On the List Recoverability of Randomly Punctured Codes

Ben Lund
Department of Mathematics, Princeton University, NJ, USA
http://www.ben-lund.com
lund.ben@gmail.com

Aditya Potukuchi
Department of Computer Science, Rutgers University, Piscataway, NJ, USA
https://www.adityapotukuchi.com
aditya.potukuchi@cs.rutgers.edu

Abstract
We show that a random puncturing of a code with good distance is list recoverable beyond the Johnson bound. In particular, this implies that there are Reed-Solomon codes that are list recoverable beyond the Johnson bound. It was previously known that there are Reed-Solomon codes that do not have this property. As an immediate corollary to our main theorem, we obtain better degree bounds on unbalanced expanders that come from Reed-Solomon codes.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases List recovery, randomly punctured codes, Reed-Solomon codes

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2020.30

Category RANDOM

Funding Ben Lund: Research supported by NSF grant DMS-1802787.

Acknowledgements We thank Venkat Guruswami, Jeff Kahn, Swastik Kopparty, Noga Ron-Zewi, and Mary Wootters for helpful discussions. We also thank an anonymous reviewer for helpful comments on the presentation of the results.

1 Introduction

List recoverable codes were defined by Guruswami and Indyk [7] in their study of list decodable codes. Here, we study list recoverable codes in their own right, showing that random puncturings of codes over a sufficiently large alphabet are list recoverable. Our result is analogous to earlier work by Rudra and Wooters [10, 11] on the list decodability of randomly punctured codes.

We use \(q \) to denote the alphabet size, and \(n \) to denote the block length of an arbitrary code \(C \subseteq [q]^n \). Given two codewords \(c_1, c_2 \in [q]^n \), denote the Hamming distance between \(c_1 \) and \(c_2 \) by \(\Delta(c_1, c_2) \). Denote the minimum distance between a codeword \(c \in [q]^n \) and a set \(L \subseteq [q]^n \) by \(\Delta(c, L) \).

Definition 1 (List recoverability). Let \(q, n, \ell, L \) be positive integers, and let \(0 \leq \rho < 1 \) be a real number. A code \(C \subseteq [q]^n \) is \((\rho, \ell, L)\) list recoverable if, for every collection of sets \(\{A_i \subseteq [q] \}_{i \in [n]} \) with \(|A_i| \leq \ell \) for each \(i \), we have

\[
|\{c \in C \mid \Delta(c, A_1 \times \cdots \times A_n) \leq \rho n\}| \leq L.
\]
List Recoverability of Randomly Punctured Codes

In the above definition, ℓ is called the input list size, and L is called the output list size from which the code can be recovered. The case $\rho = 0$ is already interesting, and is called zero-error list recoverability. We say that a code C is (ℓ, L) zero-error list recoverable if it is $(0, \ell, L)$ list recoverable.

A puncturing of a code $C \subset [q]^n$ to a set $S \subset [n]$ is the code $C_S \subset [q]^S$ defined by $C_S[i] = C[i]$ for each $i \in S$. A punctured code will typically have higher rate, but lower distance, than the unpunctured version. Our main result is that every code over a large enough alphabet $[q]$ can be punctured to a code of rate $R > q^{-1/2}$ while being list recoverable with input and output list sizes roughly R^{-2}.

Theorem 2. For any real α with $0 < \alpha \leq 1$, every code with distance at least $n(1 - q^{-1} - \epsilon^2)$ can be punctured to rate $\Omega\left(\frac{\epsilon}{\log q}\right)$ so that it is $(\rho, \ell, (1 + \alpha))$-list recoverable, provided that the following inequalities are satisfied:

- n and q are sufficiently large,
- $0 \leq \rho < 1 - (1 + \alpha)^{-1/2}$,
- $q^{-1/2} < \epsilon < \min(c, 2^{-1}\gamma\sigma)$,
- $\ell \leq \epsilon^{-2}\sigma^2\gamma$,

where $c > 0$ is a constant, $\gamma = (1 + \alpha)(1 - \rho)^2 - 1$, and $\sigma = (1 - \rho)(2 - \rho)^{-1}$.

In fact, we show a random puncturing is list recoverable with the same list size with high probability; see Theorem 10 for a precise statement.

