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Abstract
A classical problem in comparative genomics is to compute the rearrangement distance, that is the
minimum number of large-scale rearrangements required to transform a given genome into another
given genome. While the most traditional approaches in this area are family-based, i.e., require the
classification of DNA fragments of both genomes into families, more recently an alternative model
was proposed, which, instead of family classification, simply uses the pairwise similarities between
DNA fragments of both genomes to compute their rearrangement distance. This model represents
structural rearrangements by the generic double cut and join (DCJ) operation and is then called
family-free DCJ distance. It computes the DCJ distance between the two genomes by searching for
a matching of their genes based on the given pairwise similarities, therefore helping to find gene
homologies. The drawback is that its computation is NP-hard. Another point is that the family-free
DCJ distance must correspond to a maximal matching of the genes, due to the fact that unmatched
genes are just ignored: maximizing the matching prevents the free lunch artifact of having empty or
almost empty matchings giving the smaller distances.

In this paper, besides DCJ operations, we allow content-modifying operations of insertions and
deletions of DNA segments and propose a new and more general family-free genomic distance. In
our model we use the pairwise similarities to assign weights to both matched and unmatched genes,
so that an optimal solution does not necessarily maximize the matching. Our model then results in
a natural family-free genomic distance, that takes into consideration all given genes and has a search
space composed of matchings of any size. We provide an efficient ILP formulation to solve it, by
extending the previous formulations for computing family-based genomic distances from Shao et al.
(J. Comput. Biol., 2015) and Bohnenkämper et al. (Proc. of RECOMB, 2020). Our experiments
show that the ILP can handle not only bacterial genomes, but also fungi and insects, or sets of
chromosomes of mammals and plants. In a comparison study of six fruit fly genomes, we obtained
accurate results.
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3:2 Natural Family-Free Genomic Distance

1 Introduction

Genomes are subject to mutations or rearrangements in the course of evolution. A classical
problem in comparative genomics is to compute the rearrangement distance, that is the
minimum number of large-scale rearrangements required to transform a given genome
into another given genome [21]. Typical large-scale rearrangements change the number of
chromosomes, and/or the positions and orientations of DNA segments. Examples of such
structural rearrangements are inversions, translocations, fusions and fissions. One might also
need to consider rearrangements that modify the content of a genome, such as insertions and
deletions (collectively called indels) of DNA segments.

In order to study the rearrangement distance, one usually adopts a high-level view
of genomes, in which only “relevant” fragments of the DNA (e.g., genes) are taken into
consideration. Furthermore, a pre-processing of the data is required, so that we can compare
the content of the genomes. One popular method, adopted for more than 20 years, is to
group the fragments in both genomes into families, so that two fragments in the same family
are said to be equivalent. This setting is said to be family-based. Without duplications, that
is, with the additional restriction that each family occurs at most once in each genome, many
polynomial models have been proposed to compute the genomic distance [3, 6, 13, 24, 25].
However, when duplications are allowed the problem is more intricate and all approaches
proposed so far are NP-hard, see for instance [2, 7, 8, 18,22,23].

The required pre-classification of DNA fragments into families is a drawback of the family-
based approaches. Moreover, even with a careful pre-processing, it is not always possible to
classify each fragment unambiguously into a single family. Due to these facts, an alternative
to the family-based setting was proposed and consists in studying the rearrangement distance
without prior family assignment. Instead of families, the pairwise similarities between
fragments is directly used [5, 12]. By letting structural rearrangements be represented by
the generic double cut and join (DCJ) operation [24], a first family-free genomic distance,
called family-free DCJ distance, was already proposed [16]. Its computation helps to match
occurrences of duplicated genes and find homologies, but unmatched genes are simply ignored.

In the family-based setting, the mentioned approaches that handle duplications either
require the compared genomes to be balanced (that is, have the same number of occurrences of
each family) [18,23] or adopt some approach to match genes, ignoring unmatched genes [8,22].
Recently, a new family-based approach was proposed, allowing each family to occur any
number of times in each genome and integrating DCJ operations and indels in a DCJ-indel
distance formula [4]. For its computation, that is NP-hard, an efficient ILP was proposed.

Here we adapt the approach mentioned above and give an ILP formulation to compute
a new family-free DCJ-indel distance. In the family-based approach from [4] as well as in
the family-free DCJ distance proposed in [16], the search space needs to be restricted to
candidates that maximize the number of matched genes, in order to avoid the free lunch
artifact of having empty or almost empty matchings giving the smaller distances [25]. In our
formulation we use the pairwise similarities to assign weights to matched and unmatched
genes, so that, for the first time, an optimal solution does not necessarily maximize the
number of matched genes. For the fact that our model takes into consideration all given
genes and has a search space composed of matchings of any size, we call it natural family-free
genomic distance. Our simulated experiments show that our ILP can handle not only bacterial
genomes, but also complete genomes of fungi and insects, or sets of chromosomes of mammals
and plants. We use our implementation to generate pairwise distances and reconstruct the
phylogeny of six species of fruit flies from the genus Drosophila, obtaining accurate results.
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This paper is organized as follows. In Section 2 we give some basic definitions and
previous results that are essential for the approach presented here. In Section 3 we define
the new natural family-free DCJ-indel distance. In Section 4 we describe the optimization
approach for computing the family-free DCJ-indel distance with the help of the family-free
relational diagram. In Section 5 we present the ILP formulation and the experimental results.
Finally, Section 6 concludes the text.

2 Preliminaries

We call marker an oriented DNA fragment. A chromosome is composed of markers and can
be linear or circular. A marker m in a chromosome can be represented by the symbol m
itself, if it is read in direct orientation, or the symbol m, if it is read in reverse orientation.
We concatenate all markers of a chromosome Z in a string z, which can be read in any of
the two directions. If Z is circular, we can start to read it at any marker and the string z
is flanked by parentheses. A set of chromosomes comprises a genome. As an example, let
A = {61784, 352} be a genome composed of two linear chromosomes. A genome can be
transformed or sorted into another genome with the following types of mutations.

1. DCJ operations modify the organization of a genome: A cut performed on a genome
A separates two adjacent markers of A. A double-cut and join or DCJ applied on a
genome A is the operation that performs cuts in two different positions of A, creating
four open ends, and joins these open ends in a different way [3, 24]. For example, let
A = {61784, 352}, and consider a DCJ that cuts between markers 1 and 7 of its first
chromosome and between markers 5 and 2 of its second chromosome, creating fragments
61•, •784, 35• and •2 (where the symbols • represent the open ends). If we join the
first with the fourth and the third with the second open end, we get A′ = {612, 35784},
that is, the described DCJ operation is a translocation transforming A into A′. Indeed,
a DCJ operation can correspond not only to a translocation but to several structural
rearrangements, such as an inversion, a fusion or a fission.

2. Indel operations modify the content of a genome: We can modify the content of a
genome with insertions and with deletions of blocks of contiguous markers, collectively
called indel operations [6, 25]. As an example, consider the deletion of fragment 78 from
chromosome 61784, resulting in chromosome 614. In the model we consider, we do not
allow that a marker is deleted and reinserted, nor inserted and then deleted. Furthermore,
at most one chromosome can be entirely deleted or inserted at once.

Let A and B be two genomes and let A be the set of markers in genome A and B be the
set of markers in genome B. We consider two distinct settings:

In a family-based setting markers are grouped into families and each marker from a
genome is represented by its family. Therefore, a marker from A can occur more than
once in A, as well as a marker from B can occur more than once in B. Furthermore,
genomes A and B may share a set of common markers G = A ∩ B. We also have
sets A? = A \ G and B? = B \ G of markers that occur respectively only in A and only in
B and are called exclusive markers. For example, consider genomes A = {31432, 352}
and B = {121326}. In this case we have A = {1, 2, 3, 4, 5} and B = {1, 2, 3, 6}.
Consequently, G = {1, 2, 3}, A? = {4, 5} and B? = {6}.
In a family-free setting the markers of A and B are all distinct and unique. In other
words, each marker of A occurs exactly once in A, each marker of B occurs exactly once
in B and A ∩ B = ∅. Consider, for example, genomes A = {1342} and B = {875, 96}.

WABI 2020
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2.1 Relational diagram and distance of family-based singular genomes

Let A and B be two genomes in a family-based setting and assume that both A and B are
singular, that is, each marker from G = A ∩ B occurs exactly once in each genome. We will
now describe how the DCJ-indel distance can be computed in this case [6].

