On Nonadaptive Security Reductions of Hitting Set Generators

Shuichi Hirahara
National Institute of Informatics, Tokyo, Japan
s_hirahara@nii.ac.jp

Osamu Watanabe
Tokyo Institute of Technology, Japan
watanabe@c.titech.ac.jp

Abstract

One of the central open questions in the theory of average-case complexity is to establish the equivalence between the worst-case and average-case complexity of the Polynomial-time Hierarchy (PH). One general approach is to show that there exists a PH-computable hitting set generator whose security is based on some NP-hard problem. We present the limits of such an approach, by showing that there exists no exponential-time-computable hitting set generator whose security can be proved by using a nonadaptive randomized polynomial-time reduction from any problem outside AM \cap coAM, which significantly improves the previous upper bound BPP^{NP} of Gutfreund and Vadhan (RANDOM/APPROX 2008 [14]). In particular, any security proof of a hitting set generator based on some NP-hard problem must use either an adaptive or non-black-box reduction (unless the polynomial-time hierarchy collapses). To the best of our knowledge, this is the first result that shows limits of black-box reductions from an NP-hard problem to some form of a distributional problem in DistPH.

Based on our results, we argue that the recent worst-case to average-case reduction of Hirahara (FOCS 2018 [18]) is inherently non-black-box, without relying on any unproven assumptions. On the other hand, combining the non-black-box reduction with our simulation technique of black-box reductions, we exhibit the existence of a “non-black-box selector” for GapMCSP, i.e., an efficient algorithm that solves GapMCSP given as advice two circuits one of which is guaranteed to compute GapMCSP.

2012 ACM Subject Classification Theory of computation \rightarrow Problems, reductions and completeness; Theory of computation \rightarrow Pseudorandomness and derandomization

Keywords and phrases hitting set generator, black-box reduction, average-case complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.15
Category RANDOM

Related Version A full version of the paper is available at https://eccc.weizmann.ac.il/report/2019/025/.

Funding Shuichi Hirahara and Osamu Watanabe: JSPS KAKENHI Grant Number 18H04090 JP
Shuichi Hirahara: Supported by ACT-I, JST.

1 Introduction

The technique of reductions is one of central tools in complexity theory. In order to show that a computational task A is easier than another computational task B, it suffices to design a (black-box) reduction, i.e., the algorithm that solves A given oracle access to B. Most reductions of complexity theory are black-box. That is, the correctness of a reduction can be established without assuming any computational efficiency of the oracle. Black-box reductions are quite powerful and led us to, for instance, the discovery of thousands of NP-complete problems computationally equivalent to each other. However, a line of work
On Nonadaptive Security Reductions of Hitting Set Generators

has exhibited limits of black-box reductions: Black-box reductions are too general to resolve several important open questions. We herein continue the study of black-box reductions especially in the context of the construction of a hitting set generator.

A hitting set generator γ-secure against a class C is a family of functions $G = \{G_\ell : \{0,1\}^{a(\ell)} \rightarrow \{0,1\}^\ell\}_{\ell \in \mathbb{N}}$ such that no C-algorithm can γ-avoid G; here we say that an algorithm R γ-avoids G if R rejects every string in the image of G, and R accepts at least a γ-fraction of all inputs of length ℓ for every $\ell \in \mathbb{N}$. By default, we assume $\gamma := 1/4$ and we say that R avoids G if R avoids G. A typical approach for constructing a hitting set reduction that reduces some computationally hard task to the task of avoiding a hitting set generator.

In fact, there have been already several known proof techniques that are not black-box. Impagliazzo and Wigderson [27] constructed a hitting set generator based on the uniform hardness assumption that $\text{EXP} \neq \text{BPP}$. Their security proof of the hitting set generator is not a (black-box) reduction from the task of solving EXP to the task of avoiding the hitting set generator; they crucially exploited the fact that there exists an efficient algorithm that avoids the hitting set generator. Trevisan and Vadhan [36] and Gutfreund and Vadhan [14] showed that the security reduction of [27] is inherently non-black-box in some senses. More recently, building on [10, 22], Hirahara [18] applied the proof techniques for constructing a hitting set generator to the context of average-case complexity, and presented the first non-black-box worst-case to average-case reduction within NP.

Given the fact that there are already non-black-box proof techniques, why should we study the limits of black-box reductions? We highlight several points:

1. Black-box reductions are more general and useful than non-black-box reductions. Therefore, it is desirable to have a black-box reduction when it is possible; studying limits of black-box reductions enables us to identify when one can hope to construct a black-box reduction.

