
On the Representation of References in the
Pi-Calculus
Daniel Hirschkoff
ENS de Lyon, France

Enguerrand Prebet
ENS de Lyon, France

Davide Sangiorgi
Università di Bologna, Italy
INRIA, Sophia Antipolis, France

Abstract
The π-calculus has been advocated as a model to interpret, and give semantics to, languages with
higher-order features. Often these languages make use of forms of references (and hence viewing a
store as set of references). While translations of references in π-calculi (and CCS) have appeared,
the precision of such translations has not been fully investigated. In this paper we address this issue.

We focus on the asynchronous π-calculus (Aπ), where translations of references are simpler. We
first define πref, an extension of Aπ with references and operators to manipulate them, and illustrate
examples of the subtleties of behavioural equivalence in πref. We then consider a translation of
πref into Aπ. References of πref are mapped onto names of Aπ belonging to a dedicated “reference”
type. We show how the presence of reference names affects the definition of barbed congruence. We
establish full abstraction of the translation w.r.t. barbed congruence and barbed equivalence in the
two calculi. We investigate proof techniques for barbed equivalence in Aπ, based on two forms of
labelled bisimilarities. For one bisimilarity we derive both soundness and completeness; for another,
more efficient and involving an inductive “game” on reference names, we derive soundness, leaving
completeness open. Finally, we discuss examples of uses of the bisimilarities.
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1 Introduction

The π-calculus has been advocated as a model to interpret, and give semantics to, languages
with higher-order features. Often these languages make use of forms of references (and hence
viewing a store as set of references). This therefore requires representations of references using
the names of the π-calculus. There are strong similarities between the names of the π-calculus
and the references of imperative languages. This is evident in the denotational semantics of
these languages: the mathematical techniques employed in modelling the π-calculus (e.g.,
[25, 6]) were originally developed for the semantic description of references. Yet names and
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references behave rather differently: receiving from a name is destructive – it consumes a
value – whereas reading from a reference is not; a reference has a unique location, whereas a
name may be used by several processes both in input and in output; etc. These differences
make it unclear if and how interesting properties of imperative languages can be proved via
a translation into the π-calculus.

A subset of the π-calculus that often appears in the literature, for its expressive power
and elegant theory, is the Asynchronous π-calculus (Aπ). Aπ allows one to provide a simpler
representation of references, where a reference ` storing a value n is just an output message
`〈n〉 (in Aπ output is not a prefix, hence it has no process continuation). A process that
wishes to access the reference is supposed to make an input at ` and then immediately emit
a message at ` with the new content of the reference. For instance a process reading on the
reference and binding its content to x in the continuation P is

`(x). (`〈x〉 | P ) .

Another reason that makes this representation of references in Aπ interesting is the bisimilarity
of Aπ, called asynchronous bisimilarity. It differs from standard bisimilarity in the input
clause, in which a transition P n〈m〉−−−→ P ′ (where P is receiving m on n) can be answered by
a bisimilar process Q thus:

n〈m〉 | Q =⇒ Q′ (*)

(provided P ′ and Q′ are bisimilar), where =⇒ stands for zero or several internal communication
steps. Intuitively, Q does not necessarily perform an input on n in response to the transition
done by P . To see why this clause could be interesting with references, consider a process
that performs a useless read on a reference ` and then continues as P2; in a language with
references this would be equivalent to P2 itself. When written in Aπ, the process with the
useless read becomes P1

def= `(x). (`〈x〉 | P2) where x does not appear in P2. In ordinary
bisimilarity, P1 is immediately distinguished from P2, as the latter cannot answer the input
transition P1

`〈n〉−−−→ `〈n〉 | P2. However, the answer is possible using the clause (∗), as we have

`〈n〉 | P2 =⇒ `〈n〉 | P2 .

We are not aware of studies that investigate the faithfulness of the above representation
of references in Aπ. In this paper we address this issue. For this, we first define πref, an
extension of Aπ with references and operators to manipulate them. We then consider a
translation of πref into Aπ and:

we study the properties of this translation;
we establish proof techniques on Aπ to reason about references.

The calculus with references, πref, has constructs for reading from a reference, writing
on a reference, and a swap operation for atomically reading on a reference and placing a
new value onto it. Modern computer architectures offer hardware instructions similar to
swap, e.g., test-and-set, or control-and-swap constructs to atomically check and modify the
content of a register. These constructs are important to tame the access to shared resources.
In distributed systems, swap can be used to solve the consensus problem with two parallel
processes, whereas simple registers cannot [8].

