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Abstract
Inductive families of types are a feature of most languages based on dependent types. They are
usually described either by syntactic schemes or by encodings of strictly positive functors such as
combinator languages or containers. The former approaches are informal and give only external
signatures, the latter approaches suffer from encoding overheads and do not directly represent mutual
types.

In this paper we propose a direct method for describing signatures for mutual inductive families
using a domain-specific type theory. A signature is a context (roughly speaking, a list of types) in
this small type theory. Algebras, displayed algebras and sections are defined by models of this type
theory: the standard model, the logical predicate and a logical relation interpretation, respectively.
We reduce the existence of initial algebras for these signatures to the existence of the syntax of our
domain-specific type theory. As this theory is very simple, its normal syntax can be encoded using
indexed W-types. To the best of our knowledge, this is the first formalisation of the folklore fact
that mutual inductive types can be reduced to indexed W-types.

The contents of this paper were formalised in the proof assistant Agda.
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1 Introduction

Programming languages based on type theory rely heavily on easy, flexible and sound ways
to define new data types. Usually, type theories allow for the definition of inductive types,
which are defined by giving a list of constructors which generate the elements of the type.
One prime example for such an inductive type is the type of natural numbers N : Set which is
generated by the zero constructor 0 : N and the successor function S : N→ N. Besides these
plain inductive types, dependent type theories often make use of inductive families of types
(also called indexed inductive types) where, instead of just a type we define a type family
over a previously defined type. This enables us for example to define the type of vectors of
a type A as a family Vec : N → Set, by a constructor for the empty vector nil : Vec 0 and
cons : A→ (n : N)→ Vecn→ Vec (Sn). Besides inductive families, another recurring need
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is the one for mutual definitions: Often, we want to define more than one inductive type
simultaneously with constructors referring to any of these types. For example we might want
to obtain the predicates of a natural number being even and odd in reference to each other
by defining

isEven : N→ Set,
isOdd : N→ Set

by constructors

even0 : isEven 0,
evenS : (n : N)→ isOddn→ isEven (Sn), and
oddS : (n : N)→ isEvenn→ isOdd (Sn).

Syntaxes of programming languages usually also consist of mutually given inductive types,
such as expressions (indexed by their types), commands, blocks, etc. We call these types
mutual inductive families.

There is a folklore trick to reduce mutual inductive families to inductive families. For
example, isEven–isOdd can be simulated by a single family indexed over an extra boolean
which says which sort is meant: isEven? : Bool → N → Set. Now isEven is simulated by
isEven? true and isOdd by isEven? false. To show that this technique works for every mutual
inductive family, we first have to provide a general definition for mutual inductive families.

The description of inductive families was Peter Dybjer’s external scheme [17]. He extended
type theory with new deriviation rules for inductive families and their constructors, elimination
principles and computation rules. His approach does not allow internal manipulation of
signatures and it can only be formalised as an extension of a pre-existing syntax of type
theory, however it covers mutual inductive families as well.

Another popular method is the functorial approach: strictly positive functors are encoded
either using a combinator calculus [15] or using indexed containers [4]. An algebra of such
a functor F is given by a family X and a morphism F X → X, the initial algebra is given
by the least fixpoint of the functor. The codes for the functors can be expressed internally
allowing generic programming with signatures. A powerful application of this method is the
automatic derivation of substitution laws for syntaxes with binders [2]. The drawback of the
functorial approach is its encoding overhead – mutual types have to be transformed to indexed
types, separate constructors have to be given as single families and in uncurried forms. The
indexed container encoding, while being very concise, also relies on function extensionality.
E.g. without assuming function extensionality, there are many different, unequal constructors
for zero [6, Section 2.1]. These constructors cannot be made definitionally equal even in the
presence of function extensionality – they contain definitionally unequal ⊥ → N functions.

In this paper we aim to formalise mutual inductive families in a direct way, in the spirit of
the original Dybjer definition. Drawing inspiration from the syntax of signatures for quotient
inductive-inductive types (QIITs) and higher inductive-inductive types (HIITs) given by
Kaposi, Kovács and Altenkirch [27, 26], we define signatures for mutual inductive families
using the syntax of a small type theory tailor made for this purpose. We call this type
theory the theory of signatures. A signature is a context in the theory of signatures, that
is, roughly, a list of types. For example, the signature of natural numbers is given by the
context (N : Set, 0 : N, S : N → N), where N , 0 and S are simply variable names. The
rules for the theory of signatures enforce that we can only write strictly positive constructors.
This syntax allows us to write down the definition of an inductive family in the same way as
it would look like in a theorem prover like Agda [30], Lean [16], or Coq [9].
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The syntax for the theory of signatures can be internalised in type theory but it can also
be seen as an external type theory in which one can describe signatures. We will present our
syntax internally to a type theory, define its semantics and show that all mutual inductive
families can be reduced to indexed W-types. All of the results were formalised in the proof
assistant Agda, the source code is available online1.

Contributions and structure

This paper contributes the following to the literature on inductive types.
A syntax for mutual inductive families in which signatures can be defined in a direct way,
simply by listing the types of sorts and constructors (Section 2). This syntax can be
encoded by indexed W-types.
Semantics for each signature: notions of algebras, displayed algebras and sections (Sec-
tion 3). These explain what it means that an inductive type specified by a signature
exists. The computation rules are specified as propositional (rather than definitional)
equalities.
An extension of the theory of signatures to a full substitution calculus (Section 4.1).
A proof that each mutual inductive type can be constructed from the theory of signatures
(Section 4.2), and as a by-product, a proof that mutual inductive families can be reduced
to W-types. The reduction only justifies propositional computation rules.

Related work

As mentioned earlier, schemes for inductive types can be categorised into (1) external schemes,
(2) internal combinatorial or (3) internal semantic schemes. Our approach is between (1)
and (2). It compares to (2) as lambda-calculus compares to combinatory logic. To illustrate
the difference, we list the signature for natural numbers in all approaches. (1) Dybjer [17]
defines natural numbers by the formation rule N : set and introduction rules 0 : N and
s : (u : N)N . Our syntax will encode the same information by a sort context (· B U) and
a point context ·B El (var vz)B var vz⇒p El (var vz). The difference in encoding is that we
use de Bruijn indices instead of variable names and El when decoding an index to a type
(but not on the left hand side of the arrow ⇒p, see later). (2) In [15, 2], natural numbers are
specified by ‘σ Bool (λb . if b then ‘� tt else ‘X tt (‘� tt)). The two constructors are encoded as
one constructor with a Bool parameter. When this is true (zero case), there are no more
parameters (denoted by ‘�), when it is false (successor) there is one recursive argument
signified by ‘X. The tts are necessary because the type of natural numbers does not have
indices. (3) The container representation [4] of natural numbers is given by the type Bool
(expressing that there are two constructors) and a family of sets over Bool, λb . if b then⊥ else>
expressing that the first constructor has zero and the second constructor has one recursive
argument. We list the related work categorised as above.

