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Abstract
Schur Polynomials are families of symmetric polynomials that have been classically studied in
Combinatorics and Algebra alike. They play a central role in the study of Symmetric functions, in
Representation theory [39], in Schubert calculus [26] as well as in Enumerative combinatorics [14,
38, 39]. In recent years, they have also shown up in various incarnations in Computer Science, e.g,
Quantum computation [17, 31] and Geometric complexity theory [21].

However, unlike some other families of symmetric polynomials like the Elementary Symmet-
ric polynomials, the Power Symmetric polynomials and the Complete Homogeneous Symmetric
polynomials, the computational complexity of syntactically computing Schur polynomials has not
been studied much. In particular, it is not known whether Schur polynomials can be computed
efficiently by algebraic formulas. In this work, we address this question, and show that unless every
polynomial with a small algebraic branching program (ABP) has a small algebraic formula, there
are Schur polynomials that cannot be computed by algebraic formula of polynomial size. In other
words, unless the algebraic complexity class VBP is equal to the complexity class VF, there exist
Schur polynomials which do not have polynomial size algebraic formulas.

As a consequence of our proof, we also show that computing the determinant of certain generalized
Vandermonde matrices is essentially as hard as computing the general symbolic determinant. To
the best of our knowledge, these are one of the first hardness results of this kind for families of
polynomials which are not multilinear. A key ingredient of our proof is the study of composition of
well behaved algebraically independent polynomials with a homogeneous polynomial, and might be
of independent interest.
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1 Introduction

In this paper, we explore a theme at the intersection of Algebraic Complexity Theory, which
studies the computational complexity of computing multivariate polynomials using algebraic
operations, and Algebraic Combinatorics, which studies, among other things, algebraic
identities among polynomials associated to various combinatorial objects.

Specifically, the questions we study are related to the computational complexity of
Symmetric Polynomials, which are polynomials in C[x1, . . . , xn] that are invariant under
permutations of the underlying variable set x1, . . . , xn.1 Examples of such polynomials
include

The Elementary Symmetric polynomials e0, e1, . . . , en where ed =
∑
|S|=d

∏
j∈S xj is the

sum of all multilinear monomials of degree exactly d,
The Complete Homogeneous Symmetric polynomials h0, h1, . . . where hd is the sum of all
monomials (multilinear or otherwise) of degree exactly d, and
The Power Symmetric polynomials p0, p1, . . . where pd =

∑n
i=1 x

d
i .

It is a standard fact that the above three families generate all symmetric polynomials
in a well-defined sense. More precisely, the Fundamental Theorem of Symmetric Polyno-
mials states that every symmetric polynomial f can be written uniquely as a polynomial
in {e1, . . . , en}, and similarly in {h1, . . . , hn} and {p1, . . . , pn}, each of which is thus an
algebraically independent set of polynomials. In particular, for λ = (λ1, λ2, . . . , λ`) a non-
increasing sequence of positive integers, if we define eλ =

∏
i∈[`] eλi

, then the {eλ}λ are
linearly independent, and moreover the set Ed := {eλ |

∑
i λi = d} forms a basis for the

vector space Λd of homogeneous symmetric polynomials of degree d; the same is true also of
hλ and pλ (defined analogously), yielding bases Hd and Pd respectively for Λd.

Symmetric Polynomials in Mathematics

The study of Symmetric Polynomials is a classical topic in Mathematics, with close connec-
tions to combinatorics and representation theory, among other fields (see, e.g., [28, 33]). In
representation theory , it is known that the entries of the change-of-basis matrices between
different bases for the space Λd yield important numerical invariants of various representations

1 In Combinatorics literature, these are more commonly known as Symmetric Functions. One can also
consider symmetric functions over fields other than the complex numbers, but throughout this paper,
we will stick to C.

https://eccc.weizmann.ac.il/author/1282/
https://arxiv.org/abs/1911.12520
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of the symmetric group Sd. In algebraic and enumerative combinatorics, the study of sym-
metric polynomials leads to formulas and generating functions for interesting combinatorial
quantities such as Plane Partitions (see, e.g. [39, Chapter 7]). These studies have in turn
given rise to many interesting algebraic identities and generating functions for various families
of symmetric polynomials. Some of these, as we note below, have already had consequences
for computational complexity.

Algebraic Complexity of Symmetric Polynomials

Symmetric polynomials have also been intensively investigated by researchers in Algebraic
complexity [30, 36, 35, 19, 13], with several interesting consequences. The famous “Ben-Or
trick” in algebraic complexity (also known simply as “interpolation”) was discovered by
Ben-Or [36] in the context of using a standard generating function for the Elementary
Symmetric Polynomials to obtain small depth-3 formulas for e1, . . . , en.

2 The same idea also
yields small constant-depth formulas for the complete homogeneous symmetric polynomials.
Symmetric polynomials have also been used to prove lower bounds for several interesting
models of computation including homogeneous and inhomogeneous ΣΠΣ formulas [30, 36, 35],
homogeneous multilinear formulas [19] and homogenous ΣΠΣΠ formulas [13]. Further, via
reductions, the elementary and power symmetric polynomials have been used to define
restricted models of algebraic computation known as the symmetric circuit model [35] and
the Σ ∧ Σ model (or Waring rank), which in turn have been significantly investigated (see,
e.g. [34, 25, 32]).

Schur polynomials

In this paper, we study the complexity of an important family of symmetric polynomials
called the Schur Polynomials, which we now define.

I Definition 1. Let λ = (λ1, . . . , λ`) be a non-increasing sequence of positive integers with∑
i λi = d. We define the Schur polynomial sλ(x1, . . . , xn) of degree d as follows.

sλ =
det
(

(xλj+n−j
i )i,j∈[n]

)
det
(

(xn−ji )i,j∈[n]

)
(Here, if λ = (λ1, . . . , λ`), then we define λj = 0 for j > `.)

The Schur polynomials are known to generalize the elementary symmetric polynomials as
well as homogeneous symmetric polynomials. It is also known that the Schur polynomials
of degree d form a basis for Λd, which is the vector space of all homogeneous symmetric
polynomials of degree d.

The Schur polynomials occupy a central place in the study of symmetric polynomials.
Their importance in representation theory can be seen for instance by the fact that, they
describe the characters of representations of the general linear and symmetric groups. In
particular, consider the general linear group GL(V ) over a complex vector space V of
dimension n. If ρ is an irreducible representation of GL(V ) that is polynomial, meaning
that the eigenvalues of ρ(A) can be expressed as a polynomial in the eigenvalues of A, then
the character Tr(ρ(A)) is a Schur polynomial sλ(x1, . . . , xn) evaluated at the eigenvalues

2 The generating function referred to is
∏n

i=1(t− xi) =
∑n

j=0(−1)n−jen−jt
j .
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14:4 Formula Complexity of Schur Polynomials

x1, . . . , xn of A, where λ is a partition with at most n non-zero parts. Furthermore, the
entries of the change-of-basis matrix (for the vector space Λd) from the power symmetric
polynomials to the Schur polynomials are exactly the values of the irreducible characters
of the symmetric group Sd. Specifically, the Murnaghan-Nakayama rule states that when
expanded into the basis of power symmetric polynomials we have

sλ =
∑

µ=(µ1,...,µl)`n

χλ(µ)
l∏
i=1

pµi

where χλ(µ) is an irreducible character of the symmetric group Sn evaluated at a permutation
of cycle type µ. See [39, Chapter 7] for further details about these uses in representation
theory.

Beyond representation theory, Schur polynomials are used in algebraic geometry in the
Schubert calculus [26], which is used to calculate the number of ways in which Schubert sub-
varieties in the Grassmannian (the set of all k dimensional linear subspaces in an n-dimensional
space) may intersect. Schur polynomials are also used in enumerative combinatorics, as
they provide generating functions for counting various combinatorial objects, including plane
partitions, tableaux [39, Chapter 7], reduced decompositions of permutations [38], and graph
colourings [14].

Being one of the most well-studied objects in the theory of symmetric functions, Schur
polynomials appear in many different avatars in the literature. The following classical
definition is also known to capture Schur polynomials. The definition uses combinatorial
structures called Ferrers diagrams. A Ferrers diagram (or a Young diagram or simply a
diagram) of shape λ, is a left-aligned two-dimensional array of boxes with the ith row
containing λi many boxes. (See, e.g. Stanley [39], for more about Ferrers diagrams.)

I Definition 2. Consider a Ferrers diagram of shape λ. For any non-decreasing sequence
µ = (µ1, . . . , µm) with

∑
j µj = d, we define the Kostka number Kλµ to be the number of

ways of filling the boxes of the Ferrers diagram with numbers from 1, . . . ,m such that each
row is non-decreasing, each column is strictly increasing, and the number of i’s equals µi for
each i ∈ [m].

The Schur polynomial sλ(x1, . . . , xn) ∈ Λd is defined so that the coefficient of xµ1
1 · · ·xµm

m

is the Kostka number Kλµ (the coefficients of other monomials are defined by symmetry).
In particular, sλ = 0 if n < `. So we assume that n ≥ ` throughout.

From this definition it is easy to see that Schur polynomials generalize both elementary
symmetric polynomials (when ` = d and λ1 = λ2 · · · = λd = 1 in the definition above) and
homogeneous symmetric polynomials (when ` = 1 and λ1 = d in the definition above).