For a given marker m, denote its two extremities by mt (tail) and mh (head). Given
two singular genomes A and B, the relational diagram R(A,B) [4] has a set of vertices
V = V (A) ∪ V (B), where V (A) is the set of extremities of markers from A and V (B) is the
set of extremities of markers from B. There are three types of edges in R(A,B):

Adjacency edges: for each pair of marker extremities γ1 and γ2 that are adjacent in a
chromosome of any of the two genomes, we have the adjacency edge γ1γ2. Denote by EAadj
and by EBadj the adjacency edges in A and in B, respectively. Marker extremities located
at chromosome ends are called telomeres and are not connected to any adjacency edge.
Extremity edges, whose set is denoted by Eγ : for each common marker m ∈ G, we have
two extremity edges, one connecting the vertexmh from V (A) to the vertexmh from V (B)
and the other connecting the vertex mt from V (A) to the vertex mt from V (B).
Indel edges: for each occurrence of an exclusive marker m ∈ A? ∪ B?, we have the indel
edge mtmh. Denote by EAid and by EBid the indel edges in A and in B.

Each vertex has degree one or two: it is connected either to an extremity edge or to an
indel edge, and to at most one adjacency edge, therefore R(A,B) is a simple collection of
cycles and paths. A path that has one endpoint in genome A and the other in genome B
is called an AB-path. In the same way, both endpoints of an AA-path are in A and both
endpoints of a BB-path are in B. A cycle contains either zero or an even number of extremity
edges. When a cycle has at least two extremity edges, it is called an AB-cycle. Moreover, a
path (respectively cycle) of R(A,B) composed exclusively of indel and adjacency edges in
one of the two genomes corresponds to a whole linear (respectively circular) chromosome and
is called a linear (respectively circular) singleton in that genome. Actually, linear singletons
are particular cases of AA- or BB-paths. The numbers of telomeres and of AB-paths in
R(A,B) are even. An example of a relational diagram is given in Figure 1.

······ ······ ······ ······ ······ ······

······ ······ ······ ······ ······ ······

r r r r r r r r r r r r r r r r
r r r r r r r r r r r r r r r r

A 6h 6t 1t 1h5t 5h3t 3h4t 4h2t 2h8t 8h9t 9h

B 6h 6t 5t 5h3h 3t 4t 4h7h 7t 2t 2h9t 9h8t 8h

Figure 1 For genomes A = {61534, 289} and B = {653472, 98}, the relational diagram
contains two cycles, two AB-paths (represented in blue), one AA-path and one BB-path (both
represented in red). Short dotted horizontal edges are adjacency edges, long horizontal edges are
indel edges, top-down edges are extremity edges.

DCJ distance of canonical genomes. When singular genomes A and B have no exclusive
markers, that is, A? = B? = ∅, they are said to be canonical. In this case A can be sorted
into B with DCJ operations only and their DCJ distance ddcj can be computed as follows [3]:

ddcj(A,B) = |G| − c− i

2 ,

where c is the number of AB-cycles and i is the number of AB-paths in R(A,B).
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Runs and indel-potential. When singular genomes A and B have exclusive markers, it
is possible to optimally select DCJ operations that group exclusive markers together for
minimizing indels [6], as follows.

Given two genomes A and B and a component C of R(A,B), a run [6] is a maximal
subpath of C, in which the first and the last edges are indel edges, and all indel edges
belong to the same genome. It can be an A-run when its indel edges are in genome A, or
a B-run when its indel edges are in genome B. We denote by Λ(C) the number of runs
in component C. If Λ(C) ≥ 1 the component C is said to be indel-enclosing, otherwise
Λ(C) = 0 and C is said to be indel-free. The indel-potential of a component C, denoted
by λ(C), is the optimal number of indels obtained after “sorting” C separately and can be
directly computed from Λ(C) [6]:

λ(C) =

 0 , if Λ(C) = 0 (C is indel-free);⌈
Λ(C)+1

2

⌉
, if Λ(C) ≥ 1 (C is indel-enclosing).

With the indel-potential, an upper bound for the DCJ-indel distance did
dcj was estab-

lished [6]:

did
dcj(A,B) ≤ |G| − c− i

2 +
∑

C∈R(A,B)

λ(C) (1)

DCJ-indel distance of singular circular genomes. For singular circular genomes, the graph
R(A,B) is composed of cycles only. In this case the upper bound given by Equation (1) is
tight and leads to a simplified formula [6]:

did
dcj(A,B) = |G| − c +

∑
C∈R(A,B)

λ(C) .

DCJ-indel distance of singular linear genomes. For singular linear genomes, the upper
bound given by Equation (1) is achieved when the components of R(A,B) are sorted
separately. However, it can be decreased by recombinations, that are DCJ operations that
act on two distinct paths of R(A,B). Such path recombinations are said to be deducting.
The total number of types of deducting recombinations is relatively small. By exhaustively
exploring the space of recombination types, it is possible to identify groups of chained
recombinations [6], so that the sources of each group are the original paths of the graph.
In other words, a path that is a resultant of a group is never a source of another group.
This results in a greedy approach (detailed in [6]) that optimally finds the value δ ≥ 0 to be
deducted. We then have the following exact formula [6]:

did
dcj(A,B) = |G| − c− i

2 +
∑

C∈R(A,B)

λ(C) − δ .

3 The family-free setting

As already stated, in the family-free setting, each marker in each genome is represented by a
distinct symbol, thus A ∩ B = ∅. Observe that the cardinalities |A| and |B| may be distinct.

3.1 Marker similarity graph for the family-free setting
Given a threshold 0 ≤ x ≤ 1, we can represent the similarities between the markers of genome
A and the markers of genome B in the so called marker similarity graph [5], denoted by

WABI 2020
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Sx(A,B). This is a weighted bipartite graph whose partitions A and B are the sets of markers
in genomes A and B, respectively. Furthermore, for each pair of markers a ∈ A and b ∈ B,
denote by σ(a, b) their normalized similarity, a value that ranges in the interval [0, 1]. If
σ(a, b) ≥ x there is an edge e connecting a and b in Sx(A,B) whose weight is σ(e) := σ(a, b).
An example is given in Figure 2.

0.6

0.1

0.5

0.3

0.2

0.3

0.9

0.9

0.3

0.7

0.8

s s s s s
s s s s s s

1 2 3 4 5

6 7 8 9 10 11

Figure 2 Graph S0.1(A,B) for the two genomes A = {1 2 3 4 5} and B = {6 7 8 9 10 11}.

Mapped genomes. Let A and B be two genomes with marker similarity graph Sx(A,B)
and let M = {e1, e2, . . . , en} be a matching in Sx(A,B). Since the endpoints of each edge
ei = (a, b) in M are not saturated by any other edge of M , we can unambiguously define
the function s(a,M) = s(b,M) = i. We then define the set of M -saturated mapped markers
G(M) = {s(g,M) : g is M -saturated } = {1, 2, . . . , n}.

Let ñA be the number of unsaturated markers in A and ñB be the number of unsaturated
markers in B. We extend the function s, so that it maps each unsaturated marker a′ ∈ A to
one value in {n+ 1, n+ 2, . . . , n+ ñA} and each unsaturated marker b′ ∈ B to one value in
{n+ ñA + 1, n+ ñA + 2, . . . , n+ ñA + ñB}. The sets of M -unsaturated mapped markers are:
A?(M) = {s(a′,M) : a′ ∈ A is M -unsaturated } = {n+ 1, n+ 2, . . . , n+ ñA} and
B?(M) = {s(b′,M) : b′ ∈ B is M -unsaturated } = {n+ñA+1, n+ñA+2, . . . , n+ñA+ñB}.

The mapped genomes AM and BM are then obtained by renaming each marker a ∈ A
to s(a,M) and each marker b ∈ B to s(b,M), preserving all orientations.

Established distances of mapped genomes. Let the relational graph R(AM , BM ) have cM
AB-cycles and iM AB-paths. By simply ignoring the exclusive markers of A?(M) and B?(M),
we can compute the DCJ distance:

ddcj(AM , BM ) = |M | − cM −
iM
2 .

Taking into consideration the weight of the matching M defined as w(M) =
∑
e∈M σ(e),

we can also compute the weighted DCJ distance wddcj(AM , BM ) [16]:

wddcj(AM , BM ) = ddcj(AM , BM ) + |M | − w(M) .

