Symbolic Execution Game Semantics

Yu-Yang Lin
Queen Mary University of London, UK

Nikos Tzevelekos
Queen Mary University of London, UK

Abstract
We present a framework for symbolically executing and model checking higher-order programs with external (open) methods. We focus on the client-library paradigm and in particular we aim to check libraries with respect to any definable client. We combine traditional symbolic execution techniques with operational game semantics to build a symbolic execution semantics that captures arbitrary external behaviour. We prove the symbolic semantics to be sound and complete. This yields a bounded technique by imposing bounds on the depth of recursion and callbacks. We provide an implementation of our technique in the K framework and showcase its performance on a custom benchmark based on higher-order coding errors such as reentrancy bugs.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning

Keywords and phrases game semantics, symbolic execution, higher-order open programs

Introduction
Two important challenges in program verification are state-space explosion and the environment problem. The former refers to the need to investigate infeasibly many states, while the latter concerns cases where the code depends on an environment that is not available for analysis. State-space explosion has been approached with a range of techniques, which have led to verification tools being nowadays routinely used on industrial-scale code (e.g. [10, 5, 7]). The environment problem, however, remains largely unanswered: verification techniques often require the whole code to be present for the analysis and, in particular, cannot analyse components like libraries where parts of the code are missing (e.g. the client using the library). This problem is particularly acute in higher-order programs, where the interaction between a program and its environment can be intricate and e.g. involve callbacks or reentrant calls. In this paper we address this latter problem by combining game semantics, a semantics theory for higher-order programs, with symbolic execution, a technique that uses symbolic values to explore multiple execution paths of a program.

To showcase the importance and challenges of the environment problem, following is a simple example of a library written in a sugared version of HOLi, the vehicle language of this paper. The example is a simplified implementation of “The DAO” smart contract, a failed decentralised autonomous organisation on the Ethereum blockchain platform [12]. As with libraries, the challenge in analysing smart contracts is that the client code is not available. We must thus generate all possible contexts in which the contract can be called. In this case, the error is caused by a reentrant call from the send() method, which is provided by the
environment. When this method is called, the environment takes control and is allowed to call any method in the library. If a client were to call `withdraw()` within its `send()` method, the recursive call would drain all the funds available, which is simulated in this example by a negative balance. This happens because the method is manipulating a global state, and is updating it after the external call. We can see that an analysis capturing this error would need to be able to predict an intricate environment behaviour. Moreover, such an analysis should ideally only predict realisable environment behaviours.

```java
1 import send:(int → unit)
2 int balance := 100;
3 public withdraw (m:int ) :(unit) =
4   if (not (!balance < m)) then
5     send (m);
6     balance := !balance - m;
7     assert (not (!balance < 0))
8   else ();
```

Symbolic execution [33, 13, 19] explores all paths of a program using symbolic values instead of concrete input values. Each symbolic path holds a path condition (a SAT formula) that is satisfiable if and only if the path can be concretely executed. While the resulting analysis is unbounded in general, by restricting our focus to bounded paths we can soundly catch errors, or affirm the absence thereof up to the used bound. Game semantics [2, 14], on the other hand, models higher-order program phrases in isolation as 2-player games: sequences of computational moves (method calls and returns) between the program and its hypothetical environment. The power of the technique lies in its use of combinatorial conditions to precisely allow those game plays that can be realised by including the program in an actual environment. Moreover, the theory can be formulated operationally in terms of a trace semantics for open terms [18, 21, 16] which, in turn, lends itself to a symbolic representation. The latter yields a symbolic execution technique that is sound and complete in the following sense: given an open program, its symbolic traces match its concrete traces, which match its realisable traces in some environment.

Returning to the DAO example, we can model the ensuing interaction as a sequence of moves, alternating between the environment and the library. Any finite sequence of moves (that leads to an assertion violation) is a trace defining a counterexample. Running the example in HOLiK, our implementation of the symbolic semantics in the K Framework [32], the following minimal symbolic trace is automatically found:

```
call⟨withdraw,x_1⟩·call⟨send,x_1⟩·call⟨withdraw,x_2⟩
·call⟨send,x_2⟩·ret⟨send,()⟩·ret⟨withdraw,()⟩·ret⟨send,()⟩
```

where x_1 is the original call parameter, and x_2 is the parameter for the reentrant call, satisfiable with values $x_1 = 100$ and $x_2 = 1$. A fix would be to swap line 6 and 7, to update internal state before passing control.

In Appendix A we look at a few more examples of libraries that exhibit errors due to high-order behaviours. We provide three examples: a file lock example, a double deallocation example, and an unsafe implementation of flat-combining.

Overall, this paper contributes a novel symbolic execution technique based on game semantics to precisely model the behaviour of higher-order stateful programs. Specifically:

- We present a symbolic trace semantics for higher-order libraries that captures the behaviour of an unknown environment, and prove it sound and complete: i.e. it produces no spurious error traces, and is able to produce the complete execution tree of any library.
Libraries

\[
L ::= B | \text{abstract } m; L
\]

Blocks

\[
B ::= \epsilon | \text{public } m = \lambda x. M; B | m = \lambda x. M; B | \text{global } r := i; B
\]

Clients

\[
C ::= L; \text{main} = M
\]

Terms

\[
M ::= m | i | () | x | \lambda x. M | r := M | !r
\]

Types are given by the grammar:

\[
\theta ::= \text{unit} | \text{int} | \theta \times \theta | \theta \rightarrow \theta
\]

Some material has been delegated to an Appendix.

2 A Language for Higher-Order Libraries: HOLi

We introduce HOLi, a language for higher-order libraries which define methods to be used by an external client, and in turn require external methods (provided by the client). We give in HOLi an operational semantics for terms that integrates a counter for the depth of nested calls that a program phrase can make. We then extend this counting semantics to open terms by means of a trace semantics. We show that the trace semantics of libraries is sound and complete for reachability of errors under any external client.

2.1 Syntax and operational semantics

A library in HOLi is a collection of typed higher-order methods. A client is simply a library with a main body. Types are given by the grammar:

\[
\theta ::= \text{unit} | \text{int} | \theta \times \theta | \theta \rightarrow \theta
\]

We use countably infinite sets \text{Meths}, \text{Refs} and \text{Vars} for method, global reference and variable names, ranged over by \(m, r \) and \(x \) respectively, and variants thereof; while \(i \) is for ranging over the integers. We use \(\oplus \) to range over a set of binary integer operations, which we leave unspecified. Each set of names is typed, that is, it can be expressed as a disjoint union as follows: \text{Meths} = \bigcup_{\theta \neq \theta_1} \text{Meths}_{\theta, \theta'}, \text{Refs} = \bigcup_{\theta \neq \theta_1 \times \theta_2} \text{Refs}_{\theta}, \text{Vars} = \bigcup_{\theta} \text{Vars}_{\theta}.

The full syntax and typing rules are given in Figure 1. Thus, a library consists of abstract method declarations, followed by blocks of public and private method and reference definitions. A method is considered private unless it is declared public. Each public/private method and reference is defined once. Abstract methods are not given definitions: these methods are external to the library. Public, private and abstract methods are all disjoint.
27:4 Symbolic Execution Game Semantics

(E[let \(x = v \) in \(M \)], R, S, k) \rightarrow (E[M[v/x]], R, S, k) \quad (E[\pi_j(v_1,v_2)], R, S, k) \rightarrow (E[v_1], R, S, k)

(E[r := v], R, S, k) \rightarrow (E[], R, \{r \mapsto v\}, k) \quad (E[r], R, S, k) \rightarrow (E[S[r]], R, S, k)

(E[if \(i \) then \(M_1 \) else \(M_2 \)], R, S, k) \rightarrow (E[M_1], R, S, k) \quad (1) \quad (E[i_1 \oplus i_2], R, S, k) \rightarrow (E[i_1], R, S, k) \quad (2)

(E[\text{letrec } f = \lambda x.M \text{ in } M'], R, S, k) \rightarrow (E[M'[m/f]], R \sqcup \{ m \mapsto \lambda x.M \}) \quad \text{S, k}) \quad (3)

(E[\text{letrec } f = \lambda x.M \text{ in } M'], R, S, k) \rightarrow (E[M'[m/f]], R \sqcup \{ m \mapsto \lambda x.M \}) \quad \text{S, k}) \quad (4)

Conditions: (1) \(i = 1 \) iff \(i \neq 0 \), (2) \(i = i_1 \oplus i_2 \), (3) \(i \neq 0 \), (4) \(R(m) = \lambda x.M \).