The Kostka numbers used in the definition above have been investigated extensively both
from combinatorial and computational perspectives. (See for instance [39, 29].)

Algebraic Complexity of Schur Polynomials

In this work we focus on the algebraic complexity of Schur polynomials. As stated in
Definition 1, which is also known as the bialternant formula of Jacobi, the Schur polynomial
sλ can be expressed as the ratio of two determinants. In particular, this implies that the
Schur polynomials have algebraic circuits of size poly(n, d). In fact, it also implies that
these polynomials belong to the smaller algebraic complexity class VBP,3 for which the
Determinant is the complete polynomial.

3 The class of polynomial families which can be efficiently computed by algebraic branching programs.
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However, this upper bound is quite a bit weaker than what is known for other well-
studied symmetric polynomials mentioned above, all of which have constant-depth formulas
of polynomial size. We consider the question of whether the Schur polynomials have
constant-depth formulas of polynomial size or even general (arbitrary depth) formulas of
polynomial size.

Our main result is that under reasonable complexity assumptions, the answer to the
above question is negative for many different λ. (Note that since the elementary and complete
homogeneous symmetric polynomials are particular examples of Schur polynomials, there
are some Schur polynomials that have formulas of polynomial size.)

I Theorem 3 (Main Theorem). Assume that λ = (λ1, . . . , λ`) is such that λi ≥ λi+1 + (`− 1)
for all i ∈ [` − 1], also λ` ≥ ` and let d =

∑
i λi. Then, for n ≥ λ1 + `, if sλ(x1, . . . , xn)

has an algebraic formula of size s and depth ∆, then the ` × ` determinant (det`) has an
algebraic formula of size poly(s) and depth ∆ +O(1).

For suitable choices of `, d, n above, we can ensure that these parameters are all polyno-
mially related. The theorem then implies that the Schur polynomials do not have algebraic
formulas of polynomial size unless the entire complexity class VBP collapses to the complexity
class VF which consists of polynomials with small formulas. Moreover, the Schur polynomials
do not have constant-depth formulas of subexponential size unless the determinant does, a
result that would greatly improve the state-of-the-art in this direction [16].

The above theorem and its proof have several interesting aspects that we now elaborate on.

Newton iteration and formula complexity

Theorem 3 is motivated in part by a recent result of Bläser and Jindal [1] who prove
the following interesting result about symmetric polynomials. As mentioned earlier, it is
known that any symmetric polynomial fsym ∈ C[x1, . . . , xn] can be written uniquely as a
polynomial in (say) the elementary symmetric polynomials e1, . . . , en. I.e., there exists a
unique fE ∈ C[x1, . . . , xn] such that

fsym(x1, . . . , xn) = fE(e1, . . . , en).

Motivated by a question of Lipton and Regan [27], Bläser and Jindal studied the computational
complexity of fsym vis-a-vis that of fE . It is clear that if fE has algebraic circuits of polynomial
size (resp. formulas) then so does fsym, since the elementary symmetric polynomials have
algebraic formulas of polynomial size. Interestingly, Bläser and Jindal showed a converse to
this statement: they showed that if fsym has small algebraic circuits, then so does fE . 4

At first sight, this looks highly relevant to our theorem, since by the classical Jacobi-Trudi
identity (see, e.g. Theorem 24 in this paper or [39, Theorem 7.16.1]), when fsym is a Schur
polynomial of the type assumed in Theorem 3, then fE is in fact the determinant (on a
subset of its variables). We could hope to use the theorem of Bläser and Jindal to prove that
if the Schur polynomial has a small formula, then so does the determinant. However, this
doesn’t quite work, since the proof of [1] only yields small circuits for the polynomial fE ,
even if we assume that the polynomial fsym has small formulas.

4 Bläser and Jindal work throughout with the elementary symmetric polynomials. However, using
algebraic identities that link various symmetric polynomials with each other, we observe in this paper
that their result also holds for the complete homogeneous and power symmetric polynomials.

CCC 2020



14:6 Formula Complexity of Schur Polynomials

We briefly outline the reason for this, noting that this hurdle occurs quite often in trying
to adapt results in algebraic circuit complexity to algebraic formulas. As mentioned above,
the polynomials e1, . . . , en are algebraically independent. A standard proof of this (see,
e.g., [35]) goes via showing that the map

e : Cn → Cn, defined by a = (a1, . . . , an) 7→ (e1(a), . . . , en(a))

is surjective. Hence, for each b ∈ Cn, there exists an a ∈ Cn such that e(a) = b. The reason
this is relevant to the result of [1] is that if we have an efficient algorithm for “inverting”
e in this way and we additionally have an efficient algorithm for computing fsym, then we
immediately obtain an efficient algorithm for computing fE on any given input b ∈ Cn by
first inverting the map e to obtain an a as above, and then applying the algorithm for fsym
to obtain f(a) = fE(b). The main technical result in Bläser and Jindal’s work is to show how
to invert the map e as above using an algebraic circuit. The inversion is done by carefully
applying a standard algebraic version of Newton iteration, which can be performed by an
efficient algebraic circuit. Having done this, we plug the output of this circuit into the circuit
for fsym to obtain the circuit for fE .

The reason the above proof does not work in the setting of algebraic formulas is the use
of Newton iteration, which is not known to be doable with small formulas (or even within the
seemingly larger class VBP). Indeed, this is the main bottleneck in translating several results
in algebraic complexity on polynomial factorization [23, 8, 6] and hardness-randomness
tradeoffs [22, 9, 5] that are known in the context of algebraic circuits to the setting of
algebraic formulas.

In the proof of the main theorem, we show how to get around the use of Newton iteration
in this setting and use it to prove a (slightly weaker) version of the result of Bläser and Jindal
for algebraic formulas. We hope that the ideas we use here can be adapted and extended to
circumvent the use of Newton iteration in some of the other settings mentioned above as
well. Our main technical lemma is the following.

I Lemma 4 (Main Technical Lemma (informal)). Let g1, . . . , gn ∈ C[x1, . . . , xn] be “well-
behaved” algebraically independent polynomials. Then, for any homogeneous polynomial f̃ , if
f = f̃(g1, . . . , gn) has a formula of size s and depth ∆, the polynomial f̃ has a formula of
size poly(s) and depth ∆ +O(1).

For a formal definition of what we mean by “well-behaved” and for a formal statement of
this lemma, we refer the reader to Definition 26 and Lemma 27 respectively. This lemma,
and some of the ideas in its (very simple) proof might be of independent interest and may
have other applications, e.g. in Subsection 4.4 we discuss an application of this lemma to
some special cases of a question of Amir Shpilka on proving lower bounds on the partial
derivative complexity of a product of algebraically independent polynomials.

Generalized Vandermonde determinants

The Vandermonde matrix (xn−ji )i,j∈[n] and its determinant are ubiquitous in computation
because of their relation to polynomial interpolation. More precisely, the problem of finding
a degree-(n− 1) univariate polynomial that takes prescribed values at a specified set of n
distinct points involves solving a linear system of equations where the underlying matrix is
precisely the Vandermonde matrix. It is, therefore, an important fact that the Vandermonde
determinant is computationally much easier than the general determinant: in fact, it has the
following standard depth-2 formula

detn
(

(xn−ji )i,j∈[n]

)
=

∏
i,j∈[n]:i<j

(xi − xj).
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However, it is unclear whether such small expressions continue to exist if we allow the
exponents of the variables to vary more generally. For integers µ1 > µ2 > · · · > µn ≥ 0,
consider the generalized Vandermonde matrix (xµj

i )i,j∈[n]. Similar to the Vandermonde
matrix, the determinant of this matrix is related to the problem of sparse polynomial
interpolation, where we are trying to interpolate a polynomial only involving the monomials
of degree µ1, . . . , µn through the given points.

Can we expect that computing any generalized Vandermonde determinant is much easier
than computing the determinant itself? It follows from Theorem 3 and the bialternant
formula from Definition 1 above that the answer to this question is negative: for certain
(polynomially large) exponents, the generalized Vandermonde determinant is not much easier
than the determinant.

Discussion on Schur Polynomials and Generating functions

In algebraic and enumerative combinatorics, we often study a family of related combinatorial
objects by considering a generating function that combines them, in the hope that the
generating function yields a nice closed-form expression which can further be used to estimate
or otherwise understand these objects better. (See e.g. [41, 10] for much more about this.) For
instance, we know that the generating functions for the elementary and complete homogeneous
symmetric polynomials

E(t) =
n∑
i=0

tiei(x) and H(t) =
n∑
i=0

tihi(x)

have small expressions given by

E(t) =
∏
i∈[n]

(1 + txi) and H(t) = 1∏
i∈[n](1− txi)

.

Furthermore, as such expressions are algebraic formulas using additions, multiplications and
divisions, we can use these formulas along with division elimination and interpolation to
construct small algebraic formulas for the eis and hjs themselves.

Recall that both the elementary and complete homogeneous symmetric polynomials are
special cases of Schur polynomials. It therefore is natural to ask if generating functions can
be obtained for other simple sequences of Schur polynomials. Our results imply that the
generating function for certain sequences of Schur polynomials do not have small closed-form
expressions with small formulas unless the determinant has small formulas. This seems
like an interesting statement in algebraic combinatorics, conditioned upon a well-known
conjecture in Computational Complexity theory.