Observe that, when all edges of M have the maximum weight 1, we have w(M) = |M | and
wddcj(AM , BM ) = ddcj(AM , BM ).

Finally, taking into consideration the exclusive markers of A?(M) and B?(M), but not
the weight w(M), we can compute the DCJ-indel distance of mapped genomes AM and BM :

did
dcj(AM , BM ) = |M | − cM −

iM
2 +

∑
C∈R(AM ,BM )

λ(C) − δM ,

where δM is the deduction given by path recombinations in R(AM , BM ).
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3.2 The family-free DCJ-indel distance
Let AM and BM be the mapped genomes for a given matching M of Sx(A,B). The weighted
relational diagram of AM and BM , denoted by WR(AM , BM ), is obtained by constructing
the relational diagram of AM and BM and adding weights to the indel edges as follows. For
each mapped M -unsaturated marker m ∈ A?(M) ∪ B?(M), the indel edge mhmt receives
a weight w(mhmt) = max{σ(uv)|uv ∈ Sx(A,B) and u=s−1(m,M)}, that is the maximum
similarity among the edges incident to the marker u = s−1(m,M) in Sx(A,B). We denote by
M̃ = EAid∪EBid the set of indel edges, here also called the complement of M . The weight of M̃
is w(M̃) =

∑
e∈M̃ w(e). Examples of diagrams of mapped genomes are shown in Figure 3.
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(1:1) (2:2) (3:3) (4:5) (5:4)

r r r r r r r r r r r r
6t 6h 3h 3t 2h 2t 1h 1t 4t 4h 7t 7h

(6:6) (7:3) (8:2) (9:1) (10:4) (11:7)

·········

········· ·········

·········

········· 0.7

········· ·········

········· ·········

r r r r r r r r r r1t 1h 2t 2h 3t 3h 4t 4h 5t 5h
(1:1) (2:2) (3:3) (4:4) (5:5)

r r r r r r r r r r r r
1t 1h 2h 2t 4h 4t 3h 3t 6t 6h 5t 5h

(6:1) (7:2) (8:4) (9:3) (10:6) (11:5)

·········

········· ·········

·········

·········

0.6 0.3 0.9 0.9 0.8

0.6 0.3 0.9 0.9 0.7 0.8

········· ·········

········· ·········

r r r r r r r r r r1t 1h 2t 2h 3t 3h 4t 4h 5t 5h
(1:1) (2:2) (3:3) (4:4) (5:5)

r r r r r r r r r r r r
6t 6h 7h 7t 8h 8t 9h 9t10t 10h11t 11h

(6:6) (7:7) (8:8) (9:9) (10:10) (11:11)

·········

········· ·········

·········

·········

0.3

0.3 0.7

········· ·········

········· ·········

r r r r r r r r r r1t 1h 5t 5h 2t 2h 3t 3h 4t 4h
(1:1) (2:5) (3:2) (4:3) (5:4)

r r r r r r r r r r r r
1t 1h 6h 6t 3h 3t 2h 2t 7t 7h 4t 4h

(6:1) (7:6) (8:3) (9:2) (10:7) (11:4)

Figure 3 Considering the same genomes A = {1 2 3 4 5} and B = {6 7 8 9 10 11} as in Figure 2,
let M1 (red) and M2 (blue) be two distinct maximal matchings in S0.1(A,B). We also represent the
non-maximal matching M3 (cyan) that is a subset of M2. In the middle part we show diagrams
WR(AM1 , BM1 ) and WR(AM2 , BM2 ), both with two AB-paths and two AB-cycles. In the lower part
we show diagrams WR(AM∅ , BM∅), corresponding to the trivial empty matching M∅ and with two
linear singletons (one AA-path and one BB-path), and WR(AM3 , BM3 ), with two AB-paths and two
AB-cycles. The labeling (X:Y) indicates that Y = s(X,Mi).

In the computation of the weighted DCJ-indel distance of mapped genomes AM and BM ,
denoted by wdid

dcj(AM , BM ), we should take into consideration the exclusive markers
of A?(M) and B?(M), and the weights w(M) and w(M̃). An important condition is
that wdid

dcj(AM , BM ) must be equal to did
dcj(AM , BM ) if w(M) = |M | and w(M̃) = 0. We

can achieve this by extending the formula for computing wddcj(AM , BM ) as follows:

wdid
dcj(AM , BM ) = wddcj(AM , BM ) +

∑
C∈WR(AM ,BM )

λ(C) − δM + w(M̃)

= ddcj(AM , BM ) + |M | − w(M) +
∑

C∈WR(AM ,BM )

λ(C) − δM + w(M̃)

= did
dcj(AM , BM ) + |M | − w(M) + w(M̃) .
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3:8 Natural Family-Free Genomic Distance

Let us now examine the behaviour of the formula above for the examples given in Figure 3.
Matching M1 is maximal and gives the distance wdid

dcj(AM1 , BM1) = 8.6. Matching M2 is
also maximal and gives the distance wdid

dcj(AM2 , BM2) = 5.2. The empty matching M∅ gives
the distance wdid

dcj(AM∅ , BM∅) = 9.7, that is the biggest. And the non-maximal matching
M3 ⊂M2 gives the distance wdid

dcj(AM3 , BM3) = 5.1, that is the smallest.
Given that M is the set of all distinct matchings in Sx(A,B), the family-free DCJ-indel

distance is defined as follows:

ffdid
dcj(A,B,Sx) = min

M∈M
{wdid

dcj(AM , BM )} .

Complexity. If two family-based genomes contain the same number of occurrences of each
marker, they are said to be balanced. The problem of computing the DCJ distance of balanced
genomes (BG-DCJ) is NP-hard [23]. Since the computation of ffdid

dcj can be used to solve
BG-DCJ, it is also NP-hard. The details of the reduction can be found in [19].

4 Family-free relational diagram

An efficient way to solve the family-free DCJ-indel distance is to develop an ILP that searches
for its solution in a general graph, that represents all possible diagrams corresponding to
all candidate matchings, in a similar way as the approaches given in [4,16,23]. Given two
genomes A and B and their marker similarity graph Sx(A,B), the structure that integrates
the properties of all diagrams of mapped genomes is the family-free relational diagram
FFR(A,B,Sx), that has a set V (A) with a vertex for each of the two extremities of each
marker of genome A and a set V (B) with a vertex for each of the two extremities of each
marker of genome B.

Again, sets EAadj and EBadj contain adjacency edges connecting adjacent extremities of
markers in A and in B. But here the set Eγ contains, for each edge ab ∈ Sx(A,B), an
extremity edge connecting at to bt, and an extremity edge connecting ah to bh. To both
edges atbt and ahbh, that are called siblings, we assign the same weight, that corresponds
to the similarity of the edge ab in Sx(A,B): w(atbt) = w(ahbh) = σ(ab). Furthermore, for
each marker m there is an indel edge connecting the vertices mh and mt. The indel edge
mhmt receives a weight w(mhmt) = max{σ(mv)|mv ∈ Sx(A,B)}, that is, it is the maximum
similarity among the edges incident to the marker m in Sx(A,B). We denote by EAid the
set of indel edges of markers in genome A and by EBid the set of indel edges of markers in
genome B. An example of a family-free relational diagram is given in Figure 4.
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Figure 4 Given genomes A = {1 2 3 4 5} and B = {6 7 8 9 10 11}, in the left part we represent
the marker similarity graph S0.1(A,B) and in the right part the family-free relational diagram
FFR(A,B,S0.1). We represent in multiple colors the edges that correspond to multiple matchings.
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4.1 Consistent decompositions
The diagram FFR(A,B,Sx) may contain vertices of degree larger than two. A decomposition
of FFR(A,B,Sx) is a collection of vertex-disjoint components, that can be cycles and/or
paths, covering all vertices of FFR(A,B,Sx). There can be multiple ways of selecting a
decomposition, and we need to find one that allows to identify a matching of Sx(A,B). A
set S ⊆ Eγ is a sibling-set if it is exclusively composed of pairs of siblings and does not
contain any pair of incident edges. Thus, a sibling-set S of FFR(A,B,Sx) corresponds to
a matching of Sx(A,B). In other words, there is a clear bijection between matchings of
Sx(A,B) and sibling-sets of FFR(A,B,Sx) and we denote byMS the matching corresponding
to the sibling-set S.