For example, Impagliazzo and Wigderson [27] showed that $\text{EXP} \nsubseteq \text{BPP}$ implies that BPP can be derandomized in sub-exponential time (on most inputs, for infinitely many input lengths). This is shown by a non-black-box reduction, and it is not known whether the result can be generalized to a “high-end” result: does $\text{EXP} \nsubseteq \text{BPSUBEXP}$ imply that BPP can be derandomized in quasi-polynomial time? On one hand, Trevisan and Vadhan [36] used a black-box reduction and provided a positive answer to this question when EXP is replaced with PSPACE. On the other hand, Gutfreund and Vadhan [14] showed that a (mildly adaptive) black-box reduction cannot be used to prove the “high-end” result for EXP.

2. Studying limits of black-box reductions can inspire new black-box reductions. Inspired by this work, Hirahara [21, 20] subsequently presented new constructions of black-box reductions to Kolmogorov complexity, which were previously conjectured to be impossible.

3. Surprisingly, in some cases, the proof techniques for showing limits of black-box reductions can be combined with non-black-box reductions. We will show that one of our new algorithms for simulating black-box reductions can be combined with a non-black-box reduction of [18] (under some assumptions), and present a new structural property of an approximation version of the Minimum Circuit Size Problem (MCSP [28]).

As a main result of this paper, we show that any security proof of a hitting set generator based on some NP-hard problem must use either an adaptive or non-black-box reduction. This is the first limit of black-box worst-case to average-case reductions from NP-hard problems to some form of a distributional problem in DistPH.
Due to the connection to several research areas such as average-case complexity, black-box reductions, and derandomization, it is not easy to describe the literature in few words; we thus review the literature in the subsequent two sections. In Section 2, we review the theory of average-case complexity and state our main results. In Section 3, we review the non-black-box reduction of [18], present some applications of our results, and describe our proof techniques. Due to the space limitation, details are omitted in this version; see the full version of the paper.

2 Average-Case Complexity

2.1 Background

One of the central open questions in the theory of average-case complexity [29] is to establish the equivalence between the worst-case and average-case complexity of NP.

Open Question 1. Does $\text{DistNP} \subseteq \text{AvgP}$ imply $\text{NP} = \text{P}$?

Here DistNP is the class of distributional problems (L, D) (i.e., a pair of a problem and its input distribution) such that $L \in \text{NP}$ and D is an efficiently samplable distribution. AvgP is the class of distributional problems that admit an errorless heuristic polynomial-time scheme [8] (also known as an “average-case polynomial-time algorithm”). Here, for $L \subseteq \{0, 1\}^*$ and $D = \{D_m\}_{m \in \mathbb{N}}$, a distributional problem (L, D) is said to be in AvgP if there exists an algorithm M such that, for every $m \in \mathbb{N}$, given an input x in the support of D_m, and a parameter $\delta > 0$,
1. $M(x, \delta)$ halts in time $\text{poly}(m, 1/\delta)$,
2. $M(x, \delta)$ outputs either the correct answer $L(x)$ or \bot (“I don’t know”), and
3. the probability that $M(x, \delta)$ outputs \bot over a choice of $x \sim D_m$ is at most δ.

Open Question 1 is of particular importance from the perspective of cryptography: Average-case hardness of NP is a prerequisite for constructing secure complexity-theoretic cryptographic primitives such as one-way functions (OWFs). Thus resolving Open Question 1 is an important step towards building cryptographic primitives whose security is based on more plausible assumptions (e.g., the worst-case hardness of NP).

There has been a line of work showing that Open Question 1 cannot be resolved by using either relativizing proof techniques [26], black-box worst-case-to-average-case reductions [11, 9, 2, 7, 6], or error-correcting codes [37].

For large enough complexity classes such as PSPACE and EXP, there is a general technique for converting any worst-case hard function f to some two-sided-error average-case hard function $\text{Enc}(f)$ based on error-correcting codes [35, 36]. Here, the encoded function $\text{Enc}(f)$ is computable in EXP or PSPACE given oracle access to f; thus, the worst-case and average-case complexity of such large complexity classes are known to be equivalent. Viola [37] showed limits of such an approach: $\text{Enc}(f)$ cannot be computed in PH^f; thus, the proof technique of using error-correcting codes is not sufficient to resolve Open Question 1 as well as the following weaker open question:

Open Question 2. Does $\text{DistPH} \subseteq \text{AvgP}$ imply $\text{PH} = \text{P}$ (or, equivalently, $\text{NP} = \text{P}$)?

We mention in passing that Pavan, Santhanam, and Vinodchandran [32] made some progress, by proving that $\text{DistP}^{\text{NP}} \subseteq \text{AvgP}$ implies $\text{NP} = \text{P}$, under the implausible assumption that $\text{NP} \subseteq \text{P}/\text{poly}$.
Note that Open Question 2 is an easier question than Open Question 1, since \(\text{PH} = \text{P} \) is known to be equivalent to \(\text{NP} = \text{P} \). In fact, this well-known equivalence between \(\text{PH} = \text{P} \) and \(\text{NP} = \text{P} \) is shown by using a non-black-box reduction technique\(^2\); as we will explain later, this is one reason why all the previous limits of black-box reductions \([11, 9, 2, 7, 6]\) fail to explain the difficulty of resolving Open Question 2. In this work, we present the first limit of black-box reduction techniques for resolving Open Question 2, thereby clarifying what kind of proof techniques are useful. We emphasize that, while Viola’s result \([37]\) excludes the construction of error-correcting codes within \(\text{PH} \), it does not show limits of black-box worst-case to average-case reduction techniques such as Ajtai’s reduction \([1]\).