(1) External syntactic schemes similar to the Dybjer’s were used to describe mutual
inductive families of Coq on paper [32] and inside Coq [8], inductive-recursive types [18],
subsets of higher inductive types [11, 19, 14], and inductive and coinductive types [10].

(2) Internal combinatorial schemes are defined by Benke, Dybjer and Jansson [12] for
different classes of inductive types for the purpose of generic programming. Their signatures
can be seen as uncurried versions of our signatures with some encoding overhead. In addition
to our signatures, they separate the cases of parametrised and indexed definitions, while

1 https://bitbucket.org/javra/inductive-families/src/master/agda
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we only have indexed ones and they also cover infinitary constructors. They also feature
iterated signatures, while we only model these using the function space with metatheoretic
domain. [20, 21] use combinator languages to axiomatise inductive-recursive types and
indexed inductive-recursive types, respectively. The same technique was used to describe
inductive-inductive types [29] and inductive families [15, 2].

(3) Internal semantic schemes: Containers for describing signatures of W-types were
introduced in [1] and extended to indexed W-types (potentially infinitary inductive families)
in [4] and QW-types (allowing equality constructors) [22]. In fact, indexed W-types were
introduced as “tree sets” much earlier, by Petersson and Synek [33]. The more semantic
treatments of higher inductive types [28] and quotient inductive-inductive types [3] don’t
provide schemes for the allowed constructors.

The direct inspiration of our work are the domain-specific type theories for describing
higher inductive-inductive [25] and quotient inductive-inductive signatures [27]. The latter
also derives all QIITs from a theory of QIIT signatures. Note that the analogous result in
our paper is not a consequence of the result of [27]. We use a similar proof, however we
have a much weaker assumption: we derive all mutual inductive families from the theory
of mutual inductive family signatures, instead of the theory of QIIT signatures. Moreover,
we also show how to reduce our weaker theory of signatures to indexed W-types. Such a
reduction is not done in [27], and is probably not possible for the theory of QIIT signatures.

Notation and metatheory

Throughout the paper, we will assume that we are given a type theory with a hierarchy
of universes Seti (we omit the indices for readability), Π-types, Σ-types, unit type 1, pro-
positional equality – = –, and indexed W-types [4] (see Appendix A). We write Σ-types
as (x : A) × B and Π-types as (x : A) → B where B might refer to x. We write implicit
arguments in curly braces {x : A} → B or simply omit them. Definitional equality is denoted
– ≡ –. We presume that the type theory is extensional, that is, given a term t : u = v, we
have u ≡ v. It is expected that all definitions could be translated to intensional type theory
with the necessary coercions and transports following Hofmann’s translation [23, 31, 35]. In
the Agda formalisation we use explicit transports and rewrite rules occasionally as a limited
version of equality reflection. We also assume function extensionality, this is necessary to
handle the Π-types in our syntax with metatheoretic domain (Π̂s, Π̂p). In the formalisation
we do not use uniqueness of identity proofs and we conjecture that our usages of equality
reflection do not imply it.

2 Signatures for Mutual Inductive Families

In this section we define a syntax for a small type theory for describing signatures of mutual
inductive families. We call this the theory of signatures. The idea is that a signature is a
context in this theory, starting with the declaration of the sorts as functions into the universe
U, then listing the constructors for the sorts in any order. We call these point constructors
following [34]. This theory is much simpler than the full syntax of dependent type theory. For
example, there are no interdependencies between sorts, neither between point constructors,
and no references from sorts to point constructors. We reflect these properties in our syntax
by separating sort contexts Cons from point contexts Conp, and the latter will be indexed
over the former. We define an intrinsically typed syntax (in the style of [7, 5]), that is, we
don’t have preterms or typing relations, only well-scoped, well-typed terms, well-formed
contexts and types.
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I Definition 1 (The Theory of Signatures). The syntax is defined inductively by the following
6 sorts and 13 constructors. These 6 types can be encoded as indexed W-types, the detailed
construction of which is provided in Appendix A.

Tys : Set Typ : Cons → Set
U : Tys El : Tms Γs U→ Typ Γs
Π̂s : (T : Set)→ (T → Tys)→ Tys Π̂p : (T : Set)→ (T → Typ Γs)→ Typ Γs
Cons : Set –⇒p – : Tms Γs U→ Typ Γs → Typ Γs
· : Cons Conp : Cons → Set
–B – : Cons → Tys → Cons · : Conp Γs
Vars : Cons → Tys → Set –B – : Conp Γs → Typ Γs → Conp Γs
vz : Vars (Γs BAs)As
vs : Vars ΓsAs → Vars (Γs BBs)As
Tms : Cons → Tys → Set
var : Vars ΓsAs → Tms ΓsAs
–@ – : Tms Γs (Π̂s T As)→ (τ : T )→ Tms Γs (As τ)

A sort type Tys is either a universe U or is given by an indexing type T and a sort type
for each element of T . The latter can be seen as a function space where the domain is
metatheoretic, hence the notation Π̂s. We use the abbreviation T ⇒̂s As for Π̂s T (λτ.As)
when As : Tys. A sort context Cons is simply a snoc-list of sort types (empty context · and
context extension –B–). In order to refer to sorts we introduce typed de Bruijn variables Vars
with zero vz and successor vs constructors. Just as variables, sort terms Tms are indexed by
a sort context and a sort type. Each variable is a term (var) and we have application –@ – for
the function space Π̂s. Note that t : Tms ΓsAs carries similar information to Γs ` t : As in a
presentation of a syntax with preterms and typing relations, but we do not have preterms,
only well-typed terms.

Point constructors are represented by point types Typ over a given sort context. The type
formers are the element type for the universe U, a function type with metatheoretic domain
Π̂p and a non-dependent function type –⇒p – where the domain is in U. The former function
type allows adding parameters to constructors, the latter allows adding recursive arguments.
We use the abbreviation T ⇒̂p Ap for Π̂p T (λτ.Ap) when Ap : Typ. A point context over a
given sort context is a snoc-list of point types all in the same sort context.

I Example 2 (Natural Numbers, Vectors, Parity). A common example for inductive types,
the natural numbers, with one constructor for zero and one for the successor function, are
represented by the following sort and point contexts. On the right hand side, we write the
same with an informal notation using variable names.

Ns :≡ (·B U) (N : U)
N :≡

(
·BEl (var vz)B var vz⇒p El (var vz)

)
(zero : N, suc : N → N)

The only sort is referred to by var vz. As shown by the constructor for successor, on the left
hand side of the arrow ⇒p we have to write a sort term of type U, and not a point type. This
makes sure that all constructors are strictly positive, as the only ways to form sort terms are
variables and applications.

