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Abstract
In the counting Graph Homomorphism problem (#GraphHom) the question is: Given graphs G, H,
find the number of homomorphisms from G to H. This problem is generally #P-complete, moreover,
Cygan et al. proved that unless the Exponential Time Hypothesis fails there is no algorithm that
solves this problem in time O(|V (H)|o(|V (G)|)). This, however, does not rule out the possibility that
faster algorithms exist for restricted problems of this kind. Wahlström proved that #GraphHom
can be solved in plain exponential time, that is, in time O((2k +1)|V (G)|+|V (H)|poly(|V (H)|, |V (G)|))
provided H has clique width k. We generalize this result to a larger class of graphs, and also identify
several other graph classes that admit a plain exponential algorithm for #GraphHom.
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1 Introduction

The Exponential Time Hypothesis (ETH) [16] essentially suggests that the Satisfiability
problem does not admit an algorithm that is significantly faster than the straightforward
brute force algorithm. The ETH has been widely used to obtain (conditional) lower bounds
on the complexity of various problems, see [18] for a fairly recent survey. It however does
not rule out nontrivial algorithms for many other hard problems.

One of such problems is the Graph Homomorphism problem (GraphHOM for short).
A homomorphism from a graph G to a graph H is a mapping ϕ : V (G) → V (H) such
that for any edge ab ∈ E(G) the pair ϕ(a)ϕ(b) is an edge of H. GraphHOM asks, given
graphs G and H, whether or not there exists a homomorphism from G to H [14]. In the
counting version of this problem, denoted #GraphHOM, the goal is to find the number of
homomorphisms from G to H. These two problems can be solved just by checking all possible
mappings from a given graph G to a given graph H, which takes time O∗(|V (H)||V (G)|),
where O∗ denotes asymptotics up to a polynomial factor. Assuming the ETH Cygan et al. [6]
proved that the general GraphHom and therefore #GraphHom cannot be solved in time
O(|V (H)|o(|V (G)|)). A similar bound for the more general Constraint Satisfaction Problem
(CSP) was established in [22], and some related hardness results have also been obtained
in [5].
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21:2 Counting Homomorphisms in Plain Exponential Time

In spite of these results, there are several ways to restrict GraphHom which sometimes
result in a problem admitting a faster algorithm. For graph classes G,H, GraphHom(G,H)
denotes the problem GraphHom in which the input graphs G,H belong to G,H, respectively.
#GraphHOM can be restricted in the same way. Both problems have received much
attention in their own right and as a special case of the general CSP, and much is known
about their computational complexity. We will use the symbol − to indicate that an input
graph is not restricted. In particular, it is known that GraphHom(−,H) is solvable in
polynomial time only if every graph in H contains a loop or is bipartite [15]. It is also
known that #GraphHom(−,H) is solvable in polynomial time only if every graph in H is
complete with all the loops present or is complete bipartite [9]. In the remaining cases these
problems are shown to be NP- and #P-complete, respectively. Similarly, it is known that
GraphHom(G,−) [13] and #GraphHom(G,−) [8] are solvable in polynomial time if and
only if the class of cores of the graphs from G in the former case, and the class G itself in the
latter case have bounded tree width, respectively.

Here we focus on such restrictions that give rise to problems solvable still in exponential
time but much faster than brute force. Specifically, GraphHom(G,H) or #GraphHom(G,H)
are said to be solvable in plain exponential time if there is a solution algorithm running
in time O∗(c|V (G)|+|V (H)|), where c is a constant. In this paper we study problems of the
form #GraphHom(−,H), however, clearly, all the easiness results for #GraphHom(−,H)
also hold for GraphHom(−,H). If the problem #GraphHom(−,H) is solvable in plain
exponential time, we call the class H a plain exponential class.

Plain exponential classes of graphs have received substantial attention in the literature.
The most well known such class is K, the class of all cliques. Note that #GraphHom(−,K)
is equivalent to the #Graph Colouring problem, in which the problem is, given a graph G
and a number k, to find the number of k-colourings of G. A fairly straightforward dynamic
programming algorithm solves this problem in time O∗(3|V (G)|); we outline this algorithm
in Example 8. A more sophisticated algorithm [17] solves #GraphHom(−,K) in time
O∗(2|V (G)|). If H is a class of graphs of tree width k then #GraphHom(−,H) is solvable in
time O∗((k + 3)|V (G)|), see [11]. For the class Dc of graphs of degree at most c the problem
#GraphHom(−,Dc) can be solved in time O∗(c|V (G)|) by a minor modification of the brute
force enumeration algorithm, see Example 7. Finally, Wahlström [23] obtained probably
the most general result so far on plain exponential graph classes, proving that if H only
contains graphs of clique width at most k then #GraphHom(−,H) can be solved in time
O∗((2k+1)|V (G)|+|V (H)|). The algorithm from [23] is also dynamic programming and uses the
representation of (labeled) graphs of bounded clique width through a sequence of operations
such as disjoint union, connecting vertices with certain labels, and relabeling vertices. Such
sequences are called k-expressions.

In this paper we aim at a systematic study of plain exponential classes of graphs. As
the first step we further expand the class of graphs for which plain exponential counting
algorithms are possible by adding one more operation to the construction of graphs of
bounded clique width. In a nutshell, the new operation expands a graph H to a graph H ′ in
such a way that H is a retract of H ′, and the preimages of vertices of H are connected in a
regular way. The new class of graphs includes families of graphs of unbounded clique width,
for instance, hypercubes, grids, cliques with subdivided edges, and therefore is strictly larger
than the class of graphs of bounded clique width. By means of this new set of operations one
can define a new graph “width” measure that we call extended clique width, only this new
measure involves two parameters rather than one. Graphs of extended clique width (k, r)
can also be represented by extended (k, r)-expressions. Let Xk,r denote the class of graphs
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whose extended width parameters are at most k, r, respectively. (In this case we will say
that such a graph has extended clique width at most (k, r).) Although in most cases in this
paper the only parameter that matters is max{k, r}, we think that further stratification is
useful for a number of more precise results.

We then show that given an arbitrary graph G, a graph H of extended clique width
(k, r), and an extended (k, r)-expression Φ representing H, the number hom(G,H) of ho-
momorphisms from G to H can be found in time O∗((2 max(k, r) + 1)2|V (G)|). Similar to
[23], the algorithm is dynamic programming and iteratively computes numbers hom(G′, H ′),
where G′ is an induced subgraph of G and H ′ is a graph represented by a subexpression
of Φ. Clearly, as one cannot assume that an extended (k, r)-expression representing H is
known in advance, this algorithm alone does not guarantee that Xk,r is plain exponential.
However, we also show that given a graph H of extended clique width at most (k, r), an
extended (k, r)-expression representing H can be found in time O∗((4 max(k, r) + 4)|V (H)|).
Combined with the previous result we thus obtain the following

I Theorem 1. For any fixed k, r the class of graphs of extended clique width at most (k, r)
is plain exponential.