For concreteness, here is one such “hard” generating function made up of Schur polyno-
mials. For any ` ≥ 0, let λ` = (`2, `2 − `, `2 − 2`, · · · , `). Define

S(t) =
∑
`≥0

t`sλ`
.

Note that this is a finite sum for any fixed n as sλ`
= 0 if ` > n. In algebraic combinatorics,

it is common to consider symmetric polynomials in an infinite number of variables in which
case the above is truly an infinite sum. A simple expression in the infinite case typically leads
to a simple expression in the finite case by simply setting all variables other than x1, . . . , xn
to 0 in the expression.

CCC 2020



14:8 Formula Complexity of Schur Polynomials

Proving hardness of non-multilinear polynomial families

The most natural and widely studied notion of completeness in the algebraic setting is
the notion of projections. A polynomial P ∈ C[x1, . . . , xn] is said to be a projection of a
polynomial Q ∈ C[y1, . . . , ym] if there is a setting σ of y1, . . . , ym to either field constants or
to variables from the set {x1, . . . , xn}, such that the polynomial Q (σ(y1), σ(y2), . . . , σ(ym))
equals P . While this notion of reductions is very natural and intuitive and in particular, it
is clear that easiness of Q (with respect to having a small algebraic circuit or formula, for
instance) immediately implies the easiness of P , there is an inherent difficulty in using this
notion of reductions for proving the hardness of families of non-multilinear polynomials. To
see this, observe that if Q is non-multilinear in each of its variables, and P is a multilinear
polynomial which depends on at least one variable, then P cannot be expressed as a projection
of Q. In particular, this notion of reductions cannot be used to prove the hardness of non-
multilinear Schur polynomials or the hardness of generalized Vandemonde determinant,
assuming the hardness of determinant for algebraic formulas.5 We avoid this issue by showing
that there is a c-reduction from the Determinant to the non-multilinear polynomials we
study.6 More precisely, we show that a small formula for any of our hard non-multilinear
polynomials can be used to construct a small formula for the Determinant polynomial with
only a small blow-up in size and depth.

Other related work

The algebraic complexity of Schur polynomials has been studied in various restricted models
of computation. Koev [24], Chan et al. [3] and Fomin et al. [11] consider the complexity of
computing Schur polynomials in the subtraction-free algebraic circuit model. An algebraic
circuit is subtraction-free if it uses only addition, multiplication and division operators.7
They showed that sλ(x1, . . . , xn) has subtraction-free circuits of size polynomial in n and
λ1. In Fomin et al. [11], the authors also proved polynomial bounds on the size of the
subtraction-free circuits computing other interesting variants of Schur polynomials such
as double Schur polynomials and skew Schur polynomials. All the algorithms presented
in [24, 3, 11] for computing Schur polynomials used division in non-trivial ways.

Demmel et al. [7] and Fomin et al. [12] studied the monotone complexity of Schur
polynomials. In the monotone setting, only addition and multiplication operators are used.
(Both division and subtraction operators are not allowed.) They proved exponential upper
bounds on the monotone complexity of Schur polynomials and conjectured an exponential
lower bound. The exact complexity of Schur polynomials is not resolved in the monotone
setting. However, Grigoriev et al. [15] proved an exponential monotone circuit lower bound
for a related family of symmetric polynomials, called the monomial symmetric polynomials.

5 There is a more general notion of projections which involves substituting y1, . . . , ym with affine linear
functions in x1, . . . , xn. While such projections can be used to reduce multilinear polynomials to
non-multilinear ones, the reduction must rely on clever cancellations in order to achieve this. Designing
such reductions is in general challenging. We do not know of such a reduction in our setting.

6 A c-reduction in algebraic complexity is similar in spirit to Turing reductions in standard Computational
Complexity. See for example [2, 20].

7 For example, consider the polynomial x2 − xy + y2. It is computed by the following subtraction-free
circuit: (x3 + y3)/(x+ y).
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Organization of the paper

The rest of the paper is organized as follows. We start with a brief discussion of some of
the preliminaries in Section 2 and a brief introduction to Symmetric polynomials and Schur
polynomials in Section 3. We formally state and prove Lemma 4 in Subsection 4.1, followed
by its application to the proof of Theorem 3 in Subsection 4.2. We discuss further applications
of some of these ideas to extending the result of Bläser and Jindal’s [1] in Subsection 4.3 and
to the question of proving lower bounds on the partial derivative complexity of a product
of algebraically independent polynomials in Subsection 4.4. We conclude with some open
questions in Section 5.

2 Notations and Preliminaries

Throughout this paper, we assume that we are working over the field C. It is not very hard
to see that the results we present can be made to work for fields of characteristic zero or
fields of sufficiently large characteristic. Boldface letters are used for tuples of variables e.g.
x for (x1, x2, . . . , xn). For b = (b1, b2, . . . , bn) ∈ Nn and x = (x1, x2, . . . , xn), we use xb to
denote

∏n
i=1 x

bi
i . We use |b|1 to denote

∑
i∈[n] bi.

2.1 Models of computation
We start by defining some of the standard models of algebraic computation that we work
with in the rest of the paper.

I Definition 5 (Algebraic circuit). An algebraic circuit C is a directed acyclic graph with a
unique sink node, called the root node. The source nodes are called leaves and are labelled
with field constants or variables. All the other nodes are labelled with + or ×. Each + node
computes the addition of the polynomials computed by its children and similarly, each × node
computes the multiplication of the polynomials computed by its children. The circuit is said
to compute the polynomial computed by the root node.

I Definition 6 (Algebraic formula). If the underlying graph of an algebraic circuit is a directed
tree (which is a special type of a directed acyclic graph) then the circuit is called a formula.

I Definition 7 (Algebraic branching program). An algebraic branching program (ABP) is a
layered directed acyclic graph with a unique source vertex denoted s and a unique sink vertex
denoted t. Each edge is labelled by a linear polynomial. The weight of a path p is the product
of the labels of the edges in p. The polynomial that the ABP computes is the sum of all the
weights of paths from s to t.

2.2 Interpolation and Division elimination
We now state two fairly standard facts about algebraic formulas. The first of these relates
the formula complexity of a polynomial to the formula complexity of each of its homogeneous
components.

I Lemma 8. Let P (x) ∈ C[x] be a polynomial which can be computed by a formula of size
at most s and depth ∆. Then, for every d, the homogeneous component of P of degree d can
be computed by a formula of size at most O(s2) and depth ∆ +O(1).

CCC 2020



14:10 Formula Complexity of Schur Polynomials

The proof of this lemma is via a standard interpolation argument, where we consider the
polynomial Q(t) = P (x1t, x2t, . . . , xnt) ∈ C(x)[t] as a univariate in t. The point to note
is that the homogeneous components of P are coefficients of various powers of t in this
new polynomial, and hence can be computed as a linear combination of sufficiently many
evaluations of Q(t) for distinct values of t in the base field (which we assume to be large
enough). For every α ∈ C, the formula size of Q(α) is upper bounded by the formula size of
P . Similarly the depth of the formula of Q(α) is bounded by the depth of P . The number of
such distinct evaluations needed is upper bounded by one more than the degree of Q, which
is one more than the degree of P itself. The final observation needed for proving the size
upper bound is that a polynomial which can be computed by a formula of size s has degree
upper bounded by s. Thus, we need to take an appropriately weighted linear combination of
s+ 1 distinct substitutions of t in Q, each of which has a formula of size at most s; thereby
giving us an upper bound of O(s2). Taking linear combinations of such substitutions can be
done in depth O(1), which gives the overall depth bound of ∆ +O(1).

The next statement we need is about the formula complexity of a polynomial which can
be written as quotient of two polynomials with small formulas.

I Lemma 9. Let P and R be polynomials in C[x] of formula (ABP/circuit) size at most s
and depth at most ∆ such that R divides P . Then, the polynomial Q = P

R can be computed
by a formula (an ABP/circuit resp.) of size at most poly(s) and depth at most ∆ +O(1).

The proof of this lemma goes via the standard division elimination argument of Strassen and
that of Lemma 8. We refer the reader to the excellent survey of Shpilka and Yehudayoff [37]
for formal details on division elimination.

2.3 Algebraic independence and the Jacobian
The notion of algebraic independence that we now define plays a crucial role in the proofs in
the paper. We start with a formal definition.

I Definition 10. Polynomials q1, q2, . . . , qk ∈ C[x] are said to be algebraically independent
over C if there is no non-zero polynomial g(y1, y2, . . . , yk) ∈ C[y] such that g(q1, q2, . . . , qk)
is identically zero.

This definition generalizes the notion of linear independence, which is the special case when
there is no non-zero polynomial g in k variables and degree 1 such that g(q1, q2, . . . , qk) is
identically zero. As we shall see next, over fields of characteristic zero ( or sufficiently large
characteristic), the notion of algebraic independence is characterized by the rank of the
Jacobian matrix defined below.

I Definition 11. The Jacobian matrix of a tuple (q1, q2, . . . , qk) of n-variate polynomials
in C[x], denoted by J (q1, q2, . . . , qk) is a k × n matrix with entries from C[x] whose (i, j)th
entry equals ∂qi

∂xj
.

Thus, the row corresponding to qi in J (q1, q2, . . . , qk) contains all of the n first order partial
derivatives of qi. In other words, the ith row of the Jacobian gives us the gradient of qi.
The connection between algebraic independence and the Jacobian stems from the following
(almost folklore) theorem.

