
Efficient Algorithm for Multiplication of Numbers
in Zeckendorf Representation
Tomasz Idziaszek
Independent Researcher, Poland
http://algonotes.com
tomasz@algonotes.com

Abstract
In the Zeckendorf representation an integer is expressed as a sum of Fibonacci numbers in which
no two are consecutive. We show O(n log n) algorithm for multiplication of two n-digit numbers in
Zeckendorf representation.

For this purpose we investigate a relationship between the numeral system using Zeckendorf
representations and the golden ratio numeral system. We also show O(n) algorithms for converting
numbers between these systems.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms

Keywords and phrases Fibonacci numbers, Zeckendorf representation, multiplication algorithm,
Fast Fourier Transform, golden ratio numeral system, Lucas numbers

Digital Object Identifier 10.4230/LIPIcs.FUN.2021.16

1 Introduction

Zeckendorf [12] showed that each non-negative integer has a unique representation as a sum of
Fibonacci numbers in which no two consecutive Fibonacci numbers occur. This observation
leads to a numeral system. One of its applications is in self-delimiting codes [2], but we can
research this system for its own sake as a mathematical curiosity.

A natural question for a numeral system is how can we perform arithmetic operations
on numbers in such a system, and how fast can we do it. It was shown that addition and
subtraction of n-digit numbers in the Zeckendorf system can be performed in O(n) time [1],
so as fast as in the binary system.

But multiplication seems to be much harder. It is straightforward to directly utilize
addition and construct a grade-school-like O(n2) multiplication algorithm for the Zeckendorf
system, but so far no one presented a faster method. However, for the binary system we
can devise O(n logn) algorithms [9], by observing that multiplication can be reduced to
a convolution (which can be calculated using the Fast Fourier Transform) followed by a
normalization phase (carry propagation).

The purpose of this paper is to present O(n logn) algorithm for multiplication of two
n-digit numbers in the Zeckendorf system. The main idea is to reduce it to a convolution
followed by a certain normalization phase. The normalization phase can be reduced to
O(logn) additions.

For convolution to work, we use the fact that the Zeckendorf system is closely related to
a non-integer positional numeral system that uses the golden ratio as its base. Since this
system is positional, convolution can be performed exactly the same as in the binary system.

We complete the algorithm by showing O(n) time procedures for converting between the
Zeckendorf system and the golden ratio numeral system.

© Tomasz Idziaszek;
licensed under Creative Commons License CC-BY

10th International Conference on Fun with Algorithms (FUN 2021).
Editors: Martin Farach-Colton, Giuseppe Prencipe, and Ryuhei Uehara; Article No. 16; pp. 16:1–16:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://algonotes.com
mailto:tomasz@algonotes.com
https://doi.org/10.4230/LIPIcs.FUN.2021.16
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

2 Preliminaries

Fibonacci numbers and Zeckendorf representation. The sequence of Fibonacci numbers
is defined as follows (see also Table 1 in the appendix):

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. (1)

Note that this definition works for all integers n (even negative ones). In particular we have

F−n = (−1)n+1Fn. (2)

We can express non-negative integers as weighted sums of Fibonacci numbers. A sequence
of integer weights ai with only a finite number of non-zero weights represents number

x =
∑

i

aiFi.

Zeckendorf [12, 6] showed that under the following conditions such a representation (called
the Zeckendorf representation) is unique:
(Z1) Each ai is either 0 or 1.
(Z2) There are no adjacent non-zero weights, thus ai+1ai = 0 for all i.
(Z3) ai = 0 for i < 2.

See Table 2 for the Zeckendorf representations of numbers from 1 to 30. Note that we
write sequences of weights in such a way that the most significant weight is on the left.

There are several ways of showing that every number has a Zeckendorf representation,
but it is fruitful for us to recall a proof from [8]. For a given non-negative integer x we can
start from a trivial representation with only one non-zero weight a2 = x, since F2 = 1. This
representation violates condition (Z1). The idea is to transform the representation in a series
of steps, where every step locally changes weights, but the represented value stays the same.
At the end we would like to obtain a representation that satisfies all three conditions. We
call such a series of steps a normalization procedure.