Next, we show that the classes of graphs of bounded extended clique width are quite
general. Let Hypercubes denote the class of all hypercubes and let Grids denote the class
of all rectangular grids. Also, for a class H of graphs, K(H) denotes the class of graphs H
obtained as follows. Take H ′ ∈ H, a clique on vertices {v1, . . . , vn}, and for every edge vivj
of the clique, i 6= j, replace this edge with a copy of H ′, that is, connect vi, vj to all vertices
of H ′ and include all the edges of H ′. It is known that all three classes have unbounded
cluque width [20, 3], and K(H) has unbounded clique width even when H contains just one
graph with one vertex.

I Theorem 2. Hypercubes has extended clique width at most (2,1), Grids has extended clique
width at most (6,1). For any class H of extended clique width (k, r), the class K(H) has
extended clique width at most (k + 5,max(r, 1)).

By Theorem 1 this immediately implies that classes Hypercubes and Grids are plain
exponential. For subdivisions of cliques we prove a stronger result.

I Proposition 3. For any plain exponential class H of graphs (not necessarily of bounded
extended clique width), the class K(H) is also plain exponential.

It seems that there are two general reasons for a class of graphs to be plain exponential:
to have bounded (extended) clique width or to have bounded degree. Classes Hypercubes
and K(H) witness that bounded extended clique width (and in fact even bounded clique
width) does not imply bounded degree. By proving that graphs from Xk,r satisfy certain
nontrivial property and showing that a random c-regular graph for c > 3 (unsurprisingly)
does not satisfy this property with high probability, we show that Dc does not have bounded
extended clique width. The two types of classes can be combined together to obtain new
plain exponential classes. Let G,H be graphs. The Cartesian product G�H of G and H is
defined to be the graph with vertex set V (G)× V (H) and edges (u1, v1)(u2, v2) such that
either u1 = u2 and v1v2 ∈ E(H), or v1 = v2 and u1u2 ∈ E(G).

I Theorem 4. Let G be a plain exponential class of graphs and H of bounded degree. Then
G�H = {G�H | G ∈ G, H ∈ H} is plain exponential.
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21:4 Counting Homomorphisms in Plain Exponential Time

Note that for another standard graph product, G×H, where edges are given by the rule:
(u1, v1)(u2, v2) is an edge if and only if u1u2 ∈ E(G) and v1v2 ∈ E(H), a similar result is
almost trivial, as we observe in Example 9.

There is no doubt that plain exponential classes are much more diverse than what is
shown above. For instance, for a class G of graphs, let G+d denote the class of graphs G
such that it is possible to remove up to d vertices from G to obtain a graph from G. Then
as is easily seen, G+d is plain exponential whenever G is plain exponential. Also, there are
some odd plain exponential class of graphs (odd in the sense we could not fit it into any of
the types above). Let Kneserk denote the well studied class of Kneser graphs, see, e.g. [19]:
Kneserk is the class of graphs, whose vertices are the k-element subsets of a certain set, and
two vertices are connected if and only if the corresponding subsets are disjoint. A plain
exponential algorithm for Kneserk (for a fixed k) exists, see [2, 21]. We find an alternative
algorithm for this class of graphs.

I Theorem 5. For every k the class Kneserk is plain exponential.

The class Kneserk however does not fit in any of the more general classes of plain
exponential graphs.

Due to space restrictions not all proofs are included in this paper. For the missing proofs
the reader is referred to the full version of the paper [7].

2 Preliminaries: Homomorphisms and Clique width

2.1 Homomorphisms, plain exponential time
By [n] we denote the set {1, . . . , n} and by [[n]] the set {0, 1, . . . , n}. As always we denote
the vertex set of a graph G by V (G), and its edge set by E(G). A homomorphism of a
graph G to a graph H is a mapping ϕ : V (G) → V (H) such that ϕ(u)ϕ(v) ∈ E(H) for
any uv ∈ E(G). By hom(G,H) we denote the number of homomorphisms from G to H.
The Counting Graph Homomorphism problem, #GraphHom, is defined as follows: given
graphs G,H, find the number of homomorphisms from G to H. Its decision version – does
there exist a homomorphism from G to H? – is denoted by GraphHom. For more on
graph homomorphisms see [14]. If H is allowed only from a class H of graphs, the resulting
counting and decision problems are denoted #GraphHom(−,H) and GraphHom(−,H),
respectively.

We will be concerned with the complexity and the best running time of algorithms for
#GraphHom(−,H). In particular, we say that a class H of graphs is plain exponential
if there is an algorithm that solves the problem #GraphHom(−,H) in plain exponential
time: there exists a constant c such that on input G,H, H ∈ H, the algorithm runs in time
O∗(c|V (G)|+|V (H)|), where O∗ means asymptotics up to a factor polynomial in |V (G)|, |V (H)|.
Note that we will always assume that G and H are connected, since otherwise the existence
or the number of homomorphisms from G to H can be deduced from those of their connected
components.

I Example 6. (H-Colouring.) If H consists of just one graph, H, the problems
#GraphHom(−,H), GraphHom(−,H) are known as #H-Colouring andH-Colouring,
respectively. The #H-Colouring problem is solvable in polynomial time if H is a complete
graph with all loops present, or is a complete bipartite graph [9]. The H-Colouring problem
is solvable in polynomial time if H contains a loop or is bipartite [15]. Otherwise these
problems are #P- and NP-complete, respectively. Since the brute force algorithm for this
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problems runs in O(|V (H)||V (G)|) time, #H-Colouring and H-Colouring are always
solvable in plain exponential time. Also, by inspecting the solution algorithms from [9, 15]
these results can be slightly generalized: #GraphHom(−,H) is solvable in polynomial time
whenever every graph from H is a complete graph with all loops, or a complete bipartite
graph. Similarly GraphHom(−,H) is polynomial time solvable if every graph from H

contains a loop or is bipartite.

I Example 7. (Graphs of bounded degree.) As is mentioned in the introduction, if the
degrees of graphs from H are bounded by a number c, the (improved) brute force algorithm
solves #GraphHom(−,H), GraphHom(−,H) in time O∗(c|V (G)|). Let G,H be input
graphs, H ∈ H. Recall that we assume G is connected; otherwise the procedure below has to
be performed for each connected component, and the results multiplied. Order the vertices
v1, . . . , vn of G in such a way that each vertex except for the first one is adjacent to one of
the preceding vertices. Then the brute force algorithm is organized as follows: Assign images
to v1, . . . , vn in turn. There are |V (H)| possibilities to map v1, but then if vi is adjacent
to vj , j < i, the image of vj is fixed, and therefore there are at most c possibilities for the
image of vi. Thus, the algorithm runs in O∗(cn). This approach also allows H to have a
bounded number of vertices of high degree.

I Example 8. (Graphs of bounded clique width.) Let Ck denote the class of all graphs
of clique width at most k (to be defined in Section 2.2). Then #GraphHom(−, Ck),
GraphHom(−, Ck) can be solved in time O∗((2k+ 1)|V (G)|+|V (H)|), implying that Ck is plain
exponential [23].

Here we briefly describe the simple algorithm solving #GraphHom(−,K), where K
is the class of cliques. Given a graph G and a number s (or, equivalently, the clique Ks)
the solution algorithm maintains an array N(S, `) for S ⊆ V and ` ≤ s, which contains the
number of homomorphisms from the subgraph of G induced by S to an `-element clique.
To compute each N(S, `) we go over all subsets S′ ⊆ S, consider the vertices from S′ to be
mapped to the `-th vertex of the `-clique. Then there are N(S − S′, `− 1) ways to map the
remaining vertices, and N(S, `) is the sum of all numbers like this. It is not hard to see
that the running time of this algorithm is O∗(3|V (G)|). It can be improved to run in time
O∗(2|V (G)|) [17], and some further improvements are possible in certain cases [10].

