Randomness and Effective Dimension of Continued Fractions

Satyadev Nandakumar
Computer Science and Engineering, Indian Institute of Technology Kanpur, India
satyadev@cse.iitk.ac.in

Prateek Vishnoi
Computer Science and Engineering, Indian Institute of Technology Kanpur, India
pratvish@cse.iitk.ac.in

Abstract
Recently, Scheerer [19] and Vandehey [21] showed that normality for continued fraction expansions and base-b expansions are incomparable notions. This shows that at some level, randomness for continued fractions and binary expansion are different statistical concepts. In contrast, we show that the continued fraction expansion of a real is computably random if and only if its binary expansion is computably random.

To quantify the degree to which a continued fraction fails to be effectively random, we define the effective Hausdorff dimension of individual continued fractions, explicitly constructing continued fractions with dimension 0 and 1.

2012 ACM Subject Classification
Theory of computation → Constructive mathematics; Theory of computation → Computability

Keywords and phrases
Continued fractions, Martin-Löf randomness, Computable randomness, effective Fractal dimension

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.73

Acknowledgements
The authors wish to thank Subin Pulari and Yann Bugeaud for helpful discussions, and anonymous reviewers for their suggestions.

1 Introduction

Kolmogorov initiated the program of proving that all practical applications of randomness are consequences of incompressibility [9]. A landmark achievement in the theory of computation realizing Kolmogorov’s program is Martin-Löf’s definition of an individual random binary sequence using constructive measure [15]. Alternative, equivalent characterizations using martingales [20] and incompressible sequences [10], [6], [1], establish that the definition of an individual random binary sequence is mathematically robust. This has led to a deep and rich theory interacting fruitfully with computability theory, probability theory and dynamical systems (see for example, [11], [3], [18]).

In this work, we study the concept of an individual random continued fraction. An important question is whether randomness of a real is preserved when translating from one representation to another, for example, from base 2 expansion to base 3 expansion, or from binary expansion to continued fraction expansion. Recent elegant constructions by Vandehey and Scheerer show that continued fraction normals and normals in base-b are incomparable sets [21], [19]. In contrast, Nandakumar [17] remarks that the binary expansion of a real is Martin-Löf random if and only if its continued fraction is. We extend this result using martingales, and show that the continued fraction of a real is computably random if and only if its binary expansion is.
To quantify the degree of non-randomness, the topological notion of Hausdorff dimension [7] has been effectivized in computability and complexity theory in a series of works by Lutz [13], Lutz and Mayordomo [14], Mayordomo [16], Fernandez and Staat [5], and others. Generalizing the definition of random continued fractions using martingales, we define the effective Hausdorff dimension of sets of continued fractions, and of individual continued fractions, in the spirit of Lutz [13]. We construct examples of continued fractions with dimensions 0 and 1.

The tools and techniques for base-2 randomness do not lend themselves easily to continued fractions, which we can view as infinite sequences over a countably infinite alphabet. Topologically, this is a non-compact space. Further, the canonical shift-invariant measure on the space of continued fractions in $[0, 1]$ is the Gauss measure, which is not a product measure, or even a Markov distribution [4], [2]. A study of effective Hausdorff dimension in this setting is new.

Our main contributions are - martingale-based definitions of Martin-L"of random and computable random continued fractions, showing the preservation of Martin-L"of randomness and computable randomness when converting from binary expansion to continued fractions and vice versa, and a basic statistical property of random sequences. Further, we define effective Hausdorff dimension of sets of continued fractions and individual continued fractions using s-gales, and give explicit constructions of continued fractions with dimensions 0 and 1. We develop techniques and approximation methods related to Gauss measure, which may be of independent interest.

2 Preliminaries

Let \mathbb{N} be the set of positive natural numbers, \mathbb{N}^* be the set of finite sequences of natural numbers, and \mathbb{N}^∞ be the set of infinite sequences of natural numbers. If a finite sequence $v \in \mathbb{N}^*$ is a prefix of another finite sequence $w \in \mathbb{N}^*$ or an infinite sequence $X \in \mathbb{N}^\infty$, we represent it respectively by $v \sqsubseteq w$ and $v \sqsubseteq X$. If $v, w \in \mathbb{N}^*$, their concatenation is written as vw. λ denotes the empty string.

We identify any finite string $(a_1, \ldots, a_n) \in \mathbb{N}^*$, and any infinite sequence $\langle a_i \rangle_{i \in \mathbb{N}}$ with

$$0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n}}}$$

respectively. We denote this respectively as the finite continued fraction $[0; a_1, \ldots, a_n]$ and the infinite continued fraction $[0; a_1, \ldots, \ldots]$. The continued fraction cylinder $C_{[0; a_1, \ldots, a_k]}$ is the set of infinite continued fractions with $[0; a_1, \ldots, a_k]$ as a prefix.

If $v \in \mathbb{N}^*$, then the number of integers in v is denoted $|v|$. For $j \in \mathbb{N}$, $v \upharpoonright j$ denotes the substring consisting of the first j integers in v when $j \leq |v|$, and v itself, otherwise. For $X \in \mathbb{N}^\infty$ and $j \in \mathbb{N}$, $X \upharpoonright j$ denotes the substring consisting of the first j integers in X.

In this work, we consider the probability space $(\mathbb{N}^\infty, \mathcal{B}(\mathbb{N}^\infty), \gamma)$ where $\mathcal{B}(\mathbb{N}^\infty)$ is the Borel σ-algebra generated by the cylinders and γ is the Gauss measure defined on any $A \in \mathcal{B}(\mathbb{N}^\infty)$ by $\gamma(A) = \frac{1}{\log 2} \int_A \frac{1}{x+1} \, dx$. The Gauss measure is a translation-invariant probability on the space of continued fractions [4], [2].

