denote by Â the presheaf category [Aop,Set] and write yA : A→ Â
for the Yoneda embedding.
We use ∼= for natural isomorphisms between functors or category isomorphisms and '
for equivalences.

2 The Qualitative Scott Model of Linear Logic

The category of prime algebraic lattices and maps preserving all suprema gives rise to a model
of linear logic whose associated co-Kleisli category is equivalent to the Scott model of prime
algebraic lattices and Scott-continuous functions between them [14, 15]. It is however more
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16:4 A Profunctorial Scott Semantics

convenient to manipulate linear logic constructions on preorders rather than on lattices and
since any prime algebraic lattice can be obtained as the set of downward closed subsets of a
preorder, we adopt the viewpoint of taking our objects to be preorders. The Kleisli category
of this model is then equivalent to the Scott model of prime algebraic lattices [22, 23].

Define ScottL to be the category whose objects are preordered sets A = (|A| ,≤A) and
a morphism from A to B is a relation R ⊆ |A| × |B| that is up-closed in (|A| ,≤A) and
down-closed in (|B| ,≤B). Explicitly, it verifies that for all a, a′ ∈ |A| and b, b′ ∈ |B|:

(a ≤A a′ ∧ (a, b) ∈ R ∧ b′ ≤B b) ⇒ (a′, b′) ∈ R

The identity is given by idA := {(a, a′) | a′ ≤A a} and composition is the usual composition
of relations. The dual of a preordered set A is defined to be A⊥ := (|A| ,≥A). Every
preordered set A induces a a domain I(A) of ideals (downward closed subsets of A) ordered
by inclusion. Morphisms in the linear category ScottL(A,B) can then be seen as elements
of I(A⊥ ×B); they are also equivalent to functions from I(A) to I(B) that commute with all
unions.

ScottL is a compact closed category where the tensor product A ⊗ B is given by
(|A| × |B| ,≤A × ≤B) and has the singleton preordered set 1 as a unit. The additive
structure is given by the disjoint union of preorders A& B := (|A|+ |B| ,≤A + ≤B) with
the empty preordered set 0 as zero object.

The exponential modality ! : ScottL→ ScottL takes a preordered set A to the preordered
set whose web |!A| is the set of finite sequences of elements in |A| i.e |!A| := {〈a1, . . . , an〉 | ai ∈
|A| , n ∈ N} and the preorder relation is defined as follows:

〈a1, . . . , an〉 ≤!A 〈b1, . . . , bm〉 :⇔ ∀i ∈ n,∃j ∈ m, ai ≤A bj

On morphisms, a relation R ∈ ScottL(A,B) is mapped to

!R := {(〈a1, . . . an〉, 〈b1, . . . , bm〉) | ∀j ∈ m,∃i ∈ n, (ai, bj) ∈ R}.

The obtained co-Kleisli category ScottL! is then equivalent to the category of prime alge-
braic lattices and Scott-continuous functions between them as every relation in ScottL!(A,B)
corresponds to a Scott-continuous function I(A)→ I(B).

I Remark 1. We chose this presentation of the comonad instead of finite subsets [14, 22] or
finite multisets [5, 6] since it is more convenient for the profunctorial generalization with
the free coproduct pseudo-comonad. Note that for the three presentations, the associated
lattices of downward closed subsets are all isomorphic and the associated co-Kleisli categories
are all equivalent to the Scott model.

3 The Model of Profunctors

3.1 The bicategory of profunctors
The notion of profunctor (or distributor) has become increasingly important in theoretical
computer science as a tool to model a wide range of bidimensional computational structures.
For small categories A and B, a profunctor F : A −7→ B is a functor F : A×Bop → Set or
equivalently a functor F : A→ B̂ [2]. Profunctors can be seen as a generalization of Rel as
a relation R ⊆ A×B corresponds to a profunctor between discrete categories such that each
component is either the empty set or a singleton.
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The composite of two profunctors F : A −7→ B and G : B −7→ C is the profunctor
G ◦ F : A×Cop → Set given by the coend formula:

(a, c) 7→
∫ b∈B

F (a, b)×G(b, c).

and the identity idA : A −7→ A is given by the yoneda embedding yA : A→ Â. Composition
of profunctors is however associative only up to natural isomorphisms which puts us in the
setting of a bicategory [17].

I Definition 2. The bicategory of profunctors Prof consists of
0-cells: small categories A,B,
1-cells: profunctors F : A −7→ B,
2-cells: natural transformations between profunctors.

In [10], Fiore et al. showed that Prof is a bicategorical model of LL that constitutes
a generalization of Joyal’s species of structures. Prof can be equipped with a symmetric
monoidal structure where the unit 1 is the category with a unique object and a unique arrow
and the tensor product ⊗ : (A,B) 7→ A×B is the cartesian product of categories in Cat.
The dualizer −⊥ which takes a small category A to Aop provides Prof with a compact
closed structure. The additive structure & : (A,B) 7→ A + B is given by the coproduct in
Cat which makes Prof a cartesian bicategory whose zero object is the empty category 0.
The exponential modality in their model relies on the free symmetric monoidal completion
SA for a small category A.