I Example 9. Often plain exponential classes can be combined to obtain a new plain
exponential class. For graphs G,H let G×H denote their product, the graph with vertex
set V (G)× V (H) and edges (u1, v2)(u2, v2) whenever u1u2 ∈ E(G) and v1v2 ∈ E(H). Also,
for graph classes G,H, let G × H denote the class {G × H | G ∈ G, H ∈ H}. If G,H are
plain exponential, then so is G ×H. Indeed, let π1, π2 denote the projection homomorphisms
of G × H onto G and H, respectively; that is, π1 : (u, v) 7→ u and π2 : (u, v) 7→ v.
For any graph T a mapping ϕ : V (T ) → V (G) × V (H) is a homomorphism if and only
if the mappings ϕ1 = π1 ◦ ϕ1 : V (T ) → V (G) and ϕ2 = π2 ◦ ϕ : V (T ) → V (H) are
homomorphisms. In this case ϕ(u, v) = (ϕ1(u), ϕ2(v)). This immediately implies that
hom(T,G×H) = hom(T,G) · hom(T,H), and the result follows.

We will often deal with vertex labeled graphs. It will be convenient to represent labels
on vertices of a graph G as a label function π : V (G) → [k], in which case we say that G
is k-labeled. The graph G = (V,E) equipped with a label function π will be denoted by
G = (V,E, π). The k-labeled graph G is then called a k-labeling of G. Let G1 = (V1, E1, π1)
and G2 = (V2, E2, π2) be k-labeled graph. A mapping ϕ : V1 → V2 is a homomorphism of
k-labeled graph G1 to k-labeled graph G2 if it is a homomorphism of graph G1 = (V1, E1) to
G2 = (V2, E2) respecting the labeling, that is, π2(ϕ(v)) = π1(v) for every v ∈ V1.

ICALP 2020



21:6 Counting Homomorphisms in Plain Exponential Time

The following notation will also be useful. Let again G1,G2 be k-labeled graphs, such that
V1, V2 are disjoint. Then G1

⊕
G2 = (V1 ] V2, E1 ] E2, π1 ] π2), where π1 ] π2(v) = π1(v),

if v ∈ V1, and π1 ] π2(v) = π2(v), if v ∈ V2.
Finally, the subgraph of a graph G = (V,E) induced by a set S ⊆ V is denoted by G[S].

For a k-labeled graph G = (V,E, π), by G[S] we denote the k-labeled subgraph induced by
S ⊆ V . Note that the label function of G[S] is π|S , i.e., the restriction of π on the set S.

2.2 Clique width and k-expressions
The simplest way to introduce clique width of a graph is through k-expressions.

I Definition 10. The following operators are defined on k-labeled graphs.
·i: Construct a graph with one vertex, which is labeled i ∈ [k].
ρi→j(G): Relabel all vertices with label i ∈ [k] of a k-labeled graph G to label j ∈ [k].
ηij(G), for i 6= j: Add an edge from every vertex labeled i to every vertex labeled j in G,
i.e. add edges uv for any vertices u, v where u has label i and v has label j.
G1

⊕
G2: The disjoint union of k-labeled graphs G1 and G2.

A k-expression is any (properly formed) formula using the above operators.
Every k-expression represents a k-labeled graph. We say that a graph G = (V,E) is

represented by k-expression Φ, if there exists a k-labeling π of the vertices of G such that Φ
represents G = (V,E, π). A graph has clique width k if k is minimal so that the graph is
represented by a k-expression. The class of all graphs of clique width at most k is denoted
by Ck.

Wahlström in [23] used k-expressions of graphs to show that Ck is plain exponential.
However, k-expressions suitable for his plain exponential algorithm must satisfy an extra
condition. Let Φ be a k-expression representing a k-labeled graph G. Note that any
subexpression of Φ represents a subgraph of G. We say that k-expression Φ is safe if for
every its subexpression Φ1

⊕
Φ2 such that Φ1,Φ2 represent graphs G1,G2, respectively, the

graph Gi equals G[V (Gi)] for i = 1, 2. In other words all edges of G between vertices of Gi,
i = 1, 2, are already edges of Gi.

I Lemma 11 ([23]).
(1) Every graph of clique width k can be represented by a safe k-expression.
(2) A safe k-expression for a graph of clique width k can be found in plain exponential time.

A class G of graphs has bounded clique width if G ⊆ Ck for some k. Classes of bounded
clique width include cliques, cographs, and distance-hereditary graphs [12, 4]. We will also
be interested in nice graph classes that do not have bounded clique width. These include
classes Hypercubes of hypercubes, Grids of rectangular grids, and subdivisions of cliques K(H)
(introduced in Section 1) [20, 3].

3 Extended clique width

3.1 Extended k-expressions
In this section we introduce a more general version of k-expressions, and accordingly a more
general version of clique width. New k-expressions require two more operators on k-labeled
graphs. The first one does not have analogues in k-expressions. Let G be a k-labeled graph
and r a positive integer parameter. The idea behind the inflation operator is the following.
For each vertex v of G we add up to r new copies of v. The set of new copies of v depends
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only on the label of v, and is given by the vector −→M defined below. Let vi1 , . . . , vi` be the
added copies of v, and v itself is considered as v0. Next, some new edges are introduced:
whether or not edge viwj is added depends only on whether vw ∈ V (G), the labels of v, w,
and the numbers i, j. These connections are given by the set S defined below. Finally, the
new copies obtain labels, and the label of vi only depends on the label of v in G and i. This
step is governed by the vector −→σ in the definition below.

We now proceed to a formal definition. Fix natural k, r. By −→M we denote a vector
(M1, . . . ,Mk) where each Mi is a subset of [[r]] containing 0. For such a vector −→M , let

L(−→M) = {(i1, j1, i2, j2) | i1, i2 ∈ [k], j1 ∈Mi1 , j2 ∈Mi2}.

I Definition 12. Let −→M = (M1, . . . ,Mk), {0} ⊆ Mi ⊆ [[r]] for i ∈ [k], σj : [k] → [k]
for j ≤ [[r]], where σ0 is the identity mapping, and S ⊆ L(−→M). Also, S is required to
be a symmetric set, that is, if (i1, j1, i2, j2) ∈ S then (i2, j2, i1, j1) ∈ S. Operator β−→

M,−→σ ,S
transforms a k-labeled graph G = (V,E, π) to a k-labeled graph G′ = (V ′, E′, π′) as follows:

V ′ =
⋃k
i=1 Ci, where Ci = {aj |j ∈ Mi, a ∈ V and π(a) = i}. The vertices a0, a ∈ V ,

are called original vertices of G′ = β−→
M,−→σ ,S(G) and are identified with their corresponding

vertices from V ;
ajbj′ ∈ E′ if and only if ab ∈ E, and (π(a), j, π(b), j′) ∈ S or j = j′ = 0;
π′(aj) = σj(π(a))

The second operator combines disjoint union with a sequence of adding edges operators.