Similar notations apply for the binary expansions of reals. We designate the binary alphabet $\{0, 1\}$ by Σ. Analogous with the notation for integers, let Σ^* denote the set of finite binary strings, and Σ^∞ the set of infinite binary sequences. We use λ for the empty string.
For any \(w \in \Sigma^* \), the binary cylinder \(C_w \) is the set of all infinite binary sequences with \(w \) as a prefix. The probability space on binary sequences is \((\Sigma^\infty, B(\Sigma^\infty), \mu) \) where \(B(\Sigma^\infty) \) is the Borel \(\sigma \)-algebra on \(\Sigma^\infty \), and \(\mu \) is the Lebesgue (uniform) probability measure defined for every Borel set \(A \) by \(\mu(A) = \int_A x dx \).

For \(w \in \Sigma^* \), we denote \(\mu(C_w) \) by \(\mu(w) \), and analogously for \(v \in \mathbb{N}^* \) and \(\gamma \).

3 Useful estimates for continued fractions and the Gauss measure

For \([0; v_1, \ldots, v_n]\), denote the rational represented by \(v \uparrow k \) by \(\frac{p_n}{q_n} \). This is called the \(k \)th convergent of \(v \). The standard continued fraction recurrence for computing convergents is given by (see for example, Khinchin [8])

\[
\begin{align*}
p_{-1} &= 1, & p_1 &= 0, & p_n &= v_n p_{n-1} + p_{n-2}, \\
q_{-1} &= 0, & q_1 &= 1, & q_n &= v_n q_{n-1} + q_{n-2}.
\end{align*}
\]

It follows that \(\mu([0; v_1, \ldots, v_k]) = \frac{1}{q_k(q_k + q_{k-1})} \) for all \(2 \leq k \leq n \).

- **Lemma 1.** Let \(C_{[0,a_1,\ldots,a_k]} \) be the cylinder set of an arbitrary finite continued fraction and \(C'_{b_1,\ldots,b_k} \) be the cylinder set of an arbitrary binary string of length \(k \). Then, \(\mu(C_{[0,a_1,\ldots,a_k]}) \leq \mu(C'_{b_1,\ldots,b_k}). \)

The following estimate, which we can easily establish, shows a fairly tight relationship between Lebesgue measure and Gauss measure. The proof uses the fact that the Radon-Nikodym derivative \(d\mu/d\gamma = \frac{1}{1+\lambda} \) is bounded in \([0,1]\).

- **Lemma 2.** For any subinterval \(B \) of the unit interval, we have \(\frac{1}{1+\lambda} \mu(B) \leq \gamma(B) \leq \frac{1}{1+\lambda} \mu(B) \).

4 Martingales on Continued fraction expansions

The notion of binary supermartingales and their success sets is well-known in the study of algorithmic randomness and resource-bounded measure [11], [18], [3]. We recall the binary notion, and then define the notion of continued fraction supermartingales, by replacing the measure appropriately.

- **Definition 3 ([3]).** A binary martingale \(d : \Sigma^* \rightarrow [0, \infty) \) is a function with \(d(\lambda) < \infty \) and such that for every \(v \in \Sigma^* \), \(d(v) = \frac{d(v0) + d(v1)}{2} \). We say that \(d : \Sigma^* \rightarrow [0, \infty) \) is a binary supermartingale if \(d(\lambda) < \infty \), and the equality above is replaced with a \(\geq \).

A supermartingale or a martingale \(d \) succeeds on \(X \in \Sigma^\infty \), denoted \(X \in S^\infty[d] \), if \(\limsup_{n \rightarrow \infty} d(X \upharpoonright n) = \infty \), and strongly succeeds on \(X \), denoted \(X \in S^\infty_{str}[d] \), if \(\liminf_{n \rightarrow \infty} d(X \upharpoonright n) = \infty \).

Analogously, we define the following.

- **Definition 4.** A continued fraction martingale \(d : \mathbb{N}^* \rightarrow [0, \infty) \) is a function with \(d(\lambda) < \infty \) and such that for every \(v \in \mathbb{N}^* \), \(d(v) \gamma(C_v) = \sum_{n \in \mathbb{N}} d(vn) \gamma(C_vn) \). We say that \(d : \mathbb{N}^* \rightarrow [0, \infty) \) is a continued fraction supermartingale if \(d(\lambda) < \infty \), and the equality above is replaced with a \(\geq \).

A supermartingale or a martingale \(d \) succeeds on an infinite sequence \(X \), denoted \(X \in S^\infty[d] \), if \(\limsup_{n \rightarrow \infty} d(X \upharpoonright n) = \infty \), and strongly succeeds on \(X \), denoted \(X \in S^\infty_{str}[d] \), if \(\liminf_{n \rightarrow \infty} d(X \upharpoonright n) = \infty \).
We view the value $d(w)$ as the capital that the martingale has if the outcome is w. Thus, a martingale is a “fair” betting condition on continued fractions where the expected value (with respect to the Gauss measure) of the capital after a bet is equal to the expected value before the bet. The reason for selecting Gauss measure in particular as the “canonical” distribution is that it is translation invariant with respect to the continued fraction expansion, which is necessary to study statistical properties of sequences like normality.

The following is a consequence of the definition of martingales.

Lemma 5. Let $d : \mathbb{N}^* \to [0, \infty)$ be a supermartingale. Let $v \in \mathbb{N}^*$ and $S \subseteq \mathbb{N}^*$ be a prefix-free set where every $w \in S$ is an extension of v with $|w| \leq k$, $k \in \mathbb{N}$. Then $\sum_{w \in S} d(w)\gamma(w) \leq d(v)\gamma(v)$.

Now, we impose computability restrictions on the (super)martingale functions, analogous to the existing notions for the computability of martingales on finite alphabets [3].

Definition 6. A function $d : \mathbb{N}^* \to [0, \infty)$ is called computably enumerable (alternatively, lower semicomputable) if there exists a total computable function $\hat{d} : \mathbb{N}^* \times \mathbb{N} \to \mathbb{Q} \cap [0, \infty)$ such that the following two conditions hold.

