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Abstract
The d-to-1 conjecture of Khot asserts that it is NP-hard to satisfy an ε fraction of constraints of
a satisfiable d-to-1 Label Cover instance, for arbitrarily small ε > 0. We prove that the d-to-1
conjecture for any fixed d implies the hardness of coloring a 3-colorable graph with C colors for
arbitrarily large integers C.

Earlier, the hardness of O(1)-coloring a 4-colorable graphs is known under the 2-to-1 conjecture,
which is the strongest in the family of d-to-1 conjectures, and the hardness for 3-colorable graphs is
known under a certain “fish-shaped” variant of the 2-to-1 conjecture.
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1 Introduction

Determining if a graph is 3-colorable is one of the classic NP-complete problems. Thus,
given a 3-colorable graph it is NP-hard to color it with 3 colors. The best known polynomial
time algorithms for coloring 3-colorable graphs use about n0.2 colors, where n is the number
of vertices in the graph [9]. On the other hand, on the hardness front, we only know that
5-coloring 3-colorable graphs is NP-hard [3].

This embarrassingly large gap between the hardness and algorithmic results has prompted
the quest for conditional hardness results for approximate graph coloring. The canonical
starting point for most strong inapproximability results is the Label Cover problem. Label
Cover refers to constraint satisfaction problems of arity two over a large (but fixed) domain
whose constraint relations are functions. Label Cover is known to be very hard to approximate
even on satisfiable instances.

The Unique Games Conjecture of Khot [10], which asserts strong inapproximability of
Label Cover when the constraint maps are bijections, has formed the basis of numerous tight
hardness results for problems which have defied NP-hardness proofs. However, the imperfect
completeness inherent in the Unique Games Conjecture makes it unsuitable as the basis for
hardness results for graph coloring, where we want all edges to be properly colored under
the coloring.
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62:2 d-To-1 Hardness of Graph Coloring

In [10], along with the Unique Games Conjecture, Khot introduced the d-to-1 conjecture.
The d-to-1 conjecture says that given a Label Cover instance whose constraint relations
are d-to-1 functions, it is NP-hard to decide if there exists a labelling that satisfies all the
constraints or no labelling can satisfy even an ε fraction of constraints, for arbitrarily small
ε > 0. (The key is that d can be held fixed and achieve soundness ε → 0.) Constraints
similar to 2-to-1 also played an implicit role in the beautiful work of Dinur and Safra on
inapproximability of vertex cover [8].

Based on the 2-to-1 conjecture, Dinur, Mossel and Regev [7], extending the invariance
principle based techniques of [11,15], proved the hardness of coloring graphs that are promised
to be 4-colorable with any constant number of colors. Furthermore, they prove the same
for 3-colorable graphs under a certain “fish shaped” variant of the 2-to-1 conjecture. In this
paper, we prove that the same result can be proved under the weaker assumption of d-to-1
conjecture1, for some (arbitrarily large) constant d.

I Theorem 1. Assume that d-to-1 conjecture is true for some constant d. Then, for every
positive integer t ≥ 3, it is NP-hard to color a 3-colorable graph G with t colors.

We stress that the d-to-1 conjecture insists on perfect completeness (i.e., hardness on
satisfiable instances), and this important feature seems necessary for its implications for
coloring problems, where we seek to properly color all edges. The variant of the 2-to-1
conjecture where one settles for near-perfect completeness was recently established in a
striking sequence of works [5, 6, 12,13].

The result of [7] in fact shows hardness of finding an independent set of density ε in a
3-colorable graph for arbitrary ε > 0 (which immediately implies the hardness of finding a
coloring with 1/ε colors). Our result in Theorem 1 above does not get this stronger hardness
for finding independent sets. But it is conditioned on the d-to-1 conjecture for arbitrary d
rather than the specific 2-to-1 conjecture. We note that proving the d-to-1 conjecture for
some large d could be significantly easier than the 2-to-1 conjecture, so Theorem 1 perhaps
provides an avenue for resolving a longstanding challenge concerning the complexity of
approximate graph coloring.