I Definition 13. Let T ⊆ [k] × [k]. Operator ηT takes two k-labeled graphs as input
and produces a k-labeled graph as output. For k-labeled graphs G1 = (V1, E1, π1), and
G2 = (V2, E2, π2), V1, V2 disjoint, the k-labeled graph ηT (G1,G2) = (V,E, π), is defined as
follows:

V = V1 ∪ V2;
E = E1 ∪ E2 ∪ {(a, b) | a ∈ V1, b ∈ V2, π1(a) = i, π2(b) = j, (i, j) ∈ T };
π(a) = π1(a) if a ∈ V1 and π(a) = π2(a) if a ∈ V2.

We refer to this operator as the connect operator.

An extended (k, r)-expression is a (properly formed) expression that involves operators
·i (i ∈ [k]), ρi→j (i, j ∈ [k]), β−→

M,−→σ ,S , and ηT , where
−→
M,−→σ ,S, T are as in Definitions 12, 13.

Similar to k-expressions, extended (k, r)-expressions represent k-labeled graphs, as well as
usual graphs. For an example of extended (k, r)-expression see the construction of hypercubes
in Section 3.2.

Note that if G1 and G2 are two isomorphic k-labeled graphs, and G1 is represented by an
extended (k, r)-expression Φ, then Φ is an extended (k, r)-expression representing G2 as well.

A graph G = (V,E) is said to have extended clique width (k, r) if the pair (k, r) is minimal
such that there is a k-labeling π of G and an extended (k, r)-expression Φ that represents
G = (V,E, π). If such a π exists we also say that Φ represents G. Note that an extended
clique width of a graph is not unique, as pairs of numbers can be incomparable. However, for
our purposes it will usually be enough to assume that k = r: just replace both parameters
with max(k, r). The class of all graphs of extended clique width at most (k, r) is denoted by
Xk,r. A class G of graphs has bounded extended clique width if G ⊆ Xk,k for some k.

The connect operator is clearly a substitute for the operator ηij from Definition 10 of
clique width. In particular, graphs of extended clique width (k, 0) are very close to graphs of
clique width k.

ICALP 2020



21:8 Counting Homomorphisms in Plain Exponential Time

I Proposition 14. Any graph G that can be represented by a k-expression, can also be
represented by an extended (k, 0)-expression. Therefore, Ck ⊆ Xk,0, that is, every graph that
has clique width k also has extended clique width at most (k, 0).

As is easily seen, the connect operator can be expressed through disjoint union and adding
edges. However, we will need properties similar to the safety of k-expressions. Unfortunately,
the inflation operator does not allow for an equally clean and easy definition of safety, as in
the case of k-expressions, and we use the connect operator instead.

Let G = ηT (G1,G2). It is straightforward from the definition that G[V (G1)] is equal
to G1 and G[V (G2)] is equal to G2, that is, ηT does not add edges inside G1,G2. Also,
if G = β−→

M,−→σ ,S(G1), then again G[V (G1)] is equal to G1. Similar to k-expressions we say
that an extended (k, r)-expression Φ is safe if for each of its subexpressions ηT (Φ1,Φ2) and
β−→
M,−→σ ,S(Φ1) such that Φ1,Φ2 represent graphs G1,G2, respectively, it holds Gi = G[V (Gi)]

for i = 1, 2. The following property is straightforward.

I Lemma 15. Any extended (k, r)-expression is safe.

An extended (k, r)-expression representing G (if one exists) can be found in plain expo-
nential time.

I Theorem 16. There is an algorithm running in time O∗((4 max(k, r) + 4)|V (G)|) that
given a graph G outputs an extended (k, r)-expression for G if one exists, or reports “NO”
otherwise.

Proof (Sketch). One of the ingredients of our algorithm is the problem of deciding whether
two k-labeled graphs are isomorphic. k-labeled graphs G = (V1, E1, π1),H = (V2, E2, π2) are
isomorphic if there exists an isomorphism ϕ from the graph G = (V1, E1) to H = (V2, E2)
such that π1(a) = π2(ϕ(a)) for a ∈ V1. We show that this problem can be reduced to the
ordinary Graph Isomorphism problem and use the celebrated result by Babai [1] that there
is an algorithm that, given graphs G and H, decides whether there exists an isomorphism
between G and H in time O(2log(|V (G)|)O(1)).

I Lemma 17. There is a polynomial time reduction from the problem of deciding the
isomorphism of k-labeled graphs to Graph Isomorphism.

We now describe the main part of the algorithm. Create an array N of size (k + 1)n
whose entries N(G′) are labeled with a k-labeling G′ of a subgraph G′ of G. For every entry
N(G′) the k-labeled graph G′ either has an extended (k, r)-expression or it does not. The
goal is to set the value of each entry N(G′) to some extended (k, r)-expression for G′ if it has
one and to “no” otherwise. Then either for some labeling G of G the entry N(G) contains a
(k, r)-expression for G, or G does not have extended clique width at most (k, r).

Now we consider more detailed possibilities for each G′. There are four cases. Case 1 takes
place if G′ has an extended (k, r)-expression that ends with an inflation operator; Case 2
takes place if G′ has an extended (k, r)-expression that ends with a connect operator; Case 3
takes place if G′ has an extended (k, r)-expression that ends with a sequence of relabeling
operators; and, finally, Case 4 takes place if G′ does not have an extended (k, r)-expression.

All one-element k-labeled graphs are obviously represented by an extended (k,r)-expression.
Let us suppose the values of each entry N(G′), where G′ contains at most n−1 vertices is set
correctly. Then, we want to set the correct values for entries of the array whose associated
k-labeled graph has exactly n vertices. We use the dynamic programming approach that
consists of two phases. In Phase 1, for each entry N(G′) such that G′ has n vertices, we check
if G′ satisfies the conditions of Case 1. Then for each k-labeled graph like this that does not
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satisfy the conditions of Case 1 we check if it falls in Case 2. In Phase 2, by relabeling G′ for
which N(G′) is assigned a value, we find a new extended (k, r)-expression for G′ that do not
satisfy the conditions of Cases 1 and 2, but satisfy the conditions of Case 3. In the end, for
each G′ that belongs to none of Cases 1, 2, or 3, we set the value N(G′) to “no” because it
does not have an extended (k, r)-expression. In the rest of this proof, for a k-labeled graph
G′, we show how to check if it satisfies the conditions of each of Cases 1 and 2.

Let G′ = (V ′, E′, π′) be a k-labeled graph with |V ′| = n and it has an extended (k, r)-
expression that ends with an inflation operator. Then there is an induced subgraph G′1 of G′
such that the result of application of an inflation operator to G′1 is isomorphic to G′, and G′1
has an extended (k, r)-expression. Thus, there exist σi : [k] → [k], i ∈ [[r]], −→M , Mi ⊆ [[r]],
i ∈ [k], S ⊆ L(−→M), and a set V ′1 ⊂ V ′, such that
(A) G′2 = (V ′2 , E′2, π′2) = β−→

M,−→σ ,S(G′[V ′1 ]) is isomorphic to G′, and
(B) G′[V ′1 ] has an extended (k, r)-expression.