3.2 The free finite coproduct pseudo-comonad
Cattani and Winskel showed that by taking the free finite colimit completion pseudo-comonad
F , we obtain a model of LL that generalizes the Scott model [3]. The maps obtained in the
co-Kleisli bicategory do not however preserve bisimulation which led them to consider the
pseudo-comonad of indexed families instead. Among the examples given is the restriction to
finite families which corresponds to the free finite coproduct completion C. In this section, we
expand this example and exhibit that Prof together with the pseudo-comonad C forms a
model of LL that gives a different perspective on how to categorify the Scott model. While
1-categorical semantics of linear logic has been extensively studied (see [18] for a complete
review of LL-models and [7] for differential linear logic), no complete account of what is a
bicategorical model of differential linear logic has been given yet. In this section, we take the
same compact closed structure for the linear bicategory described in the previous paragraph
(see [3] and [10] for more details). The remaining ingredients to obtain a model of LL are a
pseudo-comonad structure and Seely equivalences satisfying the coherence conditions for a
linear exponential pseudo-comonad.

I Definition 3. For a small category A, define CA to be the category whose objects are finite
sequences 〈a1, . . . , an〉 of objects of A and a morphism between two sequences 〈a1, . . . , an〉
and 〈b1, . . . , bm〉 consists of a pair (σ, (fi)i∈n) of a function σ : n → m and a family of
morphisms fi : ai → bσ(i) in A for i ∈ n. Equivalently, the hom-sets can be described by:

CA(〈a1, . . . , an〉, 〈b1, . . . , bm〉) =
∏
i∈n

∑
j∈m

A(ai, bj).

We recall below a classical result:
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I Lemma 4. For two finite sequences u and v in CA, the concatenation (denoted by u⊕ v)
provides a coproduct structure for CA and the empty sequence 〈〉 is initial. CA is the free
finite coproduct completion of A, i.e. for any functor F : A→ B where B is a category with
finite coproducts, there exists a unique (up to natural isomorphism) functor F : CA → B
that preserves finite coproducts and makes the following diagram commute:

A CA

B

ηA

FF

I Note 5. To obtain the free symmetric monoidal completion SA, it suffices to take the
subcategory of CA where we restrict σ in Definition 3 to be a bijection.

The endofunctor C : Cat→ Cat can be equipped with a 2-monad structure. In order to
obtain a pseudo-comonad on Prof , one needs to start with the dual construction of the free
finite product 2-monad P : Cat→ Cat which takes a small category A to P(A) = (C(Aop))op.
In [11], Fiore et al. show that the 2-monad P lifts to a pseudo-monad on Prof . Taking its
dual, one obtains the pseudo-comonad of finite coproducts on Prof which we briefly describe
below.

For a profunctor F : A −7→ B between small categories A and B, CF : CA −7→ CB is
given by:

CF : (u, v) 7→
∏
j∈|v|

∫ aj∈A
F (aj , vj)× CA(〈aj〉, u)

The counit and comultiplication pseudo-natural transformations have the following compo-
nents:

εA : CA −7→ A δA : CA −7→ C2A
(u, a) 7→ CA(〈a〉, u) (u, 〈u1, . . . , un〉) 7→ CA(u1 ⊕ · · · ⊕ un, u)

A morphism F : CA −7→ B in the co-Kleisli bicategory ProfC is called a C-species and
its lifting or promotion F C : CA −7→ CB is given by:

F C(u, v) = CF ◦ δA(u, v) =
∏
j∈|v|

F (u, vj)

The composite in ProfC of two C-species F : CA −7→ B and G : CB −7→ C is then given by
the profunctorial composition G ◦ F C : CA −7→ C.

I Lemma 6. There is a Seely adjoint equivalence of categories C(A & B) ' CA⊗ CB.

Proof. Define IA,B : CA⊗ CB→ C(A & B) as follows:

IA,B : (u, v) 7→ C(i1)(u)⊕ C(i2)(v) ∈ C(A & B)

where i1 : A→ A & B and i2 : B→ A & B are the coprojections maps. Consider now the
functor p1 : A & B→ CA defined by p1(1, a) := 〈a〉 and p1(2, b) := 〈〉. This functor induces
a functor p1 : C(A & B) → CA (using the universal property of the free finite coproduct
completion) that is a retract of C(i1) : CA → C(A & B). We define similarly a functor
p2 : C(A&B)→ CB that is a retract of C(i2) : CB→ C(A&B). For w ∈ C(A&B), we denote
by w.1 ∈ CA its image by p1 and by w.2 ∈ CB its image by p2. SA,B : C(A&B)→ CA⊗CB
is then defined to be the functor w 7→ (w.1, w.2) ∈ CA⊗ CB.
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C(A & B) CA⊗ CB

SA,B

IA,B

>

We now exhibit two natural isomorphisms η : IdCA⊗CB ⇒ SA,B ◦IA,B and ε : IA,B ◦SA,B ⇒
IdC(A&B). For (u, v) ∈ CA⊗ CB, we have that

((C(i1)(u)⊕ C(i2)(v)).1, (C(i1)(u)⊕ C(i2)(v)).2) = (u, v)

so η is just the identity. Let w ∈ C(A & B), εw is the reshuffling isomorphism from
C(i1)(w.1)⊕C(i2)(w.2) to w. The adjunction is obtained by seeing that for (u, v) ∈ CA⊗CB
and w ∈ C(A & B) there is a natural isomorphism:
C(A & B)(C(i1)(u)⊕ C(i2)(v), w) ∼= CA(u,w.1)× CB(v, w.2). J

In [10], Fiore et al. show that Prof together with the free symmetric monoidal pseudo-
comonad S is a model of differential linear logic which can be seen as a categorification of
the differential relational model. We show below that similarly to the Scott model with
preorders, ProfC is not a model of differential linear logic.