One general approach for constructing an (errorless) average-case hard function is to make use of a hitting set generator. Indeed, a hitting set generator \(G \) secure against polynomial-time algorithms naturally induces a hard distributional problem in \(\text{DistNP}^G \): Consider the distributional problem \(\text{Im}(G, \mathcal{U}) \), i.e., the distributional problem of checking whether an input \(x \) is in the image of \(G \), where \(x \) is randomly chosen from the uniform distribution \(\mathcal{U} \).

Since the number of Yes instances of \(\text{Im}(G) \) is small under the uniform distribution, any errorless heuristic algorithm must reject a large fraction of No instances, which gives rise to an algorithm that avoids \(G \). To summarize:

\[G \] \text{ is secure against polynomial-time algorithms.} \]

Fact 3 suggests an approach for resolving Open Question 2: Try to construct a \(\text{PH} \)-computable hitting set generator whose security is based on the worst-case hardness of \(\text{NP} \). How do we compare this approach with the technique based on error-correcting codes \([37]\)?

Our approach is more general, because, given a two-sided-error average-case hard function \(\text{Enc}(f) \), one can construct a pseudorandom generator \(G = \{ G_\ell : \{0,1\}^{\ell-1} \rightarrow \{0,1\}^\ell \}_{\ell \in \mathbb{N}} \) defined as \(G_\ell(z) := (z, \text{Enc}(f)(z)) \) for a seed \(z \in \{0,1\}^{\ell-1} \) \([38]\).

In order to construct a secure hitting set generator based on the hardness of a problem \(L \), we need to argue that, if there exists an efficient algorithm that avoids \(G \), then \(L \) can be solved efficiently. A typical way to establish such an implication is to design black-box reductions from \(L \) to a distinguisher for a hitting set generator. Specifically, for a candidate hitting set generator \(G \), a reduction \(M \) is said to be a black-box reduction from \(L \) to any \(\gamma \)-avoiding oracle \(R \) for \(G \) if, for every input \(x \) and any oracle \(R \) that \(\gamma \)-avoids \(G \), \(M \) computes \(L \) on input \(x \) under the oracle \(R \).

Gutfreund and Vadhan \([14]\) initiated the study of limits of such a black-box reduction, motivated by the question on whether derandomization is possible under uniform assumptions (e.g., \([27, 36]\)). They showed that any polynomial-time randomized nonadaptive black-box reductions to any oracle avoiding an exponential-time-computable hitting set generator \(G \) can be simulated in \(\text{BPP}^\text{NP} \). Unfortunately, their upper bound is too weak to deduce any limit of the approach on Open Question 2 since \(\text{NP} \subseteq \text{BPP}^\text{NP} \). Similarly, it is impossible to deduce any limit of the approach on Open Question 1, because the upper bound becomes trivial when \(G \) is polynomial-time-computable.

\[\text{PH} \subseteq \text{P}^\text{NP} \]

\(^2\) Indeed, if the reduction is black-box, we should have \(\text{PH} \subseteq \text{P}^\text{NP} \), which means that \(\text{PH} \) collapses.
2.2 Our Results: Limits of Security Proof of Hitting Set Generators

We significantly improve the upper bound of [14] to $\text{AM} \cap \text{coAM}$. We also show upper bounds of $\text{NP}/\text{poly} \cap \text{coNP}/\text{poly} \cap S^2_{\text{NP}}$ even if G is not computable.

To state our results formally, let BPP_R^R denote the class of languages solvable by a randomized polynomial-time machine with nonadaptive oracle access to R. In the definition of a black-box reduction M to any γ-avoiding oracle R, the reduction M is not allowed to depend on R. However, we will show that the existence of a randomized nonadaptive black-box reduction from L to any γ-avoding oracle R is equivalent to saying that $L \in \text{BPP}_R^R$ for every oracle R that γ-avoids G. In light of this, the result of Gutfreund and Vadhan [14] can be stated as $\bigcap_R \text{BPP}_R^R \subseteq \text{BPP}_{\text{NP}}$, where the intersection is taken over all oracles R that γ-avoid an exponential-time computable function G. Our main result improves BPP_{NP} to $\text{AM} \setminus \text{coAM}$:

\begin{itemize}
 \item **Theorem 4 (Main).** Let $G = \{G_\ell : \{0,1\}^{s(\ell)} \rightarrow \{0,1\}^\ell\}_{\ell \in \mathbb{N}}$ be any (not necessarily computable) family of functions and $\gamma : \mathbb{N} \rightarrow [0,1)$ be a parameter such that
 \begin{itemize}
 \item there exists a constant $\epsilon > 0$ such that $s(\ell) \leq (1 - \epsilon)\ell$ for all large $\ell \in \mathbb{N}$, and
 \item there exists a constant $c > 0$ such that $\gamma(\ell) \leq 1 - 2^{-c\ell}$ for all large $\ell \in \mathbb{N}$.
 \end{itemize}
 Then,
 \[
 \bigcap_R \text{BPP}_R^R \subseteq \text{NP}/\text{poly} \cap \text{coNP}/\text{poly} \cap S^2_{\text{NP}},
 \]
 where the intersection is taken over all oracles R that γ-avoids G. Moreover, if G can be computed in time $2^{O(\ell)}$, then we also have
 \[
 \bigcap_R \text{BPP}_R^R \subseteq \text{AM} \cap \text{coAM}.
 \]
\end{itemize}

At the core of Theorem 4 is the following two types of algorithms simulating black-box reductions: One is an S^2_{NP}-type algorithm that simulates any query $q \in R$ of length at most $\Theta(\log n)$, and the other is an $\text{AM} \cap \text{coAM}$-type algorithm that simulates any query $q \in R$ of length at least $\Theta(\log n)$. In particular, if G is exponential-time computable, the S^2_{NP}-type algorithm can be replaced with a polynomial-time algorithm and obtain the $\text{AM} \cap \text{coAM}$ upper bound.

Theorem 4 shows that there exists no hitting set generator whose security can be based on the hardness of some NP-hard problem via a nonadaptive reduction (unless $\text{NP} \subseteq \text{coNP}/\text{poly}$). In particular, the approach for Open Question 2 by constructing a PH-computable hitting set generator based on an NP-hard problem must use either an adaptive or non-black-box reduction.

It is worthy of note that Theorem 4 is almost tight from several perspectives: First, it is impossible to extend Theorem 4 to the case of adaptive reductions (unless $\text{PSPACE} = \text{AM}$). Indeed, Trevisan and Vadhan [36] constructed an exponential-time-computable pseudorandom generator based on the intractability of some PSPACE-complete problem, and its security reduction is adaptive and black-box in the sense of Theorem 4. Second, our S^2_{NP}-type algorithm for simulating short queries is completely tight when G is a universal Turing machine. Third, it is possible to construct a hitting set generator based on the hardness of SZK (Statistical

3. The subscript \parallel stands for parallel queries.
4. We state our results in the latter way because this makes our impossibility results stronger. The proof of the equivalence can be found in the full version of the paper.
On Nonadaptive Security Reductions of Hitting Set Generators

Zero Knowledge), which is one of the best lower bound on $AM \cap \text{coAM}$; thus, the $AM \cap \text{coAM}$ upper bound of Theorem 4 cannot be significantly improved. (The details can be found in the full version of the paper.)

2.3 Related Work: Limits of Worst-case to Average-case Reductions within NP

To the best of our knowledge, Theorem 4 is the first result that shows limits of black-box reductions from an NP-hard problem to (some form of) a distributional problem in DistPH. In order to explain this in more detail, we review the previous work on limits of worst-case to average-case reductions within NP.

A natural approach for establishing the equivalence between the worst-case and average-case complexity of NP is by means of black-box reductions. That is, it is sufficient for resolving Open Question 1 to design a reduction that solves some NP-hard problem L, using oracle access to an errorless heuristic algorithm M that solves some distributional problem in DistNP. A line of work has been devoted to explaining why such a black-box reduction technique is too general to establish a worst-case to average-case connection for an NP-complete problem.

Building on the work of Feigenbaum and Fortnow [11], Bogdanov and Trevisan [9] showed that if a worst-case problem L is reducible to some distributional problem in DistNP via a nonadaptive black-box randomized polynomial-time reduction, then L must be in $\text{NP/poly} \cap \text{coNP/poly}$. This in particular shows that the average-case hardness of NP cannot be based on the worst-case hardness of an NP-complete problem using such a reduction technique (unless the polynomial-time hierarchy collapses [39]). Akavia, Goldreich, Goldwasser and Moshkovitz [2, 3] showed that, in the special case of a nonadaptive reduction to the task of inverting a one-way function, the upper bound of [9] can be improved to $\text{AM} \cap \text{coAM}$, thereby removing the advice ‘/poly’. Bogdanov and Brzuska [7] showed that even an adaptive reduction to the task of inverting a size-verifiable one-way function cannot be used for any problem outside $\text{AM} \cap \text{coAM}$. Applebaum, Barak, and Xiao [6] studied black-box reductions to PAC learning, and observed that the technique of [2] can be applied to (some restricted type of) a black-box reduction to the task of inverting an auxiliary-input one-way function (AIOWF), which is a weaker primitive than a one-way function. We summarize the limits of black-box reductions (depicted by \rightarrow) as well as known implications (depicted by \Rightarrow) in Figure 1.