\textbf{Figure 2} Operational semantics (top); values and evaluation contexts (mid); library build (bottom).

Libraries are well typed if all their method and reference definitions are well typed (e.g. \texttt{public} \(m = \lambda x.M \) is well typed if \(m : \theta \) and \(\lambda x.M : \theta \) are both valid for the same type \(\theta \)) and only mention methods and references that are defined or abstract. A client \(L; \text{main} = M \) is well typed if \(M : \text{unit} \) is valid and \(L; m = \lambda x.M \) is well typed for some fresh \(x, m \). A library/client is \textit{open} if it contains abstract methods. This is different to open/closed terms: we call a term \textit{open} if it contains free variables.

\textbf{Remark 1.} By typing variable, reference and method names, we do not need to provide a context in typing judgements. Note that the references we use are of non-product type and, more importantly, \texttt{global} to the library: a term can use references but not create them locally or pass them as arguments (we discuss how to include such references in Appendix C).

\textbf{Example 2.} The DAO-attack example from the Introduction can be written in HOLi as:

\begin{verbatim}
abstract send; global bal := 100;
public wdraw =
 \lambda x. if !bal \geq x then (send(x); bal := !bal - x; assert(!bal \geq 0)) else ()
\end{verbatim}

where \(\text{send, wdraw} \in \textit{Maths}_{\text{int, unit}}, \text{bal} \in \textit{Ref}_{\text{int}}, \) and \(M; M' \) stands for \(\text{let } _{= M \text{ in } M'} \).

A library contains public methods that can be called by a client. On the other hand, a client contains a main body that can be executed. These two scenarios constitute the operational semantics of HOLi. Both are based on evaluating (closed) terms, which we define next. Term evaluation requires: the closed term being evaluated; method definitions, provided by a method repository; reference values, provided by a store; and a call-depth counter (a natural number). Since method application is the only source of infinite behaviour in HOLi, bounding the depth of nested calls is enough to guarantee termination in program analysis. Hence we provide a mechanism to keep track of call depth.

The operational semantics is given in Figure 2. The evaluation of terms (top part) involves configurations of the form \((M, R, S, k)\), where:
We can see how to use bounded analysis to find counterexamples that define clients such as this one.

To produce the following linked client L again as a library

$$L \rightarrow$$

we evaluate it, as in the following definition.

Let $(L, \emptyset, \emptyset, \emptyset)$ build $((\epsilon, R, S, P, A)$ if $(L, \emptyset, \emptyset, \emptyset)$ builds to (ϵ, R, S, P, A). If L builds to (ϵ, R, S, P, A) then the client $L; \text{main} = M$ builds to (M, R, S, P, A). Moreover, we can link libraries to clients and evaluate them, as in the following definition.

Definition 3.

1. **Library L and client C are compatible if L builds to some (ϵ, R, S, P, A) and C builds to some (M, R', S', P', A') such that: $P \supseteq A$ and $A \supseteq P'$ (complementation); $\text{dom}(S) \cap \text{dom}(S') = \emptyset$ (disjoint state); and $\text{dom}(R) \cap \text{dom}(R') = \emptyset$ (method ownership).

2. For a library L, we let \hat{L} be L with all its abstract method declarations and public keywords removed; and similarly for \hat{C}. Given compatible library L and client C, we let their composition be the client $L; C = \hat{L}; \hat{C}$.

3. Given compatible L, C, the semantics of $L; C$ is:

$$[L; C] = \{ \rho \mid L; C \text{ builds to } (M, R, S, \emptyset, \emptyset) \land (M, R, S, 0) \rightarrow^\ast \rho \}$$

We say that $[L; C]$ fails if it contains some $(E[\text{assert}(0)], \cdots)$.

Example 4. To illustrate how libraries and clients are used, consider the DAO example again as a library L_{DAO}. We can define a client C_{atk}:

```plaintext
abstract wdraw; global wlet := 0;
public send = \lambda x. wlet := !wlet + x; if !wlet < 100 then wdraw(x) else ();
main = wdraw(1)
```

to produce the following linked client $L_{\text{DAO}}; C_{\text{atk}}$ (modulo re-ordering):

```plaintext
global bal := 100; global wlet := 0;
wdraw = \lambda x. if !bal \geq x then (send(x); bal := !bal - x; assert(!bal > 0)) else ();
public send = \lambda x. wlet := !wlet + x; if !wlet < 100 then wdraw(x) else ();
main = wdraw(1)
```

We can see how L_{DAO} is vulnerable to an attacker such as C_{atk} after linking them. The aim is thus to use bounded analysis to find counterexamples that define clients such as this one.
Symbolic Execution Game Semantics

\[(\text{INT}) \quad (M,R,S,k) \rightarrow (M',R',S',k') \]

\[(\mathcal{E}, M, R, S, P, A, k) \rightarrow (\mathcal{E}', M', R', S', P, A, k')_p \]

\[(\text{PQ}) \quad \langle \mathcal{E}, E[mv], R, S, P, A, k \rangle_p \rightarrow \text{call}^{(m,v)} \langle (m, E) :: 0, R, S, P', A, k \rangle_o \]

\[(\text{OQ}) \quad \langle \mathcal{E}, l, R, S, P, A, k \rangle_o \rightarrow \text{call}^{(m,v)} \langle (m, l + 1) :: \mathcal{E}, mv, R, S, P, A', k \rangle_p \text{ if } \text{if } R(m) = \lambda x. M \]

\[(\text{PA}) \quad \langle (m, l) :: \mathcal{E}, v, R, S, P, A, k \rangle_p \rightarrow \text{ret}^{(m,v)} \langle (\mathcal{E}, l, R, S, P', A, k) \rangle_o \]

\[(\text{OA}) \quad \langle (m, E) :: \mathcal{E}, l, R, S, P, A, k \rangle_p \rightarrow \text{ret}^{(m,v)} \langle (\mathcal{E}, E[v], R, P, A', k) \rangle_p \]

\[(\text{PC}) : m \in A \land \mathcal{P}' = P \cup (\text{Meths}(v) \cap \text{dom}(R)), \quad (\text{OC}) : m \in \mathcal{P} \land \mathcal{A}' = A \cup (\text{Meths}(v) \setminus \text{dom}(R)) \]

Figure 3 Trace semantics rules. Rules (PQ), (PA) assume the condition (PC), and similarly for (OQ), (OA) and (OC). Meths(v) contains all method names appearing in v. INT stands for internal transition; PQ for P-question (i.e. call); PA for P-answer (i.e. return). Similarly for OQ and OA.

2.2 Trace Semantics

The semantics we defined only allows us to evaluate terms, and only so long as their method applications only involve methods that can be found in the repository \(R \). We next extend this semantics to encompass libraries and terms that can also call abstract methods. The approach we follow is based on operational game semantics [18, 21, 16] and in particular the semantics is given by means of traces of method calls and returns (called moves in game semantics jargon), between the library and its client. In between such moves, the semantics evolves as the operational semantics we already saw.

To maintain a terminating analysis, we need to keep track of an added source of infinite execution, namely endless consecutive calls from an external component: a library will never terminate if its client keeps calling its methods. This leads us to a semantics with two counters, \(k \) and \(l \), where \(k \) keeps track of internal nested method calls and \(l \) records the number of consecutive calls made from the external component. This counter \(l \) is orthogonal to \(k \) and is refreshed at every call to the external context.

When computing the semantics of a library, the library and its methods are the Player (P) of the computation game, while the (intended) client is the Opponent (O). As the semantics is given in absence of an actual client, O actually represents every possible client. When computing the semantics of a client, the roles are reversed. In both cases, though, the same sets of rules is used and there is no need to specify who is P and O in the semantics.

The trace semantics uses game configurations, which are divided into P-configurations and O-configurations given respectively as:

\[(\mathcal{E}, M, R, S, P, A, k)_p \quad \text{and} \quad (\mathcal{E}, l, R, S, P, A, k)_o . \]

In a P-configuration, a term \(M \) is being evaluated—this is P’s role. In an O-configuration, an external call has been made and the semantics waits for O to either return that call, or reply itself with another call. The components \(M, R, S, P, A, k, l \) are as above, while \(\mathcal{E} \) is an evaluation stack:

\[\mathcal{E} ::= \varepsilon \mid (m, E) :: \mathcal{E} \mid (m, l) :: \mathcal{E} \]

which keeps track of the computations that are on hold due to external calls. The trace semantics is generated by the rules given in Figure 3.