I Lemma 7. ProfC is not a model of differential linear logic.

Proof. If ProfC were a model of differential linear logic, there would exist a pseudo-natural
transformation ε : IdProf → C interpreting the codereliction rule. One of the required
coherence axioms for the codereliction is ε ◦ ε = IdProf . For all A ∈ Cat and a, a′ ∈ A, we
then have:∫ u∈CA

εA(a, u)× CA(〈a′〉, u) ∼= A(a′, a)

which implies ε(a, 〈a′〉) ∼= A(a′, a). Another required coherence diagrams for the codereliction
map is that for any object A, wA ◦ εA = 0A where wA : CA −7→ 1 is the weakening map
given by u 7→ CA(〈〉, u) and 0A : A −7→ 1 is the empty profunctor. For a ∈ A, we have:

wA ◦ εA(a) =
∫ u∈CA

CA(〈〉, u)× εA(a, u) ∼= εA(a, 〈〉)

Since there is a map 〈〉 → 〈a〉 in CA, it induces a function from εA(a, 〈a〉) to εA(a, 〈〉). The
set εA(a, 〈a〉) ∼= A(a, a) is not empty as it contains ida so the set εA(a, 〈〉) cannot be empty
which contradicts our hypothesis. J

The extensional collapse construction between the relational model and the Scott model
gives a connection between Rel! which is not well-pointed to the well-pointed category
ScottL!. In the categorified setting, the situation is however more subtle. In the case of
S-species, Fiore introduced the notion of generalized analytic functor as the Taylor series
counterpart of species that generalizes Joyal’s original definition for combinatorial species
[9]. For small categories A and B, a functor P : Â→ B̂ is said to be analytic if there exists
a generalized species F : SA −7→ B such that P is isomorphic to LansAF (the left Kan
extension of F along sA)

SA B̂

Â

⇓

F

LansA(F )sA

FSCD 2020
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where sA : SA→ Â is the functor that takes a sequence 〈a1, . . . an〉 in SA to the presheaf
n∑
i=1

yA(ai) in Â. The functor sA : SA→ Â is not fully faithful which entails that the functor

giving the correspondence between S-species and analytic functors:

LansA : ProfS(A,B)→ [Â, B̂]

is not fully faithful. Fiore however showed that it is possible to reconstruct an S-species
from its analytic functor if we restrict the objects to be groupoids [9]. Formally, he showed
that there is a biequivalence between the bicategory of S-species restricted to groupoids
and the 2-category of analytic functors (whose 0-cells are small groupoids, 1-cells are
analytic functors and 2-cells are weak cartesian natural transformations). If we extend
the functor sA to the category CA, we obtain a fully faithful functor which entails that
LansA : ProfC(A,B) → [Â, B̂] is now fully faithful as a corollary of a classical result on
Kan extension that we recall below.

I Proposition 8 ([16]). Let S : A→ B be a fully faithful functor from a small category A.
Then, for every functor F : A→ D into a cocomplete category D, the natural transformation
F ⇒ LanS(F ) ◦ S is an isomorphism and the functor LanS : [A,D] → [B,D] is fully
faithful.

3.3 The cartesian closed structure
I Definition 9. A cartesian bicategory B is closed if for every pair of objects A,B ∈ B, we
have:
1. an exponential object A⇒ B together with an evaluation map EvA,B ∈ B((A⇒ B)&A,B)

and
2. for every X ∈ B, an adjoint equivalence

B(X,BA) B(X &A,B)

EvA,B ◦ ((−) &A)

λ

⊥

I Proposition 10. ProfC is cartesian closed.

Proof.
1. For small categories A and B, the exponential object A⇒ B is defined as (CA)op×B and

the evaluation map EvA,B : C ((A⇒ B) & A) −7→ B takes (W, b) ∈ C ((A⇒ B) & A)×
Bop to the set:∫ u1∈C(A⇒B),u2∈CA

C(A⇒ B)(u1,W.1)× CA(u2,W.2)× C(A⇒ B)(〈(u2, b)〉, u1)

∼= C(A⇒ B)(〈(W.2, b)〉,W.1)

2. For G : C(X & A) −7→ B, λ(G) : CX −7→ (CA ( B) is defined by

λ(G) : (z, (u, b)) 7→ F (C(i1)(z)⊕ C(i2)(u), b).