The set of edges D[S] induced by a sibling-set S is said to be a consistent decomposition
of FFR(A,B,Sx) and can be obtained as follows. In the beginning, D[S] is the union of S
with the sets of adjacency edges EAadj and EBadj. We then need to determine the complement
of the sibling-set S, denoted by S̃, that is composed of the indel-edges of FFR(A,B,Sx) that
must be added to D[S]: for each indel edge e, if its two endpoints have degree one or zero
in D[S], then e is added to both S̃ and D[S]. (Note that S̃ = M̃S , while |S| = 2|MS | and
w(S) = 2w(MS).) The consistent decomposition D[S] covers all vertices of FFR(A,B,Sx)
and is composed of cycles and paths, allowing us to compute the values

did
dcj(D[S]) = |S|2 − cD −

iD
2 +

∑
C∈D[S]

λ(C)− δD and

wdid
dcj(D[S]) = did

dcj(D[S]) + |S|2 −
w(S)

2 + w(S̃) ,

where cD and iD are the numbers of AB-cycles and AB-paths in D[S], respectively, and δD
is the optimal deduction of recombinations of paths from D[S].

Given that S is the sets of all sibling-sets of FFR(A,B,Sx), we compute the family-free
DCJ-indel distance of A and B with the following equation:

ffdid
dcj(A,B,Sx) = min

S∈S
{wdid

dcj(D[S])} .

4.2 Capping
Telomeres produce some difficulties for the decomposition of FFR(A,B,Sx), and a known
technique to overcome this problem is called capping [13]. It consists of modifying the
diagram by adding artificial markers, also called caps, whose extremities should be properly
connected to the telomeres of the linear chromosomes of A and B. Therefore, usually the
capping depends on the numbers κA and κB, that are, respectively, the total numbers of
linear chromosomes in genomes A and B.

Family-based singular genomes. First we recall the capping of family-based singular gen-
omes. Here the caps must circularize all linear chromosomes, so that their relational diagram
is composed of cycles only, but, if the capping is optimal, the DCJ-indel distance is preserved.

An optimal capping that transforms singular linear genomes A and B into singular circular
genomes can be obtained after identifying the recombination groups [6]. The DCJ-indel
distance is preserved by properly linking the components of each identified recombination
group into a single cycle [4]. Such a capping may require some artificial adjacencies between
caps. The following result is very useful.

I Theorem 1 (from [4]). We can obtain an optimal capping of singular genomes A and B
with exactly p∗ = max{κA, κB} caps and |κA − κB | artificial adjacencies between caps.
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Capped family-free relational diagram. We transform FFR(A,B,Sx) into the capped
family-free relational diagram FFR◦(A,B,Sx) as follows. Again, let p∗ = max{κA, κB}.
The diagram FFR◦(A,B,Sx) is obtained by adding to FFR(A,B,Sx) 4p∗ new vertices,
named ◦1A, ◦2A, . . . , ◦

2p∗
A and ◦1B , ◦2B , . . . , ◦

2p∗
B , each one representing a cap extremity. Each

of the 2κA telomeres of A is connected by an adjacency edge to a distinct cap extremity
among ◦1A, ◦2A, . . . , ◦

2κA
A . Similarly, each of the 2κB telomeres of B is connected by an adja-

cency edge to a distinct cap extremity among ◦1B , ◦2B , . . . , ◦
2κB
B . Moreover, if κA < κB, for

i = 2κA+1, 2κA+3, . . . , 2κB−1, connect ◦iA to ◦i+1
A by an artificial adjacency edge. Otherwise,

if κB < κA, for j = 2κB + 1, 2κB + 3, . . . , 2κA−1, connect ◦jB to ◦j+1
B by an artificial adjacency

edge. All these new adjacency edges and artificial adjacency edges are added to EAadj and
EBadj, respectively. We also connect each ◦iA, 1 ≤ i ≤ 2p∗, by a cap extremity edge to each ◦jB ,
1 ≤ j ≤ 2p∗, and denote by E◦ the set of cap extremity edges.

A set P ⊆ E◦ is a capping-set if it does not contain any pair of incident edges and is
maximal. Since each cap extremity of A is connected to each cap extremity of B, the size of
any (maximal) capping-set is 2p∗. A consistent decomposition Q[S, P ] of FFR◦(A,B,Sx) is
induced by a sibling-set S ⊆ Eγ and a (maximal) capping-set P ⊆ E◦ and is composed of
vertex disjoint cycles that cover all vertices of FFR◦(A,B,Sx).

I Theorem 2. Let Pmax be the set of all distinct (maximal) capping-sets from FFR◦(A,B,Sx).
For each sibling-set S of FFR(A,B,Sx) and FFR◦(A,B,Sx), we have

did
dcj(D[S]) = min

P∈Pmax
{did

dcj(Q[S, P ])} , and

wdid
dcj(D[S]) = min

P∈Pmax
{wdid

dcj(Q[S, P ])} .

Proof. Each capping-set corresponds to exactly p∗ caps. In addition, all adjacencies, including
the |κA−κB | artificial adjacencies between cap extremities, are part of each consistent decom-
position. Recall that each sibling-set S of FFR◦(A,B,Sx) corresponds to a matching MS of
Sx(A,B). The set of consistent decompositions include all possible distinct consistent decom-
positions induced by S together with one distinct element of Pmax. Theorem 1 states that the
pair of matched genomes AMS and BMS can be optimally capped with p∗ caps and |κA−κB |
artificial adjacencies. Therefore, it is clear that did

dcj(D[S]) = minP∈Pmax{d
id
dcj(Q[S, P ])}. Since

the capping does not change the sizes of the sibling-sets and their weights and complements,
it is also clear that wdid

dcj(D[S]) = minP∈Pmax{wd
id
dcj(Q[S, P ])}. J

Alternative formula for computing the indel-potential of cycles. The consistent decom-
positions of FFR◦(A,B,Sx) are composed exclusively of cycles, and the number of runs
Λ(C) of a cycle C is always in {0, 1, 2, 4, 6, . . .}. Therefore, the formula to compute the
indel-potential of a cycle C can be simplified to

λ(C) =

 Λ(C) , if Λ(C) ∈ {0, 1}

1 + Λ(C)
2 , if Λ(C) ∈ {2, 4, 6, . . .}

that can still be redesigned to a form that can be easier implemented in the ILP [4]. First,
let a transition in a cycle C be an indel-free segment of C that is between a run in one
genome and a run in the other genome and denote by ℵ(C) the number of transitions in C.
Observe that, if C is indel-free, then obviously ℵ(C) = 0. If C has a single run, then we also
have ℵ(C) = 0. On the other hand, if C has at least 2 runs, then ℵ(C) = Λ(C). The new
formula is split into two parts. The first part is the function r(C), defined as r(C) = 1 if
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Λ(C) ≥ 1, otherwise r(C) = 0, that simply tests whether C is indel-enclosing or indel-free.
The second part depends on the number of transitions ℵ(C), and the complete formula
stands as follows [4]:

λ(C) = r(C) + ℵ(C)
2 .

Distance formula. Note that the number of indel-enclosing components is
∑
C∈Q[S,P ]r(C) =

crQ + sQ, where crQ and sQ are the number of indel-enclosing AB-cycles and the number of
circular singletons in Q[S, P ], respectively. Furthermore, the number of indel-free AB-cycles
of Q[S, P ] is cr̃Q = cQ − crQ. We can now compute the values

did
dcj(Q[S, P ]) = p∗ + |S|2 − cQ +

∑
C∈Q[S,P ]

λ(C)

= p∗ + |S|2 − cQ +
∑

C∈Q[S,P ]

(
r(C) + ℵ(C)

2

)

= p∗ + |S|2 − c
r̃
Q + sQ +

∑
C∈Q[S,P ]

ℵ(C)
2 , and

wdid
dcj(Q[S, P ]) = did

dcj(Q[S, P ]) + |S|2 −
w(S)

2 + w(S̃)

= p∗ + |S| − cr̃Q + sQ +
∑

C∈Q[S,P ]

ℵ(C)
2 − w(S)

2 + w(S̃) . (2)

Given that S and Pmax are, respectively, the sets of all sibling-sets and all maximal
capping-sets of FFR◦(A,B,Sx), the final version of our optimization problem is

ffdid
dcj(A,B,Sx) = min

S∈S,P∈Pmax

{
wdid

dcj(Q[S, P ])
}
.

