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Abstract
We consider the complexity of counting weighted graph homomorphisms defined by a symmetric
matrix A. Each symmetric matrix A defines a graph homomorphism function ZA(·), also known
as the partition function. Dyer and Greenhill [10] established a complexity dichotomy of ZA(·)
for symmetric {0, 1}-matrices A, and they further proved that its #P-hardness part also holds
for bounded degree graphs. Bulatov and Grohe [4] extended the Dyer-Greenhill dichotomy to
nonnegative symmetric matrices A. However, their hardness proof requires graphs of arbitrarily
large degree, and whether the bounded degree part of the Dyer-Greenhill dichotomy can be extended
has been an open problem for 15 years. We resolve this open problem and prove that for nonnegative
symmetric A, either ZA(G) is in polynomial time for all graphs G, or it is #P-hard for bounded
degree (and simple) graphs G. We further extend the complexity dichotomy to include nonnegative
vertex weights. Additionally, we prove that the #P-hardness part of the dichotomy by Goldberg et
al. [12] for ZA(·) also holds for simple graphs, where A is any real symmetric matrix.
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1 Introduction

The modern study of graph homomorphisms originates from the work by Lovász and others
several decades ago and has been a very active area [18, 14]. If G and H are two graphs, a
graph homomorphism (GH) is a mapping f : V (G)→ V (H) that preserves vertex adjacency,
i.e., whenever (u, v) is an edge in G, (f(u), f(v)) is also an edge in H. Many combinatorial
problems on graphs can be expressed as graph homomorphism problems. Well-known
examples include the problems of finding a proper vertex coloring, vertex cover, independent

1 Artem Govorov is the author’s preferred spelling of his name, rather than the official spelling Artsiom
Hovarau.
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66:2 Dichotomy for Bounded Degree Nonnegative Graph Homomorphisms

set and clique. For example, if V (H) = {0, 1} with an edge between 0 and 1 and a loop at
0, then f : V (G)→ {0, 1} is a graph homomorphism iff f−1(1) is an independent set in G;
similarly, proper vertex colorings on G using at most m colors correspond to homomorphisms
from G to H = Km (with no loops).

More generally, one can consider weighted graphs H and aggregate all homomorphisms
from G to H into a weighted sum. This is a powerful graph invariant which can express many
graph properties. Formally, for a symmetric m ×m matrix A, the graph homomorphism
function on a graph G = (V,E) is defined as follows:

ZA(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v).

Note that if H is unweighted, and A is its {0, 1}-adjacency matrix, then each product∏
(u,v)∈E Aξ(u),ξ(v) is 0 or 1, and is 1 iff ξ is a graph homomorphism. Thus in this case ZA(G)

counts the number of homomorphisms from G to H. One can further allow H to have vertex
weights. In this case, we can similarly define the function ZA,D(·) (see Definition 4).

These sum-of-product functions ZA(·) and ZA,D(·) are referred to as the partition functions
in statistical physics [3]. Various special cases of GH have been studied there extensively,
which include the Ising, Potts, hardcore gas, Beach, Widom-Rowlinsom models, etc. [3].

The computational complexity of ZA(·) has been studied systematically. Dyer and
Greenhill [10, 11] proved that, for a symmetric {0, 1}-matrix A, ZA(·) is either in polynomial
time or #P-complete, and they gave a succinct condition for this complexity dichotomy:
if A satisfies the condition then ZA(·) is computable in polynomial time (we also call it
tractable), otherwise it is #P-complete. Bulatov and Grohe [4] (see also [22, 13]) generalized
the Dyer-Greenhill dichotomy to ZA(·) for nonnegative symmetric matrices A. It was further
extended by Goldberg et al. [12] to arbitrary real symmetric matrices, and finally by Cai,
Chen and Lu [7] to arbitrary complex symmetric matrices. In the last two dichotomies,
the tractability criteria are not trivial to state. Nevertheless, both tractability criteria are
decidable in polynomial time (in the size of A).

The definition of the partition function ZA(·) can be easily extended to directed graphs
G and arbitrary (not necessarily symmetric) matrices A corresponding to directed edge
weighted graphs H. Concerning the complexity of counting directed GH, we currently
have the decidable dichotomies by Dyer, Goldberg and Paterson [9] for {0, 1}-matrices
corresponding to (unweighted) simple acyclic graphs H, and by Cai and Chen [6] for all
nonnegative matrices A.

Dyer and Greenhill in the same paper [10] proved a stronger statement that if a {0, 1}-
matrix A fails the tractability condition then ZA(G) is #P-complete even when restricted
to bounded degree graphs G. We note that the complexity of GH for bounded degree
graphs is particularly interesting as much work has been done on the approximate complexity
of GH focused on bounded degree graphs and approximate algorithms are achieved for
them [8, 25, 21, 20, 17, 1, 2, 19, 15]. However, for fifteen years the worst case complexity for
bounded degree graphs in the Bulatov-Grohe dichotomy was open. Since this dichotomy is
used essentially in almost all subsequent work, e.g., [12, 7], this has been a stumbling block.

Our main contribution in this paper is to resolve this 15-year-old open problem. We
prove that the #P-hardness part of the Bulatov-Grohe dichotomy still holds for bounded
degree graphs. It can be further strengthened to apply to bounded degree simple graphs.
We actually prove a broader dichotomy for ZA,D(·), where in addition to the nonnegative
symmetric edge weight matrix A there is also a nonnegative diagonal vertex weight matrix
D. We will give an explicit tractability condition such that, if (A,D) satisfies the condition
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then ZA,D(G) is computable in polynomial time for all G, and if it fails the condition then
ZA,D(G) is #P-hard even restricted to bounded degree simple graphs G. ZA(G) is the special
case of ZA,D(G) when D is the identity matrix. Additionally, we prove that the #P-hardness
part of the dichotomy by Goldberg et al. [12] for all real symmetric edge weight matrices A
still holds for simple graphs. (Although in this case, whether under the same condition on A
the #P-hardness still holds for bounded degree graphs is not resolved in the present paper.)

In order to prove the dichotomy theorem on bounded degree graphs, we have to introduce
a nontrivial extension of the well-developed interpolation method [24]. We use some of
the well-established techniques in this area of research such as stretchings and thickenings.
But the main innovation is an overall design of the interpolation for a more abstract target
polynomial than ZA,D. To carry out the proof there is an initial condensation step where we
combine vertices that have proportionately the same neighboring edge weights (technically
defined by pairwise linear dependence) into a super vertex with a combined vertex weight.
Note that this creates vertex weights even when initially all vertex weights are 1. When
vertex weights are present, an approach in interpolation proof is to arrange things well so
that in the end one can redistribute vertex weights to edge weights. However, when edge
weights are not 0-1, any gadget design must deal with a quantity at each vertex that cannot
be directly redistributed. This dependence has the form

∑mζ(w)
j=1 αζ(w)jµ

deg(w)
ζ(w)j , resulting from

combining pairwise linearly dependent rows and columns, that depends on the vertex degree
deg(w) in a complicated way. (We note that in the 0-1 case all µζ(w)j ∈ {0, 1}, making it in
fact degree independent.)