Our proof of Theorem 1 is a simple combination of two results. First, following the
methodology of [7], we prove that the d-to-1 conjecture implies that coloring a 2d-colorable
graph with O(1) colors is NP-hard. The result of [7] is the d = 2 case of this claim. In
fact, they state in a future work section that the d-to-1 conjecture should imply hardness
of O(1)-coloring q-colorable graphs for some large enough q = q(d). However, they did not
specify the details of the reduction or an explicit value of q, and mention determining the
dependence of q on d as an interesting question. Here we show the conditional hardness
based on d-to-1 conjecture holds for q = 2d (achieving q < 2d seems unlikely with the general
reduction approach of [7]).

The key technical ingredient necessary for such a reduction is a symmetric Markov chain
on [q]d where transitions are allowed only between disjoint tuples and which has spectral
radius bounded away from 1. We show the existence of such a symmetric Markov chain
for q = 2d. We do so via a connection to matrix scaling, which enables us to deduce the
necessary chain at a conceptual level without messy calculations. Specifically, we use the
result [4], which follows from the Sinkhorn-Knopp iterative matrix scaling algorithm [19],

1 For d-to-1 Label Cover, there are two definitions possible, one where the constraint maps are at most
d-to-1 with each element in the range having at most d pre-images, and one where the constraint maps
are exactly d-to-1. In this paper, we stick with the exact variant.
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that if a non-negative symmetric matrix A has total support then there is a symmetric doubly
stochastic matrix supported on the non-zero entries of A. When A is the adjacency matrix
of a graph G, the total support condition is equivalent to every edge of G belonging to a
cycle cover. We describe a graph on [q]d whose edges connect disjoint tuples and where every
edge belongs to a cycle cover.

Our second ingredient is a remarkable yet simple reduction due to Krokhin, Opršal,
Wrochna and Z̆ivný [14], which exploits the relation between the arc-chromatic number and
chromatic number of a digraph [17]. Let b : N→ N be defined by b(n) :=

(
n
bn/2c

)
. Their result

then is that b(t)-coloring b(c)-colorable graphs is polynomial time (in fact logspace) reducible
to t-coloring c-colorable graphs. Since b(n) is increasing and b(n) > n for all n ≥ 4, it follows
that a NP-hardness result for O(1)-coloring q-colorable graphs also implies NP-hardness
of O(1)-coloring 4-colorable graphs. Furthermore, the NP hardness of O(1)-coloring of
3-colorable graphs follows from the above by applying the arc graph reduction twice to K4.

Overview

In Section 2, we define the Label Cover problem, and state the d-to-1 conjecture formally.
We also introduce low degree influences that we need later. In Section 3, we first prove the
existence of the Markov chain with required properties, and then describe the reduction from
Label Cover to Approximate Coloring. We note that the reduction is in fact exactly the
same one used in [7], the difference being in using a different Markov Chain. We present the
reduction and the preliminaries required in this paper for the sake of completeness.

2 Preliminaries

We first formally define the Label Cover problem and then state the hardness conjectures.

2.1 Label Cover
I Definition 2 (Label Cover). In the Label Cover instance, we are given a tuple G =
((V,E), R,Ψ) where
1. (V,E) is a graph on vertex set V with edge set E.
2. Each vertex in V has to be assigned a label from the set Σ = [R] = {1, 2, . . . , R}.
3. For every edge e = (u, v) ∈ E, there is an associated relation Ψe ⊆ Σ × Σ. This

corresponds to a constraint between u and v.
A labeling σ : V → Σ satisfies a constraint associated with the edge e = (u, v) if and only if
(σ(u), σ(v)) ∈ Ψe. Given such an instance, the goal is to distinguish if there is a labeling that
can satisfy all the constraints or no labeling can satisfy a significant fraction of constraints.

We now state the d-to-1 conjecture. As is the case with [7], we will state and use the
exact d-to-1 variant where the constraint maps have exactly d pre-images for each element in
the range. Khot’s original formulation only required that there are at most d pre-images for
each element in the range. The d-to-1 conjecture becomes stronger for smaller d (so that
the 2-to-1 is the strongest form of the conjecture) – this is obvious for the variant where the
maps are at most d-to-1. For the exact variant, if we allow the Label cover graph to have
multiple edges, we can reduce d-to-1 conjecture to (d + 1)-to-1 conjecture using a simple
argument. We present this reduction in Section 4. On that note, we remark without details
that our reduction indeed works with the multigraph variant of d-to-1 conjecture.