Conversely, if there exist V ′1 ⊂ V ′, σi : [k] → [k], i ∈ [[r]], −→M , Mi ⊆ [[r]], i ∈ [k],
S ⊆ L(−→M) satisfying conditions (A),(B), then G′2 has an extended (k, r)-expression that ends
with an inflation operator. As G′2 and G′ are isomorphic, G′ has an extended k-expression
that ends with an inflation operator as well. Thus, the sufficient and necessary conditions for
G′ to have an extended (k, r)-expression that ends with an inflation operator, is that there
exist V ′1 ⊂ V ′, σi : [k]→ [k], i ∈ [[r]], −→M , Mi ⊆ [[r]], i ∈ [k], S ⊆ L(−→M) satisfying (A),(B).

The algorithm now searches through all possible selection of V ′1 ,−→σ ,S, to check if conditions
(A),(B) satisfied for any of them. Let us evaluate the running time of this procedure. Checking
condition (A) takes time O(2log((k+2)n)O(1)) by Lemma 17, while condition (B) can be verified
by looking up the existing entry N(G′[V ′1 ]) in O(1) time. There are 2n choices for V ′1 and
krk choices for −→σ . Vector −→M can be chosen in 2rk ways, and so L(−→M) has at most 22rkk2

elements. Thus, S can be chosen in at most 222rkk2 ways. Thus, the total running time of
filling up N(G′) in this case is upper bounded by

2|V (G)| × krk × 22rkk2 × 222rkk2
×O(2log((k+2)n)O(1)

) = O∗(22|V (G)|).

Now let us suppose that G′ = (V ′, E′, π′) has an extended (k, r)-expression that ends
with a connect operator. Then due to the safety of extended (k, r)-expressions there exist two
induced subgraphs G′1 and G′2 of G′ such that, first, they both are represented by extended
(k, r)-expressions, and, second, there is T ⊆ [k]2, such that ηT (G′1,G′2) is identical to G′.
Thus to find an extended (k, r)-expression for G′ it suffices to go through all partitions of V ′
into sets V ′1 and V ′2 and for each partition check the following two conditions. First, check if
G′1 = G′[V ′1 ] and G′2 = G′[V ′2 ] have an extended (k, r)-expression by looking up the entries
N(G′1), N(G′2). Second, check if there is T ⊆ [k]2 such that ηT (G′1,G′2) is identical to G.
Since there are at most 2|V (G)| ways to partition V ′ into V ′1 and V ′2 , takes time O(2|V (G)|) to
check if G′ falls into Case 2.

So far we have registered an extended (k, r)-expression for every G′ that satisfies the
conditions of Case 1 or Case 2. Now, start Phase 2 and check whether any of the remaining
k-labeled graphs G′ satisfies the conditions of Case 3. In order to do that we go through
all k-labeled graphs G′ with n vertices and such that N(G′) contains an extended (k, r)-
expression Φ, that is initially for all G′ that fall into Cases 1,2. Then we consider every
possible relabeling ρij in turn. If ρij(G′) is a k-labeled graph such that N(G′) does not have
an extended (k, r)-expression, then we set N(ρij(G′)) = ρij(Φ). We repeat this process for
each k-labeled graph G′, until no new entries can be filled. The time required for Phase 2 in
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total, for all G′, not only those with n vertices is bounded by number of all k-labelings of
all subgraphs of G times the number of possible operators ρij . As is easily seen, the time
required for Phase 2 in total is

(k + 1)|V (G)| × k2 = O∗((k + 1)|V (G)|)

Time complexity: The array we construct has (k + 1)|V (G)| entries. The time required to
complete Phase 1 for all the entries is bounded by O∗(4|V (G)| × (k + 1)|V (G)|). The time to
complete Phase 2 for all entries is bounded by O∗((k + 1)|V (G)|). Thus the total running
time is O∗((4k + 4)|V (G)|). J

Next we explore what kind of graphs and k-labeled graphs can be represented by extended
(k, r)-expressions.

3.2 Graph classes of bounded extended but not regular clique width
In this section we show that not all graphs of bounded extended clique width also have
bounded clique width. Specifically, we consider the classes Hypercubes of hypercubes, Grids
of rectangular grids, and K(H) of sudivisions of cliques by graphs from a class H. All these
classes have unbounded clique width, as mentioned in Section 2.2.

I Theorem 18.
(1) Hypercubes has extended clique width at most (2,1).
(2) Grids has extended clique width at most (6,1).
(3) If H is a class of graphs of extended clique width (k, r), then K(H) has extended clique

width at most (k + 5,max(r, 1)).

Proof. We present extended (2,1)-expressions for hypercubes and extended (6,1)-expressions
for grids. Extended expressions for subdivide cliques are more involved, and the reader is
referred to the full version of the paper [7].

(1) Let HCn denote an n-dimensional hypercube. An extended (2,1)-expression Φn

representing HCn is constructed by induction on the dimensionality of the hypercube. The
base cases of induction are HC0 and HC1. An extended (2,1)-expression for HC0 is ·1, and
an extended (2,1)-expression for HC1 is η{(1,2)}(·1, ·2).

Suppose that for m ≤ n the graph HCm has an extended (2,1)-expression. Let Φn

be an extended (2,1)-expression for HCn. Let −→M = ({0, 1}, {0, 1}), let σ0 be the iden-
tity mapping on [2], let σ1 : [2] → [2] be given by σ1(1) = 2, σ1(2) = 1, and let S =
{(1, 1, 1, 1), (2, 1, 2, 1), (1, 1, 2, 1), (2, 1, 1, 1), (1, 0, 2, 1), (2, 1, 1, 0), (2, 0, 1, 1), (1, 1, 2, 0)}. Then
it is not hard to see that β−→

M,−→σ ,SΦn is an extended (2,1)-expression for HCn+1.
(2) Let us denote the vertex set of an n×m-grid by Gn,m = [n]× [m]. We proceed by

induction on n,m. First, observe that a 2× 2-grid labeled in an arbitrary way with 4 labels
can be represented by a 4-expression in a straightforward manner. We choose the labeling
π22 of G2,2 given by π22(1, 1) = 1, π22(2, 1) = 2, π22(2, 1) = 3, π22(2, 2) = 4.