We overcome this difficulty by essentially introducing a virtual level of interpolation – an
interpolation to realize some “virtual gadget” that cannot be physically realized, and yet
its “virtual” vertex weights are suitable for redistribution. Technically we have to define
an auxiliary graph G′, and express the partition function in an extended framework, called
ZA ,D on G′ (see Definition 6). In a typical interpolation proof, there is a polynomial with
coefficients that have a clear combinatorial meaning defined in terms of G, usually consisting
of certain sums of exponentially many terms in some target partition function. Here, we
will define a target polynomial with certain coefficients; however these coefficients do not
have a direct combinatorial meaning in terms of ZA,D(G), but rather they only have a direct
combinatorial meaning in terms of ZA ,D on G′. In a suitable “limiting” sense, a certain
aggregate of these coefficients forms some useful quantity in the final result. This introduces
a concomitant “virtual” vertex weight which depends on the vertex degree that is “just-right”
so that it can be redistributed to become part of the incident edge weight, thus effectively
killing the vertex weight. This leads to a reduction from ZC(·) (without vertex weight) to
ZA,D(·), for some C that inherits the hardness condition of A, thus proving the #P-hardness
of the latter. This high level description will be made clearer in Section 4. The nature of
the degree dependent vertex weight introduces a substantial difficulty; in particular a direct
adaptation of the proof in [10] does not work.

Our extended vertex-weighted version of the Bulatov-Grohe dichotomy can be used to
correct a crucial gap in the proof by Thurley [23] for a dichotomy for ZA(·) with Hermitian
edge weight matrices A, where this degree dependence was also at the root of the difficulty. 2

2 In [23], the proof of Lemma 4.22 uses Lemma 4.24. In Lemma 4.24, A is assumed to have pairwise
linearly independent rows while Lemma 4.22 does not assume this, and the author appeals to a twin
reduction step in [10]. However, unlike in the 0-1 case [10], such a step incurs degree dependent vertex
weights. This gap is fixed by our Theorem 8.

ICALP 2020
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2 Preliminaries

In order to state all our complexity results in the strict notion of Turing computability, we
adopt the standard model [16] of computation for partition functions, and require that all
numbers be from an arbitrary but fixed algebraic extension of Q. We use R and C to denote
the sets of real and complex algebraic numbers. Many statements remain true in other fields
or rings if arithmetic operations can be carried out efficiently in a model of computation
(see [5] for more discussions on this issue).

For a positive integer n, we use [n] to denote the set {1, . . . , n}. When n = 0, [0] = ∅.
We use [m : n], where m ≤ n, to denote {m,m+ 1, . . . , n}.

In this paper, we consider undirected graphs unless stated otherwise. Following standard
definitions, the graph G is allowed to have multiple edges but no loops. (However, we will
touch on this issue a few times when G is allowed to have loops.) The graph H can have
multiple edges and loops, or more generally, edge weights. For the graph H, we treat its
loops as edges.

An edge-weighted graph H on m vertices can be identified with a symmetric m ×m
matrix A in the obvious way. We write this correspondence by H = HA and A = AH .

I Definition 1. Let A ∈ Cm×m be a symmetric matrix. The problem EVAL(A) is defined
as follows: Given an undirected graph G = (V,E), compute

ZA(G) =
∑

ξ:V→[m]

∏
(u,v)∈E

Aξ(u),ξ(v).

The function ZA(·) is called a graph homomorphism function or a partition function. When A
is a symmetric {0, 1}-matrix, i.e., when the graph H = HA is unweighted, ZA(G) counts the
number of homomorphisms from G to H. In this case, we denote EVAL(H) = EVAL(AH),
and this problem is also known as the #H-coloring problem.

I Theorem 2 (Dyer and Greenhill [10]). Let H be a fixed undirected graph. Then EVAL(H)
is in polynomial time if every connected component of H is either (1) an isolated vertex, or
(2) a complete graph with all loops present, or (3) a complete bipartite graph with no loops
present. Otherwise, the problem EVAL(H) is #P-complete.

Bulatov and Grohe [4] extended Theorem 2 to EVAL(A) where A is a symmetric matrix
with nonnegative entries. In order to state their result, we need to define a few notions first.

We say a nonnegative symmetric m ×m matrix A is rectangular if there are pairwise
disjoint nonempty subsets of [m]: T1, . . . , Tr, P1, . . . , Ps, Q1, . . . , Qs, for some r, s ≥ 0, such
that Ai,j > 0 iff

(i, j) ∈
⋃
k∈[r]

(Tk × Tk) ∪
⋃
l∈[s]

[(Pl ×Ql) ∪ (Ql × Pl)].

We refer to Tk × Tk, Pl × Ql and Ql × Pl as blocks of A. Further, we say a nonnegative
symmetric matrix A is block-rank-1 if A is rectangular and every block of A has rank one.

I Theorem 3 (Bulatov and Grohe [4]). Let A be a symmetric matrix with nonnegative entries.
Then EVAL(A) is in polynomial time if A is block-rank-1, and is #P-hard otherwise.

There is a natural extension of EVAL(A) involving the use of vertex weights. Both
papers [10, 4] use them in their proofs. A graph H on m vertices with vertex and edge
weights is identified with a symmetric m×m edge weight matrix A and a diagonal m×m
vertex weight matrix D = diag(D1, . . . , Dm) in a natural way. Then the problem EVAL(A)
can be generalized to EVAL(A,D) for vertex-edge-weighted graphs.
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I Definition 4. Let A ∈ Cm×m be a symmetric matrix and D ∈ Cm×m a diagonal matrix.
The problem EVAL(A,D) is defined as follows: Given an undirected graph G = (V,E),
compute

ZA,D(G) =
∑

ξ:V→[m]

∏
w∈V

Dξ(w)
∏

(u,v)∈E

Aξ(u),ξ(v).

Note that EVAL(A) is the special case EVAL(A, Im). We also need to define another EVAL
problem where the vertex weights are specified by the degree.

I Definition 5. Let A ∈ Cm×m be a symmetric matrix and D = {D[[i]]}∞i=0 a sequence of
diagonal matrices in Cm×m. The problem EVAL(A,D) is defined as follows: Given an
undirected graph G = (V,E), compute

ZA,D(G) =
∑

ξ:V→[m]

∏
w∈V

D
[[deg(w)]]
ξ(w)

∏
(u,v)∈E

Aξ(u),ξ(v).

Finally, we need to define a general EVAL problem, where the vertices and edges can
individually take specific weights. Let A be a set of (edge weight) m×m matrices and D a
set of diagonal (vertex weight) m×m matrices. A GH-grid Ω = (G, ρ) consists of a graph
G = (V,E) with possibly both directed and undirected edges, and loops, and ρ assigns to
each edge e ∈ E or loop an A(e) ∈ A and to each vertex v ∈ V a D(v) ∈ D . (A loop is just
an edge of the form (v, v).) If e ∈ E is a directed edge then the tail and head correspond
to rows and columns of A(e), respectively; if e ∈ E is an undirected edge then A(e) must be
symmetric.