The swap construct is also suggested by the translation of references into Aπ. The pattern
for accessing a reference ` is `(x). (`〈n〉 | P ). This yields four cases, depending on whether x
is used in P and whether x is equal to n:
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n 6= x n = x

x free in P swap read
x not free in P write useless read

We define a type system in Aπ to capture the intended pattern of usage of names that
represent references, called reference names, in particular the property that there is always
a unique output message available at these names. The type system has linearity features
similar to π-calculus type systems for locks [13] or for receptiveness [22].

Imposing a type system has consequences on behavioural equivalences. Since the set
of legal contexts becomes smaller, the behavioural equivalence itself becomes coarser. For
instance, in the case of reference names, a process P is supposed to be tested only in a
context that guarantees that all references mentioned in P are “allocated” (thus, an input
at a reference name ` is never “stuck”, as an output message at ` must always exist). A
consequence of these is a read in which the value read is not used is irrelevant (see formally
law (1)).

In both calculi, as behavioural equivalence we use barbed congruence and barbed equivalence.
These equivalences equate processes which, roughly, in all contexts give rise to “matching
reductions”.

We establish an operational correspondence between the behaviour of a process in πrefand
its encoding in Aπ, and from this we establish full abstraction of the translation of πref

into Aπ with respect to both barbed equivalence and barbed congruence in the two calculi.
We then investigate proof techniques for barbed equivalence in Aπ, based on two forms of
labelled bisimilarities. For one bisimilarity we derive both soundness and completeness. This
bisimilarity is similar to, but not the same as, asynchronous bisimilarity. For instance, it
is defined on “reference-closed” processes (intuitively, processes in which all references are
allocated); therefore inputs on reference names from the tested processes are not visible
(because such inputs are supposed to consume the unique output message at that reference
that is present in the tested processes). The output clause of bisimilarity on reference names
is also different, as we have to make sure that the observer respects the pattern of usage for
reference names; thus the observer consuming the output message on a reference name `
should immediately re-install an output on `.

The second bisimilarity is more efficient because it does not require processes to be
“reference-closed”. Thus output messages on reference names consumed by the observer need
not be immediately re-installed. However sometimes access to a certain reference is needed
by a process in order to answer the bisimulation challenge from the other process. And
depending on the content of such references, further accesses to other references may be
needed. Since we wish to add only the needed references, this introduces an inductive game, in
which a player requires a reference and the other player specifies the content of such reference,
within the coinductive game of bisimulation. We show that the resulting bisimilarity is sound,
and leave completeness as an open problem. Finally, we discuss examples of uses of the
bisimilarities.

Related Work. The classic encoding of references in the π-calculus [16] follows their encoding
into CCS [15]: a reference is a stateful recursive process, which may be interrogated using two
names, one for read operations, the other for write operations. Properties of this encoding
have been explored [20], comparing the π-calculus to Concurrent Idealised Algol [3], an
extension of Idealised Algol [19] with shared variables concurrency. The encoding has been
shown to be sound but not complete.

CONCUR 2020



34:4 On the Representation of References in the Pi-Calculus

Many works have studied the effect of type systems on behavioural equivalence, formalised
using both barbed congruence and labelled bisimilarity. (See the references in the books [24,
7]). To our knowledge, no such study has been done regarding the discipline for reference
names which we use in this work. This discipline bears similarities with receptiveness [22],
which is also related to the results in [23, 14]. We can also remark that our notion of complete
processes is reminiscent of the notion of catalysers used by Dezani et al. [5] in session types
to enforce progress.

Section 5 discusses further related work.

Paper outline. In Section 2, we introduce πref and discuss examples of behavioural equi-
valences between πref processes. In Section 3 we present Aπ with reference names, using a
type system that captures the usage of such names. We show the encoding of πref into such
Aπ and prove its full abstraction for barbed equivalence and congruence. In Section 4 we
introduce the two new labelled bisimilarities for Aπ, we establish soundness and completeness
for one and soundness for the other (we conjecture that also completeness holds), and present
a useful “up-to” technique for the second one. Finally we illustrate the benefits of using the
proof techniques based on the labelled bisimilarities of Aπ on some examples.

The proofs of most of the results in this work are presented in a full version of this
paper [9].

2 Asynchronous Processes Accessing References: πref

In this section, we introduce πref, the asynchronous π-calculus extended with primitives to
interact with memory locations.