I Theorem 12 (Jacobian and Algebraic Independence). Let (q1, q2, . . . , qk) be a k tuple of
n-variate polynomials in C[x] of degree at most d. Then, q1, q2, . . . , qk are algebraically
independent over C if and only if the the rank of the Jacobian matrix J (q1, q2, . . . , qk) over
the field C(x) is equal to k.

A proof of this theorem can be found in the survey of Chen, Kayal and Wigderson [4,
Chapter 3].
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2.4 Taylor’s expansion
For our proof, we need the following well-known form of Taylor’s expansion.

I Theorem 13. Let P ∈ C[x] be an n-variate polynomial of degree at most d, and let a ∈ Cn
be a point. Then, for an n-tuple of variables z

P (a + z) =
d∑
i=0

 ∑
u∈Nn,|u|1=i

zu

u! ·
∂P

∂xu (a)


where, for u = (u1, u2, . . . , un), u! = u1! · u2! · · ·un!.

Note that for i = 0, the summand
(∑

u∈Nn,|u|1=i
zu

u! ·
∂P
∂xu (a)

)
is just equal to P (a), and for

every positive integer i at most d, this summand is a homogeneous polynomial of degree
equal to i in z. Of particular utility to us is the following easy corollary of Theorem 13.

I Corollary 14. Let P ∈ C[x] be an n-variate polynomial of degree d ≥ 1, and let a ∈ Cn be
a point. Then, for an n-tuple of variables z

P (a + z) = P (a) +
n∑
j=1

zj ·
∂P

∂xj
(a) mod 〈z〉2 .

2.5 Two useful lemmas
We use the following (well known) lemma in our arguments. While the lemma is essentially
folklore, we sketch a proof for completeness.

I Lemma 15. Let f(x) ∈ C[x] and P (x, y) ∈ C[x, y] be polynomials such that P (x, f(x))
is identically zero. Then, there exists a polynomial Q(x, y) ∈ C[x, y] such that P (x, y) =
(y − f(x)) ·Q(x, y).

Proof. Let d be the degree of P in y and let C0(x), C1(x), . . . , Cd(x) be polynomials in C[x]
such that

P (x, y) =
d∑
i=0

Ci(x) · yi .

Therefore, P (x, f(x)) can be written as

P (x, f(x)) =
d∑
i=0

Ci(x) · f(x)i .

Subtracting the two expressions above, we get

P (x, y)− P (x, f(x)) =
d∑
i=0

Ci(x) · yi −
d∑
i=0

Ci(x) · f(x)i .

Now, on the right hand side, the term for i = 0 cancels out and on further simplification,
we get

P (x, y)− P (x, f(x)) =
d∑
i=1

Ci(x) ·
(
yi − f(x)i

)
.
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14:12 Formula Complexity of Schur Polynomials

Note that for every natural number i ≥ 1, yi − f(x)i is divisible by (y − f(x)). Therefore,
every summand on the right hand side has (y − f(x)) as a factor, and thus there is a
polynomial Q(x, y) such that

P (x, y)− P (x, f(x)) = (y − f(x)) ·Q(x, y) .

Moreover, since P (x, f(x)) is identically zero, we have that P (x, y) = (y − f(x)) ·Q(x, y) ,
thereby completing the proof of the lemma. J

In particular, if |S| ≥ d+ 1, then there exists some a ∈ Sn satisfying P (a) 6= 0. This gives
us a brute force deterministic algorithm, running in time (d+ 1)n, to test if an arithmetic
circuit computing a polynomial of degree at most d in n variables is identically zero.

3 Symmetric polynomials

A polynomial is said to be symmetric if it is invariant under a permutation of variables. We
now define some of the families of symmetric polynomials that are discussed in this paper
and briefly discuss some of their properties. For a more detailed introduction on symmetric
polynomials, we refer the reader to the book [28]. We start with the definitions.

I Definition 16 (Elementary symmetric polynomials). The elementary symmetric polynomial
of degree k on n variables denoted by ek(x) is defined as follows:

ek(x) =
∑
S⊆[n]

∏
i∈S

xi .

The following fact states a property of the elementary symmetric polynomials which will be
useful for our proofs in the later sections.

I Fact 17. For all α1, α2, . . . , αn ∈ C, if c1, c2, . . . , cn are field elements such that
n∏
i=1

(z − αi) = zn − c1 · zn−1 + c2 · zn−2 − · · ·+ (−1)ncn ,

then, for every j ∈ [n], cj = ej(α1, α2, . . . , αn).

I Definition 18 (Homogeneous (Complete) symmetric polynomials). The homogeneous sym-
metric polynomial of degree k on n variables denoted by hk(x) is defined as follows:

hk(x) =
∑

b∈Nn:|b|1=k

xb.

I Definition 19 (Homogeneous (Complete) symmetric polynomials). The homogeneous sym-
metric polynomial of degree k on n variables denoted by hk(x) is defined as follows:

hk(x) =
∑

b∈Nn:|b|1=k

xb.

I Definition 20 (Power symmetric polynomials). The power symmetric polynomial of degree
k on n variables denoted by pk(x) is defined as follows: pk =

∑n
i=1 x

k
i .

These sets of polynomials are algebraically independent. The following fact states this
formally.
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I Fact 21. Let x be an n tuple of variables. Then, elementary symmetric polynomials
e1(x), . . . , en(x) are algebraically independent over C. Similarly, homogeneous symmetric
polynomials h1(x), . . . , hn(x) and power symmetric polynomials p1(x), p2(x), . . . , pn(x) are
also algebraically independent over C.

We now formally state the fundamental theorem of symmetric polynomials, which essentially
says that over field of characteristic zero, every symmetric polynomial can be written as a
unique polynomial combinations of the elementary symmetric polynomials (similarly, for
power symmetric polynomials or homogeneous symmetric polynomials).

I Theorem 22 (The fundamental theorem of symmetric polynomials). For a symmetric poly-
nomial fsym ∈ C[x] there exists a unique polynomial f ∈ C[x] s.t. fsym=fE(e1(x), e2(x), . . .
en(x)) where ei(x) is the elementary symmetric polynomial of degree i.

Similarly, there exists a unique polynomial fH ∈ C[x] such that fsym=fH(h1(x), h2(x), . . .
hn(x)) and a unique polynomial fP ∈ C[x] such that fsym = fP (p1(x), p2(x), . . . pn(x)), where
hi(x) is the homogeneous symmetric polynomial of degree i and pi(x) is the power symmetric
polynomial of degree i.

3.1 Schur polynomials
A partition of a natural number d is any sequence λ = (λ1, λ2 . . . , λ`) of non-negative integers
in a non-increasing order λ1 ≥ λ2 . . . ≥ λ` ≥ 0 such that

∑`
i=1 λi = d.8 The number of

non-zero parts of λ is called the length of λ and is denoted by l(λ). The weight of λ, denoted
by |λ| is defined to be the sum of each individual component, i.e. |λ| = λ1 + λ2 + · · ·+ λl(λ).
If |λ| = d, then we say that λ is a partition of the number d or alternatively a partition of
degree d.

Let λ be a partition of the number d. A Ferrers diagram (or simply a diagram) of shape
λ is is a left-aligned two-dimensional array of boxes with the ith row containing λi many
boxes. The conjugate of λ, denoted by λ′, is the diagram obtained by switching the rows
and columns of the diagram of λ.

I Definition 23 (Schur polynomials). Let λ be a partition of degree d and let l(λ) ≤ n. Then
the Schur polynomial sλ(x) is defined as

sλ(x) = aλ+δ(x)
aδ(x)

where,

δ = (n− 1, n− 2, . . . . . . 2, 1, 0)

aλ+δ(x) = det(xλj+n−j
i )1≤i,j≤n

aδ(x) = det(xn−ji )1≤i,j≤n =
∏

1≤i<j≤n
(xi − xj)

8 Usually the λis are assumed to be positive integers as defined earlier. For the sake of notational
convenience we allow trailing zeroes in the definition of λ.
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14:14 Formula Complexity of Schur Polynomials

We first observe that sλ(x) is a symmetric polynomial. To see this, note that if xi = xj
for any i 6= j then aλ+δ(x) is 0. Thus, by Lemma 15 and the fact that xi − xj and xi′ − xj′
do not share a common factor unless {i, j} = {i′, j′},

∏
i<j(xi − xj) is factor of aλ+δ(x) i.e.,

aδ(x) is a factor of aλ+δ(x). Therefore, sλ(x) is a polynomial. Moreover, for any permutation
of variables, the sign changes in the numerator and the denominator are the same, and thus
their ratio does not see a change in sign. This implies that sλ(x) is a symmetric polynomial.

We now state the classical Jacobi-Trudi identities which relates Schur polynomials to the
elementary symmetric and homogeneous symmetric polynomials.

I Theorem 24 (Jacobi-Trudi identities).
(1) sλ(x) = det(hλi−i+j(x))1≤i,j≤`, where λ = (λ1, . . . , λ`).
(2) sλ(x) = det(eλ′

i
−i+j(x))1≤i,j≤m, where λ′ is the conjugate of λ and m = l(λ′) .

In particular,

sλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hλ1 hλ1+1 . . . hλ1+`−1

hλ2−1 hλ2 . . . hλ2+`−2

...
...

. . .
...

hλ`−`+1 hλ`−`+2 . . . hλ`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
`×`

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eλ′1 eλ′1+1 . . . eλ′1+m−1

eλ′2−1 eλ′2 . . . eλ′2+m−2

...
...