I Definition 6. The problem EVAL(A ,D) is defined as follows: Given a GH-grid Ω = Ω(G),
compute

ZA ,D(Ω) =
∑

ξ : V→[m]

∏
w∈V

D
(w)
ξ(w)

∏
e=(u,v)∈E

A
(e)
ξ(u),ξ(v)

We remark that ZA ,D is introduced only as a tool to express a certain quantity in a
“virtual” interpolation; the dichotomy theorems do not apply to this. Definitions 5 and 6
are carefully crafted in order to carry out the #P-hardness part of the proof of Theorem 8.
Notice that the problem EVAL(A ,D) generalizes both problems EVAL(A) and EVAL(A,D),
by taking A to be a single symmetric matrix, and by taking D to be a single diagonal matrix.
But EVAL(A,D) is not naturally expressible as EVAL(A ,D) because the latter does not
force the vertex-weight matrix on a vertex according to its degree.

We refer to [m] as the domain of the corresponding EVAL problem. If A = {A} or
D = {D}, then we simply write ZA,D(·) or ZA ,D(·), respectively.

We use a superscript (∆) and/or a subscript simp to denote the restriction of a correspond-
ing EVAL problem to degree-∆ bounded graphs and/or simple graphs. E.g., EVAL(∆)(A)
denotes the problem EVAL(A) restricted to degree-∆ bounded graphs, EVALsimp(A,D)
denotes the problem EVAL(A,D) restricted to simple graphs, and both restrictions apply in
EVAL(∆)

simp(A,D).
Working within the framework of EVAL(A,D), we define an edge gadget to be a graph

with two distinguished vertices, called u∗ and v∗. An edge gadget G = (V,E) has a signature
(edge weight matrix) expressed by an m×m matrix F , where

Fij =
∑

ξ : V→[m]
ξ(u∗)=i, ξ(v∗)=j

∏
z∈V \{u∗,v∗}

Dξ(z)
∏

(x,y)∈E

Aξ(x),ξ(y)

ICALP 2020
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u v

1

2

...

p− 1

p

u

1 2

v

r − 1 r. . .

Figure 1 The thickening Tpe and the stretching Sre of an edge e = (u, v).

u v u v

Figure 2 The graphs T4S5e (on the left) and S5T4e (on the right) where e = (u, v).

for 1 ≤ i, j ≤ m. When this gadget is placed in a graph identifying u∗ and v∗ with two
vertices u and v in that graph, then F is the signature matrix for the pair (u, v). Note that
the vertex weights corresponding to u and v are excluded from the product in the definition
of F . Similar definitions can be introduced for EVAL(A), EVAL(A,D) and EVAL(A ,D).

We use ≤P
T (and ≡P

T) to denote polynomial-time Turing reductions (and equivalences,
respectively).

Two simple operations are known as thickening and stretching. Let p, r ≥ 1 be integers.
A p-thickening of an edge replaces it by p parallel edges, and a r-stretching replaces it by a
path of length r. In both cases we retain the endpoints u, v. The p-thickening or r-stretching
of G with respect to F ⊆ E(G), denoted respectively by T (F )

p (G) and S(F )
r (G), are obtained

by p-thickening or r-stretching each edge from F , respectively. Other edges, if any, are
unchanged in both cases. When F = E(G), we call them the p-thickening and r-stretching
of G and denote them by Tp(G) and Sr(G), respectively. Tpe and Sre are the special cases
when the graph consists of a single edge e. See Figure 1 for an illustration. Thickenings and
stretchings can be combined in any order. Examples are shown in Figure 2.

For a matrix A, we denote by A�p the matrix obtained by replacing each entry of A with
its pth power. Clearly, ZA(TpG) = ZA�p(G) and ZA(SrG) = ZAr (G). More generally, for the
vertex-weighted case, we have ZA,D(TpG) = ZA�p,D(G) and ZA,D(SrG) = ZA(DA)r−1,D(G).
Here (DA)0 = Im if A and D are m×m.

3 Dichotomy for bounded degree graphs

In addition to the Dyer-Greenhill dichotomy (Theorem 2), in the same paper [10] they also
proved that the #P-hardness part of their dichotomy holds for bounded degree graphs. The
bounded degree case of the Bulatov-Grohe dichotomy (Theorem 3) was left open, and all
known proofs [4, 22, 13] of its #P-hardness part require unbounded degree graphs. All
subsequent dichotomies that use the Bulatov-Grohe dichotomy, e.g., [12, 7] also explicitly or
implicitly (because of their dependence on the Bulatov-Grohe dichotomy) require unbounded
degree graphs. In this paper, we extend the #P-hardness part of the Bulatov-Grohe dichotomy
to bounded degree graphs.

I Theorem 7. Let A be a symmetric nonnegative matrix. If A is not block-rank-1, then for
some ∆ > 0, the problem EVAL(∆)(A) is #P-hard.
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The degree bound ∆ proved in Theorem 7 depends on A, as is the case in Theorem 2.
The authors of [10] conjectured that a universal bound ∆ = 3 works for Theorem 2; whether
a universal bound exists for both Theorems 2 and 7 is open. For general symmetric real or
complex A, it is open whether bounded degree versions of the dichotomies in [12] and [7]
hold. Xia [26] proved that a universal bound does not exist for complex symmetric matrices
A, assuming #P does not collapse to P.

We prove a broader dichotomy than Theorem 7, which also includes arbitrary nonnegative
vertex weights.

I Theorem 8. Let A and D be m ×m nonnegative matrices, where A is symmetric, and
D is diagonal. Let A′ be the matrix obtained from A by striking out rows and columns
that correspond to 0 entries of D on the diagonal. If A′ is block-rank-1, then the problem
EVAL(A,D) is in polynomial time. Otherwise, for some ∆ > 0, the problem EVAL(∆)

simp(A,D)
is #P-hard.

Every 0 entry of D on the diagonal effectively nullifies the corresponding domain element
in [m], so the problem becomes an equivalent problem on the reduced domain. Thus, for a
nonnegative diagonal D, without loss of generality, we may assume the domain has already
been reduced so that D is positive diagonal. In what follows, we will make this assumption.

In Section 5, we will prove the tractability part of Theorem 8. This follows easily from
known results. In Section 6, we will present two technical lemmas, Lemma 9 and Lemma 10
to be used in Section 4. Finally, in Section 7 we prove Theorem 11, showing that the #P-
hardness part of the dichotomy for counting GH by Goldberg et al. [12] for real symmetric
matrix (with mixed signs) is also valid for simple graphs.