ICALP 2020



62:4 d-To-1 Hardness of Graph Coloring

I Conjecture 3 ((Exact) d-to-1 Conjecture). For every ε > 0, given a bipartite Label Cover
instance G = ((V = X ∪ Y,E), (dR,R),Ψ) satisfying the following constraints:
(i) We refer to X as the vertices on the left, and Y as the set of vertices on the right. The

vertices belonging to X are to be assigned labels from [dR] while the vertices in Y are
to be assigned labels from [R].

(ii) The constraints are d-to-1 i.e. for every b ∈ [R], there are precisely d values a ∈ [dR]
such that (a, b) ∈ Ψe for every relation Ψe in the instance.

It is NP-hard to distinguish between the following cases:
1. There is a labeling that satisfies all the constraints in G.
2. No labeling can satisfy more than ε fraction of constraints in G.

Similar to the d-to-1 constraints, one can consider d-to-d constraints in the Label Cover.
In order to do so, we define the relation d↔ d on [dR]× [dR]:

d↔ d = {(di− p+ 1, di− q + 1) | 1 ≤ i ≤ R, 1 ≤ p, q ≤ d} .

A constraint ψ ⊆ [dR]× [dR] is said to be d-to-d if there exist permutations π1 and π2 on
[dR] such that (a, b) ∈ ψ iff (π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

In [7], it is proved that Conjecture 3 implies the following conjecture.

I Conjecture 4 (d-to-d conjecture). For every ε > 0 and every t ∈ N, there exists R ∈ N
such that given a Label Cover instance G = ((V,E), dR,Ψ) where all the constraints are
d-to-d, it is NP-hard to distinguish between the following cases:
(i) sat(G) = 1, or
(ii) isatt(G) < ε

Here, sat(G) denotes the maximum fraction of constraints satisfied by any labeling.
Similarly, isat(G) denotes the size of the largest set S ⊆ V such that there exists a labeling
that satisfies all the constraints induced on S. The value isatt(G) denotes the size of largest
set S ⊆ V such that there exists a labeling that assigns at most t labels to each vertex that
satisfies all the constraints induced on S. A constraint between u, v is said to be satisfied by
labeling assigning multiple labels to u and v if and only if there exists at least one pair of
labels to u and v among the multiple labels that satisfy the constraint.

2.2 Low degree influences

Next, we define the low degree influences that we need later. We refer the reader to [7] for a
comprehensive treatment of the same.

Let α0 = 1, α1, . . . , αq−1 be an orthonormal basis of Rq. We can define the set of
functions αx : [q]n → R, x ∈ [q]n as αx(y) = (αx1(y1), αx2(y2), . . . , αxn

(yn)). Observe that
these functions form a basis for the functions from [q]n to R. Let f̂(αx) = 〈f, αx〉, where we
define the inner product between functions f, g : [q]n → R as 〈f, g〉 = q−n

∑
x∈[q]n f(x)g(x).

We define the low degree influence of f as follows:

I Definition 5. For a function f : [q]n → R, the degree k influence of the coordinate i is
defined as follows:

I≤ki (f) =
∑

x:xi 6=0,|x|≤k

f̂2(αx)
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Note that the above definition is independent of the basis α0, α1, . . . , αq−1 that we start with,
as long as α0 = 1. From the above definition, we can infer that for functions f : [q]n → [0, 1],
the sum of low degree influences is bounded by∑

i

I≤ki (f) ≤ k

For a vector x ∈ [q]dR, let x ∈ [qd]R be the corresponding element in [qd]R i.e.

x = ((x1, x2, . . . , xd), (xd+1, xd+2, . . . , x2d), . . . , (xdR−d+1, xdR−d+2, . . . , xdR))

Similarly, for y ∈ [qd]R, let y denote the inverse of above operation. We can extend this
notion to functions as well: For a function f : [q]dR → R, let the function f : [qd]R → R be
defined naturally by

f(y) = f(y)

Similarly, for a function f : [qd]R → R, let f : [q]dR → R be defined as f(x) = f(x).
We need the following lemma:

I Lemma 6. For any function f : [q]dR → R and any k ∈ N and i ∈ [R],

I≤ki (f) ≤
d∑
j=1

I≤dkdi−d+j(f)