Compared to the previous results on the limits of black-box worst-case-to-average-case reductions within NP, a surprising aspect of Theorem 4 is that it generalizes to any function G that may not be computable (and this is a key property for obtaining the limits of the approach on Open Question 2). Indeed, almost all the previous results [11, 9, 2, 6] crucially exploit the fact that a verifier can check the correctness of a certificate for an NP problem; thus a dishonest prover can cheat the verifier only in one direction by not providing a certificate for a Yes instance. In our simulation algorithms, a verifier cannot compute G and thus cannot prevent dishonest provers from cheating in this way. At a high level, our technical contributions are to overcome this difficulty by combining the ideas of Gutfreund and Vadhan [14] with the techniques developed in [11, 9].

Is it possible to directly deduce some limits of an approach on Open Question 2 from the previous results [11, 9]? No! Recall that, in order to resolve Open Question 2, it suffices to establish a reduction from an NP-complete problem to DistPH (using the non-black-box equivalence between $P = \text{NP}$ and $P = \text{PH}$). The results of [11, 9] crucially rely on the fact that a Yes instance of DistNP is verifiable in polynomial time. If we would like to simulate...
This Work

Figure 1 Average-case complexity and limits of black-box reductions. “$A \rightarrow B$” means that there is no black-box (or oracle-independent) reduction technique showing “$A \Rightarrow B$” under reasonable complexity theoretic assumptions. The security of all cryptographic primitives is with respect to an almost-everywhere polynomial-time randomized adversary.

a black-box reduction to DistNP^A for some oracle A, the simulation protocol of Feigenbaum and Fortnow [11] runs in $\text{NP}^A/\text{poly} \cap \text{coNP}^A/\text{poly}$. Thus, in order to simulate a reduction to $\text{DistSigma}_p^2 \subseteq \text{DistPH}$, the upper bound becomes $\text{NP}_{\text{poly}} \cap \text{coNP}_{\text{poly}}$, which trivially contains NP.

It is also worthy of note that Theorem 4 improves some aspects of all the previous results about limits of black-box reductions within NP. Compared to [9], our results show that the advice “$/\text{poly}$” is not required to simulate black-box reductions to any oracle avoiding an exponential-time-computable hitting set generator. Compared to [2, 6], our results are “improvement” on their results in the sense that the existence of auxiliary-input one-way functions implies the existence of hitting set generators; on the other hand, since the implication goes through the adaptive reduction (from the task of inverting a one-way function to a distinguisher for a PRG) of [16], technically speaking, our results are incomparable with their results.\footnote{We emphasize that we concern the nonadaptivity of reductions used in the security proof of pseudorandom generators. Several simplified constructions of pseudorandom generators G^f from one-way functions f (e.g., [25, 15]) are nonadaptive in the sense that G^f can be efficiently computed with nonadaptive oracle access to f; however, the security reductions of these constructions are adaptive because of the use of Holenstein’s uniform hardcore lemma [24]. Similarly, the reduction of [16, Lemma 6.5] is adaptive. (We note that, in the special case when the degeneracy of a one-way function is efficiently computable, the reduction of [16] is nonadaptive.)} Similarly, our results conceptually improve the result of [23], but these are technically incomparable, mainly because the implication goes through the non-black-box reduction of [18].

3 In Search of Inherently Non-Black-Box Reduction Techniques

Hirahara [18] presented the first non-black-box worst-case to average-case reduction within NP, which is the motivation for this work. Building on [10, 22], Hirahara [18] presented a (nonadaptive) reduction from $\text{Gap}_p \text{MCSP}$ to a distinguisher for a polynomial-time-computable hitting set generator $G^\text{int} = \{G_{2n}^\text{int} : \{0, 1\}^{\tilde{O}(2^n)} \rightarrow \{0, 1\}^{2^n}\}_{n \in \mathbb{N}}$. Here, G^int is a “circuit
On Nonadaptive Security Reductions of Hitting Set Generators

Therefore, the reduction distinguishes the instances No \(x \) such that \(f(x) > \epsilon \) and Yes \(x \) such that \(f(x) \leq \epsilon \). Thus, we obtain a small hitting set \(H \) for the \(U \)-problem \(f \), which is a contradiction to the assumption that \(f \) is a hitting set generator for \(U \).

The idea of the non-black-box reduction of [18] is as follows: Given an input \(M \), we consider a function \(f \) such that \(f \) is hard for \(M \). We construct a hitting set generator \(H \) for \(f \) and use it to construct a hitting set generator for \(M \).

Proof Sketch. The idea of the non-black-box reduction of [18] is as follows: Given an input \(x \in \{0,1\}^n \), take any construction of a pseudorandom generator \(G^a : \{0,1\}^{\ell/4} \rightarrow \{0,1\}^\ell \) based on a worst-case hard function \(x \in \{0,1\}^{\log n} \rightarrow \{0,1\} \).