The formulation follows closely the operational game semantics technique. For example, from a P-configuration \((\mathcal{E}, M, R, S, P, A, k)_p \), there are 3 options:
1. If \(M \) can make an internal reduction, i.e. in the operational semantics in context \((R, S, k)\),
then \((E, M, R, S, P, A, k)_p\) performs this reduction \((\text{via (INT)})\).
2. If \(M \) is stuck at a method application for a method that is not in the repository \(R \),
then that method must be abstract (i.e., external) and needs to be called externally. This is
achieved by issuing a call move and moving to an \(O \)-configuration \((\text{via (PQ)})\). The current
evaluation context and the called method name are stored, in order to resume once the
call is returned \((\text{via (OA)})\).
3. If \(M \) is a value and the evaluation stack is non-empty, then \(P \) has completed a method
call that was issued by \(O \) \((\text{via (OQ)})\) and can now return \((\text{via (PA)})\).

On the other hand, from an \(O \)-configuration \((E, l, R, S, P, A, k)_o\), there are 2 options:
1. either return the last open method call \((\text{made by}\ P)\) \((\text{via (OA)})\), or
2. call one of the public methods \((\text{from}\ P)\) \((\text{using (OQ)})\).

The role of conditions \((\text{PC})\) and \((\text{OC})\) is to ensure that each player calls the methods
owned by the other, or returns their own, and update the sets of public and abstract names
according to the method names passed inside \(v \).

\begin{itemize}
\item \textbf{Remark 5.} The novelty of Figure 3 with respect to previous work on trace semantics for
open libraries \((\text{e.g. [25]})\) lies in the use of \(l \) in order to bound the ability of \(O \) to ask repeated
questions for finite analysis. The way rules \((\text{OQ})\) and \((\text{PA})\) are designed is such that any
sequence of consecutive \(O \)-calls and \(P \)-returns has maximum length \(2n \) if we bound \(l \) to \(n \)
\((\text{i.e.} \ l \leq n)\), as each such pair of moves increases \(l \) by \(1 \). On the other hand, each \(P \)-call
supplies to \(O \) a fresh counter \((l = 0)\) to be used in contiguous \((\text{OQ})-(\text{PA})\)'s. Thus, \(l \) can be
seen as keeping track of the insistence of \(O \) in calling.

Finally, we can define the trace semantics of libraries.
\end{itemize}

\begin{itemize}
\item \textbf{Definition 6.} Let \(L \) be a library. The semantics of \(L \) is :
\[[L] = \{ (\tau, \rho) \mid (L, \emptyset, \emptyset, \emptyset, \emptyset) \xrightarrow{bd}^* (\varepsilon, R, S, P, A) \land (\varepsilon, 0, R, S, P, A, 0)_o, \tau \rightarrow \rho \} \]
\end{itemize}

We say that \([L]\) fails if it contains some \((\tau, (E[\text{assert}(0)], \cdots))\).

\begin{itemize}
\item \textbf{Example 7.} Consider the DAO example as library \(L_{\text{DAO}} \) once again. Evaluating the game
semantics we know the following sequence is in \([L_{\text{DAO}}]\). For economy, we hide \(R, P, A \)
and show only the top of the stack in the configurations. We also use \(m(v) \) and \(m(v)! \) for calls
and returns. We write \(S_i \) for the store \([bal \mapsto i] \).
\end{itemize}

\begin{align*}
(\varepsilon, 0, S_{100}, 0)_o \xrightarrow{\text{wdraw}(42)?} ((\text{wdraw}, 1), \text{wdraw}(42), S_{100}, 0)_p \\
\rightarrow^* ((\text{wdraw}, 1), E[\text{send}(42)], S_{100}, 1)_p \xrightarrow{\text{send}(42)?} ((\text{send}, E), 2, S_{100}, 1)_o \\
\xrightarrow{\text{wdraw}(100)?} ((\text{wdraw}, 1), \text{wdraw}(100), S_{100}, 1)_p \\
\rightarrow^* ((\text{wdraw}, 1), E'[\text{send}(100)], S_{100}, 2)_p \xrightarrow{\text{send}(100)?} ((\text{send}, E), 2, S_{100}, 2)_o \\
\rightarrow^* ((\text{wdraw}, 1), E'[1], S_{100}, 2)_p \xrightarrow{\text{send}(1)?} ((\text{wdraw}, 1), (\), S_{100}, 2)_p \\
\rightarrow^* ((\text{send}, E), 1, S_{100}, 2)_p \xrightarrow{\text{send}(1)?} ((\text{wdraw}, 1), E[1], S_{100}, 1)_p \\
\rightarrow^* ((\text{wdraw}, 1), E[\text{assert}(-42 \geq 0)], S_{-42}, 1)_p
\end{align*}

This transition sequence is an instance of the symbolic trace provided in the Introduction.
Here, a call is made with parameter 42, and a reentrant call with 100, which leads to the
assertion violation \(\text{assert}(-42 \geq 0) \). Note that a bound of \(k \leq 2 \) is sufficient to find this
assertion violation.
We next establish two focal properties of the trace semantics: bounding \(k\) and \(l\) ensures termination (Theorem 8), and that it is sound and complete with respect to library errors (Theorem 9). Notice Theorem 9 captures both soundness and completeness as it states that the game semantics eventually reaches every error that is concretely reachable for any client while finding only errors that can be reached concretely by a definable client.

Theorem 8 (Boundedness). For any game configuration \(\rho\), provided an upper bound \(k_0\) and \(l_0\) for call counters \(k\) and \(l\), the labelled transition system starting from \(\rho\) is strongly normalising.

Proof. For any transition sequence \(\rho = \rho_0 \rightarrow \cdots \rightarrow \rho_i \rightarrow \ldots\) and each \(i > 0\), we set the following two classes of configurations:

\[
(A) = \{ \rho_i \mid |\rho_i| < |\rho_{i-1}| \} \quad \text{and} \quad (B) = \{ \rho_i \mid \exists j < i - 1. |\rho_i| < |\rho_j| \}
\]

where \(|\rho| = (k_0 - k, |M|, l_0 - l)\) is the size of \(\rho\), and \(|\rho| < |\rho'|\) is defined by the lexicographic ordering of the triple \((k_0 - k, |M|, l_0 - l)\), with bounds \(k_0\) and \(l_0\) such that \(k \leq k_0\) and \(l \leq l_0\) for semantic transitions to be applicable. If not present in the configuration, we look at the evaluation stack \(E\) to find the top-most missing component. In other words, opponent configurations will have size \((k_0 - k, |E|, l_0 - l)\) where \(E\) is the top-most one in \(E\), whereas proponent configurations will have size \((k_0 - k, |M|, l_0 - l)\) where \(l\) is the top-most one in \(E\).

We approach the proof in two steps: (1) we show that, for any transition sequence out of \(\rho\), each reachable configuration belongs to (at least) one of the above classes; and (2) prove that the classes form a terminating sequence. For (1), considering all moves available to \(\rho\), we have the following cases.

1. If \(\rho \rightarrow \rho'\) is an (INT) move, we have two possibilities.
 a. For a transition \((E[v], R, S, k) \rightarrow (E[v], R, S, k + 1)\), where \(k + 1 \leq k_0\), we have a class
 \((B)\) configuration since there must be an \((E[mv], R, S, k)\) such that \((E[mv], R, S, k) \rightarrow^* (E[v], R, S, k)\) which is lexicographically ordered since \(|v| < |mv|\).
 b. Every other transition sequence is class \((A)\) since they reduce the size of the term.

2. If \(\rho \rightarrow \rho'\) is a (Pq) move, we have that \(\rho'\) is a class \((A)\) configuration since \((k, |E|, l_0) < (k, |E[mv]|, l_0 - l)\) by lexicographic ordering.