2.1 Syntax and Semantics
We assume an infinite set Names of names and a distinct infinite set Refs of references.
These sets do not contain the special symbol ?, that stands for the constant “unit”. We use
a, b, c, . . . , p, q, . . . to range over Names; `, . . . to range over Refs; and n,m, . . . , x, y, . . . to
range over All def= Names∪Refs∪{?}. The grammar for the calculus πref is the following; for
simplicity, we develop our theory on the monadic calculus (one value at a time is handled).

P ::= 0
∣∣ a(x).P

∣∣ a〈n〉 ∣∣ !P
∣∣ P1 | P2

∣∣ (νa)P
∣∣ [n = m]P∣∣ (ν` = n)P

∣∣ ` / n.P
∣∣ ` . (x).P

∣∣ ` on n(x).P

The operators in the first line are the standard π-calculus constructs for the inactive
process, input, asynchronous output, replication, parallel composition, name restriction, and
matching (however matching here is defined on both names and references). In the second
line, we find the operators to handle references: reference restriction, or allocation (creating
a new reference ` with initial value n), write (setting the content of ` to n), read (reading in
x the value of `), swap (atomically reading on x and replacing the content of the reference
with n).

As usual, we often omit 0, and abbreviate a〈?〉 as a (and similarly for inputs a.P ). We
use a tilde, ·̃, for (possibly empty) finite tuples; then (νã) is a sequence of restrictions; and
(νL̃) a sequence of reference allocations (i.e., a piece of store), using L to represent a single
allocation such as ` = n. Given the binders (νa)P and (ν` = n)P (for a and `, respectively),
a(x).P , ` . (x).P and ` on n(x) (for x), we define bn(O), fn(O) (resp. fr(O), br(O)), for the
bound and free names (resp. references) of some object O (process, action, etc.). The set
of names of O is defined as the union of its free and bound names; and analogously for
references. In a(x).P or a〈x〉, name a is the subject whereas x is the object.
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R-Equiv:
P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q

P −→ Q
R-Ctxt:

P −→ P ′

E[P ] −→ E[Q]

R-Comm:
a(x).P | a〈n〉 −→ P{n/x}

R-Read:
`, n /∈ br(νL̃)

(ν` = n)(νL̃)(` . (x).P | Q) −→ (ν` = n)(νL̃)(P{n/x} | Q)

R-Write:
`, n /∈ br(νL̃)

(ν` = m)(νL̃)(` / n.P | Q) −→ (ν` = n)(νL̃)(P | Q)

R-Swap:
`, n,m /∈ br(νL̃)

(ν` = m)(νL̃)(` on n(x).P | Q) −→ (ν` = n)(νL̃)(P{m/x} | Q)

Figure 1 πref, reduction relation.

We assume the calculus is simply-typed. Any basic type system for the π-calculus would
do. In this paper, we assume Milner’s sorting: names and references are partitioned into
a collection of types (or sorts). Name types contain names, and reference types contain
references. Then a sorting function maps types onto types. If a name type s is mapped
onto a type t, this means that names in s may only carry, or contain, objects in t; if s is a
reference type then only objects of type t may be stored in s. We shall assume that there is a
sorting system under which all processes we manipulate are well-typed. For simplicity we use
simple types; e.g., the sorting is non-recursive (meaning that the graph that represents the
sorting function, in which the nodes are the types, does not contain cycles). In the remainder
we assume that all objects (processes, contexts, actions, etc.) respect a given sorting.

The definition of structural congruence, ≡, is the expected one from the π-calculus,
treating the (ν` = n) operator like a restriction (see Appendix B).

Contexts, ranged over by C, are process expressions with a hole [ ] in it. We write C[P ]
for the process obtained by replacing the hole in C with P . Active (or evaluation) contexts,
ranged over by E, are given by:

E ::= [ ]
∣∣ E | P ∣∣ (νa)E

∣∣ (ν` = n)E .

The reduction relation −→ is presented in Figure 1. It uses active contexts to isolate the
subpart of the term that is active in a reduction. We write =⇒ for the “multistep” version of
−→, whereby P =⇒ P ′ if P may become P ′ after a (possibly empty) sequence of reductions.
Rules R-Read, R-Write and R-Swap in Figure 1 describe an interaction between the process
and a reference `. These rules make use of a store (νL̃); this is necessary because there
might be references that depend on `, and as such cannot be moved past the restriction
on `. An example is (ν` = a)(ν`′ = `)` / b.P : the write operation is executed by applying
rule R-Write, with (νL̃) = (ν`′ = `), as the restriction on `′ cannot be brought above the
restriction on `. We recall that br(νL̃) are the references bound by the ν.