Following [8] we show here one example of such a procedure, although not efficient (later
in Theorem 2 we show an efficient normalization procedure.) We keep an invariant that
condition (Z3) is always satisfied, but conditions (Z1) and (Z2) might be not. Every time
condition (Z2) is not satisfied, we find the left-most pair of adjacent non-zero weights and
apply the following transformation on it:

0x̄ȳ → 1xy, (3)

where x̄ = x+1. The soundness of this transformation follows directly from the recurrence (1),
and it never leads to violation of condition (Z3).

If only condition (Z1) is not satisfied, we apply the following transformation on the
left-most weight greater than 1:

0¯̄x0y → 1x0ȳ. (4)

The soundness follows from the following equality valid for all integers n:

2Fn = Fn + (Fn−1 + Fn−2) = Fn+1 + Fn−2. (5)

The transformation may violate condition (Z3), but only when fixing weight a2, thus it
increases weight a0 then. But this weight is multiplied by F0 = 0 anyway, so we can safely
set it back to 0.



T. Idziaszek 16:3

Every time we apply transformations (3)–(4), the sum
∑

i 2iai increases, so since every
integer has a finite number of representations with non-negative weights, the process termin-
ates.

The uniqueness of Zeckendorf representation follows from a counting argument (see [6]).

The golden ratio numeral system. Binet’s formula provides a closed-form solution for
Fibonacci numbers and shows a relationship between them and the golden ratio ϕ = 1+

√
5

2 :

Fn = ϕn − (−ϕ)−n

√
5

. (6)

In fact, another numeral system closely related to Fibonacci numbers is a positional
numeral system using the golden ratio as the base [3, 7]. In this system a sequence of integer
weights ci represents number

x =
∑

i

ciϕ
i.

This representation is unique (and we call it the base-ϕ representation; see also Table 2)
if it satisfies conditions (Z1) and (Z2). To prove that every non-negative integer has a base-ϕ
representation, observe that ϕi satisfies the same recurrence as Fibonacci numbers Fi, namely

ϕn = ϕn−1 + ϕn−2.

It means that transformations (3)–(4) also work for base-ϕ representations, and starting from
a trivial representation (with one non-zero weight c0 = x, since ϕ0 = 1) we can use almost
the same normalization procedure as before to obtain a representation satisfying conditions
(Z1) and (Z2). This time, however, we do not make fixes for condition (Z3), thus non-zero
weights can occur also for negative indices.

Addition and subtraction algorithms. Arithmetic operations on Zeckendorf representations
were discussed in [5, 4, 10] but authors of these papers either did not analyze time complexity
of their algorithms or they provided very weak bounds. The optimal linear-time bounds for
addition and subtraction algorithms were given in [1], and we recall them here, since they
are needed for the multiplication algorithm presented in this paper.

I Theorem 1. There are O(n) algorithms for addition and subtraction of two n-digit numbers
in Zeckendorf representation and in base-ϕ representation.

Proof. We present here only a method behind the algorithms; the full algorithms with the
proofs can be found in [1]. The addition algorithm starts by independently adding weights
from corresponding positions in the Zeckendorf (or base-ϕ) representations, obtaining a
sequence of weights from set {0, 1, 2}. This sequence can violate condition (Z2) by having
consecutive 1s and/or condition (Z1) by having 2s (but only adjacent to 0s). Since we need
to normalize the sequence, we could apply the transformations (3)–(4), but this would be
inefficient. To perform normalization procedure in O(n) we need to be more careful. Let r
be the position of the right-most non-zero weight in the sequence.

We move a 4-position-wide window from left to right, applying the following transforma-
tions were applicable:

020x→ 100x̄, 030x→ 110x̄, 021x→ 110x, 012x→ 101x,

FUN 2021



16:4 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

where x ∈ {0, 1, 2} and x̄ = x+ 1. These transformations may introduce additional weight 3,
but at the end all 3s as well as 2s are removed, restoring condition (Z1). Then we move
a 3-position-wide window from left to right and apply transformation 011 → 100, which
removes groups of consecutive 1s that are longer than two positions. Finally, we move
the same window from right to left, removing remaining adjacent 1s and fully restoring
condition (Z2).