5 ILP formulation to compute the family-free DCJ-indel distance

Our formulation is an adaptation of the ILP for computing the DCJ-indel distance of family-
based natural genomes, by Bohnenkämper et al. [4], that is itself an extension of the ILP for
computing the DCJ distance of family-based balanced genomes, by Shao et al. [23]. The main
differences between our approach and the approach from [4] are the underlying graphs and
the objective functions. The general idea is searching for a sibling-set, that, together with a
maximal capping-set, gives an optimal consistent cycle decomposition of the capped diagram
FFR◦(A,B,Sx) = (V,E), where the set of edges comprises all disjoint sets of distinct types:
E = Eγ ∪E◦∪EAadj∪EBadj∪EAid∪EBid. While in the ILP from [4] the search space is restricted
to maximal sibling-sets, in the family-free DCJ-indel distance the search space includes all
sibling-sets, of any size.

In Algorithm 1 we give the formulation for computing ffdid
dcj(A,B,Sx), distributed in

three main parts. Counting indel-free cycles in the decomposition makes up the first part,
depicted in constraints (C.01)–(C.06), variables and domains (D.01)–(D.03). The second part
is for counting transitions, described in constraints (C.07)–(C.10), variables and domains
(D.04)–(D.05). The last part describes how to count the number of circular singletons,
with constraint (C.11), variable and domain (D.06). The objective function of our ILP
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minimizes the size of the sibling-set, with sum over variables xe, the number of circular
singletons, calculated by the sum over variables sk, half the overall number of transitions in
indel-enclosing AB-cycles, calculated by the sum over variables te, and the weight of all indel
edges in the decomposition, given by the sum over their weights wexe for all e ∈ Eid, while
maximizing both the number of indel-free cycles, counted by the sum over variables zi, and
half of the weights of the extremity edges in the decomposition, given by the sum over their
weights wexe for all edges e ∈ Eγ . The minimization is not affected by constant p∗, that is
included in the objective function to keep the correspondence to Equation (2).

Algorithm 1 ILP for computing the family-free DCJ-indel distance.

min p∗ +
∑
e∈Eγ

xe −
∑

1≤i≤|V |

zi +
∑
k∈K

sk + 1
2

∑
e∈E

te −
1
2

∑
e∈Eγ

wexe +
∑
e∈Eid

wexe

s. t. xe = 1 ∀ e ∈ EAadj ∪ EBadj (C.01)∑
uv∈E

xuv = 2 ∀ u ∈ V (C.02)

xe = xd ∀ e, d ∈ Eγ , e, d are siblings (C.03)
yi
yj

≤
≤

yj + i(1− xvivj )
yi + j(1− xvivj )

}
∀ vivj ∈ E (C.04)

yi
yj

≤
≤

i(1− xvivj )
j(1− xvivj )

}
∀ vivj ∈ EAid ∪ EBid (C.05)

izi ≤ yi ∀ 1 ≤ i ≤ |V | (C.06)
rv
rv′

≤
≥

1− xuv
xu′v′

}
∀ uv ∈ EAid
∀ u′v′ ∈ EBid

(C.07)

tuv
tuv

≥
≥

rv − ru − (1− xuv)
ru − rv − (1− xuv)

}
∀ uv ∈ E (C.08)∑

d∈EAid , d∩e6=∅

xd − te ≥ 0 ∀ e ∈ EAadj (C.09)

te = 0 ∀ e ∈ E \ EAadj (C.10)∑
e∈Ekid

xe − |k| ≤ sk ∀ k ∈ K (C.11)

and xe ∈ {0, 1} ∀ e ∈ E (D.01)
0 ≤ yi ≤ i ∀ 1 ≤ i ≤ |V | (D.02)
zi ∈ {0, 1} ∀ 1 ≤ i ≤ |V | (D.03)
rv ∈ {0, 1} ∀ v ∈ V (D.04)
te ∈ {0, 1} ∀ e ∈ E (D.05)
sk ∈ {0, 1} ∀ k ∈ K (D.06)
p∗ = max{κA, κB} (D.07)

Comparison to related models. Since the pre-requisites of a family-free setting differ
substantially from those of a family-based setting, we could not compare our approach to
the one from [4]. We intend to perform such a comparison in a future work, for example by
using pairwise similarities to cluster the genes into families. Comparing our approach to the
original family-free DCJ distance was also not possible, because the ILP provided in [16] is
only suitable for unichromosomal genomes. Again, we intend to perform such a comparison
in a future work, after we implement an ILP that is able to compute the family-free DCJ
distance of multichromosomal genomes.
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Unweighted version. In the present work, for comparison purposes, we also implemented a
simpler version of the family-free DCJ-indel distance, that simply ignores all weights. This
version is called unweighted family-free DCJ-indel distance, and consists of finding a sibling-
set in FFR◦(A,B,Sx) that minimizes did

dcj(D[S, P ]). But here it is important to observe that
smaller sibling-sets, that simply discard blocks of contiguous markers, tend to give the smaller
distances. Considering the similarity graph S0.1(A,B) of Figure 3, the trivial empty matching
gives the distance did

dcj(AM∅ , BM∅) = 2 (deletion of the chromosome of A followed by the
insertion of the chromosome of B). For the other matchings we have did

dcj(AM1 , BM1) = 4
and did

dcj(AM2 , BM2) = did
dcj(AM3 , BM3) = 3. We then restrict the search space to maximal

sibling-sets only, avoiding that blocks of markers are discarded. However, this could also
enforce weak connections. In the example shown in Figure 3, both maximal matchings M1
and M2 have weak edges with weights 0.2 and 0.3. Matching M3 has only edges with weight
at least 0.6, but it would be ignored for being non-maximal. Enforcing weak connections
can be prevented by removing them from the similarity graph, that is, by assigning a higher
value to the cutting threshold x. Given that Smax and Pmax are, respectively, the sets of
all maximal sibling-sets and all maximal capping-sets of FFR◦(A,B,Sx), the unweighted
version of the problem is then:

unwffdid
dcj(A,B,Sx) = min

S∈Smax,P∈Pmax

{
did

dcj(Q[S, P ])
}
.

For computing the unweighted unwffdid
dcj(A,B,Sx) we need to slightly modify the ILP

described in Algorithm 1. The details can be found in [19].

Implementation. The ILPs for computing both the family-free DCJ-indel distance and its
unweighted version were implemented and can be downloaded from our GitLab server at
https://gitlab.ub.uni-bielefeld.de/gi/gen-diff.

Data analysis. For all pairwise comparisons, we obtained gene similarities using the FFGC
pipeline2 [11], with the following parameters: (i) 1 for the minimum number of genomes for
which each gene must share some similarity in, (ii) 0.1 for the stringency threshold, (iii) 1 for
the BLAST e-value, and (iv) default values for the remaining parameters. As an ILP solver,
for all experiments we ran CPLEX with 8 2.67GHz cores.

Cutting threshold. Differently from the unweighted version, that requires a cutting thresh-
old of about x=0.5 to give accurate results, the weighted ffdid

dcj was designed to be computed
with all given pairwise similarities, i.e., with the cutting threshold x= 0, that leads to a
“complete” family-free relational diagram. Such a diagram would be too large to be handled
in practice, therefore, if x= 0, we consider only the similarities that are strictly greater
than 0. Nevertheless, for bigger instances the diagram with similarities close to 0 might still
be too large to be solved in reasonable time. Hence, for some instances it may be necessary
to do a small increase of the cutting threshold. Our experiments in real data (described in
Section 5.2) show that small similarities have a minor impact on the computed distance,
therefore, by adopting a small cutting threshold x up to 0.3, it is possible to reduce the
diagram and solve bigger instances, still with good accuracy.

2 https://bibiserv.cebitec.uni-bielefeld.de/ffgc
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5.1 Performance evaluation

We generated simulated genomes using Artificial Life Simulator (ALF) [10] in order to
benchmark our algorithm for computing the family-free DCJ-indel distance. We simulated
and compared 190 pairs of genomes with different duplication rates, keeping all other
parameters fixed (e.g. rearrangement, indel and mutation rates). The extant genomes have
around 10,000 genes. We obtained gene similarities between simulated genomes using FFGC.
For each genome pair, a threshold of x = 0.1 resulted in up to 8,400 genes with multiple
homology relations (i.e. vertices with degree > 1 in S0.1(A,B)) and from 2 to 2.8 relations on
average for those genes. In addition, each pair is about 3,000 rearrangement events away from
each other. The complete parameter sets used for running ALF, together with additional
information on simulated genomes, can be found in Appendix A.