Proof. Fix a basis αx of functions from [q]dR → R as above. The functions αx form a basis
for functions from [qd]R → R, where αx(y) = αx(y). Note that f̂(αx) = f̂(αx). Thus we get

∑
i

I≤ki (f) =
∑

x:xi 6=(0,0,...,0),|x|≤k

f̂
2
(αx) =

∑
x:xi 6=(0,0,...,0),|x|≤k

f̂2(αx)

≤
∑

x:xi 6=(0,0,...,0),|x|≤dk

f̂2(αx)

≤
d∑
j=1

∑
x:xdi−d+j 6=0,|x|≤dk

f̂2(αx)

=
d∑
j=1

I≤dkdi−d+j(f) J

Using the invariance principle and Borell’s inequality, [7] prove the following:

I Theorem 7. Let q be a fixed integer, and T be a symmetric Markov chain on [q] with
r(T ) < 1. Then for every ε > 0, there exists a δ > 0 and a positive integer k such that the
following holds: For every f, g : [q]n → [0, 1] if E[f ] > ε,E[g] > ε and 〈f, Tg〉 = 0, then

∃i ∈ [n] : I≤ki (f) ≥ δ, I≤ki (g) ≥ δ

where r(T ) denotes the second largest eigenvalue (in absolute value) of T .

ICALP 2020
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3 d-to-1 hardness for 3-colorable graphs

In this section, we will prove Theorem 1.

3.1 Reducing chromatic number to 3
The following lemma is present in [14] based on a beautiful result concerning the arc-chromatic
numbers of digraphs from [17].

I Lemma 8 (Theorem 1.8 of [14]). Suppose there exists q ∈ N such that O(1) coloring
q-colorable graphs is NP-hard. Then, O(1) coloring 3-colorable graphs is NP hard.

Let Graph-Coloring(t, c) denote the promise problem of distinguishing if a graph can be
colored with c colors, or cannot even be colored with t colors. The statement is proved by
presenting a reduction from Graph-Coloring(b(t), b(c)) to Graph-Coloring(t, c) in polynomial
time, for the function b(n) :=

(
n
bn/2c

)
. The reduction works by constructing the arc-graph of

the underlying graphs, and using the property of arc graphs that the chromatic number of the
arc graph can be bounded precisely using the chromatic number of the original graph. Since
b is an increasing function and b(n) > n for all n ≥ 4, setting c = 4 and t large enough proves
the statement claimed in the lemma. The reduction from 4-colorable graphs to 3-colorable
graphs is achieved by applying the arc graph construction twice recursively.

Thanks to Lemma 8, we can restrict ourselves to the weaker goal of proving that O(1)
coloring q-colorable graphs is NP-hard for some fixed constant q assuming Conjecture 3. In
fact, following [7], we prove a stronger statement showing hardness of finding independent
sets of ε fraction of vertices for any ε > 0. Combined with Lemma 8, this immediately gives
us Theorem 1.

I Theorem 9. Suppose that Conjecture 4 is true for a constant d. Then, there exists a
constant q = q(d) such that for every ε > 0, given a graph G, it is NP-hard to distinguish the
following cases:
1. G can be colored with q colors.
2. G does not have any independent set of relative size ε.
In fact, we can take q = 2d.

In the remainder of the section, we will prove Theorem 9. We next develop the main
technical ingredient that we will plug into the reduction framework of [7] to establish
Theorem 9.

3.2 A symmetric Markov chain supported on disjoint tuples
A Markov chain T defined on a state space Ω is said to be symmetric if the transition matrix
of T is symmetric, namely for all pairs of states x, y ∈ Ω, the probability of transition from x

to y is equal to the probability of transition from y to x. Symmetry of the Markov chain
ensures that the uniform distribution is stationary which is essential when we compose the
Label Cover-Long Code reduction with the Markov chain. We define the spectral radius
r(T ) of a symmetric Markov chain as the second largest eigenvalue in absolute value of
its transition probability matrix, i.e., if 1 = λ1 ≥ λ2 ≥ . . . ≥ λq are the eigenvalues, then
r(T ) = max(|λ2|, |λq|).