Let F : CX −7→ (A ⇒ B), F & A : C(X & A) −7→ (A ⇒ B) & A is the profunctor that
takes (w, (1, (u, b))) in C(X & A)× ((A⇒ B) & A)op to:

F ◦Π1(w, (u, b)) =
∫ z∈CX

F (z, (u, b))× C(X & A)(C(i1)z, w)

∼=
∫ z∈CX

F (z, (u, b))× CX(z, w.1)× CA(〈〉, w.2) ∼= F (w.1, (u, b))
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and the image of an element (w, (2, a)) ∈ C(X & A)× ((A⇒ B) & A)op is given by

Π2(w, a) = C(X & A)(〈(2, a)〉, w) ∼= CA(〈a〉, w.2).

Hence, its lifting (F & A)C : C(X & A) −7→ C((A⇒ B) & A) is given by:

(w,W ) 7→∼= F C(w.1,W.1)× CA(W.2, w.2)

We can now compute EvA,B ◦ (F & A) : C(X & A) −7→ B:

(w, b) 7→
∫ W∈C(A⇒B)&A

EvA,B(W, b)× (F & A)C(w,W )

∼=
∫ W

C(A⇒ B)(〈(W.2, b)〉,W.1)× F C(w.1,W.1)× CA(W.2, w.2)

∼= F C(w.1, 〈(w.1, b)〉) ∼= F (w.1, (w.2, b)

Consider now two profunctors F : CX −7→ (A⇒ B) and G : C(X & A) −7→ B, we exhibit
the following natural ismorphisms:

ηF : F ∼=⇒ λ(EvA,B ◦ (F & A)) βG : EvA,B ◦ (λ(G) & A) ∼=⇒ G

For (z, (u, b)) ∈ CX× (A⇒ B)op, we have:

λ(EvA,B ◦ (F & A))(z, (u, b)) ∼= (EvA,B ◦ (F & A))(Ci1z ⊕ Ci2u, b)
∼= F ((Ci1z ⊕ Ci2u).1, (Ci1z ⊕ Ci2u).2, b)) ∼= F (z, (u, b))

and for (w, b) ∈ C(X & A)×Bop, we obtain:

EvA,B(λ(G) & A)(w, b) = λ(G)(w.1, (w.2, b))
∼= G((C(i1)(w.1)⊕ C(i2)(w.2)), b) ∼= G(w, b)

J

4 Strongly finitary functors

In the case of analytic functors for S-species (restricted to groupoids), one can characterize
them as functors preserving filtered colimits and weak wide pullbacks [9]. Cattani and
Winskel showed that F-species correspond to the notion of finitary functors, i.e. functors
preserving filtered colimits [3]. Filtered colimits are the classical way of generalizing directed
suprema in Scott’s topology, and they are characterized as colimits which commute with
finite limits in Set. In this section, we focus on a larger class of colimits, called sifted colimits
which are colimits which commute with finite products in Set. A large part of the theory
of locally finitely presentable categories and finitely presentable objects has analogues for
sifted colimits. An object a in a category A is said to be strongly finitely presentable if
A(a,−) : A→ Set preserves sifted colimits. The full subcategory of these objects in A is
denoted by Asfp. For a preorder, finitely and strongly presentable objects coincide with the
compact elements and in the category Set, the two notions coincide with finite sets [1]. A
category A is strongly locally finitely presentable if it is cocomplete, Asfp is a small category
and every object of A is a sifted colimit of a diagram in Asfp.

I Lemma 11. For a small category A, the presheaf category Â is strongly finitely presentable
and every presheaf is a sifted colimit of finite coproducts of representables.
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16:10 A Profunctorial Scott Semantics

Proof. Let A be a small category, then Â is strongly finitely presentable and the strongly
finitely presentable objects are the regular projective presheaves [1]. In presheaf categories, the
full subcategory of coproducts of representables is a regular projective cover [20]. Hence
every presheaf is a sifted colimit of coproducts of representables. Since every coproduct is a
filtered colimit of finite coproducts, we obtain the desired result. J

Functors preserving sifted colimits are called strongly finitary functors. On Set, finitary and
strongly finitary functors coincide [1].

I Definition 12. The 2-category Sift has small categories as objects and a morphism between
two categories A and B is a strongly finitary functor P : Â→ B̂. The 2-cells between two
such functors are natural transformations.

The main result of this section is to show that there is a biequivalence between the
bicategory ProfC and the 2-category Sift.

I Lemma 13. For a C-species F : CA −7→ B, LansA(F ) : Â→ B̂ preserves sifted colimits.

Proof. Let D : I → Â be a sifted diagram, we have:

LansAF (lim−→
i∈I
D(i))(b) =

∫ u=〈a1,...,an〉
F (u, b)× Â(sA(u), lim−→

i∈I
D(i))

∼=
∫ u

F (u, b)×
n∏
j=1

Â(y(aj), lim−→
i∈I
D(i)) ∼=

∫ u

F (u, b)×
n∏
i=j

lim−→
i∈I
D(i)(aj)

∼=
∫ u

F (u, b)× lim−→
i∈I

n∏
j=1
D(i)(aj) ∼=

∫ u

F (u, b)× lim−→
i∈I

(
Â(sA(u),D(i))

)
∼=
∫ u

lim−→
i∈I

(
F (u, b)× Â(sA(u),D(i))