For computing the family-free DCJ-indel distances, we ran CPLEX with maximum CPU
time of 1 hour. Results were grouped depending on the number of genes with multiple
homology relations in the respective genome pairs. Figure 5 summarizes the performance of
our weighted family-free DCJ-indel distance formulation. The running times escalate quickly
as the number of genes with multiple homologies increase (Figure 5a, grouped in intervals of
100), reaching the time limit after 2,000 of them (Figure 5b, grouped in intervals of 500).
The optimality gap is the relative gap between the best solution found and the upper bound
found by the solver, calculated by (upper boundbest solution − 1) × 100, and appears to grow, for our
simulated data, linearly in the number of genes with multiple homologies (Figure 5b).

The solution time and the optimality gap of our algorithm clearly depends less on genome
sizes and more on the multiplicity of homology relations. In our experiments, we were able
to find in 1 hour optimal or near-optimal solutions for genomes with 10,000 genes and up
to 4,000 genes with 2.2 homology relations on average. Our formulation should be able to
handle, for instance, the complete genomes of bacteria, fungi and insects, or even sets of
chromosomes of mammal and plant genomes.
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Figure 5 Results of the weighted family-free DCJ-indel distance given by the solver, (a) shows the
average running time for instances grouped by the number of vertices with degree > 1 in S0.1(A,B)
(in intervals of 100, those greater than 900 are not shown), and (b) for groups of instances that did
not finish within the time limit of 1 hour, the average optimality gap and the average number of
homology relations for those genes with multiple homologies (in intervals of 500).
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Figure 6 Based on distance matrices calculated by our ILPs for the pairwise comparisons of
complete genomes (Gen) or only X chromosomes (Xchr) of Drosophila, we built phylogenetic trees
computed by the Neighbor-Joining method [14, 20]. The output of this algorithm is an unrooted
tree, and we assumed the most distant species D. busckii as the outgroup for rooting the trees. All
comparisons converged to exactly two trees, and next to each tree we give a list of comparisons that
produced that tree. The tree in (a) agrees with the reference shown in Figure 7 (Appendix B), while
the tree in (b) diverges from the reference in a single branch.

5.2 Real data analysis
We evaluated the potential of our approach by comparing genomes of fruit flies from the
genus Drosophila [1, 9, 17, 26], including the following species: D. busckii, D.melanogaster,
D. pseudoobscura, D. sechellia, D. simulans and D. yakuba. A reference phylogenetic tree of
these species is shown in Figure 7, in Appendix B, where we also give the sources of the DNA
sequences for each analyzed genome, and additional information on the experiments. Each
genome has approximately 150Mb, with about 13,000 genes distributed in 5–6 chromosomes.
We obtained gene similarities using FFGC and performed two separate experiments, whose
computed distances were used to build phylogenetic trees using Neighbor-Joining [14,20].

Pairwise comparison of complete genomes. In this experiment, genomes in each compar-
ison comprise together ∼ 13,000 genes with multiple homologies (11.2 on average), some of
them having about 90 relations considering similarities that are strictly greater than x = 0.
Since these instances were too large, we set the threshold to x = 0.3. We then ran CPLEX
with maximum CPU time of 3 hours. All ffdid

dcj computations finished within the time limit,
most of them in less than 10 minutes, whereas the unweighted unwffdid

dcj computations, in
spite of having a search space of maximal sibling-sets, that is much smaller, surprisingly took
from 1 to 3 hours. We conjecture that this is due to a large number of co-optimal solutions in
the unweighted version, while in ffdid

dcj the co-optimality is considerably minimized by weights,
which helps the solver to converge faster. While the tree given by ffdid

dcj, shown in Figure 6a,
agrees with the reference tree, the tree given by unwffdid

dcj, shown in Figure 6b, diverges from
the reference in a single branch. Details of the results are given in Appendix B.1.

Pairwise comparison of X chromosomes. We also did an experiment with smaller instances,
composed of pairwise comparisons of X chromosomes only, so that we could evaluate the
impact of the cutting threshold on the accuracy of the approach. In this experiment,
considering similarities that are strictly greater than x = 0, each pair comprises 1,000–2,000
genes with multiple homologies (5 on average) with as many as 30 relations.

We computed ffdid
dcj with cutting thresholds x = 0, x = 0.1, x = 0.2 and x = 0.3, always

obtaining the accurate phylogenetic tree from Figure 6a. These results suggest that a small
cutting threshold allows to reduce the size of the instances, without having a big impact in
the accuracy of ffdid

dcj.
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In addition, we computed unwffdid
dcj with cutting thresholds x = 0 and x = 0.3, both

resulting in the slightly inaccurate tree from Figure 6b, and x = 0.5, that also resulted in
the accurate tree from Figure 6a. As expected, in the unweighted formulation the cutting
threshold plays a major role in the accuracy of the calculated distances.

The analyses were done with maximum CPU time of 1 hour. The comparisons finished
within a few seconds for most of instances, except for unwffdid

dcj with threshold x = 0, for
which the majority of the pairwise comparisons reached the time limit – with an optimality
gap of less than 3.5% though (see Appendix B.2).

Length of indel segments. As a generalization of the singular DCJ-indel model [6], the
basic idea behind our approach is that runs can be merged and accumulated with DCJ
operations. This is a more parsimonious alternative to the trivial approach of inserting or
deleting exclusive markers individually. However, it raises the question of whether the indels
then tend to be very long, and whether this makes biological sense. Considering that it
is possible to distribute the runs so that each indel is composed of 1-2 runs, we can say
that the lengths of the runs play a major role in defining the length of indel segments. In
the particular analysis of Drosophila complete genomes, we have an average run length of
5.1, while the maximum run length is 121. We conjecture that the long runs are mostly
composed of genes that are part of a contiguous segment from the beginning, and are not
really accumulated by DCJ operations. In a future work we intend to have a closer look into
the long runs, so that we can characterize their structures and verify this conjecture.

6 Conclusions and discussion

In this work we proposed a new genomic distance, for the first time integrating DCJ and
indel operations in a family-free setting. In this setting the whole analysis requires less
pre-processing and no classification of the data, since it can be performed based on the
pairwise similarities of markers in both genomes. Based on the positions and orientations of
markers in both genomes we build the family-free relational diagram. We then assign weights
to the edges of the diagram, according to the given pairwise similarities. A sibling-set of
edges corresponds to a set of matched markers in both genomes. Our approach transfers
weights from the edges to matched and unmatched markers, so that, again for the first
time, an optimal solution does not necessarily need to maximize the number of matched
markers. Instead, the search space of our approach allows solutions composed of any number
of matched markers. The computation of our new family-free DCJ-indel distance is NP-hard
and we provide an efficient ILP formulation to solve it.

The experiments on simulated data show that our ILP can handle not only bacterial
genomes, but also complete genomes of fungi and insects, or sets of chromosomes of mammals
and plants. We performed a comparison study of six fruit fly genomes, using the obtained
distances to reconstruct the phylogenetic tree of the six species, obtaining accurate results.
This study was a first validation of the quality of our method and a more rigorous evaluation
will be performed in a future work. In particular, we intend to analyze the reasons behind
insertions and deletions of long segments and verify the quality of the obtained gene matchings,
by comparing them to the annotated orthologies given by public databases. Furthermore, as
already mentioned, we plan to compare our ILP to the one given in [4], once we manage to
cluster the genes into families, and also to implement an ILP that is able to compute the
family-free DCJ distance described in [16] for multichromosomal genomes, so that we can
compare it to our ILP.
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pair of simulated genomes. We used the default values for parameters not mentioned. PAM
units were used as time scale for simulation, starting with a randomly generated root genome
with 10,000 genes, whose lengths where drawn from a Gamma distribution with k = 2.4019
and θ = 133.8063 (minimum length 100). We used a custom evolutionary tree defining an
speciation event after 25 time units, resulting in two leaf species, which evolved for additional
25 time units. The WAG substitution model was used together with Zipfian indels in DNA
sequences with rate 0.0002 (maximum length 50). Such rate varies among sites according to
a Gamma distribution with shape 1 and 10 classes. In addition, we set the rate of invariable
sites to 0.001. Inversions and translocations of up to 30 genes were allowed at a rate of 0.0025.
Finally, for generating instances comprising genes with different numbers of homologies, we
varied the gene duplication and the gene loss rates between 1× 10−5 and 2× 10−3.
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Species NCBI Assembly Species NCBI Assembly

Drosophila busckii ASM1175060v1 Drosophila sechellia ASM438219v1

Drosophila melanogaster Release 6 plus ISO1 MT Drosophila simulans ASM75419v2

Drosophila pseudoobscura UCI_Dpse_MV25 Drosophila yakuba dyak_caf1

D. melanogaster

D. sechellia

D. simulans

D. yakuba

D. pseudoobscura

D. busckii

01020304050
Time (MYA)

Figure 7 List of genomes used in our experiments and a reference phylogenetic tree of the
respective species of Drosophila given by TimeTree [15], a public knowledge-base for information on
the tree-of-life and its evolutionary timescale.