It is helpful to consider the case $\rho = 0$ and $\alpha = 1$. Then we obtain a $(\ell, 2\ell)$ zero-error list-recoverable code. If we start with a code having distance nearly as large as possible (i.e. take $\epsilon = \Theta(q^{-1/2})$), then we obtain input and output list sizes of $\Omega(q)$ and rate $\Omega(q^{-1/2}\log^{-1} q)$. In this way, we obtain a punctured code of rate $\Omega(\ell^{-1/2}\log^{-1} \ell)$. The main point is that this is better than the codes guaranteed by the Johnson bound (discussed in more detail below), which gives a code of rate $\Omega(\ell^{-1})$. A completely random code, however, can be $(\ell, 2\ell)$ zero-error list-recoverable with rate $\Omega(1)$.

One nice feature Theorem 2 is that it can yield an input list size as large as $\Omega(q)$. A second nice feature is that the theorem yields a tight relationship between the input and output list sizes; many results on list recovery give an output list that is much larger than the input list. Finally we mention that the proof of Theorem 2 is relatively simple and elementary; we draw a slightly more explicit comparison to the earlier work of Rudra and Wooters [10, 11] below.

2 Background

In this section, we give a brief discussion about the current state of the literature. Theorem 2 is analogous to a theorem of Rudra and Wooters [10, 11] on the list decodability of punctured codes over large alphabets. A code $C \subset [q]^n$ is (ρ, ℓ)-list decodable if for each $x \in [q]^n$, there are at most ℓ codewords of C that differ from x in fewer than ρn coordinates.

Theorem 3 ([11]). Let $\epsilon > q^{-1/2}$ be a real number, and q, n be sufficiently large integers. Every code $C \subset [q]^n$ with distance $n(1 - q^{-1} - \epsilon^2)$ can be punctured to rate $\tilde{\Omega}\left(\frac{\epsilon}{\log q}\right)$ so that it is $(1 - O(\epsilon), O(\epsilon^{-1}))$-list decodable.
The block length of this code is $n \leq q$. Since two distinct polynomials of degree at most d can agree on at most d locations, the distance of any degree-d Reed-Solomon code is at least $n - d$.

A fundamental result, which gives a lower bound on the list decodability of a code with given distance, is the Johnson bound (see, for example, Corollary 3.2 in [6]).

Theorem 4 (Johnson bound for list decoding). Every code $C \subseteq [q]^n$ of minimum distance at least $n(1 - q^{-1} - \epsilon^2)$ is $(\epsilon^{-1}(1 - \rho)\epsilon, O(\epsilon^{-1}))$-list decodable.

One of the main points of Theorem 3 is that it shows that there are Reed-Solomon codes that are list decodable beyond the Johnson bound. This is a very interesting result because variations of Reed-Solomon codes have been shown to beat the Johnson bound. On the other hand, Reed-Solomon codes are quite natural and some applications in Complexity theory specifically needed Reed-Solomon codes (and not the aforementioned variants).

A similar result as Theorem 4, using a similar argument, also known as the Johnson bound, is known for list recoverability (see for example, Lemma 5.2 in [4]).

Theorem 5 (Johnson bound for list recovery). Let $C \subseteq [q]^n$ be a code of relative distance $1 - \epsilon$. Then C is (ρ, ℓ, L)-list recoverable for any $\ell \leq \epsilon^{-1}(1 - \rho)^2$ with $L = \frac{\ell}{(1 - \rho)^2 - \ell}$.

For perspective, the goal here is to have the input list size ℓ as large as possible for a given ρ while ensuring that the output list size L is small, for example, $L = \text{poly}(\ell)$ is a reasonable regime of efficiency. Theorem 5 roughly says that every q-ary code of distance $1 - q^{-1} - \epsilon$ is $(\rho, \ell, O(\ell))$-list recoverable for $\ell = O(\epsilon^{-1})$ and $\rho \leq 1 - \sqrt{2\ell}$. Thus, a question naturally arises:

Question. Are there q-ary Reed-Solomon codes of distance $1 - q^{-1} - \epsilon$ which are (ρ, ℓ, L)-list recoverable for some $\rho \in [0, 1)$ and $\ell = \omega(\epsilon^{-1})$ and $L = \text{poly}(\ell)$?

We would like to remark again, that the case $\rho = 0$ is also interesting. A result of Guruswami and Rudra [8] shows that there are Reed-Solomon codes where one cannot hope to beat the Johnson bound in the case when $\rho = 0$.