)
= lim−→

i∈I

(∫ u

F (u, b)× Â(sA(u),D(i))
)

Since sifted colimits commute with finite products, it allows us to obtain the third isomorphism.
We then make use of the facts that (F (u, b)×−) is a left adjoint, and hence colimit-preserving,
and that the coend is a colimit and hence commutes with colimits. J

I Lemma 14. For small categories A and B, there is an adjoint equivalence between the
categories:

ProfC(A,B) Sift(A,B)

LansA(−)

− ◦ sA

⊥

Proof. Since sA is fully faithful, for any C-species F in ProfC(A,B) there is a natural
isomorphism αF : F ⇒ (LansA(F ))◦ sA. Hence, for a natural transformation β : F1 ⇒ F2 in
ProfC(A,B), its image by LansA(−) is the unique natural transformation γ : LansA(F1)⇒
LansA(F2) such that γsAαF1 = βαF2 which provides us with a natural isomorphism η :
IdProf C(A,B) ⇒ (LansA(−)) ◦ sA by Proposition 8.

Let P : Â→ B̂ be a functor that preserves sifted colimits. We want to exhibit a natural
isomorphism

LansA(P ◦ sA)(X) ∼= P (X)
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By Lemma 11, X is a sifted colimit of finite coproducts of representables, i.e. there exists a
sifted diagram D : I → CA such that X ∼= lim−→i∈I sA(D(i)):

LansA (P ◦ sA)(X) =
∫ u=〈a1,...,an〉

P (sA(u))× Â(sA(u), X)

∼=
∫ u

P (sA(u))×
n∏

j=1

Â(y(aj), lim−→
i∈I

sAD(i)) ∼=
∫ u

P (sA(u))× lim−→
i∈I

n∏
j=1

Â(y(aj), sAD(i))

∼=
∫ u

P (sA(u))× lim−→
i∈I

Â(sA(u), sAD(i)) ∼= lim−→
i∈I

∫ u

P (sA(u))× CA(sA(u), sAD(i))

∼= lim−→
i∈I

P (sA(D(i))) ∼= P (X)

which entails the existence of a natural isomorphism ε : LansA(− ◦ sA) ⇒ IdSift(A,B) as
desired. The adjunction

[CA, B̂](F, P ◦ sA) ∼= [Â, B̂](LansAF, P ).

is a direct consequence of the universal property of left Kan extensions (see Theorem 4.38 in
[16] for example). J

I Proposition 15. The bicategory ProfC is biequivalent to the 2-category Sift.

Proof. We prove that the pseudofunctor F : ProfC → Sift defined below is a biequivalence.
For A and B small categories, we define F(A) := A and

FA,B : ProfC(A,B)→ Sift(A,B)

F : CA −7→ B 7→ LansA(F ) : Â→ B̂

Since ProfC and Sift have the same objects, it follows immediately that F : ProfC → Sift is
essentially surjective. Lemma 14 entails that FA,B is an adjoint equivalence of categories. J

5 From Prof to ScottL

In this section, we formalize the connection between the categorical approach and the preorder
model as a change of base for enriched categories. A category enriched over 2 = ({∅ ≤ 1},∧,1)
is a preorder and a 2-profunctor between two preorders A = (|A| ,≤A) and B = (|B| ,≤B)
corresponds to a relation in ScottL(A,B). The functor M : Set→ 2 defined by

X 7→

{
∅ if X = ∅
1 otherwise

is monoidal and therefore induces a lax pseudo-functor Ψ from ProfSet (just denoted by
Prof) to Prof2 = ScottL [4]. In this section, we give an explicit description of this change of
base pseudo-functor Ψ : Prof → ScottL and show that it is in fact a strong pseudo-functor
that preserves all the structure of linear logic. The viewpoint of enriched categories enables
us to work in a unified setting where both models coexist and the change of base becomes a
pseudo-functor that connects the preorder world and the categorified world in a way that
preserves the structure of linear logic.

On objects, Ψ sends a small category A to the following preorder:

(Ob(A),≤A) where a ≤A a′ :⇔ HomA(a, a′) 6= ∅

For a profunctor F : A −7→ B, ΨA,B(F ) is given by ΨA,B(F ) := {(a, b) | F (a, b) 6= ∅}.

FSCD 2020
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I Lemma 16. For every A,B, ΨA,B : Prof(A,B)→ ScottL(Ψ(A),Ψ(B)) is functorial.

Proof. We first need to check that ΨA,B(F ) is indeed an element of ScottL(Ψ(A),Ψ(B)),
i.e. that for all (a, b) ∈ ΨA,B(F ), (a′, b′) ≤Aop×B (a, b) implies (a′, b′) ∈ ΨA,B(F ). If
(a, b) ∈ ΨA,B(F ), then F (a, b) 6= ∅ so there exists an element s ∈ F (a, b). The inequality
(a′, b′) ≤Aop×B (a, b) implies that there exist morphisms f : a → a′ in A and g : b′ → b in
B. Hence, F (f, g)(s) ∈ F (a′, b′) which is not empty as desired. When we consider ScottL
as a bicategory, morphisms in ScottL(Ψ(A),Ψ(B)) are just inclusions of relations so we
only need to show that if there exists a natural transformation α : F ⇒ G in Prof(A,B),
then ΨA,B(F ) ⊆ ΨA,B(G). For (a, b) ∈ ΨA,B(F ), if there exists an element s ∈ F (a, b) then
α(a,b)(s) ∈ G(a, b) which implies that (a, b) ∈ ΨA,B(G) as desired. J

I Proposition 17. Ψ is a strong pseudo-functor that preserves the linear logic structure.

