Volume 6 | Issue 1 | June 2020

Special Issue of the 32nd Euromicro Conference on Real-Time Systems (ECRTS 2020)

Edited by
Alessandro V. Papadopoulos
Alessandro Biondi
ISSN 2509-8195

DARTS Special Issue Editors

Alessandro V. Papadopoulos
Mälardalen University, Västerås, Sweden
alessandro.papadopoulos@mdh.se
https://orcid.org/0000-0002-1364-8127

Alessandro Biondi
Scuola Superiore Sant'Anna, Pisa, Italy
alessandro.biondi@sssup.it
https://orcid.org/0000-0002-6625-9336

ACM Classification 2012
Software and its engineering

Published online and open access by
Online available at
http://drops.dagstuhl.de/darts.

Publication date
June 2020

License
This work is licensed under a Creative Commons Attribution 3.0 Germany license (CC BY 3.0 DE): http://creativecommons.org/licenses/by/3.0/de/deed.en.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or restricting the authors’ moral rights:
- **Attribution**: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Aims and Scope
The Dagstuhl Artifacts Series (DARTS) publishes evaluated research data and artifacts in all areas of computer science. An artifact can be any kind of content related to computer science research, e.g., experimental data, source code, virtual machines containing a complete setup, test suites, or tools.

Contact
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
DARTS, Editorial Office
Oktavie-Allee, 66687 Wadern, Germany
publishing@dagstuhl.de

Digital Object Identifier
10.4230/DARTS.6.1.0
http://www.dagstuhl.de/darts
Contents

Artifact Evaluation Process .. 0:vii

Artifact Evaluation Committee .. 0:ix

Artifacts

Simultaneous Multithreading and Hard Real Time: Can it be Safe? (Artifact)
Simms Hill Osborne, Joshua J. Bakita, and James H. Anderson 1:1–1:3

Demystifying the Real-Time Linux Scheduling Latency (Artifact)
Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira, and Tommaso Cucinotta .. 2:1–2:3

Abstract Response-Time Analysis: A Formal Foundation for the Busy-Window Principle (Artifact)
Sergey Bozhko and Björn B. Brandenburg .. 3:1–3:2

Modeling and Analysis of Bus Contention for Hardware Accelerators in FPGA SoCs (Artifact)
Francesco Restuccia, Marco Pagani, Alessandro Biondi, Mauro Marinoni, and Giorgio Buttazzo ... 4:1–4:3

The Time-Triggered Wireless Architecture (Artifact)
Romain Jacob, Licong Zhang, Marco Zimmerling, Jan Beutel,
Samarjit Chakraborty, and Lothar Thiele .. 5:1–5:3
Artifact Evaluation Process

The ECRTS Artifact Evaluation (AE) process takes place after the paper decisions have been finalized. We seek to achieve the benefits of the AE process without disturbing the current process through which ECRTS has generate high-quality programs in the past. Therefore, the current submission, review and acceptance procedure are completely unaltered by the decision of running an AE process.

Once acceptance decisions are final, the authors of accepted papers are invited to submit an artifact evaluation (or replication) package. Hence, the repeatability evaluation process has no impact on whether a paper is accepted at ECRTS, and will be entirely optional and up to authors. Moreover, there is no disclosure of the title and authors of papers which would not pass the repeatability evaluation. This is to avoid negative bias towards submitting their artifact on the authors’ part. Once authors that desire to do so have submitted their artifacts, an Artifact Evaluation Committee (AEC) composed mainly of PhD students close to graduation and postdocs evaluates the artifacts.

Artifacts should include two components:
- a document explaining how to use the artifact and which of the experiments presented in the paper are repeatable (with reference to specific digits, figures and tables in the paper), the system requirements and instructions for installing and using the artifact;
- the software and any accompanying data.

During the first week, all the evaluators check that they can run the code of artifacts assigned to them, without problems. In case of problems, these are promptly (and anonymously) reported to the authors of the artifact that can help fixing them. From that moment on, the evaluators have 3 weeks to complete their reviews. During the last week, a brief online discussion takes place if/when necessary and notifications are sent to authors.
Artifact Evaluation Committee

Matthias Becker
Royal Institute of Technology (KTH)
Stockholm, Sweden
mabecker@kth.se

Daniel Casini
Scuola Superiore Sant’Anna
Pisa, Italy
d.casini@sssup.it

Leonidas Kosmidis
Barcelona Supercomputing Center
Barcelona, Spain
leonidas.kosmidis@bsc.es

Anway Mukherjee
Virginia Tech
Blacksburg, USA
anwaym@vt.edu

Paolo Pazzaglia
Saarland University
Saarbrücken, Germany
pazzaglia@cs.uni-saarland.de

Syed Aftab Rashid
CISTER Research Unit, ISEP-IPP
Porto, Portugal
syara@isep.ipp.pt

Corey Tessler
Wayne State University
Detroit, USA
corey.tessler@wayne.edu

Micaela Verucchi
University of Modena and Reggio Emilia
Modena, Italy
micaela.verucchi@unimore.it

Georg von der Brüggen
Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern, Germany
vdb@mpi-sws.org