We now show the existence of a symmetric Markov Chain T on [q]d with r(T ) < 1 if
d ≥ 2, q ≥ 2d. Furthermore, there is a nonzero transition probability between two elements
x, y ∈ [q]d only if the support of x and y are disjoint. In [7], such a Markov Chain is shown
to exist for the values (q, d) = (3, 1), (4, 2).
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I Lemma 10. Suppose that q, d ∈ N, q ≥ 2d, d ≥ 2. There exists a symmetric Markov chain T
on [q]d such that r(T ) < 1. Furthermore, if the transition {x1, x2, . . . , xd} ↔ {y1, y2, . . . , yd}
has positive probability in T , then {x1, x2, . . . , xd} ∩ {y1, y2, . . . , yd} = φ.

Proof. We first construct an undirected graph G on [q]d such that there is an edge between
x, y ∈ [q]d only if the support of x and y are disjoint. We then use a matrix scaling algorithm
to obtain a symmetric Markov chain T from the adjacency matrix of G. For the resulting
Markov chain to have r(T ) < 1, we need that the underlying graph G is connected, and is
not bipartite. Furthermore, for the scaling algorithm to produce a valid Markov chain, we
need that every edge of G is present in a cycle cover, where a cycle cover of a graph is a
disjoint union of cycles that covers every vertex in the graph. Note that we allow trivial
2-cycles in a cycle cover, where we just take an edge twice.

We say that two multisets x = (x1, x2, . . . , xd), y = (y1, y2, . . . , yd) ∈ [q]d are of the same
type if the following condition holds: for all pairs of indices i, j ∈ [d], xi = xj if and only if
yi = yj and (xi − xj)(yi − yj) ≥ 0. Note that this is an equivalence relation, and thus each
element x ∈ [q]d uniquely determines its type.

Consider the graph G = (V,E) where the vertex set is V = [q]d. We add two kinds of
edges in this graph. We add an edge between every pair of x, y ∈ [q]d that are of the same
type, and have disjoint support. Let the subset of [q]d of elements that are supported on
single element be denoted by S, i.e.,

S = {(1, 1, . . . , 1), (2, 2, . . . , 2), . . . , (q, q, . . . , q)} .

We also add edges between x and y if their support is disjoint, and at least one of x and y
belongs to S.

First, we claim that G is connected. This follows from the fact that the set of nodes in S
are connected to each other, and every vertex in V is adjacent to at least one vertex in S.
As q ≥ 4, the graph is not bipartite (indeed S induces a q-clique). We will now prove that
every edge in this graph is part of a cycle cover. Given an undirected graph on vertex set V ,
a cycle cover of it is a function σ : V → V that is bijective, and σ(u) = v only when u and v
are adjacent in the underlying graph.

Towards this, we first prove that for every edge in G between multisets of the same type,
there is a cycle cover that uses that edge. For each type, consider the graph obtained by
taking the vertices as multisets of that type, and with edges between two multisets of the
same type if they are disjoint. Note that for every type, this graph is isomorphic to a Kneser
graph KG(q, k) (for some k ≤ d), whose vertex set corresponds to k-element subsets of [q]
and there is an edge between two subsets if they are disjoint.

By symmetry across the subsets, we can infer that the Kneser graphs are regular. Note
that every regular graph contains a cycle cover: For a regular graph H, consider a bipartite
graph H ′ which contains a copy of H on both the left side L, and right side R. There is an
edge between x ∈ L, y ∈ R of H ′ if and only if x, y are adjacent in H. As H is a regular
graph, H ′ is a regular bipartite graph, and thus, contains a perfect matching. This perfect
matching in H ′ directly gives a cycle cover of H. Furthermore, as Kneser graphs are also
vertex-transitive, every edge in these graphs is part of a cycle cover.

Next, we consider edges of G that are between multisets of different types i.e. edges
between multisets x, y where exactly one of x and y is in S. Consider an edge between s ∈ S
and x ∈ V \ S. As q ≥ 2d, every multiset in G is adjacent to at least one multiset of the
same type. Let y be a multiset that is adjacent to x in G and is of the same type as x. Let
s′ ∈ S be chosen such that it is adjacent to y in G. As S is a complete subgraph of G, s and
s′ are adjacent in G. From the previous argument about edges between multisets of the same

ICALP 2020
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type, we can infer that there is a cycle cover of G where y is mapped to x, and s is mapped
to s′. We can modify this cycle cover by transforming it as follows - (s→ x) can be made
part of cycle cover by transforming (s→ s′), (y → x) to (s→ x), (y → s′) and keeping rest
of the cycle cover intact. Thus, we have proved that every edge of G is part of a cycle cover.