FSCD 2020
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An example of a real indexed type is the type family of vectors of a fixed type A : Set.
We also assume that we have natural numbers in our metatheory.

Vs :≡ (·B N ⇒̂s U) (V ec : N→ U)
V :≡

(
·BEl (var vz @ 0)B (nil : V ec 0,

A ⇒̂p Π̂p N
(
λn.var vz @ n⇒p cons : A→ (n : N)→ V ec n→

El (var vz @(n+ 1))
))

V ec (n+ 1))

As our sort has a function type, whenever we have to refer to it in constructors, we have
to use the application @ to specify the natural number index. In the cons constructor, we
use both kinds of function types: the first two function types are Π̂p as they refer to the
parameters of type A and N. The last function type is⇒p as it refers to a recursive argument.

We revisit the parity example from the introduction.

Ps :≡ (·B N ⇒̂s UB N ⇒̂s U) (isEven : N→ U, isOdd : N→ U)

P :≡
(
·BEl (var (vs vz) @ 0)B (even0 : isEven 0,

Π̂p N
(
λn.var vz @n⇒p evenS : (n : N)→ isOddn→

El (var (vs vz) @(n+ 1))
)
B isEven (n+ 1),

Π̂p N
(
λn.var (vs vz) @n⇒p oddS : (n : N)→ isEvenn→

El (var vz @(n+ 1))
))

isOdd (n+ 1))

The sort context Ps has length two, we refer to the isEven sort by var (vs vz), to the isOdd
sort by var vz.

3 Algebras, Displayed Algebras, and Sections

In this section we provide semantics for the theory of signatures (Definition 1). A signature
is given by a sort context Γs and a point context Γ : Conp Γs. For each such signature, we
will obtain notions of algebras, displayed algebras and sections of displayed algebras. From
the signature for natural numbers given in Example 2 we will derive that a natural number
algebra is an element of

(N : Set)×N × (N → N),

a displayed natural number algebra over an algebra (N, z, s) is an element of

(P : N → Set)× P z × ((n : N)→ P n→ P (s n)),

and a section of a displayed algebra (P,w, h) over (N, z, s) is an element of

(f : (n : N)→ P n)× (f z = w)×
(
(n : N)→ f (s n) = hn (f n)

)
.

The constructors of the inductive type will be elements of the algebra, the arguments of
the eliminator (sometimes called motives and methods) form a displayed algebra over the
constructors, while the eliminator itself is a section. The equalities in the section are the
computation rules (β rules) for the eliminator.
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More formally, we will define operations –A, –D and –S for computing algebras, displayed
algebras and sections. As sort and point contexts are separate, we have to define them
separately for both.

ΓsA : Set ΓsD : ΓsA → Set ΓsS : (γs : ΓsA)→ ΓsD γs → Set
ΓA : ΓsA → Set ΓD : ΓsD γs → ΓA γs → Set ΓS : ΓsS γs γ

d
s → (γ : ΓA γs)→

ΓD γds γ → Set

Putting them together, we get algebras as (γs : ΓsA)×ΓA γs, displayed algebras over a (γs, γ)
by (γds : ΓsD γs)× ΓD γds γ, and sections of (γds , γd) by (γss : ΓsS γs γ

d
s )× ΓS γss γ γ

d.
The algebra operator corresponds to building the standard model (set model, metacircular

interpretation [24, 5]) of the theory of signatures.

I Definition 3 (Algebra Operation). We map sort types and sort contexts to types, variables
and terms are mapped to functions from the interpretation of their context to the interpretation
of their types, point types and point contexts are mapped to families over the interpretation
of the sort contexts.

–A : Tys → Set –A : Vars ΓsAs → ΓsA → As
A –A : Typ Γs → ΓsA → Set

–A : Cons → Set –A : Tms ΓsAs → ΓsA → As
A –A : Conp Γs → ΓsA → Set

We go through each operation in order. First, sort types are interpreted as functions into the
universe (left column), and sort contexts become iterated product types (right column).

UA :≡ Set ·A :≡ 1

(Π̂s T As)A :≡ (τ : T )→ (Aτ)A (Γs BAs)A :≡ ΓsA ×AsA

We use variables and terms to navigate these iterated products via iterated projections, and
to apply function sorts to parameters.

vzA (γs, αs) :≡ αs (var x)A γs :≡ xA γs

(vsx)A (γs, αs) :≡ xA γs (t@ τ)A γs :≡ (tA γs) τ

For point types, both function types become metatheoretic functions and we erase the element
operator, since it does not have any semantic meaning. Just as sort contexts, point contexts
are interdependency-free lists of the interpretations of their constituent types.

(El a)A γs :≡ aA γs ·A γs :≡ 1

(Π̂p T A)A γs :≡ (τ : T )→ (Aτ)A γs (Γ BA)A γs :≡ ΓA γs ×AA γs

(a⇒p A)A γs :≡ aA γs → AA γs

I Example 4 (Revisiting Natural Numbers, Vectors, Parity). Looking at the signatures in
Example 2, we observe that the algebra interpretations are the expected left-nested product
types starting with 1. For natural numbers, we have NsA ≡ 1×Set. Given a (?,M) : 1× Set,
the algebras of its point contexts become NA (?,M) ≡ (1×M)× (M → M). For vectors,
the sorts in an algebra are elements of VsA ≡ 1× (N→ Set), and given such a (?,W ), the
point algebras are given by V A (?,W ) ≡ 1 ×W 0 × (A → (n : N) → W n → W (n + 1)).
For parity, the sorts in an algebra are PsA ≡ 1× (N→ Set)× (N→ Set), and given such a
(?,E,O), point algebras are PA (?,E,O) ≡ 1 × E 0 ×

(
(n : N) → On → E (n+ 1)

)
×

(
(n :

N)→ E n→ O (n+ 1)
)
.

FSCD 2020
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Displayed algebras can be seen as the logical predicate interpretation [13] of the syntax.

I Definition 5 (Displayed Algebra Operation). Sort contexts and types become predicates over
their algebra interpretations, while the displayed algebra interpretation of variables and terms
says that they respect the predicates (usually called fundamental lemma).

–D : (As : Tys) → As
A → Set –D : (x : Vars ΓsAs)→ ΓsD γs → As

D (xA γs)
–D : (Γs : Cons)→ ΓsA → Set –D : (t : Tms ΓsAs)→ ΓsD γs → As

D (tA γs)

Point types and contexts become predicates over their corresponding algebra interpretations,
but these predicates also depend on witnesses of the predicates for the sort contexts.