Proof.
For profunctors F : A −7→ B and G : B −7→ C, the following equalities hold:

ΨA,C(G ◦Prof F ) = {(a, c) |
∫ b∈B

F (a, b)×G(b, c) 6= ∅}

= {(a, c) | ∃b ∈ Ob(B), F (a, b) 6= ∅ and G(b, c) 6= ∅}
= {(a, c) | ∃b ∈ Ob(B), (a, b) ∈ ΨA,B(F ) and (b, c) ∈ ΨB,C(G)}
= ΨB,C(G) ◦ScottL ΨA,B(F )

We only show that Ψ commutes with the pseudo-comonad structure, the other cases being
similar. For a small category A, !Ψ(A) is the preorder whose underlying set is equal to
the object set of CA so !Ψ and ΨC coincide on objects. For a profunctor F : A −7→ B, we
have:

!ΨA,B(F ) = {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) | ∀j ∈ m,∃i ∈ n, (ai, bj) ∈ Ψ(F )}
= {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) | ∀j ∈ m,∃i ∈ n, F (ai, bj) 6= ∅}

= {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) |
∏
j∈m

∑
i∈n

F (ai, bj) 6= ∅}

= {(〈a1, . . . , an〉, 〈b1, . . . , bm〉) | CF (〈a1, . . . , an〉, 〈b1, . . . , bm〉) 6= ∅} = Ψ(CF )

The following equalities also hold for the dereliction and the digging pseudo-natural
transformations:

Ψ(εA) = {(u, a) | εA(u, a) 6= ∅} = {(u, a) |
∑
i∈|u|

A(a, ui) 6= ∅}

= {(u, a) | ∀i ∈ |u| , a ≤Ψ(A) ui} = εΨ(A)

Ψ(δA) = {(u, 〈u1, . . . , un〉) | CA(u1 ⊕ · · · ⊕ un, u) 6= ∅}
= {(u, 〈u1, . . . , un〉) | u1 ⊕ · · · ⊕ un ≤Ψ(CA) u} = δΨCA

J

6 Recursive Type and Term Equations

6.1 Fixed points of Types
Recursive domain equations play a central role in denotational semantics. A classical example
is Scott’s D∞ construction providing an extensional model of the untyped λ-calculus. In
ProfC, we show that full subcategory inclusion is a partial order relation on objects such
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that all linear logic constructions define Scott-continuous maps on this partially ordered
class. It entails that we can give solutions to any recursive type equation constituted of
linear logic operators and we exhibit in this section an example of a 2-dimensional model of
pure λ-calculus in ProfC .

I Definition 18. For small categories A and B, we write A v B if A is a full subcategory
of B, i.e. Ob(A) ⊆ Ob(B) and for all a and a′ in Ob(A), A(a, a′) = B(a, a′).

One can easily check that v defines a partial order relation on the class of small categories.
We denote by Catv the obtained partially ordered class and show the following lemma:

I Lemma 19. Catv is closed under directed colimits.

Proof. Let D : I → Catv be a directed diagram. We denote by
∨
i∈I Di the category whose

set of objects is
⋃
i∈I Ob(Di) so that for any a, b ∈ Ob(

∨
i∈I Di), there exist i, j ∈ I such that

a ∈ Ob(Di) and b ∈ Ob(Dj). Since I is directed, there exists k ∈ I such that a, b ∈ Ob(Dk)
so we define

∨
i∈I Di(a, b) to be Dk(a, b). J

I Lemma 20. All the linear logic constructions are Scott-continuous with respect to the
order v.

Proof. The proof is routine, we only exhibit the dual and exponential cases:
Dual: It is noteworthy to observe that the dual is monotonous with respect to this
order. For A v B, we have that Ob(Aop) = Ob(A) ⊆ Ob(B) = Ob(Bop) and for any
a, a′ ∈ Aop, Aop(a, a′) = A(a′, a) = B(a′, a) = Bop(a, a′) which entails that Aop v Bop.
Let D : I → Catv be a directed diagram, we want to show that

(∨
i∈I Di

)op =
∨
i∈I D

op
i .

It is immediate to show that these two categories have the same objects and for a, a′ ∈∨
i∈I D

op
i , there exists k ∈ I such that a, a′ ∈ Ob(Dk) so that:∨

i∈I
Dop
i (a, a′) = Dop

k (a, a′) = Dk(a′, a) = (
∨
i∈I

Di)(a′, a) = (
∨
i∈I

Di)op(a, a′).