. . .
...

eλ′m−m+1 eλ′m−m+2 . . . eλ′m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
m×m

Note that the identity depends only on the properties of λ (i.e. ` or m) and does not depend
on the number of variables n.

I Theorem 25. For any λ, sλ(x) can be computed using a small ABP, hence by a small
algebraic circuit.

Proof. For polynomials P,Q ∈ C[x1, x2 . . . xn] such that both P and Q have small ABPs,
then by Lemma 9; R = P

Q also has a small ABP. Homogenization or interpolation can be
used to extract the required polynomial without much blow up. Here both aλ+δ(x), aδ(x)
have small ABPs (as they are small determinants), thus sλ(x) has an ABP of polynomial
size which also implies that is has an algebraic circuit of polynomial size. J

It is well-known that aδ(x), also known as the Principal Vandermonde Determinant, has
a small algebraic formula. However much less is known about the complexity of aλ+δ(x).
These polynomials are also known as Generalized Vandermonde determinants and are well
studied (see for instance [18]). To the best of our knowledge, before this work it was not
known whether for all λ, aλ+δ(x)s have small formulas. Suppose they did, then by Lemma 9,
we get that sλ(x) also have small formulas for all λ. In this paper we show that there exists
some λ for which sλ(x) does not have a small formula unless the Determinant has a small
formula. This in particular implies that there exist λ such that aλ+δ(x) cannot be computed
using small formulas (unless the Determinant can be computed by a small formula).
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4 Proofs of main results

4.1 Proof of Lemma 4
We start with the following definition, which is crucial for our proofs.

I Definition 26 (Property S). A set of n-variate polynomials {q1, q2, . . . , qk} ⊆ C[x] is said
to satisfy Property S, if there exists an a ∈ Cn such that

For all i ∈ [k], qi(a) = 0, and,
The rank of the Jacobian matrix of q1, q2, . . . , qk when evaluated at a is equal to its
symbolic rank, i.e. rankC (J (q1, q2, . . . , qk)(a)) = rankC(x) (J (q1, q2, . . . , qk)).

Property S gives us a concrete way to capture an appropriate notion of niceness of a set of
algebraically independent polynomials. The following lemma which uses this notion is a key
technical ingredient of our proofs.

I Lemma 27. Let {q1, q2, . . . , qk} ∈ C[x1, x2, . . . , xn] be a set of algebraically independent
polynomials which satisfy Property S. Let g ∈ C[z1, z2, . . . , zk] be a homogeneous k-variate
polynomial of degree equal to d such that the composed polynomial g(q1, q2, . . . , qk) ∈ C[x]
has an algebraic formula of size s and depth ∆. Then, g(z1, z2, . . . , zk) can be computed by
an algebraic formula of size O(s2n) and depth ∆ +O(1).

Proof. Let Φ be the formula of size s which computes the polynomial g (q1(x), q2(x), . . . , qk(x)).
Since q1, q2, . . . , qk satisfy Property S, there is an a ∈ Cn such that q1(a) = q2(a) = · · · =
qk(a) = 0 and rankC (J (q1, q2, . . . , qk)(a)) = rankC(x) (J (q1, q2, . . . , qk)). Moreover, since
they are algebraically independent, the rank of (J (q1, q2, . . . , qk)(a)) is equal to k. Thus,

rankC (J (q1, . . . , qk)(a)) = k .

Applying Corollary 14 to each qi(x) around this point a ∈ Cn, we get

qi(a + x) =
n∑
j=1

xj ·
∂qi
∂xj

(a) mod 〈x〉2 .

Observe that ith row of the matrix (J (q1, q2, . . . , qk)(a)) is the vector(
∂qi

∂x1
(a), ∂qi

∂x2
(a), · · · , ∂qi

∂xn
(a)
)
and by the choice of a, these vectors are linearly independent.

Thus, the homogeneous linear forms u1(x), u2(x), . . . , uk(x) are linearly independent, where
ui(x) is defined as

ui(x) =
n∑
j=1

xj ·
∂qi
∂xj

(a) .

The rest of the proof follows immediately from the following two claims. We state the claims
and use them to complete the proof of this lemma, and then move on to prove the claims.

B Claim 28. Let d be the degree of g(x). Then, the homogeneous component of degree d of
the polynomial g(q1, q2, . . . , qk) is equal to g(u1, u2, . . . , uk).

B Claim 29. If g(u1, u2, . . . , uk) has a formula of size s′ and depth ∆, then g(z) has a
formula of size at most s′n and depth ∆ +O(1).

To complete the proof of the lemma, observe that given the formula Φ of size at most s
and depth at most ∆ which computes g(q1, q2, . . . , qk), we know from Lemma 8 that the
homogeneous component of degree d of g(q1, q2, . . . , qk) can be computed by a formula Φ1
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of size at most O(s2) and depth at most ∆ + O(1). Moreover, from the homogeneity of
g and Claim 28, we also know that Φ1 computes the polynomial g(u1, u2, . . . , uk), where
u1, u2, . . . , uk are linearly independent linear forms. Thus, from Claim 29, this implies that
g(z1, z2, . . . , zk) has a formula of size at most O(s2n) and depth ∆ +O(1). This completes
the proof of the lemma, modulo the two claims which we prove next. J

Proof of Claim 28. Let f1, f2, . . . , fk ∈ C[x] be polynomials which are zero modulo 〈x〉2 (i.e.
every monomial in f1, f2, . . . , fk has degree at least 2) such that for every i, qi(a + x) =
ui(x) + fi(x). Since g is a homogeneous polynomial of degree d, it can be expressed as

g(z) =
∑

b∈Nk,|b|1=d

αbzb ,

for field constants αb. Let b ∈ Nk be any vector such that |b|1 = d. Observe that the
homogeneous component of degree d of the polynomial

k∏
j=1

qj(a + x)bj =
k∏
j=1

(uj(x) + fj(x))bj

is equal to
∏k
j=1 u

bj

j . Thus, by linearity, the homogeneous component of degree d of

g (q1(a + x), q2(a + x), . . . , qk(a + x)) =
∑

b∈Nk,|b|1=d

αb ·
k∏
j=1

(qj(a + x))bj

equals

∑
b∈Nk,|b|1=d

αb ·
k∏
j=1

(uj)bj ,

which, in turn is the equal to the polynomial g(u1, u2, . . . , uk). C

Proof of Claim 29. The idea for the proof of this claim is to show that each variable xj
can be replaced by a homogeneous linear form `j(z) in the variables z such that for every
i ∈ [k], the linear form ui satisfies ui(`1(z), `2(z), . . . , `n(z)) = zi. Thus, under this linear
transformation, the composed polynomial g(u1(x), u2(x), . . . , uk(x)) ∈ C[x] gets mapped
to the polynomial g(z1, z2, . . . , zk). Once we can show an existence of these linear forms
`1, `2, . . . , `n, the bounds on the formula size and depth follow immediately since all we need
to do to obtain a formula for g(z) is to replace every occurrence of a variable in x, e.g xj by
the linear form `j(z). Since every such linear form has a formula of size at most k and depth
O(1), this process blows up the formula size by a multiplicative factor of at most O(k) and
the depth by an additive factor of O(1).

Intuitively, to obtain these linear forms, we just solve the system of linear equations
U · xT = zT , where U is the k × n matrix whose ith row is ui. Since the rank of U is equal
to k, let U ′ be an invertible k × k submatrix of U , and let V be the inverse of U ′ and let
v1, v2, . . . , vk be the rows of V . Moreover, for brevity, let us assume that U ′ consists of the
first k columns of U . Observe that (V · U) is a k × n matrix such that its leftmost k × k
sub-matrix is the identity matrix. We are now ready to define the linear forms {`j : j ∈ [n]}.
For j ∈ [k], let `j(z) be equal to vj(z) and for j > k, `j(z) is defined to be zero. It is
straightforward to check that this definition satisfies the desired property and we skip the
details. C
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4.2 Formula complexity of Schur polynomials
We are now ready to prove Theorem 3. Our first stop, which we reach in the next two
lemmas, is to show that which shows that the elementary symmetric polynomials of degree
at most n− 1 on n variables are well behaved. We start by establishing a sufficient condition
for their Jacobian matrix to have full rank at a point.

I Lemma 30. Let x = (x1, x2, . . . , xn) be an n-tuple of variables. Let J(x) be the Jacobian
of e1(x), e2(x), . . . , en−1(x), and let b = (b1, b2, . . . , bn) ∈ Cn be such that for all i 6= j,
bi 6= bj. Then,

rankC(x) (J(x)) = rankC(J(b)) = n− 1 .

Proof. Using Fact 21, we can observe that the n-variate polynomials e1(x), e2(x), . . . , en−1(x)
are algebraically independent. Therefore, from Theorem 12 we know that rankC(x) (J(x)) is
equal to n− 1.

Let J ′(x) be any n− 1×n− 1 submatrix of J(x) of rank equal to n− 1 and by symmetry
we can assume that the columns in J ′(x) come from the first n− 1 columns of J(x). Thus,
for i, j ∈ [n − 1], the (i, j) entry of J ′(x) is equal to ∂ei

∂xj
. We now show that the rank of

J ′(b) over C is equal to n− 1 and this would complete the proof. To this end, we observe
that the determinant of J ′(x) is a non-zero scalar multiple of

∏
i,i′∈[n−1],i6=i′(xi − xi′). Since

the coordinates of b are all distinct, this determinant remains non-zero on b.
From the definition of J ′(x), we know that the entries in its ith row are homogeneous

polynomials of degree equal to i− 1. Thus, det(J ′(x)) is a homogeneous polynomial in x of
degree equal to

0 + 1 + 2 + · · ·+ n− 2 = (n− 2)(n− 1)
2 .