3. If \(\rho \rightarrow \rho'\) is an (OA) move, we have a transition

\[
((m, E) :: \mathcal{E}, l, \ldots, k)_{\sigma} \xrightarrow{ret(m,v)} (\mathcal{E}, E[v], \ldots, k)_{\sigma}
\]

which must be a result of the prior proponent question, meaning \(\mathcal{E}\) holds an \(l'\) on top. We thus have the following sequence

\[
(\mathcal{E}, E[mv], \ldots, k)_{\sigma} \rightarrow^* (\mathcal{E}, E[v], \ldots, k)_{\sigma}
\]

where \((k, |E[v]|, l) < (k, |E[mv]|, l')\), so \(\rho'\) is a class \((B)\) configuration.

4. If \(\rho \rightarrow \rho'\) is an (OQ) move, we have the transition

\[
(\mathcal{E}, l, \ldots, k)_{\sigma} \xrightarrow{call(m,v)} ((m, l + 1) :: \mathcal{E}, mv, \ldots, k)_{\sigma} \\
\rightarrow ((m, l + 1) :: \mathcal{E}, \{M[v/x]\}, \ldots, k + 1)
\]

Simplifying the transition, we remove the configuration in between and take

\[
(\mathcal{E}, l, R, S, \mathcal{P}, A, k)_{\sigma} \xrightarrow{call(m,v)} ((m, l + 1) :: \mathcal{E}, \{M[v/x]\}, R, S, \mathcal{P}, A, k + 1)_{\sigma}
\]

to be our new equivalent transition. We thus have that \(\rho'\) is a class \((A)\) configuration since \((k_0 - (k + 1), |M[v/x]|, l_0 - (l + 1)) < (k_0 - k, |E|, l_0 - l)\) by lexicographic ordering.
5. If $\rho \rightarrow \rho'$ is a (PA) move, we have the transition

$$((m, l) :: E, v, \ldots, k)_p \xrightarrow{\text{ret}(m,v)} (E, l, \ldots, k)_o$$

which must be the result of a prior opponent question

$$((m, l) :: E, [v/x], \ldots, k+1)_p \xrightarrow{\text{call}(m,v)} (E, l, \ldots, k)_o$$

where E' is the topmost evaluation context in E. We thus have that $(k_0 - k, E', l_0 - (l + 1)) < (k_0 - k, E', l_0 - (l + 1))$, so ρ' is a class (B) configuration.

For (2), let us assume there is an infinite sequence

$$\rho_0 \rightarrow \cdots \rightarrow \rho_j \rightarrow \cdots \rightarrow \rho_i \rightarrow \ldots$$

Since all reachable configurations fall into either (A) or (B) class, we know that the sequence must comprise only (A) and (B) configurations. In this infinite sequence, we know that all sequences of (A) configurations are in descending size, so (A) sequences cannot be infinite. We also observe that (B) configurations are padded with (A) sequences. For instance, if ρ_i is a (B) configuration, and ρ_j is its matching configuration, there may exist nested (B) configurations between ρ_j and ρ_i, as well as (A) sequences padding these.

Additionally, these (B) configurations can only occur as a return to a call, so we know they only occur together with the introduction of evaluation boxes $[\bullet]$. Since these brackets occur in pairs and are introduced in a nested fashion, we know E can only contain evaluation contexts with well-bracketed evaluation boxes, meaning that there cannot be interleaved sequences of (B) configurations where their target configurations intersect. More specifically, the sequence

$$\rho_0 \rightarrow \cdots \rightarrow \rho_j \rightarrow \cdots \rightarrow \rho'_j \rightarrow \cdots \rightarrow \rho_i \rightarrow \cdots \rightarrow \rho'_i \rightarrow \ldots$$

where ρ'_i matches ρ'_j and ρ_i matches ρ_j is not possible.

Now, ignoring all (A) and nested (B) sequences, we are left with an infinite stream of top-level (B) sequences which are also in descending order. Since starting size is finite, we cannot have an infinite stream of (B) sequences. Thus, the assumption that the sequence is infinite does not hold, meaning our semantics is strongly normalising.

\textbf{Theorem 9 (S and C).} We call a client good if it contains no assertions. For any library L, the following are equivalent:

1. $[L]$ fails (reaches an assertion violation)
2. there exists a good client C such that $[L;C]$ fails

\textbf{Proof.} 1 to 2: Suppose now that $(\tau, \rho) \in [L]$ for some trace τ and failed ρ. By Theorem 11, we have that there is a good client C realising the trace τ. So then, by Lemma 10, we have that $[L;C]$ fails.

2 to 1: Suppose $[L;C]$ fails for some good client C. Then, by Lemma 10, there are τ, ρ, ρ' such that $(\tau, \rho) \in [L]$, $(\tau, \rho') \in [C]$, and ρ is failed (i.e. is of the shape $([E], E[\text{assert}(0)], \cdots))$.

The latter relies on an auxiliary lemma (well-composing of libraries and clients), and a definability result akin to game semantics definability arguments (see Appendix D).
Lemma 10 (L-C Compositionality). For any library L and compatible good client C, $[L;C]$ fails if and only if there exist $(\tau_1,\rho_1) \in [L]$ and $(\tau_2,\rho_2) \in [C]$ such that $\tau_1 = \tau_2$ and $\rho_1 = (E, E[\text{assert}(0)], \ldots)$.

Theorem 11 (Definability). Let L be a library and $(\tau,\rho) \in [L]$. There is a good client C compatible with L such that $(\tau,\rho') \in [C]$ for some ρ'.

3 Symbolic Semantics

Checking libraries for errors using the semantics of the previous section is infeasible, even when the traces are bounded in length, as ground values are concretely represented. In particular, integer values provided by O as arguments to calls or return values range over all integers. The typical way to mitigate this limitation is to execute the semantics symbolically, using symbolic variables for integers and path conditions to bind these variables to plausible values. We use this technique to devise a symbolic version of the trace semantics, corresponding to a symbolic execution which will enable us in the next sections to introduce a practical method and implementation for checking libraries for errors. The symbolic semantics is fully formal, closely following the developments of the previous section, and allows us to prove a strong form of correspondence between concrete and symbolic semantics (a bisimulation).

Apart from integers, another class of concrete values provided by O are method names. For them, the semantics we defined is symbolic by design: all method names played by O are going to be fresh and therefore picking just one of those fresh choices is sufficient (formally speaking, the semantics lives in nominal sets [31]). The reason why using fresh names for methods played by O is sound is that the effect of O calling a higher-order public method with an argument m (where m is another public method), and with $\lambda x.mx$, is equivalent as far as reachability of an error is concerned. In the latter case, the client semantics would create a fresh name m', bind it to $\lambda x.mx$, and pass m' as an argument. We therefore just focus on this latter case.

The symbolic semantics involves terms that may contain symbolic values for integers. We therefore extend the syntax for values and terms to include such values, and abuse notation by continuing to use M to range over them. We let \textbf{SInts} be a set of symbolic integers ranged over by κ and variants, and define:

Sym. Values $\bar{v} ::= m \mid i \mid () \mid \kappa \mid \bar{v} \oplus \bar{v} \mid \langle \bar{v}, \bar{v} \rangle$

Sym. Terms $M ::= \cdots \mid \kappa$

where, in $\bar{v} \oplus \bar{v}$, not both \bar{v} can be integers. We moreover use a symbolic environment to store symbolic values for references, but also to keep track of arithmetic performed with symbolic integers. More precisely, we let σ be a finite partial map from the set $\textbf{SInts} \cup \textbf{Refs}$ to symbolic values. Finally, we use \textbf{pc} to range over program conditions, which will be quantifier-free first-order formulas with variables taken from \textbf{SInts}, and with \top, \bot denoting true and false respectively.

The semantics for closed symbolic terms involves configurations of the form $(M,R,\sigma,\textbf{pc},k)$. Its rules include copies of those from Figure 2 (top) where the \textbf{pc} and σ are simply carried over. For example:

$(E[\lambda x.M], R, \sigma, \textbf{pc}, k) \rightarrow_s (E[m], R \uplus \{m \mapsto \lambda x.M\}, \sigma, \textbf{pc}, k)$

where m is fresh. On the other hand, the following rules directly involve symbolic reasoning:

$(E[\text{assert}(\kappa)], R, \sigma, \textbf{pc}, k) \rightarrow_s (E[\text{assert}(0)], \sigma, \textbf{pc} \land (\kappa = 0), k)$
Definition 12. Given library L, the symbolic semantics of L is:

$$[L]_s = \{(\tau, \rho) \mid (\tau, S, 0, 0, 0) \xrightarrow{\text{bd}} \cdot \xrightarrow{\text{\textsc{src}}} \cdot (\epsilon, R, S, \mathcal{P}, \mathcal{A}) \land (\epsilon, 0, R, \mathcal{P}, \mathcal{A}, S, \top, 0) \xrightarrow{\text{\textsc{src}}} \cdot \cdot \cdot \xrightarrow{\text{\textsc{src}}} \cdot (\mathcal{M} \models \rho(\chi) \land \rho(pc))\}$$

where $\rho(\chi)$ is component χ in configuration ρ, and \mathcal{M} is a model as defined in the next section. We say that $[L]_s$ fails if it contains some $((\tau, (\epsilon, E[\text{assert}(0)]), \cdots))$.