As already mentioned, we obtained pairwise similarities between genes of Drosophila
genomes using the FFGC pipeline4 [11] with the following parameters: (i) 1 for the minimum
number of genomes for which each gene must share some similarity in, (ii) 0.1 for the
stringency threshold, (iii) 1 for the BLAST e-value, and (iv) default values for the remaining
parameters.

In the following subsections, in-depth information is provided on the results for experiments
using complete genomes and X chromosomes of the listed Drosophila species.

B.1 Complete genomes
The first tables in this section detail the results of the comparison of complete genomes in
terms of the BLAST alignment performed for all genes, and the corresponding similarity
graphs for each genome pair without cutting threshold. This data was generated using the
FFCG pipeline with the parameters described above. Unplaced scaffolds were discarded,
decreasing the number of genes from ∼ 15,000 to ∼ 13,000. Table 1 outlines the number
of gene pairs in each similarity range for each pair of genomes. Table 2 shows the number
of genes with no homology relations (which induce trivial selections of indel edges in the
relational diagram), the number of genes with exactly one homology relation and the number
of genes with multiple homologies (which pose a significant challenge to the solver). The
computed distances and elapsed time (or gap in % when the solver reaches the time limit)
in the pairwise comparisons with cutting threshold 0.3 are shown in Tables 3 and 4. The
solver was set to stop after finding a solution with optimality gap smaller than 0.5% or after
3 hours.

4 https://bibiserv.cebitec.uni-bielefeld.de/ffgc
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Table 1 Distribution of similarities between genes (and percentage) in pairwise comparisons of
complete genomes.

species similarity pseudoobscura sechellia simulans yakuba busckii
(0.0-0.2) 53648 (60.09%) 33409 (48.69%) 34803 (49.15%) 38143 (51.71%) 53733 (65.42%)
[0.2-0.4) 19034 (21.32%) 17822 (25.97%) 18566 (26.22%) 18748 (25.42%) 16129 (19.64%)

melanogaster [0.4-0.6) 6036 (6.76%) 3896 (5.68%) 4019 (5.68%) 4195 (5.69%) 5207 (6.34%)
[0.6-0.8) 4993 (5.59%) 1826 (2.66%) 1909 (2.70%) 3010 (4.08%) 4300 (5.23%)
[0.8-1.0] 5570 (6.24%) 11666 (17.00%) 11513 (16.26%) 9663 (13.10%) 2772 (3.37%)

89281 (100%) 68619 (100%) 70810 (100%) 73759 (100%) 82141 (100%)
(0.0-0.2) 53777 (62.13%) 54221 (61.83%) 54147 (61.96%) 54104 (65.78%)
[0.2-0.4) 18169 (20.99%) 18724 (21.35%) 18645 (21.34%) 15940 (19.38%)

pseudoobscura [0.4-0.6) 5466 (6.32%) 5601 (6.39%) 5595 (6.40%) 5183 (6.30%)
[0.6-0.8) 4838 (5.59%) 4895 (5.58%) 4797 (5.49%) 4223 (5.13%)
[0.8-1.0] 4303 (4.97%) 4255 (4.85%) 4202 (4.81%) 2798 (3.40%)

86553 (100%) 87696 (100%) 87386 (100%) 82248 (100%)
(0.0-0.2) 34227 (49.87%) 38169 (52.98%) 53105 (66.03%)
[0.2-0.4) 17325 (25.25%) 17430 (24.19%) 15521 (19.30%)

sechellia [0.4-0.6) 3721 (5.42%) 4075 (5.66%) 5003 (6.22%)
[0.6-0.8) 1277 (1.86%) 2987 (4.15%) 4175 (5.19%)
[0.8-1.0] 12077 (17.60%) 9379 (13.02%) 2626 (3.26%)

68627 (100%) 72040 (100%) 80430 (100%)
(0.0-0.2) 39218 (52.89%) 54066 (66.32%)
[0.2-0.4) 18288 (24.66%) 15648 (19.20%)

simulans [0.4-0.6) 4287 (5.78%) 5115 (6.27%)
[0.6-0.8) 2960 (3.99%) 4103 (5.03%)
[0.8-1.0] 9395 (12.67%) 2589 (3.18%)

74148 (100%) 81521 (100%)
(0.0-0.2) 54022 (66.32%)
[0.2-0.4) 15767 (19.36%)

yakuba [0.4-0.6) 5027 (6.17%)
[0.6-0.8) 4105 (5.04%)
[0.8-1.0] 2540 (3.12%)

81461 (100%)
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Table 2 Association between genes in pairwise comparisons of complete genomes, considering
pairwise similarities strictly greater than 0. The tables show the number of genes with zero, one and
multiple homology relations, respectively. For all of them, the element stored in line i and column j
represents the number of genes of the species i in the pairwise comparison of genomes i and j.

Number of unassociated genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 13049 13399 13037 13023 12835 11371

melanogaster 13049 — 570 213 277 352 1183
pseudoobscura 13399 565 — 583 694 710 1211
sechellia 13037 189 620 — 263 393 1189
simulans 13023 335 779 345 — 484 1358
yakuba 12835 306 666 323 327 — 1225
busckii 11371 304 354 321 380 400 —

Number of genes uniquely associated

species melanog pseudoob sechellia simulans yakuba busckii
#genes 13049 13399 13037 13023 12835 11371

melanogaster 13049 — 5439 6624 6533 6361 5107
pseudoobscura 13399 5775 — 5746 5704 5707 5205
sechellia 13037 6650 5487 — 6656 6307 5099
simulans 13023 6516 5394 6594 — 6237 4985
yakuba 12835 6288 5358 6242 6251 — 4982
busckii 11371 4797 4654 4749 4730 4725 —

Number of genes associated to at least two other genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 13049 13399 13037 13023 12835 11371

melanogaster 13049 — 7040 6212 6239 6336 6759
pseudoobscura 13399 7059 — 7070 7001 6982 6983
sechellia 13037 6198 6930 — 6118 6337 6749
simulans 13023 6172 6850 6084 — 6302 6680
yakuba 12835 6241 6811 6270 6257 — 6628
busckii 11371 6270 6363 6301 6261 6246 —

Table 3 Computed ffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of complete

genomes, with cutting threshold x = 0.3. The time limit for execution of the ILP solver is 10800s.

species pseudoobscura sechellia simulans yakuba busckii
melanogaster 7373.7 (0.76%) 1925.5 (4431.78s) 2094.7 (109.60s) 3193.2 (201.49s) 7764.6 (540.19s)
pseudoobscura 7326.0 (163.12s) 7355.5 (764.24s) 7351.2 (5782.73s) 7784.0 (290.12s)
sechellia 1661.0 (103.33s) 3259.0 (146.88s) 7710.4 (415.23s)
simulans 3306.0 (216.77s) 7699.9 (115.54s)
yakuba 7667.4 (153.36s)

Table 4 Computed unwffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of complete

genomes, with cutting threshold x = 0.3. The time limit for execution of the ILP solver is 10800s.

species pseudoobscura sechellia simulans yakuba busckii
melanogaster 4084 (2.67%) 708 (0.96%) 933 (0.62%) 1269 (1.35%) 4791 (0.95%)
pseudoobscura 4088 (1.50%) 4176 (1.47%) 4142 (1.22%) 4797 (1.20%)
sechellia 905 (2812.89s) 1341 (1.10%) 4817 (0.98%)
simulans 1478 (1.44%) 4866 (0.84%)
yakuba 4820 (1.00%)
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B.2 X chromosomes
Similarity values in pairwise comparisons are given in Table 5. Results for unwffdid

dcj and
for ffdid

dcj are shown in Tables 6 and 7 (CPLEX was set to stop after finding a solution with
optimality gap smaller than 0.1% or after 1 hour). The number of genes with 0, 1 and
multiple homologies are given in Table 8.