- **Monotonicity:** For all $w \in \mathbb{N}^*$ and for all $n \in \mathbb{N}$, we have $\hat{d}(w, n) \leq \hat{d}(w, n + 1) \leq d(w)$.
- **Convergence:** For all $w \in \mathbb{N}^*$, $\lim_{n \to \infty} \hat{d}(w, n) = d(w)$.

A real number r is said to be lower semicomputable if there is a total computable function $\hat{r} : \mathbb{N} \to \mathbb{Q}$ such that for every $n \in \mathbb{N}$, $\hat{r}(n) \leq \hat{r}(n + 1) \leq r$, and $\lim_{n \to \infty} \hat{r}(n) = r$. Note that if d is a lower semicomputable supermartingale, then for every $v \in \mathbb{N}^*$, $d(v)$ is a lower semicomputable real, uniformly in \mathbb{N}.

Definition 7. A function $d : \mathbb{N}^* \to [0, \infty)$ is called computable if there is a total computable function $\tilde{d} : \mathbb{N}^* \times \mathbb{N} \to \mathbb{Q} \cap [0, \infty)$ such that for every $w \in \mathbb{N}^*$ and $n \in \mathbb{N}$, we have $|\tilde{d}(w, n) - d(w)| \leq 2^{-n}$.

Note. By replacing \mathbb{N}^* with Σ^*, we get the analogous computability notions for binary supermartingales. For a computable function d, it is sufficient for the witness \hat{d} that for some $f : \mathbb{N} \to [0, \infty)$, where f is a monotone computable function decreasing to 0 as $n \to \infty$, $|\tilde{d}(w, n) - d(w)| \leq f(n)$.

For computably enumerable (abbreviated as c.e.) sequences of lower semicomputable martingales, we have the following universality result.

Theorem 8. If $\{d_1, d_2, \ldots\} : \mathbb{N}^* \to [0, \infty)$ is a computably enumerable sequence of lower semicomputable martingales then there exists a lower semicomputable martingale d that succeeds on $\bigcup_{i=1}^{\infty} S^\infty_{d_i}$, and which strongly succeeds on $\bigcup_{i=1}^{\infty} S^\infty_{str}[d_i]$.

We now define individual random continued fractions for the above computability notions. Random sequences are those on which martingales fail to make unbounded amounts of money.

Definition 9. We call a continued fraction $X \in \mathbb{N}^\infty$ Martin-Löf random if no lower semicomputable supermartingale succeeds on X and computably random if no computable supermartingale succeeds on X.

As it is well-known in the binary case using the “savings account trick” (see for example, [3] or [18]), the following theorem states that the notion of success and strong success coincide when we study Martin-Löf and computable randomness.
In Theorem 10, if \(d : \mathbb{N}^* \to [0, \infty) \) is a supermartingale which succeeds on \(X \in \mathbb{N}^\infty \), then there is a supermartingale \(g : \mathbb{N}^* \to [0, \infty) \) and such that \(\lim_{n \to \infty} g(X \upharpoonright n) = \infty \). Moreover, if \(d \) is lower semicomputable, then so is \(g \). If \(d \) is computable, then there is a function \(s : \mathbb{N}^* \to [0, \infty) \) which is monotone over lengths of inputs, such that \(g \geq s \) and \(\lim_{n \to \infty} s(X \upharpoonright n) = \infty \), where \(g \) and \(s \) are computable functions.\(^1\)

We can show that basic stochastic properties are satisfied by continued fraction randoms.

Theorem 11. Suppose \(X \) is a computably random continued fraction. Then every positive integer appears infinitely often in \(X \).

5. Continued fraction non-randoms are binary non-random

The following lemmas are crucial in converting betting strategies on binary expansions into those on continued fractions, and conversely.

Lemma 12. Let \(0 \leq a < b \leq 1 \), and \(\left[\frac{m}{2^k}, \frac{m+1}{2^k} \right) \), where \(0 \leq m < 2^k \), be the smallest dyadic interval that covers \([a, b) \). Then \(\frac{1}{2^k} \leq 4(b - a) \).

Lemma 13. Let \(0 \leq a < b \leq 1 \), and \(\left[\frac{m}{2^k}, \frac{m+1}{2^k} \right) \), where \(0 \leq m < 2^k \), be the largest dyadic interval which is a subset of \([a, b) \). Then \(\frac{1}{2^k} \geq \frac{1}{4}(b - a) \).

Now we show that if there is a martingale which succeeds on the continued fraction on a real number \(x \), then there is a martingale that succeeds on its binary expansion with similar computability properties.

Theorem 14. Let \(x \in (0, 1) \) be an irrational with continued fraction expansion \(X \) and binary expansion \(B \). Then the following hold.

1. If \(X \) is non-Martin-Löf random, then its \(B \) is non Martin-Löf random.
2. If \(X \) is not computably random, then \(B \) is not computably random.

Proof. Let \(X \) and \(B \) be as given.

Let \(d : \mathbb{N}^* \to [0, \infty) \) be a c.e. supermartingale which succeeds on \(X \). By Theorem 10, we can assume that \(\lim \inf_{n \to \infty} d(X \upharpoonright n) = \infty \), equivalently, for every integer \(M \), for all sufficiently large prefix lengths \(n \), \(d(X \upharpoonright n) \geq M \). We construct a c.e. martingale \(h : \Sigma^* \to [0, \infty) \) which succeeds on \(B \), using the martingale \(d \).

Note that for an arbitrary \(w \in \{0, 1\}^\ast \), the continued fraction cylinder enclosing \(C_w \) may not coincide exactly with \(C_w \), and that certain intervals may overlap with both \(C_{w0} \) and \(C_{w1} \). First, we introduce some notation to define the martingale.