Theorem 6 (Theorem 1 in [8]). Let $q = p^n$ where p is a prime, and let C denote the degree-$\left(\frac{p^n - 1}{p - 1}\right)$ Reed-Solomon code over \mathbb{F}_q with \mathbb{F}_q as the evaluation set. Then there are lists S_1, \ldots, S_q each of size p such that

$$|C \cap (S_1 \times \cdots \times S_q)| = q^{2^m}.$$

In the proof of the above theorem, each list A_i is given by $\mathbb{F}_p \subseteq \mathbb{F}_q$, and the set of codewords contained in these lists are codewords of the BCH code. This result exploits the specific subfield structure of the input lists. To understand this result quantitatively, recall that a degree-d Reed-Solomon code has relative distance $1 - \frac{1}{d} - \frac{d}{q}$. Setting $\ell = p - 1$ and $\rho = 0$ in the Johnson bound tells us that such a code is $(p - 1, O(q))$ zero-error list recoverable. Setting the list size as p in the bound gives us nothing, and Theorem 6 says that the number of codewords grows superpolynomially in q.
One thing to note in Theorem 6 is that the same lists of size p also support at least q^{2m} codewords for any punctured code. Thus in some sense, the reason why Theorem 2 is true is that lists of size $p - 1$ do not support many more codewords in an appropriately punctured code than in the un-punctured case. This is very similar to the intuition in the results of [10], [11] for list-decodability.

Theorem 2 immediately gives the following corollary.

Corollary 7. For a prime power q and small enough $\epsilon \geq q^{-1/2}$, there are Reed-Solomon codes of rate $\Omega\left(\frac{\epsilon}{\log q}\right)$ which are $(\epsilon^{-2}, O(\epsilon^{-2}))$ zero-error list recoverable.

Thus, one is able to go beyond the $O(\epsilon^{-1})$ size input lists. Again, one can easily check that setting $\ell = \epsilon^{-2}$ in the Johnson bound gives nothing. A point worth noting is that there is no inherent upper bound on the input list size, and the input lists can be as large as $\Omega(q)$ when ϵ is around $q^{-1/2}$. In fact, $\ell = \Omega(q)$ and $L \leq 2\ell$ is the regime for the main application of Theorem 2 (see Section 2.2).

A natural attempt at Theorem 2 is to use the method from the aforementioned result of Rudra and Wootters. This method uses tools from high dimensional probability. At a very high level, the main intuition in their argument is the following: Suppose there is a set Λ of $L = \Omega(\epsilon^{-1})$ codewords which are at a distance at most $1 - O(\epsilon)$ from some point $x \in [q]^n$, then there is a subset $\Lambda' \subset \Lambda$ which is much smaller where the distribution of distances from x is similar to that of Λ. The existence of such a Λ is a bad event, which is witnessed by a smaller bad event (i.e., existence of Λ') of the same type. Thus, this requires one to union bound just over Λ'’s which are much smaller in number. Attempting to use this idea in a straightforward way to list recovery seems to be very lossy. The proof of Theorem 2 builds on this idea, and uses the fact that bad events can be witnessed by smaller bad events of a different (although related) type (see Section 3.1 for a somewhat more detailed sketch of the proof). Surprisingly though, the execution of this idea in this case is far simpler than in the previous works, and is completely elementary.

2.1 A quantitative summary of rate bounds for list recovery

We summarize the above discussion into a perspective with which one may view Theorem 2. Fix a $\rho \in [0, 1)$ to be the fraction of errors from which we wish to list-recover q-ary codes where q is larger than the block length. Suppose one wanted to list recover from input lists of size ℓ where the output list is poly(ℓ)1, the Johnson bound (Theorem 5) guarantees that Reed-Solomon codes of rate $\Omega(1/\ell)$ achieve this. Theorem 6 says that in general, this dependence cannot be improved, i.e., there are Reed-Solomon codes of rate $O(1/\ell)$ where the output list is superpolynomial for infinitely many q and ℓ. However, Theorem 2 says that most Reed-Solomon codes of rate $\Omega(1/(\ell^{1/2} \log q))$ achieve this.