Figure 4 Symbolic trace semantics rules. Rules (PQ), (PA) assume the condition (PC), and similarly for (OQ),(OA) and (OC). (OQ),(OA) introduce \tilde{v} and thus are non-deterministic.
Symbolic Execution Game Semantics

The symbolic rules follow those of the concrete semantics, the biggest change being the treatment of symbolic values played by O. Condition (OC) stipulates that O plays distinct fresh symbolic integers as well as fresh method names, in each appropriate position in v, and all these names are included in the set A.

Example 13. As with Example 7, we consider the DAO attack. Running the symbolic semantics, we find the following minimal class of errors. We write σ_\varnothing for a symbolic environment $[bal \mapsto \varnothing]$.

$$(\varepsilon, 2, \sigma_{100}, k_0)_o \xrightarrow{\text{udraw}(\varepsilon_1)?} ((\text{udraw}, 1), \text{udraw}(\varepsilon_1), \sigma_{100}, 2)_p$$

$$\xrightarrow* ((\text{udraw}, 1), E[\text{send}(\varepsilon_1)], \sigma_{100}, 1)_p \xrightarrow{\text{send}(\varepsilon_1)?} ((\text{send}, E), 2, \sigma_{100}, 1)_o$$

$$\xrightarrow* ((\text{udraw}, 1), \text{udraw}(\varepsilon_2)?, \sigma_{100}, 1)_p \xrightarrow{\text{udraw}(\varepsilon_2)?} ((\text{udraw}, 1), \text{udraw}(\varepsilon_2), \sigma_{100}, 1)_p$$

$$\xrightarrow* ((\text{udraw}, 1), E'[\text{send}(\varepsilon_2)], \sigma_{100}, 0)_p \xrightarrow{\text{send}(\varepsilon_2)?} ((\text{send}, E), 2, \sigma_{100}, 0)_o$$

$$\xrightarrow* ((\text{udraw}, 1), E'[], \sigma_{100}, 0)_p \xrightarrow{\text{send}((\varepsilon_2))!} ((\text{send}, E), 1, \sigma_{100}, 0)_o$$

$$\xrightarrow* ((\text{udraw}, 1), E'[[]], \sigma_{100}, 0)_p \xrightarrow{\text{udraw}((\varepsilon_2))!} ((\text{send}, E), 1, \sigma_{100}, 0)_o$$

For this to be a valid error, we require $(\varepsilon_1, \varepsilon_2 \leq 100) \land (100 - \varepsilon_2 - \varepsilon_1 < 0)$ to be satisfiable. Taking assignment $\{\varepsilon_1 \mapsto 100, \varepsilon_2 \mapsto 1\}$, we show the path is valid.

3.1 Soundness

The main result of this section is establishing the soundness of the symbolic semantics: a trace and a specific configuration can be achieved symbolically iff they can be achieved concretely as well. In fact, we will need to quantify this statement as, by construction, the symbolic semantics requires O to always place fresh method names, whereas in the concrete semantics O is given the freedom to play old names as well. What we show is that the symbolic semantics corresponds (via bisimilarity) to a restriction of the concrete semantics where O plays fresh names only. This restriction is sound, in the sense that it is sufficient for identifying when a configuration can fail. We make this precise below.

A **model** M is a finite partial map from symbolic integers to concrete integers. Given such an M and a formula ϕ, we define $M \models \phi$ using a standard first-order logic interpretation with integers and arithmetic operators (in particular, we require that all symbolic integers in ϕ are in the domain of M). Moreover, for any symbolic term T (or trace, move, etc.), we denote by $M\{M\}$ the concrete term we obtain by substituting any symbolic integer κ of M with its corresponding concrete integer $M(\kappa)$. Finally, given a symbolic environment σ, we define its formula representation σ° recursively by:

$$\emptyset^\circ = \top, \quad (\sigma \cup \{r \mapsto v\})^\circ = \sigma^\circ, \quad (\sigma \cup \{\kappa \mapsto v\})^\circ = \sigma^\circ \land (\kappa = v).$$

We now define notions for equivalence between symbolic and concrete configurations. Let M be a model. For any concrete configuration $\rho = (E, \chi, R, S, P, A, k)$ and symbolic configuration $\rho_s = (E', \chi', R', P', A', \sigma, pc, k')$, we say they are equivalent in M, written $\rho =_M \rho_s$, if:

- $(E, \chi, R) = (E', \chi', R')[M], P = P', A = A' \cap \text{Meths}$ and $S = (\sigma \cup \text{Refs})[M]$;
- $\text{dom}(M) = (A' \cup \text{dom}(\sigma)) \cap \text{SInts}$ and $M \models pc \land \sigma^\circ$.
The notion of equivalence we require between concrete configurations and their symbolic counterparts is behavioural equivalence, modulo O playing fresh names.

More precisely, a transition $\rho \xrightarrow{\Delta} \rho'$ is called O-refreshing if, when ρ is an O-configuration and $\chi = \text{call/ret}(m, v)$ then all names in v are fresh and distinct. A set R with elements of the form (ρ, M, ρ_s) is a bisimulation if, whenever $(\rho, M, \rho_s) \in R$, written $\rho R_M \rho_s$, then $\rho \xrightarrow{\Delta} \rho_s$ and, using χ to range over moves and ε (i.e. no move):

- if $\rho \xrightarrow{\Delta} \rho'$ is O-refreshing then there exists $M' \supseteq M$ such that $\rho_s \xrightarrow{\chi_s} \rho_s'$, with $\chi = \chi_s[M']$, and $\rho/R_M \rho_s'$;
- if $\rho_s \xrightarrow{\Delta} \rho_s'$ then there exists $M' \supseteq M$ such that $\rho \xrightarrow{\chi[M']} \rho'$ and $\rho' R_M \rho_s'$.

We let \sim be the largest bisimulation relation: $\rho \sim_M \rho_s$ iff there is bisimulation R such that $\rho R_M \rho_s$. We can show that concrete and symbolic configurations are bisimilar.

Lemma 14. Given ρ, ρ_s a concrete and symbolic configuration respectively, and M a model such that $\rho =_M (\rho')$, we have $\rho \sim_M \rho_s$.

Proof (sketch). We show that $\{ (\rho, M, \rho') \mid \rho =_M (\rho') \}$ is a bisimulation. \blacksquare

Next, we argue that O-refreshing transitions suffice for examining failure of concrete configurations. Indeed, suppose τ is a trace leading to fail, and where O plays an old name m in argument position in a given move. Then, τ can be simulated by a trace τ' that uses a fresh m' in place of m. If m is an O-name, we obtain τ' from τ by following exactly the same transitions, only that some P-calls to m are replaced by calls to m' (and accordingly for returns). If, on the other hand, m is a P-name, then the simulation performed by τ' is somewhat more elaborate: some internal calls to m will be replaced by P-calls to m', immediately followed by the required calls to m (and dually for returns).

Lemma 15 (O-Refreshing). Let ρ be a concrete configuration. Then, ρ fails iff it fails using only O-refreshing transitions.

With the above, we can prove soundness.

Theorem 16 (Soundness). For any L, $[L]$ fails iff $[L]_s$ fails.

Proof. Lemma 14 implies that $[L]_s$ fails iff $[L]$ fails with O-refreshing transitions, which in turns occurs iff $[L]$ fails, by Lemma 15. \blacksquare

3.2 Bounded Analysis for Libraries

Definition 12 states how the symbolic trace semantics can be used to independently check libraries for errors. As with the trace semantics in Definition 6, this is strongly normalising when given an upper limit to the call counters. As such, $[L]_s$, with counter bounds $k_0, l_0 \in \mathbb{N}$, for k, l respectively, defines a finite set (modulo selecting of fresh names) of reachable valid configurations within $k \leq k_0, l \leq l_0$, where validity is defined by the satisfiability of the symbolic environment σ and the path condition pc of the configuration reached. By virtue of Theorems 9 and 16, every valid reachable configuration that is failed (evaluates an invalid assertion) is realisable by some client. And vice versa.