Let \(w \in \Sigma^\ast \) and \(v \in \mathbb{N}^\ast \) be the continued fraction such that \(C_w \) is the smallest cylinder enclosing \(C_w \). We classify the extensions of \(v \) as follows. Let \(I(w) = \{ vi \mid i \in \mathbb{N}, C_{vi} \subseteq C_w \} \) be the set of cylinders which are contained in \(C_w \). Let \(P(w) = \{ vi \mid i \in \mathbb{N}, C_{vi} \cap C_w \neq \emptyset, C_{vi} \not\subseteq C_w \} \) be the set of cylinders which partially intersect \(C_v \), but are not contained in it. Then, let

\[
h(w) = \sum_{y \in I(w)} d(y) \gamma(y) \frac{1}{\mu(w)} \sum_{y \in P(w)} d(y) \gamma(y) \frac{1}{\mu(w)}.
\]

\(^1\) \(s \) is called the “savings account” of \(g \).
Since \(\mu(w0) = \mu(w1) = \frac{\mu(w)}{2} \), we have that \([h(w0) + h(w1)] \frac{\mu(w)}{2} \) is equal to
\[
\sum_{y \in I(w0) \cup I(w1)} d(y) \gamma(y) + \sum_{y \in P(w0) \cap P(w1)} d(y) \gamma(y) + \frac{1}{2} \sum_{y \in P(w0) \oplus P(w1)} d(y) \gamma(y),
\]
where \(\oplus \) denotes the symmetric difference of sets. Note that every \(y \in I(w0) \cup I(w1) \cup (P(w0) \cap P(w1)) \) is an extension of some \(v \in I(w) \). By Lemma 5, we have
\[
\sum_{y \in P(w0) \oplus P(w1)} d(y) \gamma(y) \leq \sum_{v \in I(w)} d(v) \gamma(v).
\]
Further, every \(y \in P(w0) \oplus P(w1) \) is an extension of some \(v \in P(w) \). Hence
\[
\sum_{y \in P(w0) \oplus P(w1)} d(y) \gamma(y) \leq \sum_{v \in P(w)} d(v) \gamma(v).
\]
We have
\[
[h(w0) + h(w1)] \frac{\mu(w)}{2} \leq \left(\sum_{v \in I(w)} d(v) \gamma(v) + \frac{1}{2} \sum_{v \in P(w)} d(v) \gamma(v) \right) = h(w) \mu(w),
\]
whence \(h \) is a supermartingale.

Let \(M \) be an arbitrary positive real, and let \(v \subseteq X \) be a prefix such that for all longer prefixes, \(d(v) \geq M \).

Let \(w \subseteq B \) be the string designating the largest binary cylinder \(C_w \subseteq C_v \). We show that \(h(w) \geq cM \) for some constant \(c > 0 \) which is independent of \(w, v, \) and \(M \).

By Lemma 13, we know that the largest dyadic interval which is a subset of \(C_v \) has Lebesgue measure at least \(1/4 \) of the Lebesgue measure of \(C_v \). Thus,
\[
\gamma(C_v \cap C_w) \geq \frac{\mu(C_v \cap C_w)}{2 \ln(2)} \geq \frac{\mu(C_v)}{8 \ln(2)} \geq \frac{\gamma(C_v)}{8}.
\]
The first and third inequalities above are consequences of Lemma 2 (see also [4], Section 3.2) and the second, Lemma 13.

By definition, we have that \(h(w) \) is greater than or equal to
\[
M \left[\sum_{y \in I(w)} \gamma(y) 2^{|w|} + \frac{1}{2} \sum_{i \in P(w)} \gamma(y) 2^{|w|} \right] \geq M \left[\sum_{y \in I(w)} \gamma(y) 2^{|w|} + \sum_{y \in P(w)} \gamma(y) 2^{|w|} \right] \geq M \gamma(C_v \cap C_w) 2^{|w|}.
\]

From the bound above, we obtain that \(h(w) \) is greater than or equal to
\[
\frac{M}{2} \frac{\gamma(C_v \cap C_w)}{\mu(C_w)} \geq \frac{M}{16} \frac{\mu(C_v)}{\mu(C_w)} = \frac{M}{32 \ln 2} \frac{\mu(C_v)}{\mu(C_w)} \geq \frac{M}{32 \ln 2},
\]
where the last inequality follows from the fact that \(C_v \supseteq C_w \). Thus \(h \) succeeds on the same real.

If \(d \) is lower semicomputable, from equation (2), it is clear that \(h \) is the sum of lower semicomputable terms involving a computable decision (i.e. \(i \in I(wb) \) and \(i \in P(wb) \)). Hence \(h \) is a lower semicomputable function.

Now, suppose \(d \) is computable. Observe crucially that \(|I(wb)| < \infty \) for one bit \(b \in \{0, 1\} \). Assume, without loss of generality, that \(|I(w0)| < \infty \). Hence, \(h(w0) \) is a sum of finitely many computable terms, involving a computable decision. Moreover, \(h(w1) = \frac{h(w)}{2} - h(w0) \) is a difference of computable terms. It follows that \(h \) is computable. \(\blacktriangle \)
6 Binary non-randoms are continued fraction non-random

We now show that if the binary expansion of a real number is non-Martin-Löf-random, then so is its continued fraction expansion.

Theorem 15. Let x be an irrational in $[0,1]$ with continued fraction expansion X and binary expansion B. If B is not Martin-Löf random, then X is not a Martin-Löf random continued fraction.

Proof. Let $d : \Sigma^* \to [0, \infty)$ be a martingale with $B \in S^\infty_{\text{str}}[d]$. Without loss of generality, we may assume that $d \geq 2^{-c}$ for some $c \in \mathbb{N}$, $c > 0$.