Recall that the (i, j) entry of J ′(x), is equal to ∂ei

∂xj
, which is equal to

∑
S⊆[n]/{i}

∏
k∈S xk.

Thus, if we replace every occurrence of the variable xi by the variable xi′ for i 6= i′ ∈ [n− 1],
then columns i, i′ in J ′(x) become identical, and hence det(J ′(x)) is identically zero. Thus,
by Lemma 15, (xi − xi′) is a factor of det(J ′(x)). Also, for any two distinct sets {i1, i′1} and
{i2, i′2} where i1 6= i′1 and i2 6= i′2, the polynomials (xi1 − xi′1) and (xi2 − xi′2) do not share
a non-trivial divisor. Thus, the determinant of J ′(x) must be divisible by the polynomial∏
i,i′∈[n−1],i6=i′(xi − xi′). Moreover, we observed that the degree of determinant of J ′(x) is

equal to (n−2)(n−1)
2 , which is also equal to the degree of

∏
i,i′∈[n−1],i6=i′(xi − xi′). Thus, they

must be non-zero scalar multiples of each other. This observation, together with the fact
that the coordinates of b are all distinct, shows that det(J ′(x)) is non-zero at b and hence,
rank(J(b)) equals n− 1 over C. J

We now use Lemma 27 to show that e1(x), e2(x), . . . , en−1(x) satisfy Property S, where n is
the number of variables.

I Lemma 31. Let x = (x1, x2, . . . , xn) be an n-tuple of variables. Then, the set of elementary
symmetric polynomials of degree at most n− 1 on x, i.e. the set {e1(x), e2(x), . . . , en−1(x)}
of polynomials satisfies Property S.

Proof. Let a = (1, ω, ω2, . . . , ωn−1), where ω is the primitive nth root of unity. So, we have
the following identity

zn − 1 =
n∏
i=1

(z − ωi−1) .
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However, from Fact 17, we also know that zn − 1, which equals
∏n
i=1(z − ai) can be

expressed as
n∏
i=1

(z − ai) = zn − c1 · zn−1 + c2 · zn−2 − · · ·+ (−1)ncn ,

where ci = ei(a). Comparing these two expressions for zn − 1, we get that for all 1 ≤ i < n,
ci = ei(a) = 0 . Thus, a = (1, ω, ω2, . . . , ωn−1) is a common zero of e1, e2, . . . , en−1, which
satisfies the first item in Definition 26. Moreover, since ω is a primitive nth root of one, we
also know that for all pairs i 6= j, ai 6= aj . Therefore, by Lemma 30, a satisfies the second
condition in Definition 26. Thus, the n-variate polynomials e1(x), e2(x), . . . , en−1(x) satisfy
Property S. J

We now observe that analogous statements are also true for homogeneous symmetric polyno-
mials and power symmetric polynomials as well.

I Lemma 32. Let x = (x1, x2, . . . , xn) be an n-tuple variables. Then the set of complete
symmetric polynomials of degree at most n− 1 on x, i.e. the set {h1(x), h2(x), . . . , hn−1(x)}
of polynomials satisfies Property S. Similarly, the set {p1(x), p2(x), . . . , pn−1(x)} of power
symmetric polynomials of degree at most n− 1 also satisfies Property S.

Proof sketch. The proof goes via generating functions of ei, hi, pi and the relations among
them. We denote the generating function of ei, hi, pi by E(t), H(t), P (t) respectively. The
following relations are known between these polynomials. (See for instance [28].)

E(t) =
∏
i≥1

(1 + xit) =
∑
k≥0

ekt
k

H(t) =
∏
i≥1

1
1− xit

=
∑
k≥0

hkt
k

P (t) =
∏
i≥1

xi
1− xit

=
∑
k≥1

pkt
k−1

It is easy to see that E(−t)H(t) = 1. Therefore we get,

H(t) = 1
E(−t) = 1

1− e1t+ e2t2 . . .+ (−1)nentn
(1)

From Lemma 31, we know there exists a point a = (a1, a2, . . . , an), where e1(a), e2(a), . . . ,
en−1(a) vanish and en(a) is non-zero. We evaluate the above equation at the same a. We
denote the above evaluation by H(t)|x=a.

H(t)|x=a = 1− (−1)nen(a)tn + ((−1)nen(a)tn)2 . . .

Observing the equation for H(t)|x=a, it follows that at point a , h1(a), h2(a), . . . , hn−1(a)
are zero and hn(a) is non-zero. An analogous relation between P (t) and E(t), given by

P (t) = E′(−t)
E(−t) ,

where E′(−t) is the first derivative of E(−t) with respect to t, can be used to show that the
power symmetric polynomials p1(a), . . . , pn−1(a) are zero and pn(a) is non-zero.

Thus, we are halfway towards showing that the set of power symmetric polynomials of
degree at most n− 1 and homogeneous symmetric polynomials of degree at most n− 1 also
satisfy Property S. It remains to be argued that the rank of the Jacobian of these polynomials
at a is equal to n− 1. The proof is analogous to the argument for the elementary symmetric
polynomials, as in the proof of Lemma 31. We skip the remaining details for brevity. J
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From Definition 26 of Property S and Theorem 12, it follows that is a set A of polynomials
satisfies Property S, then all the non-empty subsets of A also satisfy Property S. Thus, we
have the following corollary of Lemma 31 and Lemma 32.

I Corollary 33. Let i1 < · · · < ik < n be positive integers. Consider the sets E =
{ei1(x), . . . , eik (x)} and H = {hi1(x), . . . , hik (x)} of elementary and homogeneous symmetric
polynomials respectively in n > ik variables. Then both E and H satisfy property S.

We are now ready to prove the main theorem.

I Theorem 34 (Main theorem). Let λ = (λ1, . . . , λ`) be a partition of d such that λi ≥
λi+1 + (` − 1) for all i ∈ [` − 1], and λ` ≥ `. Then, for all n, such that n ≥ λ1 + `, if
sλ(x1, . . . , xn) has an algebraic formula of size s and depth ∆, then the `× ` determinant
(det`) has an algebraic formula of size poly(s) and depth ∆ +O(1).

Proof. We use Jacobi-Trudi Identity from Theorem 24, which expresses sλ(x) in the form of
homogeneous symmetric determinant.

sλ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

hλ1 hλ1+1 . . . hλ1+`−1

hλ2−1 hλ2 . . . hλ2+`−2

...
...

. . .
...

hλ`−`+1 hλ`−`+2 . . . hλ`

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let Mλ denote the matrix on the right hand side in the above equality. By our choice of λ,
observe that the highest degree entry of Mλ is hλ1+`−1, which has degree at most n− 1, and
the lowest degree entry of Mλ is hλ`−`+1 which for λ` ≥ ` has degree at least 1. Moreover,
from the choice of λ, it also follows that all the entries of Mλ are distinct.

From Lemma 32, we know that there exists a point a for which the n-variate polynomials
{h1(x), h2(x), . . . hn−1(x)} satisfy the Property S, where n can be taken to be strictly greater
than `2. Thus, now if we take the `2-variate homogeneous polynomial g to be the symbolic
determinant of an `× ` matrix, then sλ is obtained by a composition of g with a subset of
polynomials h1, h2, . . . , hn−1.

Thus, by Lemma 27, we get that if g(h1(x), h2(x), . . . h`2(x)) (i.e sλ) has an algebraic
formula of size s and depth ∆, then g(x1, x2, . . . x`2) also has a small formula of size poly(s)
and depth ∆ +O(1) . J

I Remark 35 (Contrasting hard and easy λs). Let λ = (`2, `2 − `, . . . , 2`, `, 0, 0, . . . , 0, 0, 0) and
let λ̃ = (n`, (n− 1)`, . . . , `2, `2 − `, . . . , 3`, 2`, `), where we will take n ≥ `2 + ` and ` > 0. It
is easy to see that λ̃ forms an arithmetic progression in which the difference between the
successive terms is `. Whereas λ is a truncated arithmetic progression, in which n− `-many
elements are zeroes and the non-zero elements form an arithmetic progression.

Here the structure of λ and λ̃ is quite similar, but the algebraic complexities of sλ and
sλ̃ are different. In particular, Theorem 34 is applicable to λ. Therefore we can conclude
that sλ does not have a small algebraic formula unless the determinant has a small algebraic
formula.
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On the other hand, there are small formulas for sλ̃. To see this, observe that λ̃ + δ =
((n− 1)(`+ 1) + `, (n− 2)(`+ 1) + `, . . . , (`+ 1) + `, `), which is also an arithmetic progression
in which the difference between successive terms is `+ 1. Therefore, we have

aλ̃+δ =

∣∣∣∣∣∣∣∣∣∣
x`1 x`2 . . . x`n
x

(`+1)+`
1 x

(`+1)+`
2 . . . x

(`+1)+`
n

...
...