It should be worth noting that decoding from lists of size ℓ can be achieved by random codes of rate $\Omega(1)$, whereas random Reed-Solomon codes require that the rate is $O(1/\log \ell)$ (Theorem 11). In fact, nothing better is known even for random linear codes. In this sense random codes are much better at list recovery than random Reed-Solomon codes.

1 The proof of Theorem 2 relies on a “birthday paradox” type argument that cannot exploit the additional structure when one allows L to grow as a larger function of ℓ.
2.2 Unbalanced expander graphs from codes

The zero-error case of Theorem 2 leads to some progress on a question of Guruswami regarding unbalanced expanders obtained from Reed-Solomon graphs. This was also the main motivation behind this theorem.

Informally, an expander graph is a graph where every small set of vertices has a relatively large neighborhood. In this case, we say that all small sets expand. One interesting type of expander graphs are unbalanced expanders. These are bipartite graphs where one side is much larger than the other side, and we want that all the small subsets of the larger side expand.

Definition 8 (Unbalanced expander). A (k, d, ϵ)-regular unbalanced expander is a bipartite graph on vertex set $L \sqcup R$, $|L| \geq |R|$ where the degree of every vertex in L is d, and for every $S \subseteq L$ such that $|S| = k$, we have that $|N(S)| \geq d|S|(1 - \epsilon)$.

Note that in the above definition, $|N(S)| \leq d|S|$. We are typically interested in infinite families of unbalanced expanders for which $\epsilon = o(1)$, $d = o(|R|)$, and $k = \Omega(|R|/d)$.

Given a code $C \subseteq [q]^n$, it is natural to look at the bipartite graph, which we will denote by $G(C)$ where the vertex sets are $C \sqcup ([n] \times [q])$. For every $c = (c_1, \ldots, c_n) \in C$ the set of neighbors is $\{(1, c_1), \ldots, (n, c_n)\}$. This graph is especially interesting when C is a low-degree Reed-Solomon code evaluated at an appropriate set.

The following is an open question in the study of pseudorandomness that is attributed to Guruswami [5], (also explicitly stated in [2]): Fix an integer d. For a subset $S \in \binom{[n]}{m}$, define C_S to be the degree-d Reed-Solomon code with S as the evaluation set, where d is a constant.

Question. What is the smallest m such that when S is chosen uniformly at random, $G(C_S)$ is, with high probability, a $(\Omega(q), 1/2)$-unbalanced expander?

There are examples of explicit constructions unbalanced expanders that come from other means [9]. In fact, [9] also contains a construction based on a variant of Reed-Solomon code known as folded Reed-Solomon code. However, the above question has a very natural geometric/combinatorial “core” which is interesting in its own right and so far, seems to evade known techniques.

It was probably well known that $m = \Omega(\log q)$, and we also give a proof of this (Theorem 11) since we could not find it in the literature. But for upper bounds, it seems nothing better than the almost trivial $m = O(q)$ was known [1]. Since the zero-error list recoverability of C is equivalent to the expansion of $G(C)$, an immediate Corollary to Theorem 10 gives an improved upper bound.

Corollary 9. Let q, n be sufficiently large integers and $\alpha \in (0, 1)$, $\epsilon > q^{-1/2}$ be real numbers. For every code $C \subseteq [q]^n$ with relative distance $1 - q^{-1} - \epsilon^2$, there is a subset $S \subseteq [n]$ such that $|S| = O(cn \log q)$ such that $G(C_S)$ is a $(\alpha \epsilon^{-2}, |S|, \alpha)$-unbalanced expander.

Instantiating the above theorem for degree-d Reed-Solomon codes, we have $n = q$ and $\epsilon = (d/q)^{-\frac{1}{2}}$. This gives, $m = O(\sqrt{q})$.

3 Proof of Theorem 2

The bulk of this section is the statement and proof of Theorem 10. After the proof of Theorem 10, we show how to derive Theorem 2 from it.
3.1 A sketch of the proof

Here, we sketch the proof when $\rho = 0$, i.e., for zero-error list recovery. This contains most of the main ideas required for the general theorem. Let $S = \{s_1, \ldots, s_m\} \subseteq [n]$ be a randomly chosen evaluation set. The main observation is that if there are input lists $A_1, \ldots, A_m \subseteq [q]$, such that $(A_1 \times \cdots \times A_m)$ contains a large subset $D \subseteq C$ of codewords, then there is a small subset $C' \subseteq D \subseteq C$ which agree on an unusually high number of coordinates. An appropriately sized random subset of D does this. Thus the event that a given puncturing is bad is contained witnessed by the event that there are few codewords that agree a lot on the coordinates chosen in S. The number of events of the latter kind are far fewer in number, leaving us with fewer bad events to overcome for the union bound.