Construct a collection of sets $(L_v)_{v \in \Sigma^*}$ by letting $L_\lambda = \{\lambda\}$ and

$$L_v = \{w \in \Sigma^* \mid (\exists u \subseteq w) u \in L_v, (\not\exists u \subseteq w) u \in L_{vi}, C_w \subseteq C_{vi}\}. \quad (3)$$

Dyadic rationals are dense in $[0,1]$. Hence L_v contains a unique prefix of every irrational in C_v. By construction, every L_v is a prefix-free set. Further, membership of w in L_v can be decided by ensuring that for every prefix $v' \subseteq v$, there is some $u \subseteq w$ in L_v', and no $w' \subseteq w$ is in L_v, and by checking that $C_w \subseteq C_v$. Hence L_vs are decidable uniformly in v.

Let $h : \Sigma^* \to (0, \infty)$ be defined by

$$h(v) = \sum_{w \in L_v} \frac{(\log_2 d(w) + c + 1) \mu(w)}{\gamma(v)}.$$

Since $d \geq 2^{-c}$, it follows that h is a positive real-valued function.

We can verify that $\sum_{i \in \Sigma} h(v_i) \gamma(v_i)$ is

$$\sum_{i \in \Sigma} \sum_{w \in L_{vi}} (\log_2 d(w) + c + 1) \mu(w) \leq \sum_{i \in \Sigma} \sum_{w \in L_{vi}, w \subseteq w} (\log_2 d(w) + c + 1) \mu(w).$$

Since L_{vi} is a prefix-free set for each $i \in \mathbb{N}$, by the Kolmogorov inequality [18], the above is at most $\sum_{w \in L_v} (\log_2 d(w) + c + 1) \mu(w)$, which is $h(v) \gamma(v)$, establishing that h is a supermartingale.

Suppose the savings account function of the $\log_2 d + c + 1$ supermartingale is denoted s_d. Then for every $D \in \Sigma^\infty$ and every $n \in \mathbb{N}$, we have $s_d(D \upharpoonright n) \leq s_d(D \upharpoonright n + 1)$ and that $\lim_{n \to \infty} s_d(B \upharpoonright n) = \infty$. If $s_d(u) \geq M > 0$, where C_u is the smallest cylinder which covers C_{v_i}, then we have

$$h(v) \geq \sum_{w \in L_v} s_d(w) \frac{\mu(w)}{\gamma(v)} \geq \frac{M}{\gamma(v)} \sum_{w \in L(v)} \mu(w) = \frac{M \mu(v)}{\gamma(v)}.$$

By Lemma 13, similar to the argument of the converse direction, we conclude that the above quantity is at least $M \ln(2)$. It follows that $X \in S^\infty_{\text{str}}[d]$.

If d is lower semicomputable, then so is $(\log_2 d + c + 1)$. Since L_v is decidable uniformly in v, it follows that h is the sum of a computably enumerable sequence of lower semicomputable terms, hence lower semicomputable.

If d is computable, then so is $(\log_2 d + c + 1)$, witnessed by, say, $\hat{\ell}_d : N^* \times N \to [0, \infty) \cap \mathbb{Q}$. For each $v \in N^*$, let $(w_{v,j})_{j \in \mathbb{N}}$ be a computable enumeration of L_v in increasing order, which exists since L_v is decidable. Hence, $\hat{h} : N^* \times N \to [0, \infty) \cap \mathbb{Q}$ defined below witnesses the computability of h. For $v \in N^*$ and $n \in \mathbb{N}$, define

$$\hat{h}(v, n) = \sum_{j=1}^{N_{v,n}} \hat{\ell}_d(w_{v,j}) \frac{\mu(w_{v,j})}{\gamma(v, n)}.$$
Randomness and Dimension of Continued Fractions

where

\[N_{n,v} = \min \left\{ m \in \mathbb{N} \mid \sum_{j=1}^{m} \mu(w_{v,j}) > \mu(v) - 2^{-n} \right\}. \]

Then, \(N_{n,v} \) exists for all \(n \) and \(v \). Moreover, \(N_{n,v} \) is computable uniformly in \(n \) and \(v \). We now show that for all \(n \), \(|\hat{h}(v,n) - h(v)| \leq (2 + c + 1)2^{-n} \), showing that \(h \) is computable.

For any \(w \in \Sigma^* \), we know that \(d(w) \leq 2|w| \), hence \(\log_2 d(w) + c + 1 \leq |w| + c + 1 \). Further, \(\sum_{j=N+1}^{\infty} \mu(w_{v,j}) \leq 2^{-n} \). Hence,

\[
\sum_{j=N+1}^{\infty} \frac{\log_2 d(w_{v,j}) + c + 1}{2^{|w_{v,j}|}} \leq \sum_{j=N+1}^{\infty} \frac{|w_{v,j}| + c + 1}{2^{|w_{v,j}|}},
\]

which, is clearly upper bounded by a term computable from \(n \) and decreasing to 0 as \(n \to \infty \). It follows that \(h \) is computable.

7 Effective dimension of continued fractions using \(s \)-gales

Adapting the approach of Lutz [13], Lutz and Mayordomo [14] for finite alphabets, we define effective Hausdorff dimension of sets of continued fractions.

Definition 16. Let \(s \in [0, \infty) \) and \(\mathbb{N}^\infty \) denote the set of infinite sequences of positive integers.

- A continued fraction \(s \)-gale is a function \(d : N^* \to [0, \infty) \) that satisfies the condition

\[d(w)[\gamma(C_w)]^s = \sum_{i \in \mathbb{N}} d(w_i)[\gamma(C_{w_i})]^s \]

for all \(w \in \mathbb{N}^* \).

- We say that \(d \) succeeds on a sequence \(Q \in \mathbb{N}^\infty \) if \(\limsup_{n \to \infty} d(Q \upharpoonright n) = \infty \).

- The success set of \(d \) is \(S^\infty(d) = \{ Q \in \mathbb{N}^\infty \mid d \text{ succeeds on } Q \} \).

- For \(\mathcal{X} \subseteq \mathbb{N}^\infty \), \(\mathcal{G}(\mathcal{X}) \) denotes the set of all \(s \in [0, \infty) \) such that for every \(X \in \mathcal{X} \), there exists a lower semicomputable continued fraction \(s \)-gale \(d \) which succeeds on \(X \).