–D : (A : Typ Γs) → ΓsD γs → AA γs → Set
–D : (Γ : Conp Γs)→ ΓsD γs → ΓA γs → Set

The interpretation of U is predicate space, interpretations of Π̂p and sort contexts are pointwise.

UD T :≡ T → U ·D ? :≡ 1

(Π̂s T As)D fs :≡ (τ : T )→ (As τ)D (fs τ) (Γs BAs)D (γs, αs) :≡ ΓD
s γs ×As

D αs

The interpretation of terms follows the same pattern as for algebras, variables are lookups, ap-
plication is metatheoretic application, we omit listing them. On point types, the interpretation
of El is again non-interesting, the interpretation of Π̂p is pointwise, while the interpretation
of ⇒p says that if the predicate holds for the input, then it holds for the output.

(El a)D γds α :≡ aD γd α

(Π̂p T A)D γds f :≡ (τ : T )→ (Aτ)D γds (f τ)
(a⇒p A)D γds f :≡ {α : aA γs} → aD γds α→ AD γds (f α)

Finally, point contexts are interpreted as iterated products again, they contain witnesses that
the predicates hold for everything in the algebra.

·D γds γ :≡ 1
(Γ BA)D γds (γ, α) :≡ ΓD γds γ ×AD γds α

I Example 6 (Revisiting Natural Numbers, Vectors, Parity). Given (?,M) : NsA and (?, z, s) :
NA (?,M), the displayed sort algebra is a predicate onM , concretely NsD (?,M) ≡ 1×(M →
Set). This can be seen as the motive of the eliminator if (M, z, s) is the initial algebra.
Given such a (?,Q), the displayed point algebra computes the types of methods of the
eliminator, ND (?,Q) (?, z, s) ≡ 1 × Qz ×

(
(n : M) → Qn → Q (s n)

)
as expected. Given

a vector algebra (?,W ), (?, nil, cons), a displayed sort algebra computes to VsD (?,W ) ≡
1 × ((n : N) → W n → Set), and the displayed point algebra is V D (?,Q) (?, nil, cons) ≡
1 × Q 0nil ×

(
(a : A)(x : N)(v : W n) → Qnv → Q (n + 1) (cons a x v)

)
. Finally, given a

parity algebra (?,E,O), (?, e0 , eS, oS), the displayed sort algebra consists of PsD (?,E,O) ≡
1 × ((n : N) → E n → Set) × ((n : N) → On → Set) and given such a (?,Q,R), displayed
point algebras are PD (?,Q,R) (?, e0 , eS, oS) ≡ 1 × Q 0 e0 ×

(
(n : N)(o : On) → Rno →

Q (n+ 1) (eS n o)
)
×

(
(n : N)(e : E n)→ Qne→ R (n+ 1) (oS n e)

)
. Given a family Q over

E and a family R over O, these express that e0 witnesses Q, while eS turns witnesses of R
into witnesses of Q and oS turns witnesses of Q into witnesses of R.
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Sections are dependent binary logical relations, where the interpretation of U, El and ⇒p
are non-standard.

I Definition 7 (Section Operation). For sorts and sort contexts, sections are dependent
binary relations over the corresponding algebra and displayed algebra. “Dependent” here
means the type of the second argument of the relation depends on the first.

–S : (As : Tys) → (αs : AsA)→ As
D αs → Set

–S : (Γs : Cons)→ (γs : ΓsA) → ΓsD γs → Set

The interpretation of variables expresses that if the relation holds at the context, then it also
holds at the type for the algebra and displayed algebra interpretation of the variable. We have
the same for terms.

–S : (x : Vars ΓsAs)→ ΓsS γs γ
d
s → As

S (xA γs) (xD γds )
–S : (t : Tms ΓsAs) → ΓsS γs γ

d
s → As

S (tA γs) (tD γds )

The interpretation of point types are dependent binary relations displayed over witnesses of
relatedness for the relations for the contexts.

–S : (A : Typ Γs) → ΓsS γs γ
d
s → (α : AA γs)→ AD γds α→ Set

–S : (Γ : Conp Γs)→ ΓsS γs γ
d
s → (γ : ΓA γs) → ΓD γds γ → Set

Sections of the universe are given as dependent functions (instead of dependent relation space
as is usual for logical relations). The interpretation of Π̂s is pointwise, and so is that of sort
contexts.

US T T d :≡ (τ : T )→ T d τ

(Π̂s T As)S fs f
d
s :≡ (τ : T )→ (As τ)S (fs τ) (fds τ)

·S ? ? :≡ 1

(Γs BAs)S (γs, αs) (γds , αds) :≡ ΓsS γs γ
d
s ×As

S αs αs

Sort terms follow the usual pattern of variables selecting sort interpretations via projections
of products and interpreting the application by metatheoretic application:

vzS (γss , αss) :≡ αss (var x)S γss :≡ xS γss

(vsx)S (γss , αss) :≡ xS γss (t@ τ)S γss :≡ tS γss τ

Sections on point types express equalities. Each point type ends with an El a, and the section
says that the function given by aS returns the witness of the predicate αd. Π̂p is defined
pointwise, while ⇒p says that for any input, the outputs of f and fd are related by AS, where
we use aS again to produce a witness of the predicate on the right hand side.

(El a)S γss αα
d :≡ (aS γss α = αd)

(Π̂p T A)S γss f f
d :≡ (τ : T )→ (Aτ)S γss (f τ) (fd τ)

(a⇒p A)S γss f f
d :≡ (α : aA γs)→ AS γss (f α) (fd (aS γss α))

The definition of sections of point contexts is, again, just an iteration of products.

·S γss γ γd :≡ 1
(Γ BA)S γss (γ, α) (γd, αd) :≡ ΓS γss γ γ

d ×AS γss αα
d
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I Example 8 (Revisiting Natural Numbers, Vectors, Parity). Using the same notation for
algebras and displayed algebras as in Example 6, a section of a natural number dis-
played algebra is a (?, f) having type NsS (?,M) (?,Q) ≡ 1 × ((n : M) → Qn) together
with a witness of NS (?, f) (?, z, s) (?, w, h) ≡ 1 × (f z = w) × ((n : N) → f (s n) =
hn (f n)). These equalities are the computation rules of the eliminator. For vectors,
the section operation computes to Vs

S (?,W ) (?,Q) ≡ 1 ×
(
(n : N)(v : W n) → Qnv

)
and to V S (?, f) (?, nil, cons) (?, nild, consd) ≡ 1 × (f 0nil = nild) ×

(
(a : A)(n : N)(v :

W n) → f (n + 1) (cons an v) = consd an (f n v)
)
. For the parity families, sections are

Ps
S (?,E,O) (?,Q,R) ≡ 1× ((n : N)(e : E n)→ Qne)× ((n : N)(o : On)→ Rno) together

with P S (?, f, g) (?, e0 , eS, oS) (e0 d, eSd, oSd) ≡ 1 × (f 0 e0 = e0 d) ×
(
(n : N)(o : On) →

f (n+ 1) (eS n o) = eSd n (g n o)
)
×

(
(n : N)(e : E n)→ g (n+ 1) (oS n e) = oSd n (f n e)

)
. A

section for parity displayed algebras consists of two functions f , g which map e0 to e0 d, eS
to eSd and oS to oSd.