Given a library L, taking $\mathcal{F}[L]_s$ to be all reachable final configurations, we have the exhaustive set of paths L can reach. In $\mathcal{F}[L]_s$, every failed configuration (τ, ρ), i.e. such that ρ holds a term $E[\text{assert}(0)]$, defines a reachable assertion violation, where τ is a true counterexample. Hence, to check L for assertion violations it suffices to produce a finite representation of the set $\mathcal{F}[L]_s$. One approach is to bound the depth of analysis by setting an
Table 1 Table recording performance of HOLiK on our benchmarks.

<table>
<thead>
<tr>
<th>k ≤ 2</th>
<th>l ≤ 1</th>
<th>l ≤ 2</th>
<th>l ≤ 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>226/70/45</td>
<td>5708/60/44</td>
<td>9656/3/23</td>
<td></td>
</tr>
<tr>
<td>1254/67/51</td>
<td>4092/27/18</td>
<td>4187/17/12</td>
<td></td>
</tr>
<tr>
<td>3392/63/48</td>
<td>3069/19/14</td>
<td>1335/12/10</td>
<td></td>
</tr>
<tr>
<td>3659/57/45</td>
<td>895/15/10</td>
<td>215/11/9</td>
<td></td>
</tr>
</tbody>
</table>

27:14 Symbolic Execution Game Semantics

Table recording performance of HOLiK on our benchmarks.

59 of 59 unsafe files found to have bugs over the various bounds checked.

The tool and its benchmarks can be found at: https://github.com/LaifsV1/HOLiK.
grow. With bounds $k \leq 2$ and $l \leq 1$, all 70 programs in our benchmark were successfully analysed, though not all minimal errors were found until the bounds were increased further. Cumulatively, all unsafe programs in our benchmark were correctly identified.

While the table may suggest that increasing bound for l is more beneficial than that for k, the number of errors reported does not imply every trace is useful. For instance, increasing the bound for l can lead to errors re-merging in a higher-order version, which suggests potential gain from a partial order reduction. Overall, the k and l counters are incomparable as they keep track of different behaviours. Finally, since HOLiK was able to handle every file and correctly identified all unsafe files in the benchmark, we conclude that HOLiK, as a proof of concept, captures the full range of behaviours in higher-order libraries. Results suggest that the tool scales up to at least medium-sized programs (<1000 LoC), which is promising because real-world medium-size higher-order programs have been proven infeasible to check with standard techniques (e.g. the DAO withdraw contract was approximately 100 LoC).

5 Related Work

Game semantics techniques have been applied to program equivalence verification by reducing program equivalence to language equivalence in a decidable automata class [15, 1]. Equivalence tools can be used for reachability but, as they perform full verification, they can only cover lower-order recursion-free language fragments. For example, the Coneqct [24] tool can verify the simplified DAO attack, but cannot check higher-order or recursive functions (e.g. the “file lock” and “flat combiner” examples), and operates on integers concretely. Close to our approach is also Symbolic GameChecker [11], which performs symbolic model checking by using a representation of games based on symbolic finite-state automata. The tool works on recursion-free Idealized Algol with first-order functions, which supports only integer references. On the other hand, it is complete (not bounded) on the fragment that it covers.

Besides games techniques, a recent line of work on verification of contracts in Racket [27, 26] is the work closest to ours. Racket contracts exist in a higher-order setting similar to ours, and generalise higher-order pre and post conditions, and thus specify safety. To verify these, [27] defines a symbolic execution based on what they call “demonic context” in prior work [38]. This either returns a symbolic value to a call, or performs a call to a known method within some unknown context, thus approximating all the possible higher-order behaviours, and is equivalent to the role the opponent plays in our games. In [26], the technique is extended to handle state, and finitised for total verification. The approaches are notionally similar to ours, since both amount to Symbolic Execution for an unknown environment. In substance, the techniques are very different and in particular ours is based on a semantics theory which allows us to obtain compositionality and definability results, which are not proven for [26] and proven for [27] only in a stateless setting. On the other hand, Racket contracts can be used for richer verification questions than assertion violations. In terms of tool performance, we provide a comparison of the techniques in Appendix B.

Another relevant line of work is that of verifying programs in the Ethereum Platform. Smart contracts call for techniques that handle the environment, with a focus on reentrancy. Tools like Oyente [23] and Majan [28] use pre-defined patterns to find bugs in the transaction order, but are not sound or complete. ReGuard [22] finds sound reentrancy bugs using a fuzzing engine to generate random transactions to check with a reentrancy automaton. In principle, it may detect reentrancy faster than symbolic execution (native execution is faster [40]), but, is incomplete even in a bounded setting. More closely related to our approach,
Symbolic Execution Game Semantics

[17] considers the possibility of an unknown contract $c^?$ calling a known contract c^* at each higher call level. This can be generalised in our game semantics as abstract and public names calling each other, but their focus is on modelling reentrancy, while we handle the full range of higher-order behaviours.

Like KLEE [4] and jCUTE [36], our implementation is a symbolic execution tool. These are generally able to find first-order counterexamples, but are unable to produce higher-order traces involving unknown code. Particularly, KLEE and jCUTE only handle symbolic calls provided these can be concretised. This partially models the environment, but calls are often impossible to concretise with libraries. The CBMC [6, 20] bounded model checking approach, which also bounds function application to a fixed depth, partially handle calls to unknown code by returning a non-deterministic value to such calls. This is equivalent to a game where only move available to the opponent is to answer questions. This restriction allows CBMC to find some bugs caused by interaction with the environment, but misses errors that arise from transferring flow of control (e.g. reentrancy). The typical BMC approach also misses bugs involving disclosure of names.

Higher-order model checking tools like MoCHi [35] are also related. MoCHi model checks a pure subset of OCaml and is based on predicate abstraction and CEGAR and higher-order recursion scheme model checkers. The modular approach [34] further extends this idea with modular analysis that guesses refinement intersection types for each top-level function. Although generally incomparable, HOLiK covers program features that MoCHi does not; MoCHi does not handle references and support for open code is limited (from experiments, and private communication with the authors).

Future Directions

Observing errors resurface deeper in the trace suggests the possibility of defining a partial order for our semantics to obtain equivalence classes for configurations and thus eliminate paths that involve known errors [29, 39]. Additionally, while k and l successfully bound infinite behaviour, a notion of bounding can be arbitrarily chosen. In fact, while we chose to directly bound the sources of infinite behaviour in method calls for simplicity of proofs and implementation, the theory does not prevent the generalisation of k and l as a monotonic cost function that bounds the semantics. It may also be worth considering the elimination of bounds entirely for the sake of unbounded verification. For this, one direction is abstract interpretation [9, 8], which amounts to defining overapproximations for values in our language to then attempt to compute a fixpoint for the range of values that assertions may take. However, defining and using abstract domains that maintain enough precision to check higher-order behaviours, such as reentrancy, is not a simple extension of the theory. Another direction, similar to Coneqct [24], is to define a push-down system for our semantics. Particularly, the approach in [24] is based on the decidability of reachability in fresh-register pushdown automata, and would require overapproximations for methods and integers. As with abstract interpretation, this would require defining abstract domains for methods and integers. While methods could be approximated using a finite set of names, as with k-CFA [37], an extension using integer abstract domains would need refinement to tackle reentrancy attacks. Finally, MoCHi [35] shows that it is possible to use CEGAR and higher-order recursion schemes for unbounded verification of higher-order programs. However, an extension of the MoCHi approach to include references and open code is not obvious.
References

Symbolic Execution Game Semantics

A Motivating examples

Our file lock example provides a scenario where the library makes it possible for the client to update a file without first reacquiring the lock for it. The library contains an empty private method `updateFile` that simulates file access. The library also provides a public method `openFile`, which locks the file, allows the user to update the file indirectly, and then releases the lock.

```plaintext
1 import userExec : ((unit -> unit) -> unit)
2 int lock := 0;
3 private updateFile(x: unit) :( unit ) = { () };
4 public openFile (u: unit) :( unit ) = {
5   if (!lock) then ()
6   else (lock := 1;
7     let write = fun (x: unit):(unit) -> (assert(!lock); updateFile())
8       in userExec(write); lock := 0);}
```

The bug here is that `openFile` creates a `write` method, which it then passes to the client, via `userExec(write)`, to use whenever they want. This provides the client indirect access to the private method `updateFile`, which it can call without first acquiring the lock. Running this example in HOLiK we obtain the following minimal trace:

```
call(openFile,()) · call(userExec,m2) · ret(userExec,())
· ret(openFile,()) · call(m2,())
```

where `m2` is the method name generated by the library and bound to the variable `write`. This example serves as a representative of a class of bugs caused by revealing methods to the environment, a higher-order problem, in this case involving the second-order method `userExec` revealing `m2`.