- The effective Hausdorff dimension of a set \(S \subseteq \mathbb{N}^\infty \) is the infimum of the set \(\mathcal{G}(X) \).

It is possible to view \(s \)-gales as martingales with a specified rate of success. First, we show that an \(s \)-gale can be converted into a martingale by multiplying the capital of the \(s \)-gale with an adjusted rate for the success. This is similar to the corresponding result for binary \(s \)-gales and martingales in [13].

Lemma 17. Let \(d : \mathbb{N}^* \to [0, \infty) \) be an \(s \)-gale. Then \(g : \mathbb{N}^* \to [0, \infty) \) defined by \(g(v) = d(v)\gamma^{s-1}(v) \) is a continued fraction martingale.

Proof. It is clear that \(g(\lambda) = 1 \). Further, for \(v \in \mathbb{N}^* \), we have

\[
\sum_{i \in \mathbb{N}} g(v_i)\gamma(v_i) = \sum_{i \in \mathbb{N}} d(v_i)\gamma^{s-1}(C_v)\gamma(v_i) = \sum_{i \in \mathbb{N}} d(v_i)\gamma^s(v_i) = d(v)\gamma^s(v) = g(v)\gamma(v),
\]

where the penultimate equality follows since \(d \) is an \(s \)-gale.

The following helps us to relate the success rate of martingales to the dimension.
Lemma 18. Let \(d : \mathbb{N}^* \to [0, \infty) \) be a lower semicomputable continued fraction martingale, and \(s \in (0, 1) \). If \(X \in \mathbb{N}^\infty \) has infinitely many prefix lengths \(n \) for which \(d(X \upharpoonright n) \geq \gamma^{s - 1}(X \upharpoonright n) \), then \(\dim(X) \leq s \).

Thus, we have the following characterization of dimension of continued fractions in terms of the success rate of martingales.

Theorem 19. For any \(X \in \mathbb{N}^\infty, s \in (0, 1) \), we have \(\dim(X) \leq s \) if and only if there is a continued fraction martingale \(d : \mathbb{N}^* \to [0, \infty) \) such that for infinitely many \(n \), \(d(X \upharpoonright n) \geq \gamma^{s - 1}(C_{X \upharpoonright n}) \).

8 Continued fractions with dimension 0 and computability

Lemma 20. Every computable continued fraction has effective dimension zero.

Proof. Let \(X = [0; a_1, a_2, \ldots] \) be an arbitrary continued fraction such that \(a_i \in \mathbb{N} \). Let \(M \) be total computable function on \(\mathbb{N} \) such that for all \(i \in \mathbb{N} \), \(M(i) = a_i \).

Consider the function \(d : \mathbb{N}^* \to [0, \infty) \) which bets all of current capital along the sequence computed by \(M \), defined by \(d(a_1, a_2, \ldots a_n) = \gamma^{-s}(C_{a_1, a_2, \ldots a_n}) \). Let \(d(v) = 0 \) if \(v \) is not a prefix of \(X \).

Then \(d \) is an \(s \)-gale, since for every \(v \in \mathbb{N}^* \) which is a prefix of \(S \),

\[
\sum_{i \in \mathbb{N}} d(vi)\gamma^s(C_{vi}) = \frac{\gamma^s(C_{vM(|v|)})}{\gamma^s(C_{vM(|v|)})} = 1 = \gamma^{-s}(C_v)\gamma^s(C_v) = d(v)\gamma^s(C_v).
\]

For \(v \in \mathbb{N}^* \) which is not a prefix of \(X \), \(d(v) = 0 \), hence \(\sum_{i \in \mathbb{N}} d(vi)\gamma^s(C_{vi}) = 0 = d(v)\gamma^s(C_v) \).

Since \(\gamma([0; a_1, \ldots, a_n]) \to 0 \) as \(n \to \infty \) and \(s > 0 \), it follows that \(\gamma^{-s}([0; a_1, \ldots, a_n]) \to \infty \) as \(n \to \infty \). Hence \(X \in \mathbb{N}^\infty[d] \). Since \(s \) was arbitrary, the infimum of all \(s \) such that there is an \(s \)-gale which succeeds on \(X \) is 0.

However, the converse does not hold in general. We show that there are uncomputable continued fractions with dimension 0.

The standard technique for binary sequences uses the notion of “dilution” - we add a few bits from a Martin-Löf random sequence, and intersperse it with a large number of 0s. By making the number of zeroes grow in an unbounded manner, we can construct a dimension 0 sequence.

Surprisingly, with continued fractions, we can perform this “dilution” by following every “random” integer with a single integer. We do not require arbitrarily long computable stretches. We are able to do this since the underlying alphabet is infinite.

To make the continued fraction uncomputable, at every odd location, we copy the integer from a Martin-Löf random continued fraction. To make the continued fraction have dimension 0, at every even location, we computably choose a large integer so that an \(s \)-gale can make unbounded amounts of money by betting.

The construction is involved, because the underlying probability measure, Gauss measure, is not a product distribution. Hence the choice of these “large integers” at even locations necessarily depend on the previous integers. The argument which follows uses several approximation techniques.

Lemma 21. There is an uncomputable continued fraction with dimension 0.
Proof. Let Y be a Martin-Löf random continued fraction. Let X be the continued fraction defined by

$$X[n] = \begin{cases} Y_{[n/2]} & \text{if } n \text{ is odd,} \\ f(X \upharpoonright n - 1) & \text{otherwise,} \end{cases}$$

where $f : \mathbb{N}^* \to \mathbb{N}$ defined by $f(v) = [\max(v) + 2]^{(l_v)2}$ for $v \in \mathbb{N}^*$. We show that $\dim_X(X) = 0$. It suffices to show that for all $s \in (0, 1)$, there is an s-gale that succeeds on X.