3.2 Proof of Theorem 2

The calculations in the proof of Theorem 10 are all explicit, but we have not tried to optimize the constant terms.

Theorem 10. Let $0 < \alpha < 1$ and $0 \leq \rho < 1 - (1 + \alpha)^{-1/2}$ be real numbers. Let $q, n, d, \ell,$ and m be positive integers. Let $C \subseteq [q]^n$ be a code of distance at least $n - nq - 1 - d$. Denote $\gamma = (1 + \alpha)(1 - \rho)^{1/2}$ and $\sigma = (1 - \rho)(2 - \rho)^{-1}$. Suppose that the following inequalities are satisfied:

\[d \geq nq - 1, \]
\[4\gamma^{-1} \leq \ell \leq 800^{-1} \sigma \gamma nd^{-1}, \]
\[\sigma m \geq 1280\sqrt{\ell/\gamma} \log |C|, \]
\[m < n. \]

Then, for $S \in \binom{[n]}{m}$ chosen uniformly at random, the probability that C_S is $(\rho, \ell, \ell(1 + \alpha))$-list recoverable is at least $1 - e^{-\sigma m/64}$.

Proof. For any $C' \subseteq C$, denote by $T(C')$ the set of coordinates $i \in [n]$ such that there is a pair $c_1, c_2 \in C'$ with $c_1[i] = c_2[i]$.

The basic outline of the proof is to first show that, for any S such that C_S is not $(\rho, \ell, \ell(1 + \alpha))$-list recoverable, there is a pair S', C' such that S' is large and $|T(C') \cap S'|$ is unusually large. Taking a union bound over all candidates for C' then shows that there cannot be too many pairs of this sort.

Let $S \in \binom{[n]}{m}$ so that C_S is not $(\rho, \ell, \ell(1 + \alpha))$-list recoverable. We will show that there is a set $C' \subseteq C_S$ such that

1. $|C'| \leq 10\sqrt{\ell/\gamma}$, and
2. $|T(C') \cap S| \geq \sigma m/4$.

Since C_S is not $(\rho, \ell, \ell(1 + \alpha))$-list recoverable, there are subsets $A_i \subseteq [q]$ for each $i \in S$ such that each $|A_i| \leq \ell$ and $|\{c \in C_S : \Delta(c, \prod_{i \in S} A_i) \leq \rho n\}| > \ell(1 + \alpha)$.

Let $D = \{c \in C_S : \Delta(c, \prod_{i \in S} A_i) \leq \rho n\}$.

For $i \in S$, let $D_i = \{c \in D : c[i] \in A_i\}$.
Let

\[I = \{(c, i) \in D \times S : c \in D_i\}. \]

From the definition of \(D \), we have

\[|I| \geq |D|(1 - \rho)m. \tag{3} \]

Note that the average cardinality of the \(D_i \) is \((1 - \rho)|D|\). Let

\[S' = \{i \in S : |D_i| \geq (1 - \rho)^2|D|\}. \]

If \(\rho = 0 \), then \(D_i = D \) for each \(i \), and hence \(|S'| = m\). Next we show that, if \(\rho > 0 \), then \(|S'| \geq (1 - \rho)(2 - \rho)^{-1}m = \sigma m\). Since \(|D_i| \leq |D|\) for each \(i \), we have

\[|S'| |D| \geq \sum_{i \in S'} |D_i| = |I| - \sum_{i \in S \backslash S'} D_i. \tag{4} \]

Since \(|D_i| < (1 - \rho)^2|D|\) for each \(i \in S \backslash S' \), we have

\[\sum_{i \in S \backslash S'} \leq (m - |S'|)(1 - \rho)^2|D|. \tag{5} \]

A straightforward rearrangement of (3), (4), and (5) using the assumption that \(\rho > 0 \) leads to the claimed lower bound on \(|S'|\):

\[|S'| \geq \sigma m. \tag{6} \]

Since \(\sigma < 1 \), the bound \(|S'| \geq \sigma m\) holds for the case \(\rho = 0 \) as well.