Let A denote the adjacency matrix of the above graph G. Using the Sinkhorn Knopp
iterative algorithm, it is proved in [4] that if a non-negative symmetric matrix A has total
support, then there exists a diagonal matrix D such that DAD is a doubly stochastic matrix.
A square matrix A = (aij) of order n is said to have total support if A 6= 0, and for every
nonzero entry aij of A, there exists a permutation σ of [n] such that σ(i) = j and for all
e ∈ [n], ae,σ(e) 6= 0. When the matrix A is an adjacency matrix of a graph G, the total
support condition translates to the requirement that every edge in G is part of a cycle cover,
a property we have already shown to hold for the graph G.

Thus, we can apply the above scaling result, and view the resulting matrix B = DAD

as the transition matrix of a Markov chain T . As A and D are symmetric, B is symmetric,
i.e., T is symmetric. As A is connected and no principal diagonal element of D is zero, T is
connected as well. Note that every nonzero element of A stays nonzero in T , and A is not
bipartite. The above two facts combined ensure that the spectral radius r(T ) of T is strictly
less than 1. We conclude that there exists a symmetric Markov chain T on state space [q]d
that has both the properties: (i) r(T ) < 1, and (ii) there is nonzero probability of transition
between two multisets only when their support is disjoint. J

3.3 Proof of Theorem 9
Let d be the constant for which Conjecture 3 is true. Thus, Conjecture 4 is true for the same
value d as well. Choose q, T from Lemma 10 such that T is a symmetric Markov chain on
[q]d such that r(T ) < 1.

We now reduce the given d-to-d Label Cover instance to the problem of finding independent
sets in q-colorable graphs. To be precise, given a Label Cover instance G = ((V,E), dR,Ψ),
we output a graph G′ = (V ′, E′) such that
1. Completeness: If G is satisfiable, G′ can be colored with q colors.
2. Soundness: If isatt(G) < ε′, then G′ does not have any independent set of size ε.
The parameters t and ε′ will be set later.

Reduction

Our reduction follows the standard Label Cover Long Code paradigm, and in particular
closely mirrors [7]. We replace each vertex w ∈ V of the Label Cover with a set fw of [q]dR
nodes, each corresponding to a vertex in G′. Consider an edge e = (u, v) where Ψe is an
associated constraint with permutations π1, π2 on [dR] such that (a, b) ∈ Ψe if and only if
(π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

We add an edge between (x1, x2, . . . , xdR) ∈ fu and (y1, y2, . . . , ydR) ∈ fv to E′ if and
only if

∀i ∈ [R], T ((xπ1(di−d+1), xπ1(di−d+2), . . . , xπ1(di)) ↔ (yπ2(di−d+1), yπ2(di−d+2), . . . , yπ2(di))) > 0.

Completeness

Suppose σ : V → [dR] be a labeling satisfying all the constraints of the Label Cover instance
G. We color the node (x1, x2, . . . , xdR) ∈ fw with xσ(w) ∈ [q]. We claim that this is a legit
q-coloring of G′. Suppose that we added an edge between x ∈ fu and y ∈ fv. Let x be colored
with xa and y be colored with yb. As (a, b) ∈ Ψ(u,v), we have (π−1

1 (a), π−1
2 (b)) ∈ d ↔ d.

Thus, there exist i ∈ [R], 1 ≤ p, q ≤ d such that a = π1(di− d+ p) and b = π2(di− d+ q).
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As we have added an edge between x ∈ fu and y ∈ fv, xa 6= yb as the Markov chain T has
nonzero probability only between two elements of [q]d with disjoint support. Thus, there
exists a q-coloring of G′ when G is satisfiable.