Consider the computable function $d : \mathbb{N}^* \to [0, \infty)$ defined by $d(\lambda) = 1$ and for every v of odd length and $i \in \mathbb{N}$, letting $d(vi) = d(v)\gamma^{1-s}(C_{vi江门})$. For every v of even length, $j = f(v)$, let $d(vj) = d(v)\gamma^{-s}(C_{vj江门})$, and for $k \neq f(v)$, let $d(vk) = 0$.

If $|v|$ is odd, then

$$\sum_{i \in \mathbb{N}} d(vi)\gamma^s(vi|v) = d(v) \sum_{i \in \mathbb{N}} \gamma^{1-s}(vi|v)\gamma^s(vi|v) = d(v) \sum_{i \in \mathbb{N}} \gamma(vi|v) = d(v),$$

and if $|v|$ is even, then letting $j = f(v)$,

$$\sum_{i \in \mathbb{N}} d(vi)\gamma^s(vi|v) = d(v) \frac{\gamma^s(vj|v)}{\gamma^s(vj|v)} = d(v).$$

Hence d is an s-gale.

We show now that $X \in S^\infty[d]$. Denote $X \upharpoonright 2k - 1$ by v. Let $X[2k] = Y[k]$ be denoted by i and $X[2k + 1] = f(vi)$ be denoted by j. Then

$$\frac{d(vij)}{d(v)} = \frac{1}{\gamma^{1-s}(vi|v)\gamma^s(vj|v)} = \frac{\gamma(vi|v)}{\gamma^s(vi|v)\gamma^s(vj|v)} \geq \frac{\gamma(vi|v)}{\gamma^s(vj|v)},$$

since $0 \leq \gamma^s(vi|v) \leq 1$. By Lemma 2, it follows that

$$\frac{\gamma(vi|v)}{\gamma^s(vj|v)} \geq \frac{\mu(vi|v)}{2(\ln 2)^{1-s}\mu^s(vj|v)}.$$

We have that $\mu(vi|v)$ is

$$\frac{q_{2k-1}(q_{2k-1} + q_{2k-2})}{2q_{2k}(q_{2k} + q_{2k-1})} \geq \frac{q_{2k-1}^2}{2q_{2k}} = \frac{q_{2k-1}^2}{2(iq_{2k-1} + q_{2k-2})^2} \geq \frac{q_{2k-1}^2}{2(i + 1)^2q_{2k-1}^2} = \frac{1}{2(i + 1)^2} \geq \frac{1}{2(m + 2)^2},$$

where $m = \max(vi)$. Similarly

$$\frac{1}{\mu(vj|v)} = \frac{q_{2k+1}(q_{2k+1} + q_{2k})}{2q_{2k}(q_{2k} + q_{2k-1})} \geq \frac{jq_{2k} + q_{2k-1}}{q_{2k} + q_{2k-1}}.$$

Since $j = (m + 2)^{4k^2}$, it follows that

$$\frac{\mu(vi|v)}{2(\ln 2)^{1-s}\mu^s(vj|v)} \geq \frac{1}{2(m + 2)^2} \frac{(m + 2)^{4k^2}}{2^{s+1}(\ln 2)^{1-s}} = \frac{(m + 2)^{4k^2} - 2}{2^{s+2}(\ln 2)^{1-s}}.$$

For fixed s, as $k \to \infty$, the above quantity is greater than 2. It follows that d succeeds on X. Since $s \in (0, 1)$ was arbitrary, we can conclude that $\dim_X(X) = 0$.
\hfill \Box
Continued fractions with dimension 1 and Martin-Löf randomness

In this section, we study the relationship between Martin-Löf randomness of continued fractions, normality of continued fractions, and the notion of effective dimension 1. We show that all Martin-Löf random continued fractions have effective dimension 1. However, there are continued fractions with effective dimension 1, which are normal as well, but which are not Martin-Löf random.

Lemma 22. Every Martin-Löf random continued fraction has effective dimension 1.

Proof. Let \(Y \in \mathbb{N}^\infty \) have \(s = \dim(Y) \leq 1 \). Let \(d : \mathbb{N}^* \to [0, \infty) \) be a lower semicomputable \(s \)-gale that succeeds on \(Y \). Consider the lower semicomputable function \(h : \mathbb{N}^* \to [0, \infty) \) defined by \(h(v) = d(v) \gamma_s^{\#-1}(C_v) \), for \(v \in \mathbb{N}^* \). Then

\[
\sum_{v \in \mathbb{N}} h(v) \gamma(C_v) = \sum_{v \in \mathbb{N}} d(v) \gamma_s(C_v) = d(v) \gamma_s(C_v) = h(v) \gamma(C_v),
\]

where the second last equality follows by the fact that \(d \) is an \(s \)-gale.

Suppose \(d(Y \upharpoonright n) > M \). Then \(h(Y \upharpoonright n) > M \gamma_s^{\#-1}(Y \upharpoonright n) > M \). Since \(Y \in S^\infty[d] \), it follows that \(Y \in S^\infty[h] \). Hence \(Y \) is not a Martin-Löf random continued fraction.

However, there are sequences with c.e. dimension 1, which are not random. The idea is to intersperse the integer “1” at computable locations which are spaced very sparsely apart. The proof that the resulting number is not Martin-Löf random uses the following estimate on conditional Gauss probabilities, which, to our knowledge, is not present in literature.

Lemma 23. For any \(v = [0; v_1, \ldots, v_n] \in \mathbb{N}^* \), we have

\[
\frac{1}{2 \ln(2)(2v_n + 3)} \leq \gamma(C_v) \leq \frac{1}{2 \ln(2)}.
\]

The above lemma shows that the conditional probability of 1 in any cylinder \([0; v_1, \ldots, v_n, 1] \) can be arbitrarily small if \(v_n \) is arbitrarily large. Hence a betting function to win arbitrarily large amounts. In the following constructions in the paper, unlike in the dimension 0 construction, it becomes necessary to allow a betting function to win, but also to prevent large wins, at specific positions. We control this winning amount by inserting 1s at computable locations only when \(v_n \) is bounded.