For each \(i \in S' \), choose a set \(P_i \subset \binom{D}{\ell} \) of \(|P_i| \geq \gamma\ell/2 \) disjoint pairs of codewords in \(D_i \) such that for each \(\{c_1, c_2\} \in P_i \), we have \(c_1[i] = c_2[i] \). This is always possible since \(|A_i| \leq \ell\) and \(|D_i| \geq (1 + \rho)^2|D| \geq (1 + \gamma)\ell\). Now choose \(C' \) randomly by including each element of \(D \) with probability \(p = (\gamma\ell/2)^{-1/2}(1+\alpha)|D|^{-1} \). Since \(\ell \geq 4\gamma^{-1} \) by hypothesis and \(|D| \geq (1 + \alpha)\) by the assumption that \(C_S \) is not \((\rho, \ell, 1 + \alpha)\)-list recoverable, we have \(p < 1 \). The expected size of \(C' \) is

\[\mathbb{E}[|C'|] = p|D| \leq (\gamma/(2\ell))^{-1/2}(1 + \alpha) \leq (8\ell/\gamma)^{1/2}. \]

We remark that this is the only place where we use the assumption that \(\alpha < 1 \). For any fixed pair \(c_1 \neq c_2 \) of codewords in \(D \), the probability that both are included in \(C' \) is \(p^2 \). Since the pairs in \(P_i \) are disjoint, the events that two distinct pairs \(\{c_1, c_2\}, \{c_3, c_4\} \in P_i \) are both included in \(C' \) are independent. Hence, the probability that no pair in \(P_i \) is included in \(C' \) is \((1 - p^2)|P_i| < e^{-p^2|P_i|} < 1/2 \). Consequently, for each fixed \(i \in S' \), the probability that \(i \in T(C') \) is greater than 1/2. By linearity of expectation, \(\mathbb{E}[|T(C') \cap S'|] \geq |S'|/2 \geq \sigma m/2 \).

Let

\[Y = |T(C') \cap S'| - \frac{\sigma m}{4} \frac{|C'|}{\mathbb{E}[|C'|]}. \]

By linearity of expectation, \(\mathbb{E}[Y] \geq \sigma m/4 \), hence there is some specific choice of \(C' \) for which \(Y \geq \sigma m/4 \). This can hold only if \(|T(C') \cap S'| \geq |T(C') \cap S'| \geq m/4 \) and \(|C'| \leq 3\mathbb{E}[|C'|] \) simultaneously, which establishes (1) and (2).
Next we bound the probability that, for a fixed choice of \(C' \) and random \(S \), we have \(|T(C') \cap S| \) large. Let \(C' \subseteq C \) be an arbitrary set of \(|C'| \leq 10\ell^{1/2}\gamma^{-1/2} \) codewords. Since the distance of \(C' \) is at least \(n - nq^{-1} - d \) and \(d \geq nq^{-1} \), we have

\[
|T(C')| \leq (nq^{-1} + d) \binom{|C'|}{2} < d|C'|^2. \tag{7}
\]

For \(S \in \binom{[n]}{m} \) chosen uniformly at random, \(|T(C') \cap S| \) follows a hypergeometric distribution. Specifically, we are making \(m \) draws from a population size of \(n \) of which \(|T(C')| \leq d|C'|^2 \) contribute to \(|T(C') \cap S| \). Using the assumption that \(\ell \leq \gamma\sigma(n(800d)^{-1}) \), the expected value of \(|T(C') \cap S| \) is

\[
\mathbb{E}[|T(C') \cap S|] \leq d|C'|^2 n^{-1} m \leq 100\frac{d\ell}{\gamma n} m \leq \frac{\sigma m}{8}. \tag{8}
\]

Next we use the following large deviation inequality for hypergeometric random variables (see [3]). Let \(X \) be a hypergeometric random variable with mean \(\mu \). Then for any \(\alpha \geq 1 \),

\[
P(X \geq (1 + \alpha)\mu) \leq \exp(-\alpha\mu/4). \tag{9}
\]

Together with (8), this gives

\[
P(|T(C') \cap S| \geq \sigma m/4) \leq \exp \left(-\frac{\sigma m}{32} \right). \tag{10}
\]