4 Existence of Inductive Families

When does a type theory “support” types of our specification of mutual inductive families
and how does this compare to well-established notions of inductive types? The intended
meaning of the signatures is clear from the definition of their algebras as seen in Section 3, the
types of their eliminators and computation rules are specified in the definitions of displayed
algebras and sections. This means that we can formally say what it means for inductive
families to exist in a type theory. In this section, we will prove that any metatheory with
indexed W-types supports our notion of mutual inductive families or, in other words, mutual
inductive families can be reduced to indexed W-types:

I Theorem 9 (Existence of Inductive Families). For every signature of inductive families
given by a sort context Ωs : Cons and point context Ω : Conp Ωs, there are are sort and point
constructors in the form of

cons Ω : ΩsA and
con Ω : ΩA (cons Ω)

such that for each displayed algebra given by motives ωds : ΩsD (cons Ω) and methods ωd :
ΩD ωds (con Ω) we have an eliminator given by sections

elims Ω ωds : ΩsS (cons Ω)ωds with
elim Ω ωd : ΩS (elimsΩωds ) (con Ω)ωd.

Note that this definition of existence only requires the computation rules contained in
elim Ω ωd to hold propositionally. One might also wish for strict reduction rules instead to
enable better computational behaviour.

Our strategy to prove this theorem is to first extend our syntax to a full substitution
calculus including sort and point substitutions and point types (Section 4.1). Then we
construct a term model using the extended syntax, which we can then show to be the initial
algebra (Section 4.2).
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4.1 A Substitution Calculus for the Syntax
The syntax for usual type theories includes substitutions. We did not have to mention them
in the theory of signatures because of the simplicity of mutual inductive definitions. In other
words, our syntax only contains normal forms (there are also no conversion rules in our
syntax). However when doing constructions on the syntax, it is sometimes useful to have a
full syntax, this includes a category of substitutions. We will make use of them in Section 4.2.

I Definition 10 (Sort Substitutions). A calculus of substitutions Subs of sort contexts is
useful to compare sort contexts themselves as well as to relate point contexts over different
sort contexts. We define them to be inductively generated by

Subs : Cons → Cons → Set
ε : Subs Γs ·
–, – : Subs Γs ∆s → Tms ΓsAs → Subs Γs (∆s BAs)

Like with the syntax of signatures itself, Subs can be encoded as an indexed W-type as shown
in Appendix A. These substitutions allow us to substitute point types, point contexts, and
sort terms via the following “pullback” operations:

–[–] : Typ ∆s → Subs Γs ∆s → Typ Γs –[–] : Vars ∆sAs → Subs Γs ∆s → Tms ΓsAs
–[–] : Conp ∆s → Subs Γs ∆s → Conp Γs –[–] : Tms ∆sAs → Subs Γs ∆s → Tms ΓsAs

given by the defining rules for substitution

Π̂p T A[σ] :≡ Π̂p T (λτ.(Aτ)[σ]) vz[σ, t] :≡ t
El a[σ] :≡ El (a[σ]) (vsx)[σ, t] :≡ x[σ]
(a⇒p A)[σ] :≡ a[σ]⇒p A[σ] (var x)[σ] :≡ x[σ]
· [σ] :≡ · (t@ τ)[σ] :≡ t[σ] @ τ

(Γ BA)[σ] :≡ Γ [σ]BA[σ]

We can derive from this some useful gadgets of the substitutional calculus: We can define
the weakening of a substitution σ : Subs Γs ∆s to the substitution wkσ : Subs (Γs BAs) ∆s via
recursion on σ by wkε :≡ ε and wkσ,t :≡ (wkσ, vs t).

Using wk, we can then recover the categorical structure of the substitutions by defining
the identity idΓs : Subs Γs Γs by recursion of the context Γs: id· :≡ ε and idΓsBAs :≡
(wkidΓs

, var vz). Composition σ ◦ δ : Subs Γs ∆s of substitutions σ : Subs Θs ∆s and δ :
Subs Γs ∆s is defined by recursion on the first substitution: ε ◦ δ :≡ ε, (σ, t) ◦ δ :≡ (σ ◦ δ, t[δ]).

The projections π1 σ : Subs Γs ∆s and π2 σ : Tmss ΓsAs of a substitution σ : Subs Γs (∆sB
As) are just projections of ×-types: Any substitution between Γs and ∆s BAs is of the form
σ, t and we can just set π1 (σ, t) :≡ σ and π2 (σ, t) :≡ t.

Obviously, we might also want to consider algebras, displayed algebras, and their sections
over these substitutions.

I Definition 11 (Semantics of Sort Substitutions). We can extend the algebra operator by
defining it on substitutions by functions between the interpretations of sort contexts:

–A : Subs Γs ∆s → ΓsA → ∆s
A

This is done by setting εA :≡ ? and (σ, t)A :≡ (σA, tA).
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The type of displayed algebras over a sort substitution should be the type of function
between the displayed algebras of its domain and codomain, where in the latter we have to
apply the function which we get from the algebra over the substitution:

–D : (σ : Subs Γs ∆s)→ ΓsD γs → ∆s
D (σA γs)

These are defined, like in the non-displayed case, by setting εD γds :≡ ? and (σ, t)D γds :≡(
σD γds , t

D γds
)
.

A section of a displayed algebra of a sort substitution is supposed to map sections of its
domain to sections of its codomain:

–S : (σ : Subs Γs ∆s)→ ΓsS γs γ
d
s → ∆s

S (σA γs) (σD γds )

Again, this is happening componentwise by having: εS γss :≡ ? and (σ, t)S γss :≡
(
σS γss , t

S γss
)
.