3.1 Hirahara’s Reduction is Unconditionally Non-Black-Box

Based on Theorem 4, we can argue that the reductions of [18] are inherently non-black-box in a certain formal sense. The reason is that the idea of [18] can be applied to not only time-bounded Kolmogorov complexity but also any other types of Kolmogorov complexity, including resource-unbounded Kolmogorov complexity. Therefore, if this generalized reduction could be made black-box, then (as outlined below) by Theorem 4 we would obtain a finite-running-time algorithm \(S^\text{NP}_2 \) that approximates resource-unbounded Kolmogorov complexity, which is a contradiction.

More specifically, fix any universal Turing machine \(U \), and regard it as a hitting set generator \(U = \{U_x : \{0,1\}^{\ell/2} \rightarrow \{0,1\}^\ell \}_{x \in \mathbb{N}} \). That is, \(U_x \) takes an input \((M,x) \) of length \(\ell/2 \), simulates the Turing machine \(M \) on input \(x \), and outputs \(M(x) \) if the length of the output \(M(x) \) is exactly \(\ell \); otherwise, \(U_x \) outputs 1^\ell.

\(\triangleright \) Claim 5. Suppose that there exists a computable oracle \(R \) that avoids \(U \). Then, there exists a randomized polynomial-time nonadaptive \(R \)-oracle algorithm that approximates \(K_U(x) \).

Proof Sketch. The idea of the non-black-box reduction of [18] is as follows: Given an input \(x \in \{0,1\}^n \), take any construction of a pseudorandom generator \(G^a : \{0,1\}^{\ell/4} \rightarrow \{0,1\}^\ell \) based on a worst-case hard function \(x : \{0,1\}^{\log n} \rightarrow \{0,1\} \).

6 Here we identify a function with its truth table.
Observe that, in the proof above, we crucially used the assumption that R is computable. Can we avoid the assumption and generalize Claim 5 for any R that avoids U? In other words, is there a black-box reduction from approximating $K_U(x)$ to the task of avoiding U? If it is the case, Theorem 4 implies that approximating $K_U(x)$ can be done in S_{NP}^2, which contradicts the undecidability of Kolmogorov complexity. Therefore, we conclude that the reduction of Claim 5 is inherently non-black-box.

3.2 Applications: Non-Black-Box Selector for GapMCSP

As explained in the previous subsection, the non-black-box reductions of [18] cannot be combined with Theorem 4 unconditionally. However, we show that our simulation protocol of black-box reductions can be combined with the non-black-box reductions conditionally, which constitutes a new structural property of GapMCSP – the existence of a “non-black-box selector.”

▶ Theorem 6 (GapMCSP Has a “Non-Black-Box Selector”). For any constant $\epsilon > 0$, there exist some constant $\delta > 0$ and a randomized polynomial-time algorithm that takes as advice two circuits one of which is guaranteed to solve Gap$_\epsilon$MCSP and solves Gap$_\delta$MCSP with high probability.

A selector for a problem L is an efficient algorithm that solves L given oracle access to two oracles one of which is guaranteed to solve; thus, it “selects” the correct answer from the two oracles. The notion of selector exactly characterizes the class of languages for which advice of logarithmic length can be removed [17]. The selector of Theorem 6 is non-black-box in the sense that it requires to take as advice two polynomial-size circuits instead of black-box access to two oracles.

The main building block of the non-black-box selector is our S_{2}^P-type simulation algorithm of Theorem 4. Recall that S_{2}^P is a proof system where two competing provers, one of which is guaranteed to be honest, try to convince a polynomial-time verifier. In our S_{2}^P simulation algorithm of black-box reductions, for each $i \in \{0, 1\}$, the ith prover sends a set R_i; the honest prover sends a set R_i that avoids a hitting set generator G. Then a verifier obtains an oracle $R_0 \setminus R_1$ that avoids G, to which the reduction is guaranteed to work.

Theorem 6 is proved by combining this S_{2}^P-type simulation algorithm with the non-black-box reductions of [10, 18]. The reason why we can combine the non-black-box reductions with our S_{2}^P-type simulation algorithm is that the non-black-box reduction of [18] is, in fact, a size-restricted black-box reduction [14]. This is a black-box reduction which works correctly when an oracle can be computed by a polynomial-size circuit. Our S_{2}^P-type simulation algorithm can simulate the size-restricted black-box reduction under the assumption that there exists a polynomial-size circuit that avoids a hitting set generator.

In contrast, we were not able to combine our $\text{AM} \cap \text{coAM}$ algorithm of Theorem 4 with the non-black-box reductions under similar conditions. We leave it as an interesting open question, which could have an application to fixed-polynomial circuit lower bounds (e.g., [34]).