4 Hardness proof

We proceed to prove the #P-hardness part of Theorem 8. Let A and D be m×m matrices,
where A is nonnegative symmetric but not block-rank-1, and D is positive diagonal. The
first step is to eliminate pairwise linearly dependent rows and columns of A. (We will see
that this step will naturally create nontrivial vertex weights even if we initially start with
the vertex unweighted case D = Im.)

If A has a zero row or column i, then for any connected input graph G other than a
single isolated vertex, no map ξ : V (G) → [m] having a nonzero contribution to ZA,D(G)
can map any vertex of G to i. So, by crossing out all zero rows and columns (they have the
same index set since A is symmetric) we may assume that A has no zero rows or columns.
We then delete the same set of rows and columns from D, thereby expressing the problem
EVAL(∆)

simp(A,D) for ∆ ≥ 0 on a smaller domain. Also permuting the rows and columns of
both A and D simultaneously by the same permutation does not change the value of ZA,D(·),
and so it does not change the complexity of EVAL(∆)

simp(A,D) for ∆ ≥ 0 either. Having no
zero rows and columns implies that pairwise linear dependence is an equivalence relation,
and so we may assume that the pairwise linearly dependent rows and columns of A are
contiguously arranged. Then, after renaming the indices, the entries of A are of the following
form: A(i,j),(i′,j′) = µijµi′j′A

′
i,i′ , where A′ is a nonnegative symmetric s× s matrix with all

columns nonzero and pairwise linearly independent, 1 ≤ i, i′ ≤ s, 1 ≤ j ≤ mi, 1 ≤ j′ ≤ mi′ ,∑s
i=1mi = m, and all µij > 0. We also rename the indices of the matrix D so that the

diagonal entries of D are of the following form: D(i,j),(i,j) = αij > 0 for 1 ≤ i ≤ s and
1 ≤ j ≤ mi. As m ≥ 1 we get s ≥ 1.

ICALP 2020
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F1 F2

F3

F4

F5

Figure 3 The gadget R5,3,4.

Then the partition function ZA,D(·) can be written in a compressed form

ZA,D(G) =
∑

ζ:V (G)→[s]

 ∏
w∈V (G)

mζ(w)∑
j=1

αζ(w)jµ
deg(w)
ζ(w)j

 ∏
(u,v)∈E(G)

A′ζ(u),ζ(v) = ZA′,D(G)

where D = {D[[k]]}∞k=0 with D
[[k]]
i =

∑mi
j=1 αijµ

k
ij > 0 for k ≥ 0 and 1 ≤ i ≤ s. Then all

matrices in D are positive diagonal. Note the dependence on the vertex degree deg(w)
for w ∈ V (G). Since the underlying graph G remains unchanged, this way we obtain the
equivalence EVAL(∆)

simp(A,D) ≡P
T EVAL(∆)

simp(A′,D) for any ∆ ≥ 0. Here the subscript simp
can be included or excluded, and the same is true for the superscript (∆), the statement
remains true in all cases. We also point out that the entries of the matrices D[[k]] ∈ D are
computable in polynomial time in the input size of (A,D) as well as in k.

4.1 Gadgets Pn,p and Rd,n,p

We first introduce the edge gadget Pn,p, for all p, n ≥ 1. It is obtained by replacing each edge
of a path of length n by the gadget in Figure 5 from Lemma 10. More succinctly Pn,p is
S2TpSne, where e is an edge.

To define the gadget Rd,n,p, for all d, p, n ≥ 1, we start with a cycle on d vertices
F1, . . . , Fd (call it a d-cycle), replace every edge of the d-cycle by a copy of Pn,p, and append
a dangling edge at each vertex Fi of the d-cycle. To be specific, a 2-cycle has two vertices
with 2 parallel edges between them, and a 1-cycle is a loop on one vertex. The gadget Rd,n,p
always has d dangling edges. Note that all Rd,n,p are loopless simple graphs (i.e., without
parallel edges or loops), for d, n, p ≥ 1. An example of a gadget Rd,n,p is shown in Figure 3.
For the special cases d = 1, 2, examples of gadgets Rd,n,p can be seen in Figure 4.

We note that vertices in Pn,p have degrees at most 2p, and vertices in Rd,n,p have degrees
at most 2p+ 1, taking into account the dangling edges. Clearly |V (Rd,n,p)| = dn(p+ 1) and
|E(Rd,n,p)| = (2np+ 1)d, including the dangling edges.
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F1

(a) R1,5,5

F1 F2

(b) R2,4,3

Figure 4 Examples of gadgets Rd,n,p for d = 1, 2.

By Lemma 10, we can fix some p ≥ 1 such that B = (A′D[[2]]A′)�p is nondegenerate,
where the superscript [[2]] is from the stretching operator S2 which creates those degree 2
vertices, and the superscript �p is from the thickening operator Tp, followed by S2, which
creates those parallel paths of length 2. The edge gadget Pn,p has the edge weight matrix

L(n) = BD[[2p]]B . . . BD[[2p]]B︸ ︷︷ ︸
D[[2p]] appears n−1 ≥ 0 times

= B(D[[2p]]B)n−1 (1)

= (D[[2p]])−1/2((D[[2p]])1/2B(D[[2p]])1/2)n(D[[2p]])−1/2, (2)

where in the notation L(n) we suppress the index p. The n− 1 occurrences of D[[2p]] in (1)
are due to those n − 1 vertices of degree 2p. Here (D[[2p]])1/2 is a diagonal matrix with
the positive square roots of the corresponding entries of D[[2p]] on the main diagonal, and
(D[[2p]])−1/2 is its inverse. The vertices Fi are of degree 2p+ 1 each, but the contributions by
its vertex weights are not included in L(n).

The constraint function induced by Rd,n,p is more complicated to write down. When it
is placed as a part of a graph, for any given assignment to the d vertices Fi, we can express
the contribution of the gadget Rd,n,p in terms of d copies of L(n), together with the vertex
weights incurred at the d vertices Fi which will depend on their degrees.

4.2 Interpolation using Rd,n,p

Assume for now that G does not contain isolated vertices. We will replace every vertex
u ∈ V (G) of degree d = du = deg(u) ≥ 1 by a copy of Rd,n,p, for all n, p ≥ 1. The
replacement operation can be described in two steps: In step one, each u ∈ V (G) is replaced
by a d-cycle on vertices F1, . . . , Fd, each having a dangling edge attached. The d dangling
edges will be identified one-to-one with the d incident edges at u. If u and v are adjacent
vertices in G, then the edge (u, v) in G will be replaced by merging a pair of dangling edges,
one from the du-cycle and one from the dv-cycle. Thus in step one we obtain a graph G′,
which basically replaces every vertex u ∈ V (G) by a cycle of deg(u) vertices. Then in step
two, for every cycle in G′ that corresponds to some u ∈ V (G) we replace each edge on the
cycle by a copy of the edge gadget Pn,p.