I Lemma 12. It is easy to check that this definition of algebras of a subtitution respects the
substitution calculus given in Definition 10 in the following sense:

(A[σ])A γs = AA (σA γs), wkσA (γs, αs) = σA γs,
(t[σ])A γs = tA (σA γs), (π1 σ)A γs = pr1 (σA γs), and

idA γs = γs, (π2 σ)A γs = pr2 (σA γs).
(σ ◦ δ)A γs = σA (δA γs),

Proof. We can prove the first rule by recursion on the point type A : Typ Γs, the second
rule by recursing on the term t : Tms ΓsAs, the third by induction on the context, and all
other by induction by the substitution. Analogous rules hold for displayed algebras over
substitutions. J

The model which is initial in the category of all models is usually called the term model.
This is because in this model, a type gets interpreted as the set of all of its terms. Since
our signatures form – or are at least strongly inspired by – a type theoretic syntax as
well, we might hope to deploy the same strategy for inductive families. In the core of this
interpretation is the issue of how to find an interpretation for a given sort term a of the
universe token U. The interpretation of this ought to be the terms of the point type El(a)
associated with this sort term. But our syntax does not mention terms of point types at
all, since point constructors are not interdependent! So our solution is to retrofit the theory
with terms, as well as substitutions for the point contexts:

I Definition 13 (Point Substitution Calculus). Let us fix a sort context Γs : Cons. It turns
out that there are three ways to construct reasonable terms of point types in Γs: Via variables
to navigate point contexts and application constructors for each of the two kinds of Π-types
present in the syntax.

Varp : Conp Γs → Typ Γs → Set var : Varp Γ A→ Tmp Γ A

Tmp : Conp Γs → Typ Γs → Set – @̂ – : Tmp Γ (Π̂p T A)→ (τ : T )→ Tmp Γ (Aτ)
vz : Varp (Γ BA)A –@ – : Tmp Γ (a⇒p A)→ Tmp Γ (El a)→ Tmp Γ A

vs : Varp Γ A→ Varp (Γ BB)A
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Like with the sort substitutions defined in Definition 10, we define substitutions between point
contexts over a fixed sort context Γs : Cons to be lists of point terms:

Subp : Conp Γs → Conp Γs → Set
ε : Subp Γ ·
–, – : Subp Γ ∆→ Tmp Γ A→ Subp Γ (∆BA)

All of these can again be encoded as indexed W-types (cf. Appendix A). We can again define
a pullback operations for variables and terms – this time for point terms – along substitutions
in the form of

–[–] : Varp ∆A→ Subp Γ ∆→ Tmp Γ A –[–] : Tmp ∆A→ Subp Γ ∆→ Tmp Γ A

which are defined recursively by

vz[σ, t] :≡ t (var x)[σ] :≡ x[σ]
(vsx)[σ, t] :≡ x[σ] (t @̂ τ)[σ] :≡ t[σ] @̂ τ

(t@u)[σ] :≡ t[σ] @u[σ]

Analogously to Definition 10 we can define the weakening wkσ : Subp (Γ B A) ∆ of a point
substitution σ : Subp Γ ∆ along a point type A : Typ Γs, the identity substitution id : Subp Γ Γ
and the composition σ ◦ δ : Subp Γ ∆ of substitutions σ : Subp Θ ∆ and δ : Subp Γ Θ.

As an auxiliary construction for our existence proof we will furthermore need notions of
algebras, displayed algebras, and sections for the point terms and point substitutions:

I Definition 14 (Semantics of Point Substitutions & Terms). Let us fix a sort context Γs : Cons
and an algebra γs : ΓA

s over it. We can give semantic meaning to point types and point
substitution by extending the algebra operator with the following components:

–A : Varp Γ A→ ΓA γs → AA γs –A : Subp Γ ∆→ ΓA γs → ∆A γs

–A : Tmp Γ A→ ΓA γs → AA γs

These components are, in essence, defined the same way as their respective parts on sorts.
Of course, apart from these defining equations, this definition of algebras is also well-behaved
under the other components of substitutional calculus, analogous to sort substitutions (cf.
Lemma 12).

Let us now also fix a displayed algebra γds : ΓsD γs. For the displayed version of these
algebras, the interpretation of point terms and of point substitutions needs to depend on these
and, additionally, on an algebra and displayed algebra of the underlying point context. This
leads to the following interpretations:

–D : (x : Varp Γ A) → ΓD γds γ → AD γds (xA γ)
–D : (t : Tmp Γ A) → ΓD γds γ → AD γds (tA γ)
–D : (σ : Subp Γ ∆)→ ΓD γds γ → ∆D γds (σA γ)

Again, we define them by equations resembling the ones for sort substitutions, and again,
substitution rules analogous to the ones in Lemma 12 hold.
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4.2 Constructing all Inductive Families from the Syntax
In this section, assuming our type theory supports the theory of signatures (including the
extensions of Section 4.1), we show that all mutual inductive families described by signatures
exist. To give an intuition for this construction, consider the example of natural numbers: In
its initial algebra, we want the interpretation of the U sort to contain exactly the elements z,
s z, s (s z), . . . , where z and s are point terms, pointing to the zero and successor constructor,
respectively. But we observe that these are just the point terms of the type ElN in the
context ∆ := (N : U, z : ElN, s : N ⇒p ElN) (for the sake of the example, we use variable
names and don’t separate sort and point contexts). So we define the initial algebra as(
Tm ∆ (ElN), z, λt.s@ t

)
: ∆A. Note that given any other algebra (A, a, f) : ∆A and natural

number n : Tm ∆ (ElN), we can simply use the algebra interpretation to obtain the result
of the non-dependent elimination principle on n: nA (A, a, f) will have type A, moreover
zA (A, a, f) = a and (s@ t)A (A, a, f) = f (tA (A, a, f)) which are the correct computation
rules. The same idea works for displayed algebras: we can use the –D operation on a natural
number (given as a term) to obtain the result of the dependent elimination principle. In
the following we will give the general description of this approach and prove its initiality by
giving the dependent eliminator.

For the remainder of this section, let us fix the sort context Ωs : Cons and the point context
Ω : Conp Ωs which we want to construct by giving cons Ω : ΩsA and con Ω : ΩA (cons Ω). Our
definition of the constructor uses the trick to index several of the constructions by a second
sort or point context together with a sort or point substitution from Ωs or Ω. We can think
of this second context as some sort of a “sub-context” of a fixed context.

I Definition 15 (The Sort Constructor). The generalised sort constructor consists of:

con′s : Subs Ωs Γs → ΓsA

We can define this recursively via con′s ε :≡ ? and con′s (σ, t) :≡ (con′s σ, con′s t) where on sort
terms we will define a constructor operation yielding an algebra of the respective sort type:

con′s : Tms ΩsAs → As
A

This operation will on universe terms consist of the type of point terms in the point context
Ω, while on metatheoretic sort functions, it will return a function with constructor of the
applied term:

con′s a :≡ Tmp Ω (El a) for a : Tms Γs U and

con′s t :≡ λτ.con′s (t @̂ τ) for t : Tms Ωs (Π̂s T As).

This construction is already enough to give the sort constructor required in Theorem 9 by
pinning the substitution to be the identity: cons Ω :≡ con′s idΩs

: ΩsA.