▶ Open Question 7 (“Non-Black-Box Instance Checkability” of GapMCSP). Prove that $\text{MCSP} \in \text{P/poly}$ (or $\text{NP} \subseteq \text{P/poly}$) implies Gap$_\epsilon$MCSP $\in \text{coAM}$ for some constant $\epsilon > 0$.

7 There is an alternative proof based on the search-to-decision reduction of GapMCSP given by Carmosino, Impagliazzo, Kabanets, and Kolokolova [10]. However, we choose to present the proof by combining the S_{2}^P-type simulation algorithm with the non-black-box reductions in order to highlight the difference between Theorem 6 and Open Question 7.
3.3 Our Techniques

We outline our proof strategy for Theorem 4 below. Suppose that we have some reduction \(M \) from \(L \) to any oracle \(R \) that avoids a hitting set generator \(G \). Fix any input \(x \in \{0, 1\}^* \), and let \(Q_x \) denote the query distribution that a reduction makes on input \(x \). We focus on the case when the length of each query is larger than \(\Theta(\log n) \), and explain the proof ideas for showing \(L \in AM \cap coAM \).

As a warm-up, consider the case when the support \(\text{supp}(Q_x) \) of \(Q_x \) is small (i.e., \(|\text{supp}(Q_x) \cap \{0, 1\}^\ell| \ll 2^\ell \) for all large \(\ell \in \mathbb{N} \)). In this case, we can define an oracle \(R_1 := \{0, 1\}^* \setminus \text{supp}(Q_x) \setminus \text{Im}(G) \); this avoids the hitting generator \(G \) because \(R_1 \cap \text{Im}(G) = \emptyset \) and the size of \(R_1 \cap \{0, 1\}^\ell \) is at least \(2^\ell - |\text{supp}(Q_x)| - |\text{Im}(G)| \gg 2^{\ell-1} \) for all large \(\ell \in \mathbb{N} \). Therefore, it is guaranteed that the reduction \(M \) computes \(L \) correctly under the oracle \(R_1 \); we can simulate the reduction by simply answering all the queries by saying “No” (since \(q \notin R_1 \) for every \(q \in Q_x \)); hence \(L \in \text{BPP} \).

In general, we cannot hope that \(\text{supp}(Q_x) \) is small enough. To generalize the observation above, let us recall the notion of \(\alpha \)-heaviness [9]: We say that a query \(q \) is \(\alpha \)-heavy (with respect to \(Q_x \)) if the query \(q \) is \(\alpha \) times more likely to be sampled under \(Q_x \) than the uniform distribution on \(\{0, 1\}^{|q|} \); that is, \(\Pr_{w \sim Q_x}[w = q] \geq \alpha 2^{-|q|} \). Now we define our new oracle \(R_2 := \{0, 1\}^* \setminus \{ q \in \{0, 1\}^* | q: \text{\(\alpha \)-heavy} \} \setminus \text{Im}(G) \), which can again be shown to avoid \(G \) because the fraction of \(\alpha \)-heavy queries is at most \(1/\alpha \) (\(\ll 1 \)).

The problem now is that it is difficult to simulate the new oracle \(R_2 \); it appears that, given a query \(q \), we need to test whether \(q \in \text{Im}(G) \), which is not possible in \(\text{AM} \cap \text{coAM} \). However, it turns out that it is not necessary to test it, as we explain next: Observe that the size of \(\text{Im}(G) \) is very small; it is at most \(2^{\ell(\ell)} \ll 2^\ell \). Thus, the probability that a query \(q \) is in \(\text{Im}(G) \) and \(q \) is not \(\alpha \)-heavy (i.e., \(q \) is rarely queried) is at most \(\alpha \cdot 2^{\ell(\ell) - \ell} \), where \(\ell \) denotes the length of \(q \). As a consequence, the reduction cannot “distinguish” the oracle \(R_2 \) and a new oracle \(R_3 := \{0, 1\}^* \setminus \{ q \in \{0, 1\}^* | q: \text{\(\alpha \)-heavy} \} \); hence, we can simulate the reduction if, given a query \(q \), we can decide whether \(q \in R_3 \) in \(\text{AM} \cap \text{coAM} \).

This task, however, still appears to be difficult for \(\text{AM} \cap \text{coAM} \); indeed, at this point, Gutfreund and Vadhan [14] used the fact that the approximate counting is possible in \(\text{BPP}^{\text{NP}} \), and thereby simulated the oracle \(R_3 \) by a \(\text{BPP}^{\text{NP}} \) algorithm.

Our main technical contribution is to develop a way of simulating the reduction to \(R_3 \). First, note that the lower bound protocol of Goldwasser and Sipser [13] enables us to give an \(\text{AM} \) certificate for \(\alpha \)-heaviness; we can check, given a query \(q \), whether \(q \) is \(\alpha(1 + \epsilon) \)-heavy or \(\alpha \)-light for any small error parameter \(\epsilon > 0 \). Thus, we have an \(\text{AM} \) protocol for \(\{0, 1\}^* \setminus R_3 \) for every query \(q \) (except for the queries that are \(\alpha \)-heavy and \(\alpha(1 + \epsilon) \)-light).