Exponential: For A v B, Ob(CA)={〈a1, . . . , an〉 | ai ∈ Ob(A)} ⊆ {〈b1, . . . , bn〉 | bi ∈
Ob(B)} = Ob(CB) and for u, v in Ob(CA):

CA(u, v) =
∏
i∈|u|

∑
j∈|v|

A(ui, vj) =
∏
i∈|u|

∑
j∈|v|

B(ui, vj) = CB(u, v)

which entails that CA v CB as desired. Let D : I → Catv be a directed diagram, we
want to show that C(

∨
i∈I Di) =

∨
i∈I CDi. For the object sets, we haveL

Ob(C(
∨
i∈I

D(i))) =
⋃
n∈N

Ob(
∨
i∈I

D(i))n =
⋃
n∈N

(
⋃
i∈I

Ob(Di))n =
⋃
n∈N

⋃
i∈I

(Ob(D(i)))n

=
⋃
i∈I

⋃
n∈N

(Ob(Di))n = Ob
(∨
i∈I
CDi

)

The third equality follows from the fact that directed unions commute with finite products.
Consider now two elements u := 〈x1, . . . , xn〉 and v := 〈y1, . . . , ym〉 in

∨
i∈I C(Di). Since

I is directed, there exists k ∈ I such that u, v ∈ Ob(C(Dk)), we therefore obtain:

(
∨
i∈I

C(Di)(u, v) = C(Dk)(u, v) =
∏
l∈n

∑
r∈m

Dk(xl, yr) =
∏
l∈n

∑
r∈m

∨
i∈I

Dk(xl, yr) = C(
∨
i∈I

D(i))(u, v)

The last equality follows from the fact that Dk v
∨
i∈I Di. J
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I Example 21. By the previous lemma, any recursive type equation on Catv built from
linear logic connectives has a least fixed point. Let N be the least fixed point solution of
N = 1⊕N, it can be explicitly described as the category N =

⊕
i∈N 1. Consider now D

to be the least fixed point solution of D = (C(N ( D))op. Using the Seely equivalence in
Lemma 6, we can first note that D verifies the following equivalence:

D = (C(N ( D))op ' (C((1⊕N) ( D))op ' (C((1( D) & (N ( D)))op

' ((C(D))⊗ C(N ( D))op = (CD)op ` D = (D⇒ D)

The category D provides an extensional reflexive object for the pure λ-calculus in the cartesian
closed bicategory ProfC . We make explicit its structure below by first giving the application
and lambda profunctors:

Ap : C(D⇒ D) −7→ D λ : CD −7→ (D⇒ D)

as follows: for W ∈ C(D⇒ D) and d ∈ Dop, let k ∈ N be the smallest index such that W ∈
C(Dk ⇒ Dk) and d ∈ Dop

k . Since Dop
k = (C((1⊕N) ( Dk−1)) ∼= (C(Dk−1)&(N ( Dk−1))),

we use the Seely equivalence and obtain d.1 ∈ C(Dk−1) v C(Dk) and d.2 ∈ C(N ( Dk−1) =
Dop
k . We now define Ap as the profunctor taking (W,d) to C(Dk ⇒ Dk)(〈(d.1, d.2)〉,W ).
To define λ(u, (v, d)) for u ∈ CD and (v, d) ∈ (D ⇒ D)op, we first let l to be the

smallest index such that u ∈ C(D)l, v ∈ C(Dl) and d ∈ Dop
l v Dop

l+1 = C((1⊕N) ( Dl) ∼=
C(Dl & (N ( Dl)). Considering the diagram below,

C(D)l C(Dl & (N ( Dl)) C(N ( Dl)

Dop
l+1

C(i1) C(i2)

we obtain that C(i1)(u) ⊕ C(i2)(d) is an element of Dop
l+1, so we define λ(u, (v, d)) to be

C(Dl+1)(C(i1)(v)⊕ C(i2)(d), u). We then obtain:

λ ◦Ap(W, (v, d)) =
∫ u∈CD

λ(u, (v, d))×ApC(W,u) =
∫ u

CD(C(i1)(v)⊕ C(i2)(d), u)×ApC(W,u)

∼= Ap(W, C(i1)(v)⊕ C(i2)(d)) = C(D⇒ D)(〈(v, d)〉,W ) = IdD⇒D(W, (v, d))

The second to last equality follows from the fact that (C(i1)(v) ⊕ C(i2)(d)).1 = v and
(C(i1)(v)⊕ C(i2)(d)).2 = d. We also obtain the following isomorphism:

Ap ◦ λ(u, d) =
∫ W∈C(D⇒D)

Ap(W,d)× λC(u,W )

=
∫ W

C(D⇒ D)(〈(d.1, d.2)〉,W )× λC(u,W ) ∼= λ(u, (d.1, d.2))

= CD(C(i1)(d.1)⊕ C(i2)(d.2), u) ∼= CD(〈d〉, u) = IdD(u, d)

The second to last equality follows from the fact that d is isomorphic to C(i1)(d.1)⊕C(i2)(d.2)
in C(D).

6.2 Fixed point operator for terms
I Theorem 22 (e.g. [21]). Let C be a category with ω-colimits together with an initial object
0 and let F : C → C be an endofunctor that preserves ω-chains. Then F has an initial
algebra obtained by taking the colimit of the following diagram:
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0 F (0) F 2(0) . . .
i F (i) F 2(i)

where i is the unique map from the initial object to F (0).