That finishes normalization procedure for base-ϕ representations. Note that in the output
sequence the right-most non-zero weight is at position not smaller than r − 2.

For Zeckendorf representations we must take some additional local step to fix condi-
tion (Z3), but its a technical detail.

For subtraction we run a similar algorithm, but now weights are from set {−1, 0, 1}, and
there are no consecutive 1s nor consecutive −1s. We move a 4-position-wide window from
left to right with transformations:

x00→ x̄11, x1̄0→ x̄01, x1̄1→ x̄02, x01̄→ x̄10,

where x ∈ {1, 2}, x̄ = x − 1 and 1̄ = −1. The transformations keep a positive weight in
the window and use it to cancel any −1s. They may introduce additional 2s, but these are
adjacent only to 0s. So at the end we can finish the algorithm by performing normalization
procedure for addition algorithm. J

The subtraction algorithm can be used to prove the uniqueness of the base-ϕ representa-
tions. Suppose that we have two different sequences of weights ci and c′i that satisfy conditions
(Z1) and (Z2), and they represent the same value x. Assume that ci is lexicographically
larger than c′i. If we subtract c′i from ci, we get a non-zero sequence of weights satisfying
conditions (Z1)–(Z2) that represents value 0. That is impossible, since all ϕi are positive.

3 Multiplication Algorithms

Several multiplication algorithms for Zeckendorf representation were discussed in [1], but the
authors did not find any algorithm with time complexity better than O(n2). They posed
this as a “challenging open problem”.

The idea of the algorithm presented in this paper is that since base-ϕ is a positional
numeral system, the multiplication in this system can be reduced to a convolution after which
we need to do a normalization phase. Such a convolution can be calculated in O(n logn)
time using the Fast Fourier Transform [9].

Let sequences cj and c′j be the base-ϕ representations of numbers x and x′. As a result
of the convolution we obtain a sequence of non-negative weights Ci such that

Ci =
∑

j

cjc
′
i−j ,

and the sum
∑

i Ciϕ
i is equal to the product x · x′. The weights Ci can be up to O(n).

Linear-time normalization procedures used in addition and subtraction algorithms utilised
the fact that weights were of constant size. However, we can devise an efficient normalization
procedure for arbitrary weights:

I Theorem 2. There is O(n logM) algorithm that, given a sequence of n integer weights
from range [0,M ], normalizes it so it satisfy conditions (Z1) and (Z2).



T. Idziaszek 16:5

Proof. Each weight is a number of m = blogMc + 1 bits. We create m binary sequences
x0, x1, . . . , xm−1: each number in sequence xi equals to the i-th bit of the corresponding
number in the original sequence. We initialize the answer to be a sequence of 0s.

Then we performm phases. In phase i (for i = m−1, . . . , 1, 0) we multiply the answer by 2
(by executing addition algorithm in O(n) time) and then we add to the answer sequence xi

(again by executing addition algorithm). J

Using the above theorem directly, we get a normalization procedure for base-ϕ repres-
entation that works in O(n logn) time and completes the multiplication algorithm for the
golden ratio system.

The idea for a multiplication algorithm for Zeckendorf representation is to convert both
numbers into base-ϕ representation, perform multiplication in base-ϕ, and then convert the
result back to Zeckendorf representation. In the next section we show that such conversions
are possible in O(n) time, thus we get the theorem:

I Theorem 3. There are O(n logn) algorithms for multiplication of two n-digit numbers in
Zeckendorf representation and in base-ϕ representation.

4 Conversions Between Representations

Compare the proofs that every number x has the Zeckendorf and the base-ϕ representation.
In both of them we started with a trivial representation (a2 = x and c0 = x, respectively),
and we performed a certain normalization procedure.