Lemma 24. There is a continued fraction with effective dimension 1, which is normal, but which is not Martin-Löf random.

Proof. Let \(Y \) be a Martin-Löf random continued fraction. We construct \(X \in \mathbb{N}^\infty \) in stages, as follows.

At each stage \(s \geq 1 \), we copy at least \(s! \) integers from \(Y \) into \(X \), maintaining the relative order. Associated with each stage, we keep a cumulative count \(N_s \) of the number of integers we have copied from \(Y \), in stages 1 through \(s \) inclusive.

Construction. At stage 1, we set \(X[i] = Y[i] \) starting from \(i = 1 \), until we see a position with \(Y[i] = 1 \). We denote this position as \(N_1 \). Such a position always exists since \(Y \) is Martin-Löf random by Theorem 11. Set \(X[N_1 + 1] = 1 \).

Note that at every stage, we insert exactly one 1 into \(X \), which is not present in \(Y \).

At stage \(s > 1 \), we proceed as follows. Note that \(X \) is longer than \(Y \) by exactly \(s-1 \) digits at the start of stage \(s \). Set \(X[N_{s-1} + (s-1) + j] = Y[N_{s-1} + j] \), for \(j \) from 1 through
at least $s!$, and until we encounter a position in Y which has a 1. Such a position exists by the normality of Y. We denote this position as K_s, and let $N_s = N_{s-1} + K_s$. Set $X[N_s + (s - 1) + 1] = 1$.

Let P_X be the set of positions where we have inserted ones into X, and P_Y be the set of positions in Y after which we have inserted ones in X while copying. At each stage s, we copy at least $s!$ entries from Y before inserting the additional 1 into X. Note that P_Y is computable from Y. Hence for all sufficiently large n, the number of entries in P_X and P_Y which are less than or equal to n is $o(\log n)$. (End of construction)

Verification. We now show that there is a lower semicomputable martingale $d : \mathbb{N}^* \to [0, \infty)$ which succeeds on X, showing that X is not Martin-Löf random. Let $d(\lambda) = 1$, and for every $v \in \mathbb{N}^*$, if $|v| + 1 \notin P_X$, then $d(vi) = d(v)$. It is clear that on these $v \in \mathbb{N}^*$, the martingale condition is satisfied. If $|v| + 1 \in P_X$, then let $d(v1) = d(v)\gamma^{-1}(C_{vi}v)$, and $d(vj) = 0$ for all $j \neq 1$. For such $v \in \mathbb{N}^*$, we have

$$\sum_{i \in \mathbb{N}} d(vi)\gamma(C_{vi}v) = d(v1)\gamma(C_{vi}v) = d(v)\gamma(C_{vi}v) = d(v),$$

proving that d is a martingale. Since checking for membership in P is computable based on the prefix v, it follows that d is lower semicomputable.

To see that d succeeds on X, we observe that at every position in P, d multiplies its previous capital by $\gamma^{-1}(C_{vi}v)$, and on other prefixes of X, d preserves its capital. By Lemma 23, $\gamma^{-1}(C_{vi}v) \geq 2\log 2$. Thus, $\lim_{n \to \infty} d(X \upharpoonright n) = \infty$.

We now show that if $\dim(X) < 1$, then Y is not Martin-Löf random. Let $s \in (0,1)$ and $h : \mathbb{N}^* \to [0, \infty)$ be a lower semicomputable s-gale which succeeds on X. At positions $n \in P_X$, we can assume without loss of generality that

$$h(X \upharpoonright n) = h(X \upharpoonright (n - 1)) - \gamma^{-s}((X \upharpoonright (n - 1))1 \upharpoonright (X \upharpoonright (n - 1))),$$

i.e. h attains the maximum possible capital on the positions in P_X.

Construct a martingale $g : \mathbb{N}^* \to [0, \infty)$ thus. Let $g(\lambda) = 1$. If $v \in \mathbb{N}^*$ is such that $|v| \notin P_Y$, then for every $i \in \mathbb{N}$, let $g(vi) = h(vi)\gamma^{s-1}(vi)$. Otherwise, let $g(vi) = h(vi)\gamma^{s-1}(v)\gamma^{s-1}(vi)$.

If v belongs to the first case above, then

$$\sum_{i \in \mathbb{N}} g(vi)\gamma(vi) = \sum_{i \in \mathbb{N}} h(vi)\gamma^{s-1}(vi)\gamma(vi) = \sum_{i \in \mathbb{N}} h(vi)\gamma^{s}(vi) = h(v)\gamma^{s}(v) = g(v)\gamma(v),$$

and otherwise,

$$\sum_{i \in \mathbb{N}} g(vi)\gamma(vi) = \sum_{i \in \mathbb{N}} h(vi1)\gamma^{s}(v1v)\gamma^{s}(vi) = h(v1)\gamma^{s}(v1v)\gamma^{s}(v) = h(v)\gamma^{s}(v) = g(v)\gamma(v),$$

where the second equality follows since h is an s-gale, and the third inequality follows by (4). Hence, g is a lower semicomputable martingale.

By Lemma 1 and 2, $\gamma^{s-1}(vi) > 2^{(1-s)|vi|}(\ln 2)^{1-s}$. Recall that P_Y contains $o(\log n)$ elements which are less than n. Since every position in P_X is preceded by $v_n = 1$, it follows that $\gamma^{s}(v1v) \geq 1/(10\ln 2)^{1-s}$ for every v and $|v| \in P_Y$. Hence $g(Y \upharpoonright n) \geq \frac{2^{(1-s)|v|}(\ln 2)^{1-s}}{n}$ which tends to ∞ as $n \to \infty$. Hence Y is not Martin-Löf random, which is a contradiction.

Since s is arbitrary, it follows that $\dim(X) = 1$.
References