If, in addition, we had an \(\text{AM} \) protocol for \(R_3 \), then we would be done; however, it does not seem possible in general. The upper bound protocol of Fortnow [12] performs a similar task, but the protocol can be applied only for a limited purpose: we need to keep the randomness used to generate a query \(q \sim Q_x \) from being revealed to the prover. When the number of queries of the reduction is limited to 1, we can use the upper bound protocol in order to give an \(\text{AM} \) certificate for \(R_3 \); on the other hand, if the reduction makes two queries \((q_1, q_2) \sim Q_x \), we cannot simultaneously provide \(\text{AM} \) certificates of the upper bound protocol for both \(q_1 \) and \(q_2 \), because the fact that \(q_1 \) and \(q_2 \) are sampled together may reveal some information about the private randomness. To summarize, the upper bound protocol works only for the marginal distribution of each query, but does not work for the joint distribution of several queries.
Still, the upper bound protocol is useful for extracting some information about each query. For example, the heavy-sample protocol of Bogdanov and Trevisan [9] (which combines the lower and upper bound protocol and sampling) estimates, in $AM \cap coAM$, the probability that a query q sampled from Q_x is α-heavy. This protocol enables us to estimate the probability that $q \in R_3$ over the choice of $q \sim Q_x$.

The probability that $q \in R_3$ is useful for simulating the reduction M. Feigenbaum and Fortnow [11] developed an $AM \cap coAM$ protocol that simulates a nonadaptive reduction to an NP oracle R, given as advice the probability that a query q is in R. We generalize this protocol for the case when the oracle R is solvable by AM on average:

Theorem 8 (Generalized Feigenbaum–Fortnow Protocol; informal). Suppose that M is a randomized polynomial-time nonadaptive reduction to an oracle R whose queries are distributed according to Q_x on input $x \in \{0,1\}^n$, and that R is solvable by AM on average (i.e., there exists an AM protocol Π_R such that, with probability $1 - 1/poly(n)$ over the choice of $q \sim Q_x$, the protocol Π_R computes R on input q). Then, there exists an $AM \cap coAM$ protocol Π_M such that, given a probability $p^* \approx Pr_{q \sim Q_x}[q \in R]$ as advice, the protocol Π_M simulates the reduction M with probability at least $1 - 1/poly(n)$.

Let R denote the complement of R_3, i.e., $R := \{ q \in \{0,1\}^* \mid q: \alpha$-heavy $\}$. Using the generalized Feigenbaum–Fortnow protocol, we simulate the reduction M to R as follows. Firstly, we use the heavy-sample protocol of [9] in order to estimate $p^* \approx Pr_{q \sim Q_x}[q: \alpha$-heavy$]$. Secondly, using the lower bound protocol of [13], we argue that R can be solved by some AM-protocol Π_R on average. Lastly, we use the protocol of Theorem 8 to simulate M. The details can be found in the full version of the paper.

We mention in passing the difficulty of Open Question 7, i.e., the reason why we were not able to combine our $AM \cap coAM$-type simulation algorithm with the non-black-box reduction even conditionally: The non-black-box reduction outlined in Subsection 3.1 reduces the promise problem whose Yes instance consists of $K_U(x) \leq \ell/5$ and No instance consists of $K_U^B(x) > \text{poly}(\ell, \log n)$ to an oracle R. In order to make sure that the promise problem is non-trivial, it is important that R does not depend on x. On the other hand, in our simulation algorithm, we need to choose an oracle R_x depending on the input x, which potentially makes the promise problem trivial. (For example, $K_U^B(x)$ may be always close to 0.)

3.4 Subsequent Work

Inspired by this work, Allender’s conjectures [4] were refuted under the plausible assumptions about the exponential-time hierarchy [21, 20]. Moreover, it turned out that the stretch of a hitting set generator construction is important. In [20], it was shown that there exists a function $G = \{ G : \{0,1\}^n \rightarrow \{0,1\}^n \}_{n \in \mathbb{N}}$ such that $\text{NEXP} \cup \text{coNP} \subseteq \text{BPP}^R$ for any oracle R that avoids G. This result bypasses our limits of black-box reductions (Theorem 4) because G extends its seed by a small amount of $O(\log n)$ whereas Theorem 4 requires that G extends its seed by a constant factor. In [19], the approximation quality of non-black-box reductions of [18] is improved. Moreover, based on the improvement, it is shown that, under the assumption that $\text{DistPH} \subseteq \text{AvgP}$, the time-bounded SAT-oracle Kolmogorov complexity of a string x is equal to the time-bounded Kolmogorov complexity of x up to an additive term of $O(\log n)$, for any string $x \in \{0,1\}^n$.
References

On Nonadaptive Security Reductions of Hitting Set Generators