. . .
...

x
(n−1)(`+1)+`
1 x

(n−1)(`+1)+`
2 . . . x

(n−1)(`+1)+`
n

∣∣∣∣∣∣∣∣∣∣
n×n

aλ̃+δ =
( n∏
i=1

x`i

) ∣∣∣∣∣∣∣∣∣∣
1 1 . . . 1

x`+1
1 x`+1

2 . . . x`+1
n

...
...

. . .
...

x
(n−1)(`+1)
1 x

(n−1)(`+1)
2 . . . x

(n−1)(`+1)
n

∣∣∣∣∣∣∣∣∣∣
n×n

sλ̃ =

(∏n
i=1 x

`
i

) ∏
i<j

(x`+1
j − x`+1

i )∏
i<j

(xj − xi)

In the above expression the numerator and denominator have small formulas and therefore
using Lemma 9 we get that sλ̃ has a small formula of size poly(`, n).

4.2.1 Generalization to Skew Schur Polynomials
A straightforward generalization of the previous result is to prove that a class of skew Schur
polynomials(defined in [28]) also hard for formulas. They can be defined via a Jacobi-Trudi
like formula.

I Theorem 36. Let µ and λ be partitions with µi ≤ λi for every part i. Then, the skew
Schur polynomial sλ/µ satisfies
(1) sλ/µ = det(hλi−µj−i+j)1≤i,j≤k where k = l(λ).
(2) sλ/µ = det(eλ′

i
−µ′

j
−i+j)1≤i,j≤k where k = l(λ′).

From these definitions of skew Schur polynomials, we can see that they also have ABPs
of polynomial size, like Schur polynomials. However, skew Schur polynomials are in general
linear combinations of Schur polynomials, by the Littlewood-Richardson rule

sλ/µ =
∑

ν`n−m

cλµ,νsν .

The Littlewood-Richardson coefficients cλµ,ν count tableau whose Young diagram is of shape
λ/µ and whose content satisfy certain technical conditions. They are also important in
representation theory as they describe how Schur polynomials multiply, or equivalently
how a tensor product of polynomial GL(n) representations decomposes into irreducible
representations. They are also known to be #P-hard to compute [29].

Hardness of skew Schur polynomials assuming hardness of determinant follows from the
following lemma, Corollary 33 and Lemma 27.

I Lemma 37. Let l ≥ 2 and µ1 ≥ 1 be positive integers. Let λ, µ be partitions with l parts
with λi = (l − (i− 1))l + µ1 and µi = µ1 for all i < l and µl = µ1 − 1. Then all entries of
the homogeneous Jacobi-Trudi determinant sλ/µ are distinct.
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Proof. For simplicity, we call the integer k the label of the homogeneous symmetric poly-
nomial hk. Here, the (i, j) entry of the matrix is h(l−(i−1))l−i+j for 1 ≤ j < l and
h(l−(i−1))l+1−i+j for j = l. Hence, for a fixed row i, all entries are distinct and the la-
bels increase from left to right. Furthermore,

(l − i)l + 1− (i+ 1) + l = (l − i)(l − 1) + 1− i < l(l − (i− 1))− i+ 1

so the label of the last entry of row (i+ 1) is strictly less than the label of the first entry of
row i. Hence, all entries of the Jacobi-Trudi determinant are distinct. J

4.3 Extensions of the results of Bläser and Jindal [1]

Shifted variants for formulas

A fairly direct consequence of our techniques is the following theorem which can be considered
a partial generalization of the result of Bläser-Jindal [1] for algebraic formulas.

I Theorem 38. There exist field constants a1, a2, . . . , an such that the following is true: if for
an n-variate homogeneous polynomial g over C, the composition g(e1 − a1, . . . , en − an) has
a formula of size at most s, then the polynomial g(y) has a formula of size at most O(s2n).

Proof. We will primarily use Lemma 27 to prove the above theorem. Note that the set
{e1 − a1, . . . , en − an} continue to be algebraically independent as the Jacobian matrix
J (e1− a1, . . . , en− an) = J (e1, . . . , en). Recall that (e1 . . . en) are algebraically independent
over n variables and thus has a full rank Jacobian matrix, which also implies the algebraic
independence of (e1 − a1, . . . , en − an) using Theorem 12. The next step would be to find
a point c where ei(c)− ai is zero for all i. We also need to make sure that at point c the
J (e1 − a1, . . . , en − an) matrix has full rank. It is easy to verify that the determinant of
J (e1 − a1, . . . , en − an) is a polynomial of degree

(
n
2
)
. As per our assumption, the field

we use is quite large, in fact much larger than n2. Thus, from the Polynomial Identity
lemma, we know that over every large enough set S ⊆ C, there exists a point c ∈ Sn

at which the determinant of J (e1 − a1, . . . , en − an) is non-zero and hence, the matrix
J (e1 − a1, . . . , en − an)(c) is full rank. By setting ai = ei(c) for all i, {e1 − a1, . . . , en − an}
satisfy the Property S mentioned in Definition 26 for point c. The proof of this theorem is
now an immediate corollary of Lemma 27. J

The proof above gives a slightly stronger statement than what is stated in Theorem 38.
Moreover, the statement of Theorem 38 holds for many such a1, a2, . . . , an. To see this,
note that the only property that the proof above uses about a1, a2, . . . , an is that a =
(a1, a2, . . . , an) is a point in the image of the polynomial map σ from Cn to Cn which is given
by mapping y ∈ Cn to (e1(y), e2(y), . . . , en(y)) such that there is a point c in the pre-image
of a where the Jacobian J (e1 − a1, . . . , en − an)(b) (which is equal to J (e1, . . . , en)(b))
is full rank. Now, observe that the map σ is invertible. To see this, note that σ can be
thought of as mapping n roots b1, b2, . . . , bn of the univariate polynomial

∏n
i=1(z − bi) to its

coefficients, and hence its inverse is the map which maps the n coefficients of a monic degree
n polynomial to its roots.

Thus, if we take b to be a random point from a large enough grid, then the Jacobian
J (e1 − a1, . . . , en − an) has rank n with high probability. Moreover, whenever this event
happens, Theorem 38 holds with a being set to be the image of b under σ.
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Generalizing the results in [1] to other bases
We know that the fundamental theorem of symmetric polynomials also holds for other bases
and not just for elementary symmetric basis. For any given n-variate symmetric polynomial
fsym, Bläser-Jindal efficiently finds f such that fsym = f(e1, e2 . . . en). The degree of f is
also given apriori. We generalize the Bläser-Jindal work to other bases such as homogeneous
symmetric base and power symmetric base efficiently. In order to prove that, we need to
show there exists an efficient transformation which can represent any elementary symmetric
polynomial in the form of homogeneous symmetric or power symmetric polynomial. The
following lemma illustrates that.

I Lemma 39. Any n-variate elementary symmetric polynomial of degree k can be written
as an algebraic combination of homogeneous symmetric polynomials (or power symmetric
polynomials) using a small formula.

Proof. It is well known that these transformations are doable using ABP of polynomial size
as the transformation uses small determinants [28] . We prove the same for formula. Recall
that E(t)H(−t) = 1

E(t) = 1
H(−t) = 1

1− h1t+ h2t2 . . .+ (−1)nhntn
= 1

1− z =
∑
i≥0

zi

where z = h1t− h2t
2 . . .+ (−1)n−1hnt

n.

Consider the truncated polynomial A(t) = E(t) mod 〈z〉k+1, where 〈z〉 is the ideal
generated by z. Now we use interpolation to find the coefficient of tk in the polynomial A(t),
which is precisely ek. A(t) can have degree at most nk, which implies a formula size of O(nk)
for A(t) (assuming the field to be algebraically closed). But, k ≤ n, hence the trivial formula
complexity for expressing ek in the form of hi’s is O(n4) using Lemma 8.

From the definition of the generating functions P (t) and E(t), it is easy to verify that

E(t) = e
∫
P (−t)dt = e

∫
(
∑

m≥1
pmt

m−1)dt = e
(
∑

m≥1
pmtm

m! ) = 1 + q + q2

2! . . . ,

where q =
∑
m≥1

pmt
m

m! .
Now we consider the truncated polynomial containing degree up to qk and interpolate this

polynomial to get the coefficient of tk. The formula complexity for expressing ek as power
symmetric polynomials is O(n4). Also, the proof outline is very similar to the homogeneous
symmetric case. J

I Theorem 40 (Bläser-Jindal for other bases). For any n-variate symmetric polynomial
fsym ∈ C[x], we can efficiently compute the polynomials fE , fH , fP ∈ C[x] that are n-variate
and unique s.t fsym = fE(e1, e2 . . . en) = fH(h1, h2 . . . hn) = fP (p1, p2 . . . pn).

Proof. Bläser-Jindal proves that fE can be efficiently computed using an algebraic circuit.
They prove that the circuit size for computing fE is bounded by O(d2S(fsym)+poly(n, d))
where d is the degree of fE , S(fsym) denotes the circuit size of fsym and n is the number
of working variables. We extend their work for computing fH and fP . To prove that, we
shall use Bläser-Jindal method as a black box. We use Bläser-Jindal technique and get the
circuit for fE . We denote this circuit by CfE

. CfE
can be visualized as a circuit having

elementary symmetric polynomials(ei’s) as its input. But, from Lemma 39, we know ei’s can
be uniquely expressed in the form of hi’s and pi’s using a formula of polynomial size. We
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denote the modified circuit as CfH
after transforming ei’s to hi’s in CfE

. The output of CfH

is fH because hi’s are algebraically independent and also satisfy fundamental theorem of
symmetric polynomials. The proof for fP is similar. Thus fH and fP can still be computed
using a circuit of size O(d2S(fsym)+poly(n, d)) as the transformation just adds some poly
factor to the previously calculated size. J

Bläser-Jindal method works for the circuit and we do not know whether it works for
ABPs or formula. If it works for ABP, then the basis transformation is trivial using a small
determinant (i.e a small ABP). If it works for formula, then Theorem 40 would be useful to
extend the notion for other bases while still staying in the formula regime.