Next, we construct a 6-expression (not an extended one) for a 2×m-grid labeled in a specific
way. The labeling π′2m of G2,m we achieve is given by π′2m(1, 1) = · · · = π′2m(1,m− 1) = 1,
π′2m(2, 1) = · · · = π′2m(2,m − 1) = 2, π′2m(1,m) = 3, π′2m(2,m) = 4. Suppose we have
constructed a 6-expression representing a 2 × (m − 1)-grid labeled this way. Then add
vertices (1,m) and (2,m) labeled 5 and 6, respectively, and apply operators η53, η56, η64, and
ρ3→1, ρ4→2, ρ5→3, η6→4. It is straightforward that the resulting labeled graph is a 2×m-grid
labeled in the required way.
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Now starting with the labeled 2×m-grid constructed in the previous step we show by
induction that a n ×m-grid with labeling πnm can be represented by an extended (4,1)-
expression, where πnm is given by πnm(i, j) = 3 for i ≤ n− 2 and j ∈ [m], πnm(n− 1, j) =
1, πnm(n, j) = 2 for j ∈ [m]. The base case for induction, the grid G2,m labeled with π2m can
be obtained from the labeled grid constructed in the previous paragraph by applying operators
ρ3→1 and ρ4→2. Suppose that an extended (4,1)-expression representing Gn−1,m labeled
with πn−1m exists. For the induction step we consider inflation operator with the following
parameters: k = 4, r = 1, −→M = ({0, 1}, {0}, {0}, {0}), S = {(1, 1, 2, 0), (2, 0, 1, 1), (1, 1, 1, 1)},
σ0 is the identity mapping on [4] and σ1(i) = i, except σ1(1) = 4. The operator β−→

M,−→σ ,S
applied to Gn−1,m labeled with πn−1m works as follows: it creates an extra copy of each
vertex with label 1, that is, of n− 2-nd row, and connects each new vertex a1 to every vertex
with label 2, a is connected to. In other words, if a = (n − 2, i), then a1 plays the role of
(n, i) and is properly connected to the only vertex with label 2 vertex (n− 2, i) is connected
to, that is, (n− 1, i). Also, β−→

M,σ,S connects vertices (n, i), (n, i+ 1). Finally, the vertices of
the form (n, i) are assigned label 4. In order to obtain a grid labeled with πnm it suffices to
apply operators ρ1→3, ρ2→1 and ρ4→2. J

4 Counting homomorphism to labeled graphs given an extended
k-expression

In this section we prove our main result.

I Theorem 19. Let G and H be two graphs, and let k-labeled graph H be a k-labeling of
graph H. Given an extended (k, r)-expression Φ for H, hom(G,H) can be found in time
O∗((2(max(k, r) + 1))2|V (G)|)

The following notation and terminology will be used throughout this section. Let
HOM(G,H) denote the set of all homomorphisms from G to H. Let X ⊆ V (G), and
let χ : X → [k] be a label function. A mapping ϕ from X to k-labeled graph H =
(V,E, π) is said to be consistent with χ if for every x ∈ X it holds π(ϕ(x)) = χ(x). Let
homχ(G[X],H), HOMχ(G[X],H), mapχ(G[X],H), and MAPχ(G[X],H), denote the number
of homomorphisms from G[X] to H consistent with χ, the set of all homomorphisms from
G[X] to H consistent with χ, the number of all mappings from G[X] to H consistent with χ,
and the set of all mappings from G[X] to H consistent with χ, respectively.

Observing that an extended (k, r)-expression can be naturally viewed as an extended
(max(k, r),max(k, r))-expression, in what follows we assume k = r. Let Φ be an extended
(k, k)-expression for a k-labeling H of the graph H. We proceed by induction on the structure
of Φ. More precisely, our algorithm will compute entries of an array hom(G[X],H′), where
X ⊆ V (G) and G[X] is a k-labeling of G[X], and H′ is the k-labeled graph represented by a
subexpression of Φ. Since the labeling of H′ is important in this inductive process, we also
cannot avoid labeling the graph G. Operator ·i creating a graph H′ with a single vertex
labeled i gives the base case of induction. In this case hom(G[X],H′) = 1 if all vertices
of X are labeled i and G[X] has no edges; otherwise hom(G[X],H′) = 0. Finally, after
computing the numbers hom(G,H) for all the k-labelings G of G, we complete using the
following observation.

I Observation 20. Let G and H be graphs, and let k-labeled graph H be a k-labeling of H.
Then

hom(G,H) =
∑

χ:V (G)→[k]

homχ(G,H)
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It therefore suffices to show how to compute hom(G[X],H′), where G[X] is an arbitrary
k-labeling of G[X], X ⊆ V (G), and H′ is represented by a subexpression Φ′ of Φ, provided
hom(G[Y ],H′′) is known for all Y ⊂ X, all labelings G[Y ] of G[Y ], and H′′ represented by a
subexpression Φ′′ of Φ′ with Φ′′ 6= Φ′. We consider 3 cases depending on the last operator of
Φ′. In the cases of the relabeling and connect operators the argument is similar to that for
k-expressions. Here we only consider the inflation operator.

4.1 Inflation operator
In this part, we show how to make a recursive step in the case when the last operator of Φ′
is an inflation operator. Before explaining this step, we need several definitions.

A retraction is a homomorphism ψ from a graph G2 to its subgraph G1 such that ψ(v) = v

for each vertex v of G1. In this case the subgraph G1 is called a retract of G2. A retraction
from a k-labeled graph G2 = (V2, E2, π2) to a k-labeled graph G1 = (V1, E1, π1) is defined to
be a retraction from G2 = (V2, E2) to G1 = (V1, E1) preserving the label function π2, that is,
π2(v) = π1(ψ(v)) for all v ∈ V2.

It will be convenient for us to subdivide operator β−→
M,−→σ ,S into two steps: the first one is

expansion of the original graph using −→M and S, and the second is relabeling of some vertices
of the resulting graph using −→σ . More specifically, let H = (V,E, π) be a k-labeled graph, −→M ,
Mi ⊆ [[k]] for i ∈ [k] (recall that we assume k = r), S ⊆ L(−→M), and σi : [k]→ [k], i ∈ [[k]].
Then H′ = (V ′, E′, π′) = α−→

M,S(H) is given by
V ′ =

⋃k
i=1 Ci, where Ci = {aj |j ∈ Mi, a ∈ V and π1(a) = i}. The vertices a0, a ∈ V ,

are called original vertices of H′ = α−→
M,S(H) and are identified with their corresponding

vertices from V ;
(aj , bj′) ∈ E′ if and only if (a, b) ∈ E, and (π(a), j, π(b), j′) ∈ S or j = j′ = 0;
π′(aj) = π(a).

Then, H′′ = (V ′′, E′′, π′′) = β−→
M,−→σ ,S(H), that is, V ′′ = V ′, E′′ = E′, and π′′(aj) = σj(π(a))

for a ∈ V ′′ and j ∈Mπ(a).
As is easily seen, H is an induced subgraph of H′, and a retract. Indeed, the mapping µ

that maps every aj ∈ V (H′) to a (recall that aj is a “copy” of some a ∈ V (H)) is a retraction.
The objective is to find a method to express the number of homomorphisms from induced

subgraphs of G to H′′ given those from induced subgraphs of G to H.

I Lemma 21. Let Y ⊆ V (G) and let γ be a function Y → [k]. There is an algorithm
that given homζ(G[X],H) for all functions ζ from a subset X ⊂ Y to [k] as input, finds
homγ(G[Y ],H′′) in time O((2(k + 1))|V (G)|).

We break this down into two steps. The main result of Step I, which is summarized in
Lemma 22, finds an equality for the number of homomorphisms from G to H′. Then, the
result for Step II analogous to Lemma 22 finds the number of homomorphisms from induced
subgraphs of G to H′′ given those for G and H′. As Step II is substantially simpler than
Step I, we omit it here.

Step I
Let H′ = (V ′, E′, π′) = α−→

M,S(H) and H = (V,E, π). Let Y be a subset of V (G) and γ a
function Y → [k]. Also, set

W(γ) = {ω| ω : Y → [[k]] and ∀a ∈ Y , ω(a) ∈Mγ(a)}.
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For ω ∈W(γ), let

HOMγ(G[Y ],H′, ω) = {ϕ | ϕ ∈ HOMγ(G[Y ],H′) and ∀a ∈ Y, ∃b ∈ V (H) s. t. ϕ(a) = bω(a)}.