I Lemma 23 (e.g. [21]). Let F : C → C be an endofunctor and a : F (c) → c an initial
algebra. Then a is an isomorphism.

I Definition 24. Let B be a cartesian closed bicategory and A an object of B. A fixpoint
operator for an object A in B is a 1-cell fixA ∈ B(A ⇒ A,A) together with an invertible
2-cell α:

A⇒ A

(A⇒ A) &A A

∼=⇒
α

〈IdA⇒A,fixA〉

EvA,A

fixA

For f ∈ A⇒ A, we obtain that EvA,A〈f,fixA(f)〉 ∼=⇒ fixA(f).

For a small category A, fixA ∈ ProfC(A⇒ A,A) is obtained as the initial algebra of
the following functor:

YA : ProfC(A⇒ A,A)→ ProfC(A⇒ A,A)
F 7→ Ev ◦ 〈Id, F 〉

We identify ProfC(A⇒ A,A) with the presheaf category of (A⇒ A)⇒ A whose initial
object is the empty presheaf. Since for any morphism H : CX −7→ Y in ProfC , LansX(H) :
X̂ → Ŷ preserves ω-colimits (as a particular case of sifted colimits), we show that YA can be
obtained as the left Kan extension of a C-species in ProfC((A⇒ A)⇒ A, (A⇒ A)⇒ A)
which entails the existence of fixA by Theorem 22.

Consider the profunctor ZA ∈ ProfC(((A ⇒ A) ⇒ A) & (A ⇒ A),A) defined by the
following composition:

((A⇒ A)⇒ A) & (A⇒ A)

((A⇒ A)⇒ A) & (A⇒ A) & (A⇒ A)

A & (A⇒ A) (A⇒ A) & A A

Id& 〈Id, Id〉

EvA⇒A,A & Id

〈π2, π1〉 EvA,A

By currying, we obtain a profunctor λ(ZA) in ProfC((A⇒ A)⇒ A, (A⇒ A)⇒ A) whose
left Kan extension along s(A⇒A)⇒A is isomorphic to YA as desired. Explicitely, YA is given
by:

YA : (F, (U, a)) =
∫ u∈CA

F C(U, u)× C(A⇒ A)(〈(u, a)〉, U)

We can now obtain fixA : C(A⇒ A) −7→ A by computing lim−→n∈ω Y
n
A(0).
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I Example 25.
In the theory of combinatorial species, the species of lists is a solution of the equation
L = 1 + X · L where 1 is the species whose analytic functor Set → Set is given by
S 7→ {?} and X is the singleton species whose analytic functor is the identity endofunctor
on Set. It follows the intuition that a list is either empty or an element followed by a
list. In the case of ProfC , we can define for every small category A a C-species of lists
LA : CA −7→ A. LA is obtained as the least fixpoint of the operator:

EA : ProfC(A,A)→ ProfC(A,A)
(F, (u, a)) 7→ 1A(u, a) + XA(u, a)× F (u, a) = CA(〈〉, u) + CA(〈a〉, u)× F (u, a)

where 1A(u, a) is the constant species (u, a) 7→ CA(〈〉, u) ' {?} and XA is the singleton
species (u, a) 7→ CA(〈a〉, u). Note that if we take A to be the category 1, we obtain the
species 1 and X mentionned above. Explicitly, the C-species of lists LA : CA −7→ A maps
(u, a) to

∑
n∈N CA(〈a〉, u)n which entails that LansA(LA) : Â→ Â is given by

(X, a) 7→
∑
n∈N

(X(a))n.

Using a similar reasoning, we can obtain a C-species of binary trees, which is a solution
of the equation B = 1 +X ·B2. For a small category A, if we compute the least fixpoint
of the operator:

HA : ProfC(A,A)→ ProfC(A,A)
(F, (u, a)) 7→ CA(〈〉, u) + CA(〈a〉, u)× F (u, a)× F (u, a)

we obtain the C-species BA : CA −7→ A that maps (u, a) to
∑
n∈N Cn×CA(〈a〉, u)n, where

Cn is the nth Catalan number.

Conclusion and Perspectives

We have seen that the bicategory of profunctors with the free finite coproduct pseudo-
comonad C provides a different perspective on how to categorify Scott continuity. This
construction enables us to work in the unified framework of enriched profunctors where the
change of base allows us to go from the categorified model to the preorder model while
preserving the linear logic structure. An important construction in domain theory is the
ideal completion which associates an algebraic domain to a preorder by completing with
all directed joins. In the preorder model, the morphisms in the Eilenberg-Moore category
can characterized as Scott-continuous functions between ideal completions of preorders. We
aim to obtain in future work a 2-categorical analogue of this result with strongly finitary
functors between sifted colimit completions of small categories. Another future direction is
to connect the differential model of S-species with the Scott model of C-species by using
a categorified version of the extensional collapse established by Ehrhard. The relationship
between profunctors and intersection types has also recently been explored by Olimpieri where
the non-idempotent intersection type system corresponds to the free symmetric monoidal
pseudo-monad and the idempotent case corresponds to the cartesian pseudo-monad [19].
Our future goal is to connect the two type systems with the categorified extensional collapse
construction.
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