Now imagine that we start from α2 = x (like in the proof for Zeckendorf representation)
and we perform the normalization procedure that ignores condition (Z3) (like in the proof for
base-ϕ representation). We get a sequence of weights αi that satisfies conditions (Z1)–(Z2)
and represents number x =

∑
i αiFi. But exactly the same procedure applied to initial

condition c0 = x produces the base-ϕ representation x =
∑

i ciϕ
i. Therefore αi = ci−2 for

all integers i.
Thus the weights of the base-ϕ representation shifted by two places and applied to

Fibonacci numbers yield the same value:∑
i

ciϕ
i = x =

∑
i

ci−2Fi.

Thanks to that property conversion from base-ϕ to Zeckendorf is easy:

I Theorem 4. There is O(n) algorithm for converting an n-digit number in base-ϕ repres-
entation to Zeckendorf representation.

Proof. We have the base-ϕ representation x =
∑

i ciϕ
i. For easier notation denote αi = ci−2.

We create four sequences that partition the weights into four parts: for positive indices, for
indices close to the origin, for odd negative indices, and for even negative indices:

xpos =
∑
i≥2

αiFi, xodd =
∑

i≥2, i odd
α−iFi,

xorig = α1α−1F3 + [α1 6= α−1]F2, xeven =
∑

i≥2, i even
α−iFi.

Since sequence αi satisfies conditions (Z1)–(Z2), the above sequences are the Zeckendorf
representations of numbers xpos, xorig, xodd, and xeven. Moreover, from (2) we know that
Fibonacci numbers of negative indices −i are equal to their positive counterparts but with

FUN 2021



16:6 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

changed sign if i is even, thus x = xpos + xorig + xodd − xeven. Thus we can calculate
the Zeckendorf representation of x using the addition algorithm twice and the subtraction
algorithm once. J

The representation αi has been investigated by Zeckendorf who called it a “generalized
Fibonacci numeration” [11].

For conversion from Zeckendorf to base-ϕ we can look at Table 2 that contains the base-ϕ
representations for small integers and observe that certain representations have simple forms,
e.g. there are some that contain only two 1s. Moreover, if we allow weights of −1 (we call it
relaxed base-ϕ representation) we can get simple representations for some more numbers (see
Table 3).

These numbers that happen to have simple forms are called Lucas numbers Ln, and are
defined as follows (see also Table 1):

Ln = Fn+1 + Fn−1.

In particular we have the following relationship between Lucas numbers and the golden
ratio, that is easy to check using Binet’s formula:

Ln = ϕn + (−1)nϕ−n. (7)

Thus it looks like, as Fibonacci numbers were the simplest building blocks of Zeckendorf
representations, we could use Lucas numbers as simple building blocks of relaxed base-ϕ
representations. Thus we can try to express integers using weighted sums of Lucas numbers;
a sequence of integer weights bi represents number

x =
∑

i

biLi.

Each non-negative integer can be represented as a weighted sum of Lucas numbers, and this
representation is unique (thus we call it the Lucas representation, see [6] and Table 2) if it
satisfies conditions (Z1), (Z2) and a slightly modified version of condition (Z3):
(Z3′) ai = 0 for i < 0, and a2a0 = 0.

Such a representation can be obtained almost greedily from the Zeckendorf representation:

I Theorem 5. There is O(n) algorithm for converting an n-digit number in Zeckendorf
representation to Lucas representation.

Proof. We have the Zeckendorf representation x =
∑

i aiFi. Like in the proof of Theorem 1,
we move a 4-position-wide window from left to right over sequence ai and apply the following
transformations were applicable:

100x→ 011x, 101x→ 00̄0x, 1100→ 00̄01, 1101→ 011̄0, 1110→ 01̄00,

where x ∈ {0, 1}. A bar over a digit at position i means that we must increment weight bi

by one. This way we are zeroing sequence ai, and at the same time constructing the Lucas
representation bi, keeping the sum

∑
i(aiFi +biLi) unchanged. We keep the invariant that all

the time sequence ai satisfies conditions (Z1)–(Z2), except the left-most group of consecutive
1s, which can be of length up to 3. Thanks to that every transformation applied replaces the
left-most 1 with 0.

We stop after the transformation over positions 3 through 0. Then we finish by applying
one of the following transformations over positions 2 through 0:

110→ 000̄, 100→ 00̄0, 010→ 00̄0, 001→ 000.