Finally, we take a union over all candidates for \(C' \). Let \(X \) be the event that \(C_S \) is not \((\ell, \alpha, \rho)\)-list recoverable, with \(S \in \binom{[n]}{m} \) uniformly at random. Using the assumption that \(\sigma m \geq 1280\sqrt{\ell/\gamma} \log |C| \), we have

\[
P(X) \leq \sum_{C' \subseteq C_S, |C'| \leq 10\sqrt{\ell/\gamma}} P(|T(C') \cap S| \geq \sigma m/4) \leq \binom{|C|}{\lfloor 10\sqrt{\ell/\gamma} \rfloor + 1} \exp \left(-\frac{m}{32} \right) < \exp \left(20\sqrt{\ell/\gamma} \log |C| - \sigma m/32 \right) \leq \exp(-\sigma m/64),
\]

as claimed. \hfill \blacktriangleleft

We now show how to derive Theorem 2 from Theorem 10.

Proof of Theorem 2. Suppose we have \(\alpha, \rho, n, q, \) and \(\epsilon \) as in the hypotheses of Theorem 2. Let \(\gamma = (1 + \alpha)(1 - \rho)^2 - 1, \sigma = (1 - \rho)(2 - \rho)^{-1} \) and \(m = \lfloor 1280\epsilon^{-1}\log |C| \rfloor \). The singleton bound combined with the assumption that \(\epsilon < c \) for a suitably chosen absolute constant \(c \) implies that \(m < n \). Choose \(S \in \binom{[n]}{m} \) uniformly at random. The rate of \(C_S \) is

\[
R = \log |C|(m \log q)^{-1} = \Omega(\epsilon(\log q)^{-1}).
\]

It is straightforward to check that the hypotheses of Theorem 10 are satisfied if we take \(\ell = \epsilon^{-2}\sigma^2\gamma \), and hence we have that \(C_S \) is \((\rho, \ell, \ell(1 + \alpha))\)-list recoverable with high probability. \hfill \blacktriangleleft
4 Upper bound

Here we show the aforementioned upper bound for the rate to which a degree-d Reed-Solomon code over \mathbb{F}_q can be randomly punctured to be $(\Omega(q), 1/2)$-zero-error list-recoverable.

First, we recall a bit of standard and relevant sumset notation. For a group G and subsets $A, B \subseteq G$, we denote the sumset $A + B = \{a + b \mid a \in A, b \in B\}$. Clearly, we have $|A + B| \leq |A| \cdot |B|$. If $G = \mathbb{Z}_p$, then for $n < p/2$, we have that $[n] + [n] = \{2, \ldots, 2n\}$. We are now ready to state and prove the upper bound.

Theorem 11. Let $m = o(\log q)$, and S be a uniformly random subset of \mathbb{F}_q of size m where q is a large prime. Then for every $d \geq 1$, the degree-d Reed-Solomon code with the evaluation set at S is, with high probability, not $(\Omega(q), 1/2)$-zero-error list-recoverable.

Proof. Let $S = \{s_0, \ldots, s_m\}$. Let t be a large number such that $t^m = o(\sqrt{q})$. We are using the fact that $m = o(\log q)$ for the existence of such a t. W.L.O.G assume $s_0 = 0$ and $s_1 = 1$ (if $0, 1 \not\in S$, then adding them to S only makes the lower bound stronger). Consider the two sets

$$A_0 = \frac{1}{1 - s_2}[t] + \cdots \frac{1}{1 - s_{m-1}}[t]$$

and

$$A_1 = \frac{1}{s_2}[t] + \cdots \frac{1}{s_{m-1}}[t].$$

Claim 12. With high probability over the choice of S, we have that $|A_0|, |A_1| = \Omega((t^m)^{-2})$.

Proof. We do the proof for A_0, the case for A_1 follows analogously. Let P be the set of "collisions" in A_0. Formally:

$$P := \left\{ (a_2, \ldots, a_{m-2}, b_2, \ldots, b_{m-2}) \mid \sum_{i=2}^{m-2} a_is_i = \sum_{i=2}^{m-2} b_is_i \right\}.$$

So the number of distinct elements in A_0 is at least $t^{m-2} - |P|$. We observe that

$$\mathbb{E}[|P|] = \sum_{a_2, \ldots, a_{m-2} \in [t]} \sum_{b_2, \ldots, b_{m-2} \in [t]} \mathbb{P}\left(\sum_{i=2}^{m-2} a_is_i = \sum_{i=2}^{m-2} b_is_i \right) \leq \frac{t^{2m-4}}{p} = o(t^{m-2}).$$

So by Markov’s Inequality, with high probability, $|A_0| \sim t^{m-2}$.