As usual in concurrent calculi, the reference behavioural equivalence will be barbed
congruence (in its variant sometimes called reduction-closed barbed congruence), a form of
bisimulation on reduction that uses closure under contexts and simple observables. In the
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context closure, however, we make sure that all references mentioned in the tested process
have been allocated. As often in π-calculi, we also consider barbed equivalence, that uses only
active contexts.

P exhibits a barb at a (so a is in Names), written P ↓a, if P ≡ (ν b̃)(νL̃)(a〈m〉 | P ′) with
a /∈ b̃. We write P ⇓a if P =⇒ P1 and P1 ↓a for some P1.

I Definition 1. Given a relation R on processes, and P R Q, we say that P,Q (in R) are
closed under reductions if P −→ P ′ implies there is Q′ s.t. Q =⇒ Q′ and P ′ R Q′;
preserved by a set C of contexts if C[P ] R C[Q] for all C ∈ C;
compatible on barbs if P ↓a implies Q ⇓a, for all a.

A process P is reference-closed if fr(P ) = ∅. A context C is closing on the references of
a process P if C[P ] is reference-closed; similarly, C is closing on the references of P,Q if it
closing on the references of both P and Q. Since reductions may only decrease the set of
free names of a process, the property of being reference-closed is preserved by reductions.

I Definition 2 (Barbed congruence and equivalence in πref). Barbed congruence is the largest
symmetric relation ∼=ref in πref such that whenever P R Q then P,Q are: closed under
reductions if P,Q are reference-closed; preserved by the contexts that are closing on references
for P,Q; compatible on barbs if P,Q are reference-closed. Barbed equivalence, ∼=e

ref , is
defined in the same way, but using active contexts in place of all contexts.

The restriction to closing contexts (as opposed to arbitrary contexts) yields laws such as

` . (x).P ∼=ref P, (1)

whenever x /∈ fn(P ). Closing contexts ensure that the reading on ` is not blocking, and
therefore possible observables in P are visible on both sides.

As the quantification on contexts refers to the free references of the tested processes,
transitivity of barbed congruence and equivalence requires some care. As usual in the
π-calculus, barbed equivalence is not preserved by the input construct, and the closure of
barbed equivalence under all (well-typed) substitutions coincides with barbed congruence.

2.2 Behavioural Equivalence in πref: Examples
We present a few examples that illustrate some subtleties of behavioural equivalence in
πref. These examples will be formally treated in Section 4.2 for Examples 3 and 4, and in
Appendix A for Examples 5 and 6.

The first example shows that processes may be equivalent even though the store is public
and holds different values. (In the example, the reference ` is actually restricted, but the
process P underneath the restriction, representing an observer, is arbitrary).

I Example 3. For any P , we have P1 ∼=ref P2, for

P1
def= (ν` = a)(P | !` / a | !` / b) P2

def= (ν` = b)(P | !` / a | !` / b)

In the second example, the write on top of P is not blocking, provided that the same writing
is anyhow possible, and provided that the current value of the store can be recorded.

I Example 4. We have P1 ∼=ref P2, for

P1
def= ` / b.P | !` / b | !` . (x). ` / x P2

def= P | !` / b | !` . (x). ` / x
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On the left, it would seem that P runs under a store in which ` contains b; whereas on the
right, P could also run under the initial store, where ` could contain a different value, say a.
However the component !` . (x). ` / x allows us to store a in x and then write it back later,
thus overwriting b.

I Example 5. We have Ps 6∼=e
ref Qs, where

Ps
def= (νt)` / b. (t | !t. ` /a. (c | ` / b. (t | c))) Qs

def= (νt)` /a. (t | !t. ` / b. (c | ` /a. (t | c)))

The discriminating context being large, the formal discussion is moved in Appendix A.
Intuitively, Ps and Qs are refinements of the processes in Example 3, in that their initial
writes store different values on the reference `, but both processes maintain the capability
of writing both values in `. The difference with Example 3 are the additional inputs and
outputs on name c, which are generated along the transitions. These allow an observer to
distinguish Ps from Qs by exploiting the swap construct. We informally explain the reason.
If the two processes have written the same value, say a, in `, then Qs has generated the
same number of inputs and outputs on c, while Ps must have generated an extra output. An
observer can use swap to read the content of `, so to check that the value is indeed a, and
write back a fresh name, say e. Now the observer can tell that Ps has an extra output on c:
process Qs cannot add a further output, because this would require overwriting e in `, which
can be tested by the observer at the end.