Let Gn,p denote the graph obtained from G by the replacement procedure above. Since all
gadgets Rd,n,p are loopless simple graphs, so are Gn,p for all n, p ≥ 1, even if G has multiple
edges (or had multiloops, if we view a loop as adding degree 2 to the incident vertex). As
a technical remark, if G contains vertices of degree 1, then the intermediate graph G′ has
loops but all graphs Gn,p (n, p ≥ 1) do not. Also note that all vertices in Gn,p have degree
at most 2p+ 1, which is independent of n.
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Next, it is not hard to see that

|V (Gn,p)| =
∑

u∈V (G)

dun(p+ 1) = 2n(p+ 1)|E(G)|,

|E(Gn,p)| = |E(G)|+
∑

u∈V (G)

2npdu = (4np+ 1)|E(G)|.

Hence the size of the graphs Gn,p is polynomially bounded in the size of G, n and p.
Since we chose a fixed p, and will choose n to be bounded by a polynomial in the size

of G, whenever something is computable in polynomial time in n, it is also computable in
polynomial time in the size of G (we will simply say in polynomial time).

We consider ZA′,D(G), and substitute G by Gn,p. We will make use of the edge weight
matrix L(n) of Pn,p in (2). The vertices Fi are of degree 2p+ 1 each in Gn,p, so will each
contribute a vertex weight according to the diagonal matrix D[[2p+1]] to the partition function,
which are not included in L(n), but now must be accounted for in ZA′,D(Gn,p).

Since B is real symmetric and D[[2p]] is positive diagonal, the matrix

B̃ = (D[[2p]])1/2B(D[[2p]])1/2

is real symmetric. Then B̃ is orthogonally diagonalizable over R, i.e., there exist a real
orthogonal matrix S and a real diagonal matrix J = diag(λi)si=1 such that B̃ = STJS. Then
B̃n = STJnS so the edge weight matrix for Pn,p becomes

L(n) = (D[[2p]])−1/2B̃n(D[[2p]])−1/2 = (D[[2p]])−1/2STJnS(D[[2p]])−1/2.

Note that L(n) as a matrix is defined for any n ≥ 0, and L(0) = (D[[2p]])−1, even though
there is no physical gadget P0,p that corresponds to it. However, it is precisely this “virtual”
gadget we wish to “realize” by interpolation.

Clearly, B̃ is nondegenerate as B and (D[[2p]])1/2 both are, and so is J . Then all λi 6= 0.
We can also write L(n)

ij =
∑s
`=1 aij`λ

n
` for every n ≥ 0 and some real aij`’s which depend

on S, D[[2p]], but not on J and n, for all 1 ≤ i, j, ` ≤ s. By the formal expansion of the
symmetric matrix L(n) above, we have aij` = aji`. Note that for all n, p ≥ 1, the gadget
Rdv,n,p for v ∈ V (G) employs exactly dv copies of Pn,p. Let t =

∑
v∈V (G) dv = 2|E(G)|; this

is precisely the number of edge gadgets Pn,p in Gn,p.
In the evaluation of the partition function ZA′,D(Gn,p), we stratify the vertex assignments

in Gn,p as follows. Denote by κ = (kij)1≤i≤j≤s a tuple of nonnegative integers, where the
indexing is over all s(s+ 1)/2 ordered pairs (i, j). There are a total of

(
t+s(s+1)/2−1
s(s+1)/2−1

)
such

tuples that satisfy
∑

1≤i≤j≤s kij = t. For a fixed s, this is a polynomial in t, and thus a
polynomial in the size of G. Denote by K the set of all such tuples κ. We will stratify all
vertex assignments in Gn,p by κ ∈ K, namely all assignments such that there are exactly
kij many constituent edge gadgets Pn,p with the two end points (in either order of the end
points) assigned i and j respectively.

For each κ ∈ K, the edge gadgets Pn,p in total contribute
∏

1≤i≤j≤s(L
(n)
ij )kij to the

partition function ZA′,D(Gn,p). If we factor this product out for each κ ∈ K, we can express
ZA′,D(Gn,p) as a linear combination of these products over all κ ∈ K, with polynomially
many coefficient values cκ that are independent of all edge gadgets Pn,p. Another way to
define these coefficients cκ is to think in terms of G′: For any κ = (kij)1≤i≤j≤s ∈ K, we say
a vertex assignment on G′ is consistent with κ if it assigns exactly kij many cycle edges
of G′ (i.e., those that belong to the cycles that replaced vertices in G) as ordered pairs of
vertices to the values (i, j) or (j, i). (For any loop in G′, as a cycle of length 1 that came
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from a degree 1 vertex of G, it can only be assigned (i, i) for some 1 ≤ i ≤ s.) Let L′ be any
symmetric edge signature to be assigned on each of these cycle edges in G′, and keep the edge
signature A′ on the merged dangling edges between any two such cycles, and the suitable
vertex weights specified by D, namely each vertex receives its vertex weight according to
D[[2p+1]]. Then cκ is the sum, over all assignments consistent with κ, of the products of all
edge weights and vertex weights other than the contributions by L′, in the evaluation of the
partition function on G′. In other words, for each κ ∈ K,

cκ =
∑

ζ : V (G′)→[s]
ζ is consistent with κ

∏
w∈V (G′)

D
[[2p+1]]
ζ(w)

∏
(u,v)∈Ẽ

A′ζ(u),ζ(v),

where Ẽ ⊆ E(G′) are the non-cycle edges of G′ that are in 1-1 correspondence with E(G).
In particular, the values cκ are independent of n. Thus for some polynomially many

values cκ, where κ ∈ K, we have for all n ≥ 1,

ZA′,D(Gn,p) =
∑
κ∈K

cκ
∏

1≤i≤j≤s
(L(n)

ij )kij =
∑
κ∈K

cκ
∏

1≤i≤j≤s
(
s∑
`=1

aij`λ
n
` )kij . (3)

Expanding out the last sum and rearranging the terms, for some values bi1,...,is independent
of n, we get

ZA′,D(Gn,p) =
∑

i1+...+is=t
i1,...,is≥0

bi1,...,is(
s∏
j=1

λ
ij
j )n

for all n ≥ 1.
This represents a linear system with the unknowns bi1,...,is with the rows indexed by n.

The number of unknowns is clearly
(
t+s−1
s−1

)
which is polynomial in the size of the input graph

G since s is a constant. The values
∏s
j=1 λ

ij
j can be clearly computed in polynomial time.

We show how to compute the value∑
i1+...+is=t
i1,...,is≥0

bi1,...,is

from the values ZA′,D(Gn,p), n ≥ 1 in polynomial time. The coefficient matrix of this system
is a Vandermonde matrix. However, it can have repeating columns so it might not be of full
rank because the coefficients

∏s
j=1 λ

ij
j do not have to be pairwise distinct. However, when

they are equal, say,
∏s
j=1 λ

ij
j =

∏s
j=1 λ

i′j
j , we replace the corresponding unknowns bi1,...,is

and bi′1,...,i′s with their sum as a new variable. Since all λi 6= 0, we have a Vandermonde
system of full rank after all such combinations. Therefore we can solve this linear system in
polynomial time and find the desired value

∑
i1+...+is=t
i1,...,is≥0

bi1,...,is .