Table 5 Distribution of similarities (and percentage) in pairwise comparisons of X chromosomes.

species similarity pseudoobscura sechellia simulans yakuba busckii
(0.0-0.2) 4710 (63.70%) 829 (22.38%) 897 (25.63%) 987 (28.81%) 2072 (48.64%)
[0.2-0.4) 980 (13.25%) 576 (15.55%) 536 (15.31%) 528 (15.41%) 738 (17.23%)

melanogaster [0.4-0.6) 541 (7.32%) 352 (9.50%) 256 (7.31%) 242 (7.06%) 475 (11.15%)
[0.6-0.8) 605 (8.18%) 271 (7.32%) 256 (7.31%) 412 (12.03%) 584 (13.71%)
[0.8-1.0] 558 (7.55%) 1676 (45.25%) 1555 (44.43%) 1257 (36.69%) 391 (9.18%)

7394 (100%) 3704 (100%) 3500 (100%) 3426 (100%) 4260 (100%)
(0.0-0.2) 4849 (64.60%) 4703 (65.15%) 4588 (64.64%) 5021 (66.59%)
[0.2-0.4) 962 (12.82%) 907 (12.56%) 898 (12.65%) 953 (12.64%)

pseudoobscura [0.4-0.6) 539 (7.18%) 498 (6.90%) 495 (6.97%) 563 (7.47%)
[0.6-0.8) 600 (7.99%) 585 (8.10%) 574 (8.09%) 584 (7.75%)
[0.8-1.0] 556 (7.41%) 526 (7.29%) 543 (7.65%) 419 (5.56%)

7506 (100%) 7219 (100%) 7098 (100%) 7540 (100%)
(0.0-0.2) 773 (22.62%) 961 (28.16%) 2014 (47.90%)
[0.2-0.4) 521 (15.24%) 532 (15.59%) 741 (17.62%)

sechellia [0.4-0.6) 191 (5.59%) 266 (7.79%) 486 (11.56%)
[0.6-0.8) 139 (4.07%) 423 (12.39%) 574 (13.65%)
[0.8-1.0] 1795 (52.50%) 1231 (36.07%) 390 (9.27%)

3419 (100%) 3413 (100%) 4205 (100%)
(0.0-0.2) 1038 (30.77%) 2069 (49.95%)
[0.2-0.4) 506 (15.00%) 697 (16.83%)

simulans [0.4-0.6) 254 (7.53%) 448 (10.82%)
[0.6-0.8) 403 (11.95%) 556 (13.42%)
[0.8-1.0] 1172 (34.75%) 372 (8.98%)

3373 (100%) 4142 (100%)
(0.0-0.2) 2110 (50.62%)
[0.2-0.4) 668 (16.03%)

yakuba [0.4-0.6) 456 (10.94%)
[0.6-0.8) 561 (13.46%)
[0.8-1.0] 373 (8.95%)

4168 (100%)

Table 6 Computed unwffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of X

chromosomes, with cutting thresholds x = 0.0, x = 0.3 and x = 0.5. The time limit is 3600s.

species x pseudoobscura sechellia simulans yakuba busckii

melanogaster
0.0 720 (2.80%) 132 (0.38%) 178 (30.93s) 218 (4.99s) 832 (3.49%)
0.3 829 (1.70s) 160 (9.31s) 218 (0.98s) 293 (0.66s) 972 (0.90s)
0.5 940 (0.46s) 228 (0.52s) 298 (0.40s) 397 (0.34s) 1003 (0.27s)

pseudoobscura
0.0 743 (3.13%) 743 (2.14%) 724 (1.40%) 912 (3.76%)
0.3 836 (1.06s) 849 (1.03s) 837 (0.96s) 980 (1.06s)
0.5 929 (0.44s) 938 (0.43s) 908 (0.43s) 1015 (0.39s)

sechellia
0.0 171 (45.95s) 236 (6.41s) 850 (2.19%)
0.3 194 (1.06s) 301 (0.74s) 982 (2.11s)
0.5 244 (0.44s) 423 (0.40s) 1014 (0.28s)

simulans
0.0 265 (18.14s) 863 (2.35%)
0.3 336 (0.63s) 994 (0.87s)
0.5 453 (0.33s) 1005 (0.25s)

yakuba
0.0 830 (1.73%)
0.3 972 (0.72s)
0.5 992 (0.24s)
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Table 7 Computed ffdid
dcj and elapsed time (or gap in %) in pairwise comparisons of X chromo-

somes, with cutting thresholds ranging between x = 0.0 and x = 0.3. The time limit is 3600s.

species x pseudoobscura sechellia simulans yakuba busckii

melanogaster

0.0 1390.3 (255.22s) 407.3 (0.32%) 432.4 (9.60s) 587.4 (4.21s) 1362.7 (109.59s)
0.1 1370.1 (30.01s) 408.3 (0.34%) 433.8 (10.12s) 590.0 (4.08s) 1363.9 (11.49s)
0.2 1326.0 (6.28s) 412.7 (174.06s) 436.6 (5.25s) 601.0 (2.17s) 1344.7 (5.12s)
0.3 1296.0 (4.13s) 416.7 (24.47s) 445.4 (3.55s) 609.3 (1.64s) 1321.8 (2.87s)

pseudoobscura

0.0 1417.1 (258.89s) 1375.6 (281.95s) 1361.7 (94.68s) 1515.7 (368.78s)
0.1 1394.1 (36.51s) 1355.1 (45.6s) 1337.0 (17.74s) 1491.7 (33.27s)
0.2 1344.1 (3.64s) 1309.7 (329.25s) 1299.5 (3.34s) 1433.3 (5.61s)
0.3 1308.0 (5.56s) 1278.0 (3.73s) 1262.3 (3.69s) 1374.1 (4.69s)

sechellia

0.0 352.5 (5.90s) 626.8 (4.70s) 1378.2 (74.01s)
0.1 352.8 (5.83s) 630.4 (3.92s) 1377.1 (23.36s)
0.2 351.9 (3.56s) 635.3 (3.08s) 1354.2 (5.38s)
0.3 355.0 (2.55s) 641.3 (1.92s) 1328.3 (4.18s)

simulans

0.0 617.8 (7.78s) 1344.0 (80.84s)
0.1 621.3 (5.27s) 1342.7 (29.58s)
0.2 626.2 (2.04s) 1316.7 (5.50s)
0.3 637.8 (1.99s) 1295.5 (3.25s)

yakuba

0.0 1325.5 (69.40s)
0.1 1323.7 (24.32s)
0.2 1304.9 (6.27s)
0.3 1280.8 (3.73s)

Table 8 Association between genes in pairwise comparisons of the corresponding X chromosomes,
considering pairwise similarities strictly greater than 0. For the three tables, the element stored
in line i and column j represents the number of genes of the species i in the pairwise comparison
of genomes i and j. The X chromosome of D. pseudoobscura was fused with another chromosome
during evolution [17], therefore it presents a larger number of unassociated genes when compared to
the other species.

Number of unassociated genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 2043 4770 2107 2007 1956 1953

melanogaster 2043 — 152 23 84 100 221
pseudoobscura 4770 2076 — 2025 2127 2113 2110
sechellia 2107 57 174 — 102 133 257
simulans 2007 84 187 74 — 130 272
yakuba 1956 80 153 80 107 — 227
busckii 1953 167 124 173 217 201 —

Number of genes uniquely associated

species melanog pseudoob sechellia simulans yakuba busckii
#genes 2043 4770 2107 2007 1956 1953

melanogaster 2043 — 1052 1440 1402 1428 1191
pseudoobscura 4770 1613 — 1651 1579 1646 1565
sechellia 2107 1479 1084 — 1454 1449 1224
simulans 2007 1382 1024 1392 — 1352 1126
yakuba 1956 1352 1017 1353 1331 — 1123
busckii 1953 1155 977 1154 1125 1147 —

Number of genes associated to at least two other genes

species melanog pseudoob sechellia simulans yakuba busckii
#genes 2043 4770 2107 2007 1956 1953

melanogaster 2043 — 839 580 557 515 631
pseudoobscura 4770 1081 — 1094 1064 1011 1095
sechellia 2107 571 849 — 551 525 626
simulans 2007 541 796 541 — 525 609
yakuba 1956 524 786 523 518 — 606
busckii 1953 631 852 626 611 605 —
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