Soundness

We prove the contrapositive that if G′ has an independent set of relative size ε, then there
exists a labeling of G with isatt(G) ≥ ε′. Let S ⊆ V ′ be the largest independent set of G′.
We know that |S| ≥ ε|V ′|. This implies that in at least ε′ = ε

2 fraction of the long code
blocks, at least ε

2 fraction of nodes belong to S. Let this subset of V be denoted by Z. Our
goal is to show that there exists a small set of labels τ : Z → 2[dR] to which we can decode
the vertices in Z such that all the constraints induced in Z are satisfied by τ .

For every vertex w ∈ Z, we define functions gw : [q]dR → {0, 1} to be the indicator
functions of set S inside the long code blocks corresponding to w i.e. gw(x) = 1 if and only
if x ∈ S. Consider an edge e = (u, v) corresponding to the constraint Ψe induced in Z. Let
the functions f : [q]dR → {0, 1} and g : [q]dR → {0, 1} be defined such that f(xπ1) = gu(x)
and g(yπ2) = gv(y), where π1 and π2 are the permutations underlying the relation Ψe i.e.
(a, b) ∈ Ψe if and only if (π−1

1 (a), π−1
2 (b)) ∈ d↔ d.

We note that 〈f, Tg〉 is equal to zero. In other words, suppose that x, y ∈ [q]dR, x ∈
fu, y ∈ fv are such that

∀i ∈ [R], T ((xdi−d+1, xdi−d+2, . . . , xdi)↔ (ydi−d+1, ydi−d+2, . . . , ydi)) > 0. (1)

Then, f(x)g(y) = 0. Suppose for contradiction that there exist x, y ∈ [q]dR satisfying the
above condition, and f(x) = g(y) = 1. Let x′ ∈ fu, y′ ∈ fv be such that (x′)π1 = x, (y′)π2 = y.
We have gu(x′) = gv(y′) = 1. That is, both x′ ∈ fu, y′ ∈ fv are in the independent set S.
However, Equation (1) can be rewritten as the following:

∀i ∈ [R], T ((x′π1(di−d+1)), (x′π1(di−d+2)), . . . , x′π1(di)) ↔ (y′π2(di−d+1), y
′
π2(di−d+2), . . . , y

′
π2(di))) > 0.

(2)

Note that this is precisely the condition for adding edges in G′. Thus, Equation (2) implies
that x′ ∈ fu and y′ ∈ fv are adjacent in E′, and thus cannot both be part of the independent
set S. This completes the proof that 〈f, Tg〉 = 0.

Thus, 〈f, Tg〉 is also equal to zero, where f : [qd]R → {0, 1} and g : [qd]R → {0, 1} are the
corresponding functions in [qd]R of f, g. From the definition of Z, E(f) ≥ ε

2 and E(g) ≥ ε
2 .

We apply Theorem 7 to f and g to deduce that there exists i ∈ [R], a positive integer k = k(ε)
and δ = δ(ε) such that I≤ki (f) ≥ δ and I≤ki (g) ≥ δ. This motivates us to define the label set
of vertex w ∈ Z, L(w) as the following -

L(w) := {i ∈ [dR] : I≤dki (gw) ≥ δ

d
}

As the sum of k degree influences of all variables is at most k, the size of L(w) is upper
bounded by kd

δ for every v. Thus, we set the parameter t to be kd
δ .

The final step is to prove that the labeling L is indeed a valid labeling inside edges induced
in Z. Consider an edge e = (u, v) induced in Z with the constraint relation being Ψe such
that (a, b) ∈ Ψe if and only if (π1(a), π2(b)) ∈ d ↔ d. Our goal is to show that there exist
indices σ1, σ2 ∈ [dR] such that σ1 ∈ L(u), σ2 ∈ L(v) and (σ1, σ2) ∈ Ψe. Using Theorem 7, we
can deduce that there exists i ∈ [R] such that I≤ki (f) ≥ δ and I≥ki (g) ≥ δ. Using Lemma 6,
we can conclude that there exist i1, i2 ∈ [dR] such that I≤dki1

(f) ≥ δ
d and I≤dki2

(g) ≥ δ
d such
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that (i1, i2) ∈ d↔ d. Let σ1, σ2 ∈ [dR] be such that i1 = π1(σ1), i2 ∈ σ2. As f(xπ1) = gu(x),
I≤dk
π−1

1 (i1)(gu) ≥ δ
d . And thus, σ1 ∈ L(u), and similarly σ2 ∈ L(v). As (i1, i2) ∈ d ↔ d,

(σ1, σ2) ∈ Ψe, which completes the proof.