Now we will consider a problem in the framework of ZA ,D according to Definition 6.
Let G0,p be the (undirected) GH-grid, with the underlying graph G′, and every edge of the
cycle in G′ corresponding to a vertex in V (G) is assigned the edge weight matrix (D[[2p]])−1,
and we keep the vertex-weight matrices D[[2p+1]] at all vertices Fi. The other edges, i.e.,
the original edges of G, each keep the assignment of the edge weight matrix A′. (So in the
specification of ZA ,D , we have A = {(D[[2p]])−1, A′}, and D = {D[[2p+1]]}. We note that G′
may have loops, and Definition 6 specifically allows this.) Then

Z{(D[[2p]])−1,A′},D[[2p+1]](G0,p) =
∑

i1+...+is=t
i1,...,is≥0

bi1,...,is(
s∏
j=1

λ
ij
j )0 =

∑
i1+...+is=t
i1,...,is≥0

bi1,...,is
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and we have just computed this value in polynomial time in the size of G from the val-
ues ZA′,D(Gn,p), for n ≥ 1. In other words, we have achieved it by querying the oracle
EVAL(A′,D) on the instances Gn,p, for n ≥ 1, in polynomial time.

Equivalently, we have shown that we can simulate a virtual “gadget” Rd,0,p replacing
every occurrence of Rd,n,p in Gn,p in polynomial time. The virtual gadget Rd,0,p has the
edge signature (D[[2p]])−1 in place of (D[[2p]])−1/2B̃n(D[[2p]])−1/2 in each Pn,p, since

(D[[2p]])−1/2B̃0(D[[2p]])−1/2 = (D[[2p]])−1/2Is(D[[2p]])−1/2 = (D[[2p]])−1.

Additionally, each Fi retains the vertex-weight contribution with the matrix D[[2p+1]] in Rd,0,p.
We view it as having “virtual” degree 2p+ 1. This precisely results in the GH-grid G0,p.

However, even though G0,p still retains the cycles, since (D[[2p]])−1 is a diagonal ma-
trix, each vertex Fi in a cycle is forced to receive the same vertex assignment value
in the domain set [s]; all other vertex assignments contribute zero in the evaluation of
Z{(D[[2p]])−1,A′},D[[2p+1]](G0,p). This can be easily seen by traversing the vertices F1, . . . , Fd in
a cycle. Hence we can view each cycle employing the virtual gadget Rd,0,p as a single vertex
that contributes only a diagonal matrix of positive vertex weights P [[d]] = (D[[2p+1]](D[[2p]])−1)d,
where d is the vertex degree in G. Contracting all the cycles to a single vertex each, we
arrive at the original graph G. Let P = {P [[i]]}∞i=0, where we let P [[0]] = Is, and for i > 0,
we have P [[i]]

j = wij where wj =
∑mj
k=1 αjkµ

2p+1
jk /

∑mj
k=1 αjkµ

2p
jk > 0 for 1 ≤ j ≤ s. This shows

that we now can interpolate the value ZA′,P(G) using the values ZA′,D(Gn,p) in polynomial
time in the size of G. The graph G is arbitrary but without isolated vertices here. We show
next how to deal with the case when G has isolated vertices.

Given an arbitrary graph G, assume it has h ≥ 0 isolated vertices. Let G∗ denote
the graph obtained from G by their removal. Then G∗ is of size not larger than G and
h ≤ |V (G)|. Obviously, ZA′,P(G) = (

∑s
i=1 P

[[0]]
i )hZA′,P(G∗) = shZA′,P(G∗). Here the

integer s is a constant, so the factor sh > 0 can be easily computed in polynomial time.
Thus, knowing the value ZA′,P(G∗) we can compute the value ZA′,P(G) in polynomial time.
Further, since we only use the graphs Gn,p, n ≥ 1 during the interpolation, each being simple
of degree at most 2p + 1, combining it with the possible isolated vertex removal step, we
conclude EVAL(A′,P) ≤P

T EVAL(2p+1)
simp (A′,D).

Next, it is easy to see that for an arbitrary graph G

ZA′,P(G) =
∑

ζ:V (G)→[s]

∏
z∈V (G)

P
[[deg(z)]]
ζ(z)

∏
(u,v)∈E(G)

A′ζ(u),ζ(v)

=
∑

ζ:V (G)→[s]

∏
z∈V (G)

w
deg(z)
ζ(z)

∏
(u,v)∈E(G)

A′ζ(u),ζ(v)

=
∑

ζ:V (G)→[s]

∏
(u,v)∈E(G)

wζ(u)wζ(v)A
′
ζ(u),ζ(v)

=
∑

ζ:V (G)→[s]

∏
(u,v)∈E(G)

Cζ(u),ζ(v) = ZC(G).

Here C is an s× s matrix with the entries Cij = A′ijwiwj where 1 ≤ i, j ≤ s. Clearly, C is a
nonnegative symmetric matrix. In the above chain of equalities, we were able to redistribute
the weights wi and wj into the edge weights A′ij which resulted in the edge weights Cij ,
so that precisely each edge (u, v) in G gets two factors wζ(u) and wζ(v) since the vertex
weights at u and v were wdeg(u)

ζ(u) and wdeg(v)
ζ(v) respectively. (This is a crucial step in our proof.)
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Because the underlying graph G is arbitrary, it follows that EVAL(A′,P) ≡P
T EVAL(C).

Combining this with the previous EVAL-reductions and equivalences, we obtain

EVAL(C) ≡P
T EVAL(A′,P) ≤P

T EVAL(2p+1)
simp (A′,D) ≡P

T EVAL(2p+1)
simp (A,D),

so that EVAL(C) ≤P
T EVAL(∆)

simp(A,D), by taking ∆ = 2p+ 1.
Remembering that our goal is to prove the #P-hardness for the matrices A,D not

satisfying the tractability conditions of Theorem 8, we finally use the assumption that A
is not block-rank-1. Next, noticing that all µij > 0, by construction A′ is not block-rank-1
either. Finally, because all wi > 0 nor is C block-rank-1 implying that EVAL(C) is #P-hard
by Theorem 3. Hence EVAL(2p+1)

simp (A,D) is also #P-hard. This completes the proof of the
#P-hardness part of Theorem 8.

We remark that one important step in our interpolation proof happened at the strati-
fication step before (3). In the proof we have the goal of redistributing vertex weights to
edge weights; but this redistribution is sensitive to the degree of the vertices. This led us
to define the auxiliary graph G′ and the coefficients cκ. Usually in an interpolation proof
there are some coefficients that have a clear combinatorial meaning in terms of the original
problem instance. Here these values cκ do not have a clear combinatorial meaning in terms
of ZA′,D(G), rather they are defined in terms of an intermediate problem instance G′, which
is neither G nor the actual constructed graphs Gn,p. It is only in a “limiting” sense that a
certain combination of these values cκ allows us to compute ZA′,D(G).