4.4 Partial derivatives of a product of algebraically independent
polynomials

We digress a little in this section to discuss another application of the ideas used in the
proof of Lemma 27 to a question of Amir Shpilka on the partial derivative complexity of a
product of algebraically independent polynomials. We start with the definition of the partial
derivative complexity.

I Definition 41. The partial derivative complexity of a polynomial P ∈ C[x] is the dimension
of the linear space of polynomials over C spanned by all the partial derivatives of P .

The following question was asked by Amir Shpilka and our techniques provide a partial
answer. As far as we are aware, the general question remains open.

I Question 42 (Shpilka). Let g1, g2, . . . , gk ∈ C[x] be algebraically independent polynomials.
Then, prove (or disprove) that the partial derivative complexity of the the product

∏k
i=1 gi(x)

is at least exp(Ω(k)).

A canonical example of polynomials satisfying the hypothesis is when gi(x) = xi. Thus, the
product polynomial

∏k
i=1 gi(x) is equal to the monomial x1 · x2 · · ·xk, and indeed the partial

derivative complexity of this monomial is at least 2k, since for every S ⊆ [k], the monomial∏
i∈S xi is a partial derivative and these monomials are all linearly independent over C .

Thus, in general, we cannot hope for a better lower bound on the partial derivative complexity
of such polynomials. Using our techniques, we observe the following two statements which
answer special cases of this question.

I Theorem 43. Let g1, g2, . . . , gk ∈ C[x] be algebraically independent polynomials which
satisfy Property S. Then, the partial derivative complexity of

∏k
i=1 gi(x) is at least 2k.

I Theorem 44. Let g1, g2, . . . , gk ∈ C[x] be algebraically independent polynomials. Then,
there are field constants a1, a2, . . . , an such that the partial derivative complexity of∏k
i=1 (gi(x) + ai) is at least 2k.
In fact, the lower bound holds for almost all choices of a1, a2, . . . , ak.

The following observation essentially follows from the definition of Property S (Definition 26)
and Theorem 13. The proof is also implicit in the proof of Lemma 27.

I Observation 45. Let q1(x), q2(x), . . . , qk(x) ∈ C[x] be algebraically independent polynomi-
als which satisfy Property S. Then, there is an a ∈ Cn such that the degree zero homogeneous
component of the the polynomials q1(x + a), q2(x + a), . . . , qk(x + a) are all zero, and their
homogeneous components of degree one are all linearly independent.

Theorem 43 and Theorem 44 are essentially immediate consequences of Observation 45 and
some standard properties of partial derivatives, which we now discuss.

CCC 2020



14:24 Formula Complexity of Schur Polynomials

I Lemma 46. Let P ∈ C[x] be a polynomial. Then,
1. For every a ∈ Cn, the partial derivative complexity of P is equal to the partial derivative

complexity of P (x + a). More generally, the partial derivative complexity is invariant
under invertible linear transformation of variables.

2. Let i be the degree of the lowest degree homogeneous component of P which is non-zero
and let Pi denote this homogeneous component. Then, the partial derivative complexity
of P is at least as large as the partial derivative complexity of Pi.

3. The partial derivative complexity of a product of k linearly independent homogeneous
linear forms is at least 2k.

We briefly sketch the main ideas in the proof.

Proof Sketch. For the first item, we prove the statement for first order partial derivatives.
The argument easily extends to higher order derivatives as well. By the chain rule, ∂P (x+a)

∂xi

equals ∂P (x+a)
∂(xi+ai) ·

∂(xi+ai)
∂xi

. Observe that this is equal to the polynomial obtained by taking
the partial derivative ∂P (x)

∂xi
of the original polynomial and then shifting the variables by a,

i.e. replacing xj by xj + aj for every j. Thus, the linear space spanned by the first order
partial derivatives of P (x + a) is equal to the linear space obtained by taking the space of
first order partial derivatives of P (x) and shifting the variables by a. It is not hard to see
that this preserves the dimension of the space. The proof of the moreover part needs a bit
more care, but follows similarly.

For the second item, observe that for any set of polynomials {Q1, Q2, . . . , Qt}, the
dimension of the linear span of {Q1, Q2, . . . , Qt} is at least as large as the dimension of
the linear span of the lowest degree non-zero homogeneous components of Q1, Q2, . . . , Qt.
Also, observe that for any monomial xb, if the partial derivative ∂Pi

∂xb is non-zero, then the
lowest degree non-zero homogeneous component of ∂P

∂xb equals ∂Pi

∂xb . Now, let S be the set of
monomials such that the space of partial derivatives of Pi with respect to monomials in S is
a basis for the linear space of all partial derivatives of Pi. From the two earlier observations
in this paragraph, it follows that the derivatives of P with respect to monomials in the set S
are all linearly independent, thereby implying the desired lower bound.

The third item is an immediate consequence of the observation that the partial derivative
complexity of the monomial

∏k
i=1 xi is equal to 2k and the “moreover” part of the first item

of this lemma, which says that partial derivative complexity is invariant under invertible
linear transformations. J

We now sketch the main ideas in the proof of Theorem 43.

Proof of Theorem 43. The goal is to prove a lower bound on the partial derivative com-
plexity of the polynomial

∏k
i=1 qi(x). Let a ∈ Cn be the point guaranteed by Observation 45.

Thus, q1(x + a), q2(x + a), . . . , qk(x + a) are all zero, and their homogeneous components of
degree one are all linearly independent. From the first item of Lemma 46, we know that it
suffices to prove a lower bound on the partial derivative complexity of

∏k
i=1 qi(x + a).

The claim now is that the lowest degree homogeneous component of
∏k
i=1 qi(x + a) of

which is non-zero is the homogeneous component of degree equal to k, and this is equal to the
product of the homogeneous components of degree one of q1(x + a), q2(x + a), . . . , qk(x + a).
This immediately follows from Claim 28 in the proof of Lemma 27. But once we have this
claim, the theorem follows from the third item of Lemma 46. We skip rest of the details. J

Theorem 44 follows from observing that we can pick a1, a2, . . . , an so that q1 + a1, q2 +
a2, . . . , qk + ak satisfy Property S. This follows from a similar observation in the proof of
Theorem 38. Once we have this observation, we are back in the setting of Theorem 43.



P. Chaugule, M. Kumar, N. Limaye, C. K. Mohapatra, A. She, and S. Srinivasan 14:25

Before we conclude this section, we note that in order to generalize Theorem 43 and
Theorem 44 to completely answer Question 42 in affirmative, it would suffice to prove the
following conjecture.

I Conjecture 47. For all constants α1, α2, . . . , αk ∈ C and linearly independent homogeneous
linear forms `1, `2, . . . , `k the following is true : if q1, q2, . . . , qk are polynomials such that
their minimum degree non-zero monomial has degree at least two, then the partial derivative
complexity of the polynomial

∏k
i=1(αi + `i + qi) is at least 2k.

If the conjecture is false, a counterexample to the conjecture may be instructive towards
understanding how the partial derivative complexity behaves over taking a product of
polynomials.

5 Open problems

We conclude with some open problems.
(i) Perhaps the most natural question would be to characterize the formula complexity of

all Schur polynomials. As discussed in Remark 35, there exist partitions λ for which
the corresponding sλ have small (polynomial sized) algebraic formulas. On the other
hand, as shown in this work, there exist families of λs which do not have polynomial
sized formulas unless the determinant does. Due to classical results such as [40], we
know that the latter class of λs in fact have formulas of size nO(logn). It would be of
great interest to extend these two results and get a complete characterization of the
formula complexity of sλ, as a function of the partition λ.

(ii) Bläser and Jindal gave a computationally efficient version of the fundamental theorem
for symmetric polynomials. In particular, they showed that if fsym is a symmetric
polynomial computed by a polynomial-sized algebraic circuit then the unique polynomial
fE such that fsym = fE(e1, . . . , en), also has a polynomial-sized algebraic circuit.
A natural question one can ask is: if fsym has a polynomial-sized algebraic formula
(or ABP) then does fE also have a polynomial-sized algebraic formula (ABP resp.)?
In Theorem 38 we take a step towards proving this statement. We show that there
exists a ∈ Cn such that if fsym can be expressed as fE(e1 − a1, . . . , en − an) for a
homogeneous fE then fE has a small algebraic formula if fsym does. To get the exact
Bläser-Jindal-like statement in the formula setting, we would have to improve our result
in two ways. We would have to prove it for general fE rather than for homogeneous fE
and we would have to prove it for a = 0n. We believe that both of these are interesting
directions to pursue.

(iii) Another interesting extension of the results here would be to show that there are families
of Generalized Vandermonde matrices such that circuit complexity of computing their
permanent is essentially as large as the circuit complexity of the Permanent. This
would be a VNP analogue of Theorem 3.

(iv) Yet another interesting direction would be to extend Theorem 43 to answer Question 42
completely.
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