T. Idziaszek 16:7

Each weight bi can be incremented at most twice (if it is incremented twice, then one
increment is due to transformation 1101→ 011̄0 followed by transformation 1100→ 00̄01).
Moreover, careful examination of the transformations shows that no two adjacent weights
are incremented. Also, there is at most one increment over positions 2 through 0, thus the
last three weights are in set {000, 001, 010, 100}.

Thus we have sequence bi of weights from set {0, 1, 2}, and 2s are adjacent to 0s on both
sides. Since Lucas numbers also satisfy recurrence Ln = Ln−1 + Ln−2, we can perform the
same normalization procedure as in addition algorithm for base-ϕ representation, which
would help us restore conditions (Z1) and (Z2). However, this procedure could introduce
some non-zero weights br−1 and br−2, where r is the index of the right-most non-zero weight
in bi; so we must be careful here.

If the last three weights are 000 or 100, we are safe, since r ≥ 2. For the last three weights
being 001 or 010 we decrement weight br to zero, perform the normalization procedure, and
increment br back.

For 001 case we end up either with 0101 (which is safe) or with 011 (which we replace
with 100 and perform the normalization once again).

For 010 case we end up either with 0110 (which we replace with 1000 and perform the
normalization once again) or with 020 (which we replace with 001).

This restores conditions (Z1) and (Z2). If condition (Z3′) is not satisfied, the representation
ends in x0101. We can replace it with x1010 and if x = 1 we run a 3-position-wide window
from right to left with transformation 011→ 100. J

Finally, we show conversion from Lucas to base-ϕ. Conversion from Zeckendorf to base-ϕ
goes through an intermediate step of the Lucas representation.

I Theorem 6. There is O(n) algorithm for converting an n-digit number in Lucas repres-
entation to base-ϕ representation.

Proof. From the Lucas representation x =
∑

i biLi we can directly obtain a sequence of
weights ci in a relaxed base-ϕ representation, by using (7):

ci =


bi i > 0,
2b0 i = 0,
(−1)ib−i i < 0.

If c0 = 0, all weights are from set {−1, 0, 1}, so we can normalize this sequence by perform-
ing the normalization procedure just like in subtraction algorithm for base-ϕ representation.
Otherwise c0 = 2, and first we zero this weight, perform the subtraction normalization,
then increment c1 and c−2 by one and perform the normalization procedure like in addition
algorithm. J

5 Alternative Explanation

It turns out that we can invent the multiplication algorithm presented in this paper without
using terminology of the golden ratio numeral system, and staying only in the realm of
Fibonacci numbers. In fact this was the way it was invented by the author of this paper.
Since the obtained results are the same, and we simply change the language used, this section
present only the essence of this approach.

FUN 2021



16:8 Efficient Algorithm for Multiplication of Numbers in Zeckendorf Representation

The idea is to begin with the observation that starting from trivial representation α2 = x

and performing normalization procedure that ignores condition (Z3) gives us a sequence αi

satisfying conditions (Z1)–(Z2) and representing number

x =
∑

i

αiFi.

But if we start exactly the same procedure from an initial condition α′m = x, which represents
number xFm, we get an equation

xFm =
∑

i

α′iFi =
∑

i

αi+2Fi+m. (8)

The equation captures an important property that shifting sequence αi results in multiplying
the represented value by consecutive Fibonacci numbers. In positional systems (like the
binary or the golden ratio system) an analogous property states that shifting a sequence of
digits results in multiplying the represented value by the base (2 or ϕ, respectively).

This “shiftable” property is enough for convolution to work:

x · x′ = x
(∑

i

a′iFi

)
=
∑

i

a′ixFi
(8)=
∑

i

a′i

(∑
j

αj+2Fj+i

)
=
∑

i

(∑
j

a′i−jαj+2

)
Fi.

Thus it is enough to convert one of the arguments to a “shiftable” representation αi, and
perform convolution to obtain weights Ai =

∑
j a
′
i−jαj+2 of a “shiftable” representation of

the product.
For conversion part we observe that the representations αi of Lucas numbers are particu-

larly simple, which results from the following equivalent of equation (7) that holds for any
integers n and m:

LnFm = Fm+n + (−1)nFm−n.