5 Tractability part

The tractability part of Theorem 8 follows easily from known results. For completeness we
outline a proof here. Let A and D be m×m matrices, where A is nonnegative symmetric
block-rank-1 and D is positive diagonal.

First, ZA,D(G) can be reduced to the connected components G1, . . . , Gt of G,

ZA,D(G) =
t∏
i=1

ZA,D(Gi),

so we may as well assume G is connected. We permute the rows and columns of A,D
by the same permutation and then cross out zero rows and columns of A. This does not
change ZA,D. We may assume that A = diag(Ai)ki=1 is block diagonal with nonzero blocks
A1, . . . , Ak, where each block Ai is either a symmetric matrix of rank 1 with no zero entries,
or a symmetric bipartite matrix of the form

( 0 B
BT 0

)
where B has rank 1 and no zero entries.

Then we can write D = diag(Di)ki=1 where each Di is positive diagonal of the corresponding
size. As A is block diagonal and G is connected,

ZA,D(G) =
k∑
i=1

ZAi,Di(G).

So we may as well assume that A is one of these blocks. Also let D = diag(αi)mi=1.

1) A is a symmetric matrix of rank 1 with no zero entries. We can write A = xTx for some
positive row vector x = (xi)mi=1. Then

ZA,D(G) =
∏

u∈V (G)

m∑
i=1

αix
deg(u)
i .
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2) A =
( 0 B
BT 0

)
, where B is `× (m− `) (for some 1 ≤ ` < m) has rank 1 and no zero entries.

We can write B = xT y for some positive row vectors x = (xi)`i=1 and y = (yj)mj=`+1.
Since G is connected, ZA,D(G) = 0 unless G is bipartite. If G is bipartite with a vertex
bipartization V1 ∪ V2, then we only need to consider maps ξ : G→ [m] such that either
ξ(V1) ⊆ [`], ξ(V2) ⊆ [` + 1 : m] or ξ(V1) ⊆ [` + 1 : m], ξ(V2) ⊆ [`], with all other maps
contribute zero to ZA,D(G). Then

ZA,D(G) =
(∏
u∈V1

∑̀
i=1

αix
deg(u)
i

)∏
v∈V2

m∑
j=`+1

αjy
deg(v)
j


+

∏
u∈V1

m∑
j=`+1

αjy
deg(u)
j

(∏
v∈V2

∑̀
i=1

αix
deg(v)
i

)
.

6 Two technical lemmas

We need two technical lemmas. The following lemma is from [10] (Lemma 3.6); for the
convenience of readers we give a proof here.

I Lemma 9. Let A and D be m×m matrices, where A is real symmetric with all columns
nonzero and pairwise linearly independent, and D is positive diagonal. Then all columns of
ADA are nonzero and pairwise linearly independent.

Proof. The case m = 1 is trivial. Assume m ≥ 2. Let D = diag(αi)mi=1, and Π =
diag(√αi)mi=1. Then Π2 = D. We have ADA = QTQ, where Q = ΠA. Let qi denote the ith
column of Q. Then Q has pairwise linearly independent columns. By the Cauchy-Schwartz
inequality,

qTi qj <
(
(qTi qi)(qTj qj)

)1/2
,

whenever i 6= j. Then for any 1 ≤ i < j ≤ m, the ith and jth columns of ADA contain a
submatrix[

qTi qi qTi qj
qTi qj qTj qj

]
,

so they are linearly independent. J

The following is also adapted from [10] (Theorem 3.1).

I Lemma 10. Let A and D be m×m matrices, where A is real symmetric with all columns
nonzero and pairwise linearly independent, and D is positive diagonal. Then for all sufficiently
large positive integers p, the matrix B = (ADA)�p corresponding to the edge gadget in Figure 5
is nondegenerate.

Proof. If m = 1, then any p ≥ 1 works. Let m ≥ 2. Following the proof of Lemma 9, we
have qTi qj <

√
(qTi qi)(qTj qj), for all 1 ≤ i < j ≤ m. Let

γ = max
1≤i<j≤m

qTi qj√
(qTi qi)(qTj qj)

< 1.

Let A′ = ADA = QTQ so A′ij = qTi qj . Then A′ij ≤ γ
√
A′iiA

′
jj for all i 6= j. Consider the

determinant of A′. Each term of det(A′) has the form

±
m∏
i=1

A′iσ(i),
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u v

1

2

...

p− 1

p

Figure 5 The edge gadget S2Tpe, e = (u, v) with the edge weight matrix (ADA)�p.

where σ is a permutation of [m]. Denote t(σ) = |{i | σ(i) 6= i}|. Then
m∏
i=1

A′iσ(i) ≤ γ
t(σ)

m∏
i=1

√
A′ii

m∏
i=1

√
A′σ(i)σ(i) = γt(σ)

m∏
i=1

A′ii.

Consider the p-thickening of A′ for p ≥ 1. Each term of det ((A′)�p) has the form
±
∏m
i=1A

′ p
iσ(i) for some permutation σ of [m]. Now

|{σ | t(σ) = j}| ≤
(
m

j

)
j! ≤ mj ,

for 0 ≤ j ≤ m. By separating out the identity permutation and all other terms, for
p ≥ bln(2m)/ ln(1/γ)c+ 1, we have 2mγp < 1, and

det
(
(A′)�p

)
≥

(
m∏
i=1

A′ii

)p
−

(
m∏
i=1

A′ii

)p m∑
j=1

mjγpj

≥

(
m∏
i=1

A′ii

)p(
1− mγp

1−mγp

)
=
(

m∏
i=1

A′ii

)p(
1− 2mγp

1−mγp

)
> 0. J

7 Hardness for ZA(·) on simple graphs for real symmetric A

There is a more direct approach to prove the #P-hardness part of the Bulatov-Grohe
dichotomy (Theorem 3) for simple graphs. Although this method does not handle degree-
boundedness, we can apply it more generally to the problem EVAL(A,D) when the matrix
A is real symmetric and D is positive diagonal. In particular, we will prove the #P-hardness
part of the dichotomy for counting GH by Goldberg et al. [12] (the problem EVAL(A) without
vertex weights, where A is a real symmetric matrix) for simple graphs.

We first prove the following theorem.

I Theorem 11. Let A and D be m × m matrices, where A is real symmetric and D is
positive diagonal. Then EVAL(A,D) ≤P

T EVALsimp(A,D).