4 Reducing multigraph (exact) d-to-1 to (d + 1)-to-1 conjecture

For the version of d-to-1 conjecture where we only require the constraint maps to be at most
d-to-1, the d-to-1 conjecture trivially implies the (d + 1)-to-1 conjecture. O’Donnell and
Wu [16] remark that no such reduction appears to be known for the exact d-to-1 conjecture.
Here we prove that the exact d-to-1 conjecture implies the exact (d+ 1)-to-1 conjecture when
the underlying Label Cover instances are allowed to have parallel edges. We remark that
multigraph version of exact d-to-1 conjecture, which is implied by the simple graph version,
also suffices for our reduction to graph coloring (and indeed all known reductions from d-to-1
Label Cover).

Let G = ((V = X∪Y,E), (dR,R),Ψ) be a Label Cover instance such that every constraint
is of d-to-1 structure. We reduce it to G′ = ((V = X ∪ Y,E′), ((d+ 1)R,R),Ψ′) such that
1. If G is satisfiable, G′ is satisfiable as well.
2. If every labeling violates at least ε fraction of constraints in G, then every labeling violates

at least ε′ = 2ε fraction of constraints in G′.

Reduction

We first change the label set of X from [dR] to [(d + 1)R]. For every constraint ψ in G

between nodes u ∈ X and v ∈ Y , we replace it with R constraints ψ1, ψ2, . . . , ψR between
u and v in the following way: the relation between old labels is the same as ψ i.e. when
x ≤ dR, (x, y) ∈ ψj for j = 1, 2, . . . , R if and only if (x, y) ∈ ψ. When x > dR, (x, y) ∈ ψj if
and only if R divides (x+ j − y). This ensures that each new label is mapped to a different
label in each of the R new constraints. The constraints are clearly of (d+ 1)− to− 1 form.

Completeness

If there is a labeling satisfying all the constraints of G, the same labeling satisfies all the
constraints in G′ as well.

Soundness

Suppose that there is no labeling satisfying at least ε fraction of constraints in G. Note that
this implies that R is at least 1

ε as there is always a labeling satisfying at least 1
R fraction of

constraints: fix a labeling to the vertices on the left, and assign a label to the vertices in R
uniformly at random from [R]. We claim that there is no labeling satisfying more than 2ε
fraction of constraints in G′. Consider an arbitrary labeling of G, σ : V → [(d+ 1)R]. We
can divide the set of edges E′ of G′ into two parts: the edges (u, v) such that σ(u) ≤ dR and
the edges (u, v) such that σ(u) > dR. Let the set of first type of edges where the left vertex
is assigned the new label be denoted by E1, and the set of second type of edges be denoted
by E2. In E1, the fraction of constraints that can be satisfied by σ is at most 1

R ≤ ε. Note
that we can get a labeling σ′ of G by replacing labels of vertices in X with label greater than
dR with an arbitrary label in [dR], and keeping rest of the labels intact. For the edges in E2,
the labelings σ and σ′ coincide. As σ′ can satisfy at most ε fraction of constraints of G, σ
can only satisfy at most ε fraction of overall edges in E′. Thus, overall σ satisfies at most
ε+ 1

R ≤ 2ε fraction of constraints in E′, which proves the required soundness claim.
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5 Conclusion

In this paper, we prove that the d-to-1 conjecture, for arbitrarily large d, implies the
NP-hardness of the longstanding and elusive problem of coloring 3-colorable graphs with
constantly many colors. Note that the d-to-1 conjecture requires the soundness parameter
to be arbitrarily small, independent of d. Currently, the best NP-hardness of d-to-1 Label
Cover achieves a soundness of d−Ω(1). This follows from the PCP Theorem [1,2] combined
with Raz’s parallel repetition [18]. However, this does not yield any explicit constant in the
exponent, obtaining which is an interesting open question. One can also investigate whether
improving the soundness of d-to-1 Label Cover to something quantitatively much stronger,
say inverse exponential in d, would have some implications for inapproximability of graph
coloring.
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