Next, we simulate double deallocation using a global reference `addr` as the memory address. The library defines private methods `alloc` and `free` to simulate allocation and freeing. The empty private method `doSthing` serves as a placeholder for internal computation that does not free memory.

```plaintext
1 import getInput :( unit -> int )
2 int addr := 0; // 0 means address is free
3 private alloc (u:unit) :(unit) = {
4   if not(!addr) then addr := 1 else () ;
5   private free (u:unit) :(unit) = {
6     assert(!addr); addr := 0 ;
7     private doSthing (1:int) :(unit) = { () };
8     public run (u:unit) :(unit) = {
9       alloc(); doSthing(getInput()); free();
10      }
```

The error occurs in line 9, which calls the client method `getInput`. This passes control to the client, who can now call `run` again, thus causing `free` to be called twice. Executing the example on HOLiK, we obtain the following trace:

```
call(run,()) · call(getInput,()) · call(run,()) · call(getInput,())
· ret(getInput, x1) · ret(run,()) · ret(getInput, x2)
```

As with the DAO attack, this is a reentrancy bug.
Finally, we have an unsafe implementation of a flat combiner. The library defines two
public methods: \texttt{enlist}, which allows the client to add procedures to be executed by the
library, and \texttt{run}, which lets the client run all procedures added so far. The higher-order
global reference \texttt{list} implements a list of methods.

1. private \texttt{empty}(x:int) : (unit) = { () };
2. fun \texttt{list} := \texttt{empty};
3. int \texttt{cnt} := 0; int \texttt{running} := 0;
4. public \texttt{enlist}(f:(unit \rightarrow \textit{unit})) : (unit) = {
5. if (!\texttt{running}) then ()
6. else
7. \texttt{cnt} := !\texttt{cnt} + 1;
8. (let c = !\texttt{cnt} in let l = !\texttt{list} in
9. \texttt{list} := (fun (z:int):(\textit{unit}) \rightarrow if (z == c) then f() else l(z))));
10. public \texttt{run}(x:unit) : (unit) = {
11. \texttt{running} := 1;
12. if (0 < !\texttt{cnt}) then
13. (!\texttt{list}(!\texttt{cnt});
14. \texttt{cnt} := !\texttt{cnt} - 1; assert (not (!\texttt{cnt} < 0)); \texttt{run()}
15. else (\texttt{list} := \texttt{empty}; \texttt{running} := 0) ;
}

The bug here is also due to a reentrant call in line 13. However, this is a much tougher
example as it involves a higher-order reference \texttt{list}, a recursive method \texttt{run}, and a second-
order method \texttt{enlist} that reveals client names to the library. With HOLiK, we obtain the
following minimal counterexample:

\[
\text{call}(\texttt{enlist}, m_1) \cdot \text{ret}(\texttt{enlist}, ()) \cdot \text{call}(\texttt{run}, ()) \cdot \text{call}(m_1, ())
\cdot \text{call}(\texttt{run}, ()) \cdot \text{call}(m_1, ()) \cdot \text{ret}(m_1, ()) \cdot \text{ret}(\texttt{run}, ()) \cdot \text{ret}(m_1, ())
\]

where \(m_1\) is a client name revealed to the library. In the trace above, \texttt{enlist} reveals the
method \(m_1\) to the library. This name is then added to the list of procedures to execute. In
\texttt{run}, the library passes control to the client by calling \(m_1\). At this point, the client is allowed
to call \texttt{run} again before the list is updated.

\section{Comparison with Racket Contract Verification}

We shall consider the latest version of the tool \cite{26} since it handles state, which we refer to as
SCV (Software Contract Verifier). A small benchmark (19 programs) based on HOLiK and
SCV benchmarks was used for testing. Programs were manually translated between HOLi and
Racket. Care was taken to translate programs whilst maintaining their semantics: contracts
enforcing an input-output relation were translated into HOLi using wrapper functions that
define the relation through an if statement. In the other direction, since contracts do not
directly access references inside a term, stateful functions were translated from HOLi to
return any references we wish to reason about.

Table 2 records the comparison. On one hand, HOLiK only found real errors, whereas
SCV reported several spurious errors—a third of all errors were spurious. On the other
hand, SCV was able to prove total correctness of 3 of the 7 safe files present. SCV also
scales much better than HOLiK with respect to program size, which is in exchange of
precision. The difference in time for small programs is mainly due to initialisation time.
Subtle differences in the nature of each tool can also be observed. e.g., HOLiK reports 1 real
error for \texttt{ack-simple-e}, whereas SCV reports 2 errors. The difference is because SCV takes
into account constraints for integers (e.g. \(> 0\) and \(= 0\)). More interestingly, for \texttt{various},
symbolic execution game semantics

Table 2 Comparison of HOLiK (left) and SCV (right). N/A is recorded for ack as in our attempts SCV crashed due to unknown reasons.

<table>
<thead>
<tr>
<th>Program</th>
<th>LoC</th>
<th>Traces</th>
<th>Time (s)</th>
<th>LoC</th>
<th>Errors</th>
<th>Time (s)</th>
<th>False Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ack</td>
<td>17</td>
<td>0</td>
<td>6.0</td>
<td>9</td>
<td>N/A</td>
<td>2.4</td>
<td>N/A</td>
</tr>
<tr>
<td>ack-simple</td>
<td>13</td>
<td>0</td>
<td>6.5</td>
<td>9</td>
<td>0</td>
<td>2.4</td>
<td>0</td>
</tr>
<tr>
<td>ack-simple-e</td>
<td>13</td>
<td>1</td>
<td>6.5</td>
<td>9</td>
<td>2</td>
<td>2.5</td>
<td>0</td>
</tr>
<tr>
<td>dao</td>
<td>10</td>
<td>0</td>
<td>5.0</td>
<td>15</td>
<td>1</td>
<td>2.6</td>
<td>1</td>
</tr>
<tr>
<td>dao-e</td>
<td>16</td>
<td>1</td>
<td>5.5</td>
<td>15</td>
<td>1</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>dao-variables</td>
<td>85</td>
<td>5</td>
<td>22.5</td>
<td>122</td>
<td>10</td>
<td>3.0</td>
<td>5</td>
</tr>
<tr>
<td>dao2-e</td>
<td>85</td>
<td>10</td>
<td>23.5</td>
<td>122</td>
<td>10</td>
<td>2.9</td>
<td>0</td>
</tr>
<tr>
<td>escape</td>
<td>9</td>
<td>0</td>
<td>5.0</td>
<td>9</td>
<td>0</td>
<td>2.6</td>
<td>0</td>
</tr>
<tr>
<td>escape-e</td>
<td>9</td>
<td>2</td>
<td>5.0</td>
<td>10</td>
<td>1</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>escape2-e</td>
<td>10</td>
<td>14</td>
<td>6.0</td>
<td>10</td>
<td>1</td>
<td>2.7</td>
<td>0</td>
</tr>
<tr>
<td>factorial</td>
<td>10</td>
<td>0</td>
<td>5.0</td>
<td>9</td>
<td>0</td>
<td>2.2</td>
<td>0</td>
</tr>
<tr>
<td>mc91</td>
<td>12</td>
<td>0</td>
<td>5.0</td>
<td>9</td>
<td>1</td>
<td>2.2</td>
<td>1</td>
</tr>
<tr>
<td>mc91-e</td>
<td>12</td>
<td>1</td>
<td>5.0</td>
<td>8</td>
<td>1</td>
<td>2.4</td>
<td>0</td>
</tr>
<tr>
<td>mult</td>
<td>14</td>
<td>0</td>
<td>5.0</td>
<td>11</td>
<td>2</td>
<td>2.7</td>
<td>2</td>
</tr>
<tr>
<td>mult-e</td>
<td>14</td>
<td>1</td>
<td>5.0</td>
<td>11</td>
<td>2</td>
<td>2.4</td>
<td>0</td>
</tr>
<tr>
<td>succ</td>
<td>7</td>
<td>0</td>
<td>5.0</td>
<td>7</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
</tr>
<tr>
<td>succ-e</td>
<td>7</td>
<td>1</td>
<td>5.0</td>
<td>7</td>
<td>1</td>
<td>2.8</td>
<td>0</td>
</tr>
<tr>
<td>various</td>
<td>116</td>
<td>19</td>
<td>14.0</td>
<td>108</td>
<td>11</td>
<td>6.2</td>
<td>5</td>
</tr>
<tr>
<td>total</td>
<td>459</td>
<td>55</td>
<td>140.5</td>
<td>500</td>
<td>45</td>
<td>49.8</td>
<td>15</td>
</tr>
</tbody>
</table>