References
1 Connor Ahlbach, Jeremy Usatine, Christiane Frougny, and Nicholas Pippenger. Efficient

algorithms for Zeckendorf arithmetic. The Fibonacci Quarterly, 51(3):249–255, 2013.
2 Alberto Apostolico and Aviezri S. Fraenkel. Robust transmission of unbounded strings using

Fibonacci representations. IEEE Transactions on Information Theory, 33(2):238–245, 1987.
3 George Bergman. A number system with an irrational base. Mathematics Magazine, 31(2):98–

110, 1957.
4 Peter Fenwick. Zeckendorf integer arithmetic. Fibonacci Quarterly, 41:405–413, 2003.
5 H.T. Freitag and G.M. Phillips. Elements of Zeckendorf Arithmetic, pages 129–132. Springer

Netherlands, Dordrecht, 1998.
6 Verner E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Houghton Mifflin Company, 1969.
7 Donald E. Knuth. The Art of Computer Programming, volume 1. Addison–Wesley, 1968.
8 Donald E. Knuth. Fibonacci multiplication. Applied Mathematics Letters, 1(2):III–VI, 1988.
9 Arnold Schönhage and Volker Strassen. Schnelle Multiplikation großer Zahlen. Computing,

7:281–292, 1971.
10 Garry J. Tee. Russian peasant multiplication and Egyptian division in Zeckendorf arithmetic.

Australian Mathematical Society Gazette, 30(5):267–276, 2003.
11 Edouard Zeckendorf. A generalized Fibonacci numeration. The Fibonacci Quarterly, 10(4):365–

372, 1972.
12 Edouard Zeckendorf. Représentation des nombres naturels par une somme de nombres de

Fibonacci ou de nombres de Lucas. Bull. Soc. Roy. Sci. Liège, 41:179–182, 1972.



T. Idziaszek 16:9

Table 1 Fibonacci and Lucas numbers.

n 8 7 6 5 4 3 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8
Fn 21 13 8 5 3 2 1 1 0 1 −1 2 −3 5 −8 13 −21
Ln 47 29 18 11 7 4 3 1 2

Table 2 Zeckendorf, base-ϕ, and Lucas representations.

n Zeckendorf base-ϕ Lucas
1 100 1. 10
2 1000 10.01 1
3 10000 100.01 100
4 10100 101.01 1000
5 100000 1000.1001 1010
6 100100 1010.0001 1001
7 101000 10000.0001 10000
8 1000000 10001.0001 10010
9 1000100 10010.0101 10001

10 1001000 10100.0101 10100
11 1010000 10101.0101 100000
12 1010100 100000.101001 100010
13 10000000 100010.001001 100001
14 10000100 100100.001001 100100
15 10001000 100101.001001 101000
16 10010000 101000.100001 101010
17 10010100 101010.000001 101001
18 10100000 1000000.000001 1000000
19 10100100 1000001.000001 1000010
20 10101000 1000010.010001 1000001
21 100000000 1000100.010001 1000100
22 100000100 1000101.010001 1001000
23 100001000 1001000.100101 1001010
24 100010000 1001010.000101 1001001
25 100010100 1010000.000101 1010000
26 100100000 1010001.000101 1010010
27 100100100 1010010.010101 1010001
28 100101000 1010100.010101 1010100
29 101000000 1010101.010101 10000000
30 101000100 10000000.10101001 10000010

Table 3 Base-ϕ representations of Lucas numbers and their simple forms in relaxed base-ϕ.

n base-ϕ relaxed base-ϕ
1 1. 10.1̄
3 100.01 100.01
4 101.01 1000.001̄
7 10000.0001 10000.0001

11 10101.0101 100000.00001̄
18 1000000.000001 1000000.000001
29 1010101.010101 10000000.0000001̄

FUN 2021


	Introduction
	Preliminaries
	Multiplication Algorithms
	Conversions Between Representations
	Alternative Explanation