Consider \mathcal{D}, the set of degree-1 Reed-Solomon codes given by the lines

$$\{Y = aX + b \mid b \in A_0, a \in A_1\}.$$
First, we note that \(|Y| = \Omega(t^{2m-4}) \). Geometrically, \(\mathcal{D} \) is just the set of all lines passing through some point of \(\{0\} \times A_0 \) and \(\{1\} \times A_1 \). Clearly, \(\{c[0] \mid c \in C\} = A_0 \) and \(\{c[1] \mid c \in \mathcal{D}\} = A_1 \). For \(i \neq 0, 1 \), let us similarly define \(A_i := \{c[s_i] \mid c \in \mathcal{D}\} \). We have that

\[
A_i = \{a(1-s_i) + bs_i \mid b \in A_0, a \in A_1\}
\]

\[
= (1-s_i) \left(\frac{t}{1-s_2} + \cdots + \frac{1}{1-s_m} \right) + s_i \left(\frac{1}{s_2} + \cdots + \frac{1}{s_m} \right)
\]

\[
= \left(\frac{t}{1-s_i} \right) + \sum_{2 \leq j \leq m, j \neq i} \frac{1-s_i}{1-s_j} \left(\frac{1}{s_j} \right) + \sum_{2 \leq j \leq m, j \neq i} \frac{s_i}{s_j} \left(\frac{1}{s_j} \right)
\]

\[
= \{2, \ldots, 2t\} + \sum_{2 \leq j \leq m, j \neq i} \frac{1-s_i}{1-s_j} \left(\frac{1}{s_j} \right) + \sum_{2 \leq j \leq m, j \neq i} \frac{s_i}{s_j} \left(\frac{1}{s_j} \right).
\]

Thus, \(|A_i| \leq (2t) \times t^{2m-6} \leq 2t^{2m-5} \).

This shows that there are lists \(A_0, A_1, \ldots, A_m \) each of size at most \(\ell := 2t^{2m-5} \) such that there are at least \(\Omega(t^{2m-4}) = \ell^{1+\frac{1}{2m}} \) codewords, namely \(\mathcal{D} \), contained in \(A_0 \times \cdots \times A_m \). ◀

For a fixed \(d \), the above theorem rules out hope of randomly puncturing degree-\(d \) Reed-Solomon codes to rate \(\omega\left(\frac{1}{\log q} \right) \) for the desired list recoverability. We believe that this is essentially the barrier. We state the concrete conjecture that we alluded to in Section 2.2.

Conjecture 13. The degree-\(d \) Reed-Solomon code with evaluation set \(\mathbb{F}_q \) can be randomly punctured to rate \(\Omega_d\left(\frac{1}{\log q} \right) \) so that is it \((\Omega(q), 1/2) \)-list recoverable with high probability.

5 Discussion and open problems

The main open problem that we would like to showcase is Conjecture 13. This was probably believed to be true but we could not find it written down explicitly in the literature. List recoverable codes have connections to various other combinatorial objects (see [12]) and if true, Conjecture 13 could lead to the construction of some other interesting combinatorial objects.

The second open problem is to derandomize Theorem 2, i.e., to find an explicit Reed-Solomon code which is list recoverable beyond the Johnson bound at least in the zero-error case. Understanding how these evaluation sets look like could lead to progress on Conjecture 13, or could be interesting in its own right.

Finally, the last open problem is that given a Reed-Solomon code \(C \subset [q]^m \) of rate \(R \) on a randomly chosen evaluation set \(S \), find an efficient algorithm for list recovery, i.e., take input lists \(A_1, \ldots, A_m \) of size \(O(R^{-2} (\log q)^{-1}) \), and output all the codewords contained in \(A_1 \times \cdots \times A_m \) with high probability (over the choice of \(S \) and the randomness used by the algorithm). This would also likely require some understanding of the properties of the evaluation set.

References

1. Xue Chen. personal communication.

5 Venkatesan Guruswami. personal communication.