For the rest of Step I, let X ′ and X ′′ be two disjoint subsets of V (G) and let χ′ : X ′ → [k]
and χ′′ : X ′′ → [k] be arbitrary functions. Also let X = X ′ ]X ′′ and let χ = χ′ ] χ′′.

Let HOMχ′,χ′′(G[X],H′) denote the set of all elements of HOMχ(G[X],H′) that map a
vertex a from X to an original vertex of H′ (recall that any vertex of H is called an original
vertex of H′) if and only if a ∈ X ′.

For any ϕ ∈ HOMχ′,χ′′(G[X],H′), there is a unique ω ∈ W(χ) such that ϕ is also an
element of HOMχ(G[X],H′, ω). Let us call ω the consistent function of ϕ. We then partition
HOMχ′,χ′′(G[X],H′) into smaller subsets and count the elements in each smaller subset. The
partition splits HOMχ′,χ′′(G[X],H′) into sets of homomorphisms that all share the same
consistent function ω ∈W(χ). As is easily seen, HOMχ(G[X],H′, ω) ∩ HOMχ′,χ′′(G[X],H′)
is such a subset.

Let B(χ′, χ′′) be the set of all ω ∈W(χ) such that ω satisfies the following properties:
(b.1) ω ∈W(χ) and ω(x) = 0 if and only if x ∈ X ′.
(b.2) For every a, b ∈ X such that at least one of them is not an element of X ′, and

ab ∈ E(G) it holds that (χ(a), ω(a), χ(b), ω(b)) ∈ S.
Now, as the set of homomorphisms is subdivided into sufficiently small fragments, it is
possible to show that the number of elements in HOMχ(G[X],H′) such that ω is their
consistent function is the same for any ω ∈ B(χ′, χ′′) and it is zero otherwise.

I Lemma 22. Let G, H, H′, X ′, X ′′, X = X ′ ]X ′′, χ′, χ′′, and χ = χ′ ] χ′′ be defined as
above, then

|HOMχ′,χ′′(G[X],H′)| = |B(χ′, χ′′)| × homχ(G[X],H).

To evaluate the running time of this procedure, note that the algorithm has to enumerate
all possible partitions X ′, X ′′ of X, and all mappings that can be in W(χ). Overall, it
amounts to the number of mappings from X to a k + 1 element set. The number of choices
of X is 2|V (G)|. Thus the running time is bounded by O((2(k + 1))|V (G)|). Lemma 21 now
follows from Lemma 22 and a similar result for Step II.

4.2 Putting pieces together

We are now in a position to prove Theorem 19.

Proof of Theorem 19. By Observation 20, hom(G,H) equals the sum of homχ(G,H) over
all k-label functions χ : V (G) → [k]. For each χ we need to compute homχ(G,H). This
computation is done through dynamic programming and requires finding all the numbers of
the form homχ(G[X],H′), where X ⊆ V (G) and H′ is a graph represented by a subexpression
of Φ. By Lemma 21 and similar results for relabeling and connect operators computing each
such value from the previous values takes O((2k + 1)|V (G)|) time. There are k|V (G)| label
functions χ, and 2|V (G)| subsets of V (G). As the number of subexpressions of Φ introduces
only a polynomial factor, the running time of the algorithm is O∗((2(k + 1)2|V (G)|). J
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5 Beyond bounded extended clique width

In this section we study plain exponential classes that do not have bounded extended clique
width. We start with showing that the class of all graphs with degrees less than a constant
does not have bounded extended clique width, and how it can be combined with any plain
exponential class to produce a new plain exponential class. Then we present two more
plain exponential classes of graphs that so far not representable as derivatives of graph with
bounded degree and/or bounded extended clique width.

5.1 Bounded degrees
To prove that some graph class does not have bounded extended clique width we first identify
two nontrivial properties of graphs whose extended clique width is at most (k, k). Let G be a
graph and N (v) denote the neighborhood of v ∈ V (G). Also, let H be an induced subgraph
of G, and NH(v) = N (v) ∩H for v ∈ V (G).

I Lemma 23. Let G be a connected graph and |V (G)| = n. If G has extended clique width
at most (k, k) then the following two conditions hold:
(1) For any k2

n < α ≤ 1
2 , there exists a subset W ⊆ V (G) with αn

k+1 ≤ |W | ≤ αn such
that there are at most 2k subsets U1, . . . , U` of W with the following property: for every
v ∈ V (G)−W either NH(v) = Ui for some i ∈ [`], or NH(v) = NH(w) ∩ Ui for some
w ∈ V (H) and i ∈ [`].

(2) If in addition the maximal degree of G is d, there is a constant δ(d, k) that only depends
on d and k, such that for any β, δ(d, k) < β < 1

2 , there are subsets U ⊆ W ⊆ V such
that |W | ≥ d|U |, and βn

k+1 < |W | ≤ βn. Also, there is a partition Π of W into |U | classes
such that every vertex from W − U only has neighbors in at most d blocks of Π.

Then to prove that the class of all graphs whose degrees are bounded by a constant, does
not have bounded extended clique width, we prove that a random d-regular graph does not
satisfy the property from Lemma 23(2) with high probability, concluding that Dd does not
have bounded extended clique width.

I Lemma 24. Let d > 3. The probability that a random d-regular graph with n vertices
satisfies the condition of Lemma 23(2) is o(1).

Classes of bounded degree can be combined with any plain exponential class to form
another plain exponential class, as the following theorem shows. Let G1 and G2 be graphs.
The Cartesian product of G1 and G2, denoted by G1�G2, is the graph whose vertex set is
V (G1)× V (G2), and vertices (u1, v1) and (u2, v2) of G1�G2 are connected with an edge if
and only if u1 = u2 and v1v2 ∈ E(G2), or v1 = v2 and u1u2 ∈ E(G1). For classes G,H of
graphs G�H denotes the class {G�H | G ∈ G, H ∈ H}.

I Theorem 25. If D is in plain exponential class of graphs and B has bounded degree, then
B�D is also plain exponential.

Proof. Let d be a bound on the degree of graphs from B. Let H = B�D, B ∈ B, D ∈ D,
and let G be a graph. We are concerned with the number hom(G,H). Without loss
of generality assume V (B) = [r]. Let P be a r-partition of V (G). Then a mapping
h : V (G)→ V (H) is said to be consistent with P if for every v ∈ V (G) such that v ∈ Pi it
holds h(v) ∈ {(i, e)|e ∈ V (D)}. In other words, h maps vertices of each set Pi ∈ V (G) to
vertices of the same copy of D in the Cartesian product.
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Our algorithm will find a set P of r-partitions of V (G) such that if a homomorphism
h : G→ H is consistent with an r-partition P , then P ∈ P . Every r-partition can be viewed
as a mapping from V (G) to V (B). Since B has degree at most d, partitions from P can be
enumerated using a process similar to that in Example 7. Order the vertices v1, . . . , vn of G
in such a way that each vertex except for the first one is adjacent to one of the preceding
vertices. Then a brute force algorithm is organized as follows: Assign images from V (B)
to v1, . . . , vn in turn. Clearly, there are V (B) possibilities to map v1. Suppose that images
from V (B) are assigned to v1, . . . , vj−1 by a mapping π : {v1, . . . , vj−1} → V (B). We claim
that there are just d + 1 possibilities to extend π on vj if we want to keep the possibility
that a homomorphism consistent with the obtained r-partition exists. By the choice of the
order v1, . . . , vn, there is vi, i < j, adjacent with vj . It is possible to assing π(vj) = π(vi).
In this case a consistent homomorphism may map the edge vivj to an edge of the form
(π(vi), e1)(π(vi), e2) for some e1e2 ∈ E(D). Otherwise vivj should be mapped to an edge of
the form (π(vi), e)(π(vj), e). In this case there are at most d possibilities for π(vj). Thus,
the algorithm enumerates all the required r-partitions in time O∗((d+ 1)n).