Proof. We may assume A is not identically 0, for otherwise the problem is trivial. Let
G = (V,E) be an input graph to the problem EVAL(A,D). For any n ≥ 1, let Gn = S

(F )
n (G)

where F ⊆ E is the subset consisting of the edges of G each of which is parallel to at least
one other edge. In other words, we obtain Gn by replacing every parallel edge e by its
n-stretching Sne. We will refer to these as paths of length n in Gn. Note that G1 = G.
Moreover, for every n ≥ 2, the graph Gn is simple and loopless, and has polynomial size in
the size of G and n.
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A path of length n ≥ 1 has the edge weight matrix

M (n) = ADA . . . ADA︸ ︷︷ ︸
D appears n−1 ≥ 0 times

= A(DA)n−1 = D−1/2(D1/2AD1/2)nD−1/2.

Here D1/2 is a diagonal matrix with the positive square roots of the corresponding entries of
D on the main diagonal, and D−1/2 is its inverse.

Since A is real symmetric and D is positive diagonal, the matrix Ã = D1/2AD1/2 is real
symmetric. Then Ã is orthogonally diagonalizable over R, i.e., there exist a real orthogonal
matrix S and a real diagonal matrix J = (λi)mi=1 such that Ã = STJS. If A has rank r, then
1 ≤ r ≤ m, and we may assume that λi 6= 0 for 1 ≤ i ≤ r and λi = 0 for i > r.

We have Ãn = STJnS, so the edge weight matrix for a path of length n ≥ 1 can be
written as

M (n) = D−1/2ÃnD−1/2 = D−1/2STJnSD−1/2.

We can write M (n)
ij =

∑r
`=1 aij`λ

n
` by a formal expansion, for every n ≥ 1 and some real

aij`’s that are dependent on D and S, but independent of n and λ`, where 1 ≤ i, j ≤ m and
1 ≤ ` ≤ r. By the formal expansion of the symmetric matrix M (n) above, we have aij` = aji`.
Let t = |F |, which is the number of edges in G subject to the stretching operator Sn to
form Gn.

In the evaluation of the partition function ZA,D(Gn), we stratify the vertex assignments
in Gn as follows. Denote by κ = (kij)1≤i≤j≤m a nonnegative tuple with entries indexed
by ordered pairs of nonnegative numbers that satisfy

∑
1≤i≤j≤m kij = t. Let K denote the

set of all such possible tuples κ. In particular, |K| =
(
t+m(m+1)/2−1
m(m+1)/2−1

)
. For a fixed m, this

is a polynomial in t, and thus a polynomial in the size of G. Let cκ be the sum over all
assignments of all vertex and edge weight products in ZA,D(Gn), except the contributions
by the paths of length n formed by stretching parallel edges in G, such that the endpoints
of precisely kij constituent paths of length n receive the assignments (i, j) (in either order
of the end points) for every 1 ≤ i ≤ j ≤ m. Technically we can call a vertex assignment
on G consistent with κ (where κ ∈ K), if it satisfies the stated property. Note that the
contribution by each such path does not include the vertex weights of the two end points
(but does include all vertex weights of the internal n− 1 vertices of the path). We can write

cκ =
∑

ξ : V (G)→[m]
ξ is consistent with κ

∏
w∈V

Dξ(w)
∏

(u,v)∈E\F

Aξ(u),ξ(v)

for κ ∈ K.
In particular, the values cκ are independent of n. Thus for some polynomially many

values cκ, where κ ∈ K, we have for all n ≥ 1,

ZA,D(Gn) =
∑
κ∈K

cκ
∏

1≤i≤j≤m
(M (n)

ij )kij =
∑
κ∈K

cκ
∏

1≤i≤j≤m
(
r∑
`=1

aij`λ
n
` )kij .

Expanding out the last sum and rearranging the terms, for some values bi1,...,ir independent
of n, we get

ZA,D(Gn) =
∑

i1+...+ir=t
i1,...,ir≥0

bi1,...,ir (
r∏
`=1

λi`` )n (4)

for all n ≥ 1.
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This can be viewed as a linear system with the unknowns bi1,...,ir with the rows indexed
by n. The number of unknowns is

(
t+r−1
r−1

)
which is polynomial in the size of the input graph

G, since r ≤ m is a constant. The values
∏r
`=1 λ

i`
` can all be computed in polynomial time.

We show how to compute the value ZA,D(G) =
∑

i1+...+ir=t
i1,...,ir≥0

bi1,...,ir

r∏
`=1

λi`` , from the values

ZA,D(Gn) where n ≥ 2 in polynomial time (recall that Gn is simple and loopless for n ≥ 2).
The coefficient matrix of the linear system (4) is a Vandermonde matrix. However, it might
not be of full rank because the coefficients

∏r
`=1 λ

i`
` do not have to be pairwise distinct,

and therefore it can have repeating columns. Nevertheless, when there are two repeating
columns we replace the corresponding unknowns bi1,...,ir and bi′1,...,i′r with their sum as a
new variable; we repeat this replacement procedure until there are no repeating columns.
Since all λ` 6= 0, for 1 ≤ ` ≤ r, after the replacement, we have a Vandermonde system of full
rank. Therefore we can solve this modified linear system in polynomial time. This allows

us to obtain the value ZA,D(G) =
∑

i1+...+ir=t
i1,...,ir≥0

bi1,...,ir

r∏
`=1

λi`` , which also has exactly the same

pattern of repeating multipliers
∏r
`=1 λ

i`
` .

We have shown how to compute the value ZA,D(G) in polynomial time by querying
the oracle EVAL(A,D) on polynomially many instances Gn, for n ≥ 2. It follows that
EVAL(A,D) ≤P

T EVALsimp(A,D). J

We are ready to prove the #P-hardness part of the dichotomy by Goldberg et al. [12]
(Theorem 1.1) for simple graphs. Let A be a real symmetric m×m matrix. Assuming that A
does not satisfy the tractability conditions of the dichotomy theorem of Goldberg et al., the
problem EVAL(A) is #P-hard. By Theorem 11 (with D = Im), EVAL(A) ≤P

T EVALsimp(A).
It follows that EVALsimp(A) is #P-hard.

Hence the dichotomy theorem by Goldberg et al. can improve to apply to simple graphs.

I Theorem 12. Let A be a real symmetric matrix. Then either EVAL(A) is in polynomial
time or EVALsimp(A) is #P-hard (a fortiori, EVAL(A) is #P-hard).

Moreover, there is a polynomial time algorithm that, given the matrix A, decides which
case of the dichotomy it is.

I Remark 13. The interpolation argument in Theorem 11 works even if G is a multigraph
possibly with multiple loops at any vertex in the following sense. In Definition 4, we treat
the loops of G as edges. We think of them as mapped to the entries Aii in the evaluation
of the partition function ZA,D. However, we need to slightly change the way we define the
graphs Gn. In addition to n-stretching the parallel edges of G, we also need to n-stretch
each loop of G (i.e., replacing a loop by a closed path of length n). Now F is the set of
parallel edges and loops in G. This way each Gn = S

(F )
n (G) for n ≥ 2 is simple and loopless.

The rest of the proof goes through. In other words, the statement of Theorem 11 extends to
a reduction from the EVAL(A,D) problem that allows input G to have multiloops, to the
standard problem EVALsimp(A,D) not allowing loops.
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