It is not immediately clear that the operation on substitutions and the operation on sort
terms is well-behaved under the pullback along substitutions. We can, however, show that
this is indeed the case:

I Lemma 16 (Coherence of the Sort Constructor). For all substitutions σ : Subs Ωs Γs
and t : Tms ΓsAs, taking a constructor of t pulled back along σ has the same effect as
taking the term algebra over the context algebra generated by the constructor on σ, that is,
tA (con′s σ) = con′s (t[σ]).
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Proof. Let us first do a case distinction on the substitution. If it is ε, then Γs = ·, and it
is easy to see that there are no terms in the empty sort context. Thus, we can assume the
substitution to be of the form (σ, s). In this case, lets recurse on the term and see that

(var vz)A(con′s (σ, s)) = vzA (con′s σ, con′s s)
= con′s s
= con′s (var vz[σ, s]),

(var (vsx))A (con′s (σ, s)) = var (vsx)A(con′s σ, con′s s)
= (var x)A (con′s σ)
= con′s (var x[σ]) by induction
= con′s (var (vsx)[σ, s]), and lastly

(f @̂ τ)A (con′s (σ, s)) = fA (con′s (σ, s)) τ
= con′s (f [σ, s]) τ by induction

= con′s ((f τ)[σ, s]) for f : Π̂s T B. J

We can now use this lemma to do a trick with con Ω similar to the trick we did for cons Ω:
Replace the fixed point context with a variable one, together with a substitution from Ω,
and define the constructor recursively on point types.

I Definition 17 (The Point Constructor). We define operations on point contexts and point
terms, resulting in algebras, in the following form:

con′ : Subp Ω Γ → ΓA (cons Ω) con′: Tmp Ω A→ AA (cons Ω)

The operation on point substitutions is defined recursively by con′ ε :≡ ? and con′ (σ, t) :≡
(con′ σ, con′ t), whereas for point terms, note that if t : Tmp Ω (El a), then by Lemma 16

t : con′s a ≡ con′s(a[id]) = aA (con′s idΩs
) ≡ (El a)A (cons Ω),

which allows us to define the constructor operator by

con′ t :≡ t for t : Tmp Ω (El a),

con′t :≡ λτ. con′ (t @̂ τ) for t : Tmp Ω (Π̂p T A), and
con′t :≡ λu. con′ (t@u) for t : Tmp Ω (a⇒p A).

This concludes the definition of the constructors, since we can set, like for the sort constructor,
con Ω :≡ con′ idΩ : ΩA (cons Ω).

Again, the construction comes with a property that makes it coherent under pulled back
point terms. Analogously to Lemma 16, this coherence looks as follows:

I Lemma 18 (Coherence of the Point Constructor). For all point substitutions σ : Subp Ω Γ
and point terms t : Tmp Γ A, pulling back has the same effect as the point constructor as in
tA (con′σ) = con′t[σ].

The proof is by induction on σ and t, and analogous to the one of Lemma 16, see Appendix
B.

With the constructors defined, let us move on to the construction of the eliminator. Let
us from now on fix displayed algebras ωds : ΩD

s (cons Ω) and ωd : ΩD ωds (con Ω). We will
proceed in the same order as for the constructors and start by generalizing elims Ω ωd to
arbitrary subcontexts of Ω by giving constructions on sort substitutions and sort terms.
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I Definition 19 (The Eliminator). The generalized eliminator will take substitutions or sort
terms to give sections of sort types or sort contexts, respectively:

elims
′ : (σ : Subs Ωs Γs)→ ΓsS (σA (cons Ω)) (σD ωds )

elims
′ : (t : Tms ΩsAs) → As

S (tA (cons Ω)) (tD ωds )

The first rule is defined by recursion using the second construction as usual: elims
′ ε :≡ ?

and elims
′ (σ, t) :≡

(
elims

′ σ, elims
′ t

)
. For the sort terms, we observe that, by Lemmas 16 and

18, for a : Tms Ωs U and t : aA (cons Ω) we have US(aD ωds (tA (con Ω)) = aD ωds t, and thus we
can set, disregarding transports,

elims
′ a :≡ λt. tD ωd for a : Tms Ωs U and

elims
′ t :≡ λτ. elims

′ (t @̂ τ) for t : Tms Ωs (Π̂s T As).

Now we set elims Ω ωd :≡ elims
′ idΩs

.

Similar to Lemma 16, these definitions are coherent in the following form:

I Lemma 20. Given a sort substitution σ : Subs Ωs Γs and a sort term t : Tms ΓsAs, the
eliminator of a pulled back term is the section of the term, evaluated at the eliminator on a
substitution: elims

′ (t[σ]) = tS (elims
′ σ).

Proof. The proof strategy is exactly the same as for Lemma 16. J

As a last step, we still need to prove the computation rules for the eliminator, consisting
of a section a displayed algebra over a given point context. Consistent with Definition 15, we
generalize them to arbitrary point substitutions and point terms.

I Lemma 21 (Computation Rules). We prove the computation rules for our eliminator
elims Ω ωd to be a section of subcontexts of Ω and of point terms in Ω:

elim′ : (σ : Subp Ω Γ)→ ΓS (elims Ω ωd) (σA (con Ω)) (σD ωd)
elim′ : (t : Tmp Ω A) → AS (elims Ω ωd) (tA (con Ω)) (tD ωd)

Proof. Using the elim′ for terms, the one for substitutions can be implemented in a straightfor-
ward way by recursion on the point substitution: elim′ ε ≡ ? and elim′ (σ, t) ≡

(
elim′ σ, elim′t

)
.

We implement elim′ for a term t : Tmp Ω A by case distinction on its type A. If A = El a,
we prove the following equality with the help of Lemmas 18 and 20:

aS (elims
′ idΩs) (tA (con Ω)) = aS (elims

′ idΩs) t = elims
′ a t = tD ωd.

For the other two cases, we use the induction hypotheses:

elim′t :≡ λτ. elim′ (t @̂ τ) for t : Tmp Ω (Π̂p T A), and
elim′t :≡ λu. elim′ (t@u) for t : Tmp Ω (a⇒p A). J

Proof of Theorem 9. Lemma 21 completes the construction of the eliminator and setting
elim Ω ωd :≡ elim′ idΩ completes the existence proofs for of inductive families. J



A. Kaposi and J. von Raumer 23:17

5 Conclusions and further work

We defined a syntax of signatures for mutual inductive families which is very close to the
usual way of specifying such types in proof assistants: by a list of sorts and then a list of
constructors. We defined semantics for these signatures and showed how to derive the initial
algebra for any signature just by using the syntax of signatures. The syntax of signatures
was only given by normal forms, hence we could encode them as indexed W-types. Thus we
obtained a formalisation of the reduction of mutual inductive families to indexed W-types.
The lack of such a proof in the literature might be due to the absence of direct, convenient
descriptions of mutual inductive types.