Now, let P be one of the r-partitions of V (G) generated in the previous step. Let G′P
be a graph that is obtained by contracting every edge of V (G) whose ends are in different
blocks of P . We claim that hom(G′P , D) is equal to the number of homomorphisms of G to
B�D that are consistent with P .

Let x ∈ V (G) and let y ∈ V (G′P ). We use the notation x ∈ y, if y is the result of
contraction of x with 0 or more other vertices of G. Also, the set of all homomorphism
from G to H = B�D that are consistent with P is denoted by HOM(P,G,H). We define a
mapping ϕ from elements of HOM(G′P , D) to elements of HOM(P,G,H) as follows: for every
h′ ∈ HOM(G′P , D) set ϕ(h′) = h, where h is given by h(x) = (i, e), for x ∈ Pi and e = h′(y),
x ∈ y.

We show that ϕ is bijective. First, we show that it is injective. If h′1, h′2 ∈ HOM(G′P , D) are
two different mappings, there is an element y ∈ V (G′P ) such that h′1(y) 6= h′2(y). Therefore,
for every x ∈ V (G) with x ∈ y, ϕ(h′1)(x) 6= ϕ(h′2)(x).

Next we prove that ϕ is also surjective. We define a function ϕ−1 : HOM(P,G,H) →
MAP(G′P , E) such that (ϕ−1 ◦ ϕ) is the identity mapping. Then to complete the proof of
surjectivity it only remains to show that the range of ϕ−1 is HOM(G′P , D).

Note that for any homomorphism from G to H consistent with P , any y ∈ V (G′P ), and
any w1, w2 ∈ y, if h(w1) = (i, e), then h(w2) = (j, e) for some j ∈ [r]. We define ϕ−1 as
follows. For h ∈ HOM(P,G,H) set ϕ−1(h) = h′ such that h′ is given by h′(y) = e, where y
is such that for every x ∈ y, h(x) = (j, e) for some j ∈ [r].

It is straightforward that (ϕ−1 ◦ ϕ) is the identity function. Now observe that for any
y1, y2 ∈ V (G′P ) with y1y2 ∈ E(G′P ) there are x1 ∈ y1 and x2 ∈ y2 such that x1x2 ∈ E(G).
Since y1 and y2 are not contracted in G′P , x1, x2 are in the same block Pj of P for some j ∈ [r].
Therefore, h(x1) = (j, e1), h(x2) = (j, e2), and e1e2 ∈ E(D). Hence h′(y1)h′(y2) = e1e2 is an
edge of E. Thus, h′ maps an edge of G to an edge of H, and it is a homomorphism. The
surjectivity of ϕ follows.

Finally, since all the r-partitions ofG for which there may exist a consistent homomorphism
can be enumerated in plain exponential time, and hom(G′P , D) can also be found in plain-
exponential time for each such partition P , the overall algorithm runs in plain exponential
time. J
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5.2 Subdivided Cliques
Recall that the subdivision of an edge uv by a graph H is a graph with vertex set V (H)∪{u, v}
and edge set E(H)∪

⋃
t∈V (H)

{ut, vt}. The subdivision of a graph G by a graph H is the graph

obtained by replacing every edge uv of G with its subdivision by a copy of H (a disjoint
copy for each edge). Let K(H) denote the class of subdivisions of cliques by graphs from a
class H.

The following theorem is the main result of this section.

I Theorem 26. Let H be a plain exponential class of graphs. Then K(H) is also plain
exponential.

More precisely, if #GraphHom(−,H) can be solved in time O∗(c|V (G)|+|V (H)|), c con-
stant, for any given graphs G and H ∈ H, then #GraphHom(−,K(H)) can be solved in
time O∗(c2(|V (G)|+|V (H)|

1 ), where c1 = max(c, 2).

Theorem 18(3) claims that if H is of bounded extended clique width, then so is K(H),
and then that K(H) is plain exponential follows from Theorem 19. However, in Theorem 26
H does not have to be of bounded extended clique width.

5.3 Kneser Graphs
Kneser graphs give another example of a plain exponential class of graphs.

The Kneser graph KGn,k is the graph whose vertex set is the set of k-element subsets of
a set with n elements, and two vertices are adjacent if and only if the two corresponding
sets are disjoint. By Kneserk we denote the class of all Kneser graphs for a fixed k. The
class Kneserk is plain exponential, as it follows from the results of [2, 21]. Here we give an
alternative algorithm for GraphHom(−,Kneserk).

Let G be a graph, and G(k) denote the graph obtained by replacing each of its vertices
with a clique of size k and replacing each of its edges with a complete bipartite graph on
k + k vertices. For a ∈ V (G) let ψ(a) denote the set of vertices of the clique replacing v
in G(k).

First, we introduce a many to one correspondence between elements of HOM(G(k),Kn)
and HOM(G,KGn,k). Let τ : HOM(G(k),Kn) → HOM(G,KGn,k) be defined by setting
τ(ϕ) : V (G)→ KGn,k to be the mapping v 7→ {ϕ(u)|u ∈ ψ(v)}. Notice that the cardinality
of {ϕ(u)|u ∈ ψ(v)} equals k because G(k)[ψ(v)] is a k-clique and ϕ is a homomorphism from
G(k) to Kn. Therefore τ(ϕ)(v) is always a vertex of KGn,k.

It can be shown that for ϕ ∈ HOM(G(k),Kn), τ(ϕ) is a homomorphism, and moreover
for any element σ of HOM(G,KGn,k), τ(ϕ) = σ for exactly (k!)|V (G)| homomorphisms
ϕ ∈ HOM(G(k),Kn). Therefore

|HOM(G,KGn,k)| = HOM(G(k),Kn)
(k!)|V (G)| .

Since there is an algorithm that computes hom(G(k),Kn) in time O∗(2k|V (G)|), there is an
algorithm that computes hom(G,KGn,k) in the same time.

I Remark 27. The running time of the algorithm above is not plain exponential if k is not
a constant. Bonamy et al. [2] proved that the class Kneser =

⋃
k∈N Kneserk is not plain

exponential unless the ETH fails.

Interestingly, the class of Kneser graphs does not have bounded extended clique width.
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I Theorem 28. The class Kneser2 does not have bounded extended clique width.

To prove this result we use the property of graphs with bounded extended clique width
from Lemma 23 (1).
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