HOLiK reports 19 ways to reach assertion violations, whereas SCV reports only 6 real ways to violate contracts. The difference is because HOLiK reports paths through the execution tree that reach errors, whereas SCV reports a set of terms that may violate the contracts. For instance, independently safe methods \(A \) and \(B \) that may call an unsafe method \(C \) would be, from testing, reported as three valid traces (\(\text{call}(A) \cdot \text{call}(C) \), \(\text{call}(B) \cdot \text{call}(C) \) and \(\text{call}(C) \)) by HOLiK. In contrast, SCV reports a single contract violation blaming \(C \). Finally, \texttt{ack} failed to run on SCV due to unknown errors; Racket reported an error internal to the tool. Further testing proved the file is a valid Racket program that can be executed manually.

C ML-like References

HOLiK has global higher-order references. These are enough for coding all of our examples and, moreover, allow us to prove completeness (every error has a realising client). We here present a sketch of how games can be extended with (locally created, scope extruding) ML-like references, following e.g. [21, 16]. First, the following extension to types and terms are required.

\[
\theta ::= \cdots \mid \text{ref } \theta \\
M ::= \cdots \mid M^! \mid \text{ref } M \mid M = M \\
v ::= \cdots \mid r
\]

The term \(M^! \) allows dereferencing terms \(M \) which evaluate to references, while \(\text{ref } v \) creates dynamically a fresh name \(r \in \text{Refs}_\theta \) (if \(v : \theta \)), and the semantic purpose is to update the store \(S \uplus \{ r \mapsto v \} \) when evaluating \(\text{ref } v \). Note that this allows us to store references to references, etc. Finally, the construct \(M = M \) is for comparing references for name equality.

With terms handling general references concretely and symbolically, we extend game configurations with sets \(L_p, L_o \subseteq \text{Refs} \) that keep track of reference names disclosed by the proponent and opponent respectively. References being passed as values means that the client can update the references belonging to the client, and viceversa. When making a move,
for each reference \(r \) they own that is passed, the proponent adds \(r \) to \(L_p \). Passing of names in a move can be done either by method argument and return value, but also via the common part of the store (i.e. via the references known to both players). Similarly, opponent passes names in their moves, which are added to \(L_o \). Concretely, when the opponent passes control, all references in \(L_p \) are updated with opponent values. Symbolically, the references \(r \) are updated with distinct fresh symbolic integers \(\kappa \) if \(r \in \text{Refs}_{\text{Int}} \), distinct fresh method names if \(r \in \text{Refs}_{\theta_1 \rightarrow \theta_2} \), or to arbitrary reference names if \(r \in \text{Refs}_{\text{Ref}_a} \).

\section{Definability}

In this section we show that every trace \(\tau \) in the semantics of a library \(L \) has a corresponding good client that realises the same trace in its semantics.

Let \(L \) be a library with public names \(\mathcal{P} \) and abstract names \(\mathcal{A} \). Given a trace \(\tau \) produced by \(L \), with \(\mathcal{P}' \) and \(\mathcal{A}' \) respectively the public and abstract names introduced in \(\tau \), we set:

\[\mathcal{N} = \mathcal{P} \cup \mathcal{P}' \cup \mathcal{A} \cup \mathcal{A}' \]

\[\Theta_v = \{ \theta \mid \exists m \in \mathcal{N}. \ m : \theta' \land \theta \text{ a syntactic subtype of } \theta' \} \]

\[\Theta_m = \{ \theta \in \Theta_v \mid \theta \text{ a method type} \} \]

Note that the above sets are finite, since \(\tau, \mathcal{P}, \mathcal{A} \) are finite. We assume a fixed enumeration of \(\mathcal{N} = \{m_1, m_2, \ldots, m_n\} \). Moreover, for each type \(\theta \), we let \(\text{defval}_\theta \) be a default value, and \(\text{diverge}_\theta \) a term that on evaluation diverges by infinite recursion. We then construct a client \(C_{\tau, \mathcal{P}, \mathcal{A}} \) as in Figure 5.

The code is structured as follows.

1. We start off by defining global references:
 - \(\text{cnt} \) counts the number of \(P \) (Library) moves played so far;
 - \(\text{meth} \) stores an index that records the move made by \(P \): if the move was a return then \(\text{meth} \) stores 0; if it was call to \(m_i \) then \(\text{meth} \) stores \(i \);
 - each \(\text{ref}_i \) will store the method \(m_i \in \mathcal{P} \cup \mathcal{P}' \), either since the beginning (if \(m_i \in \mathcal{P} \)), or once \(P \) plays it (if \(m_i \in \mathcal{P}' \));
 - each \(\text{val}_\theta \) will be used for storing the value played by \(P \) in their last move.

In the latter case above, there is a light abuse of syntax as \(\theta \) can be a product type, of which HOLi does not have references. But we can in fact simulate references of arbitrary type by several HOLi references.

2. For each \(m_i : \theta_1 \rightarrow \theta_2 \in \mathcal{A} \), we define a public method \(m_i \) that simulates the behaviour of \(O \) whenever \(m_i \) is called in \(\tau \):
 - it starts by increasing \(\text{cnt} \), as a call to \(m_i \) corresponds to a \(P \)-move being played;
 - it continues by storing \(i \) and \(x \) in \(\text{meth} \) and \(\text{val}_\theta \) respectively;
 - it calls the private method \(\text{oracle} \), which is tasked with simulating the rest of \(\tau \) and storing the value that \(m_i \) will return in \(\text{val}_\theta \);
 - it returns the value in \(\text{val}_\theta \).

3. For each \(m_i : \theta_1 \rightarrow \theta_2 \in \mathcal{A}' \) we produce a method just like above, but keep it private (for the time being).

4. The method \(\text{oracle} \) performs the bulk of the computations, by checking that the last move played by \(P \) was the expected one and selecting the next move to play (and playing it if it is a call).
 - The oracle is called after each \(P \)-move is played, so it starts with increasing \(\text{cnt} \).
It then performs a case analysis on the value of cnt, which above we denote collectively
by assuming the value is i – this notation hides the fact that we have one case for each
of the finitely many values of i.

For each such i, the oracle first checks if the previous P-move (if there was one), was
the expected one. If the move was a call, it checks whether the called method was
the expected one (via an appropriate value of d), and also whether the value was the
expected one. Value comparisons (\(\sim\)) only compare the integer components of
\(\theta\), since we cannot compare method names. If this check is successful, the oracle extracts from
\(u\) any method names played fresh by P and stores them in the corresponding
\(\text{ref}_i\).

Next, the oracle prepares the next move. If, for the given i, the next move is a call,
then the oracle issues the call, stores the return value of that call, increases cnt
and recurs to itself – when the issued call returns, it would be through a P-move. If, on the
other hand, the next move is a return, the oracle simply stores the value to be returned
in the respective \(\text{val}\) reference – this would allow to the respective \(m_i\) to return that
value.

5. The \textbf{main} method simply calls the oracle.

We can then show the following. For any library \(L\) and \((\tau, \rho) \in \llbracket L \rrbracket\), \(C_\tau\) is such that
\((\tau, \rho') \in \llbracket C_\tau \rrbracket\) for some \(\rho'\).