In the future, we would like to investigate how to integrate the theory of signatures into
the core language of a proof assistant and how generic programming can be performed by
induction on signatures, e.g. proving injectivity, disjointness of constructors, or decidability
of equality. Also, we would like to extend the theory of signatures and its semantics
with infinitary constructors. Currently, infinitely branching trees cannot be described as
a signature, and as a consequence, the theory of signatures itself cannot be described as a
signature.
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A Deriving the Syntax from Indexed W-Types

We recall the notion of an indexed W-type.

I Definition 22 (Indexed W-Types, [4]). The indexed W-type IWo,r
A,B : I → Set for input data

I : Set (“index type”)
A : Set (“shapes”)
B : A→ Set (“positions”)
o : A→ I (“output indices”) and
r : (a : A)→ B a→ I (“recursive indices”)

is the inductive type on the constructor of the following form:

a : A c : (b : B a)→ IWo,r
A,B (r a b)

sup a b : IWo,r
A,B (o a)

admitting a dependent eliminator

C : {i : I} → IWo,r
A,B i→ Set

p : (a : A)
(
c : (b : B a)→ IWo,r

A,B (r a b)
)

→
(

(b : B a)→ C (c b)
)
→ C (sup a c)

elimIW C p : (i : I)(w : IWo,r
A,B i)→ C w

with the reduction rule

elimIW C p (o a) (sup a c) ≡ p a c (λb. elimIW C p (r a b) (c b)).

Using this definition of indexed W-types we now want to represent our extended syntax
as such:
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Table 1 The input data for the indexed W-types representing the internalized syntax for inductive
families.

i Ii : Set Ai : Set Bi : Ai → Set oi : Ai → Ii ri : (a : Ai)→ Bi a→ Ii

Tys 1 1
+Set

inl ? 7→ 0
inr T 7→ T

– 7→ ? – 7→ ?

Cons 1 1
+Tys

inl ? 7→ 0
inrB 7→ 1 – 7→ ? – 7→ ?

Vars Cons
Cons
+Cons × Tys

inl Γs 7→ 0
inr (Γs, B

′) 7→ 1
inl Γs 7→ (Γs, B)
inr (Γs, B

′) 7→ (Γs, B
′)
−
inr (Γs, B

′) ? 7→ Γs

Tms Γs Tys
Tys
+(T : Set)× (T → Tys)× T

inlB 7→ 0
inr – 7→ 1

inlB 7→ 0
inr (T,B, τ) 7→ B τ

−
inr (T,B, τ) ? 7→ Π̂s T B

Subs Γs 1 1
+(B : Tys)× Tms Γs B

inl ? 7→ 0
inr (B, t) 7→ 1 – 7→ ? – 7→ ?

Typ Γs 1
Tms Γ U
+Set
+TmsΓ U

inl a 7→ 0
inr (inl τ) 7→ T
inr (inr a) 7→ 1

– 7→ ? – 7→ ?

Conp Γs 1 1
+Tys Γs

inl ? 7→ 0
inrA 7→ 1 – 7→ ? – 7→ ?

Varp –A Conp Γs
Conp Γs

+Conp Γs × Typ Γs

inl Γ 7→ 0
inr (Γ , A′) 7→ 1

inl Γ 7→ (Γ , A)
inr (Γ , A′) 7→ (Γ , A′)

−
inr (Γ , A′) ? 7→ Γ

Tmp Γ Typ Γs (A : Typ Γs)× Varp Γ A

inl (A, v) 7→ 0
inr (inl –) 7→ 2

inr (inr –) 7→ 1

inl (A, v) 7→ A
inr (inl (A, a)) 7→ A

inr (inr (T,A, τ)) 7→ Aτ

−
inr (inl (A, a)) 0 7→ (a⇒p A)
inr (inl (A, a)) 1 7→ El a
inr (inr (T,A, τ)) ? 7→ Π̂p T A

Subp Γ 1 1
+(A : Typ Γs)× Tmp Γ A

inl ? 7→ 0
inr (A, t) 7→ 1 – 7→ ? – 7→ ?

I Definition 23 (IF-Syntax as W-Types). We define the types defined in Definition 1, Defini-
tion 10, and Definition 13 as follows:

Tys :≡ IWoTys ,rTys
ATys ,BTys

? ,

Cons :≡ IWoCons ,rCons
ACons ,BCons

? ,

Vars –B :≡ IWoVars B,rVars B
AVars B,BVars B

,

Tms Γs :≡ IWoTms Γs,rTms Γs

ATms Γs,BTms Γs
,

Subs Γs :≡ IWoSubs Γs,rSubs Γs

ASubs Γs,BSubs Γs
,

Typ Γs :≡ IW
oTyp ,rTyp
ATyp ,BTyp

? ,

Conp Γs :≡ IWoConp ,rConp
AConp ,BConp

? ,

Varp –A :≡ IWoVarp A,rVarp A

AVarp A,BVarp A
,

Tmp Γ :≡ IWoTmp Γ,rTmp Γ
ATmp Γ,BTmp Γ ,

Subp Γ :≡ IWoSubp Γ,rSubp Γ
ASubp Γ,BSubp Γ ,

where the respective input data for the indexed W-types is given in Table 1.



A. Kaposi and J. von Raumer 23:21

B Proof of Lemma 18

Proof. Repeating the strategy of the proof of Lemma 16, we again see that we can assume
the substitution to be of an extended form (σ, s), since there are no point terms in the empty
point context. Now, by recursion on the term we see that

(var vz)A (con′ (σ, s)) = (var vz)A (con′ σ, con′ s)
= con′ s
= con′ (var vz[σ, s]),

(var(vsx))A (con′ (σ, s)) = (var (vsx))A (con′ σ, con′ s)
= (var x)A (con′ σ)
= con′ (var x[σ]) by induction
= con′ (var (vsx)[σ, s]),

(t@u)A (con′ σ) = tA (con′ σ)
(
uA (con′ σ)

)
= con′ (t[σ]) (con′ (u[σ])) by induction
= con′ ((t@u)[σ]), and

(t @̂ τ)A (con′ σ) = tA (con′ σ) τ
= con′ (t[σ]) τ by induction
= con′ ((t @̂ τ)[σ]). J

FSCD 2020


	Introduction
	Signatures for Mutual Inductive Families
	Algebras, Displayed Algebras, and Sections
	Existence of Inductive Families
	A Substitution Calculus for the Syntax
	Constructing all Inductive Families from the Syntax

	Conclusions and further work
	Deriving the Syntax from Indexed W-Types
	Proof of Lemma 18