We have seen in Example 3 two equivalent processes whose initial store (a single reference)
is different. The equivalence holds intuitively because the values that the two processes
can store are the same. Using two references, it is possible to complicate the example. In
Example 6, the processes are equivalent and yet the pairs of values that may be simultaneously
stored in the two references are different for the two processes. For each reference separately,
the set of possible values is the same. But setting a reference to a certain value implies first
having set the other reference to some specific values. (The processes could be distinguished
if an observer had the possibility to simultaneously read the two references.)

I Example 6. Consider two references `1, `2 where booleans (represented as 0,1 below) can
be stored. Then for any P , we have P1 ∼=ref P2, where

P1
def= (ν`1 = 0, `2 = 0)(P | (νt)(t | !t. `1 / 1. `1 / 0. `2 / 1. `2 / 0. t))

P2
def= (ν`1 = 0, `2 = 0)(P | (νt)(t | !t. `1 / 1. `2 / 1. `1 / 0. `2 / 0. t))

P1 and P2 can write 0 and 1 in references `1 and `2, but not in the same order. By doing so,
we see that if P1 loops, the content of `1 and `2 will evolve thus: (0, 0)→ (1, 0)→ (0, 0)→
(0, 1)→ (0, 0), while for P2 the loop is different: (0, 0)→ (1, 0)→ (1, 1)→ (0, 1)→ (0, 0).

In particular, P2 can always go through the state (1, 1), independently of the transitions
of P , while P1 cannot, in general, reach this state.

The example above relies on the fact that the domain of possible values for `1 and `2 is
finite. A more sophisticated example, without such assumption, is given in the Appendix A.

3 Mapping πref onto the Asynchronous π-calculus

We present the encoding of πref into Aπ, which follows the folklore encoding of references
into Aπ.

CONCUR 2020
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3.1 The Asynchronous π-calculus
Below is the grammar of the asynchronous π-calculus, Aπ; we reuse all notations from πref.

P ::= 0
∣∣ n(x).P

∣∣ !P
∣∣ n〈m〉 ∣∣ P1 | P2

∣∣ (νn)P
∣∣ [n = m]P

The reduction semantics, as well as barbed equivalence and congruence (written ∼=e
a and

∼=a, respectively), are standard (defined as in πref, and recalled in Appendix B). We recall
the standard definition of asynchronous bisimilarity, ≈a, from [1]. To define ≈a, as well as
the other forms of bisimilarity we introduce in Section 4, we rely on the early transition
system for Aπ. In this LTS, which is presented in Appendix B labels are either free inputs of
the form n〈m〉 (reception of name m on n), output (n〈m〉), bound output ((νm)n〈m〉) or
internal communication (τ).

I Definition 7. A symmetric relation R between processes is an asynchronous bisimulation
if whenever P R Q and P µ−→ P ′, one of these two clauses hold:

there is Q′ such that Q µ̂=⇒ Q′ and P ′ R Q′;
µ = n〈m〉 and there is Q′ such that Q | n〈m〉 =⇒ Q′ and P ′ R Q′.

Asynchronous bisimilarity, ≈a, is the largest asynchronous bisimulation.

I Theorem 8 ([1]). Relations ∼=e
a and ≈a coincide.

3.2 Encoding πref

In π-calculi such as Aπ, there are no references, only names. To make the encoding easier to
read, we assume however that the set of names contains the set of references {`, · · · } of πref.
We call such names reference names, and call plain names the remaining names. Reference
names will be used to represent the references of πref.

The encoding EJ·K, from πref to Aπ, is a homomorphism on all operators (thus, e.g.,
EJP1 | P2K

def= EJP1K | EJP2K, and EJa(m).P K def= a(m). EJP K), except for reference constructs
for which we have:

EJ(ν` = m).P K def= (ν`)(`〈m〉 | EJP K) EJ` / v.P K def= `(_). (`〈v〉 | EJP K)

EJ` . (x).P K def= `(x). (`〈x〉 | EJP K) EJ` on n(x).P K def= `(x). (`〈n〉 | EJP K)

(We write `(_).Q for an input whose bound name does not appear in Q.) In the encoding, an
object m stored at reference ` is represented as a message `〈m〉. Accordingly, the encoding of
a write ` / v.P is `(_). (`〈v〉 | EJP K), meaning that the process acquires the current message
at ` (which is thus not available anymore) and replaces it with an output with the new value.
The encoding of a read ` . (x).P follows a similar pattern, this time however the same value
is received and emitted: `(x). (`〈x〉 | P ). The encoding of swap combines the two patterns.

3.3 Types and Behavioural Equivalences with Reference Names
To prove a full abstraction property for the encoding, we use types to formalise the behavioural
difference between reference names and plain names in the asynchronous π-calculus. The
typing discipline can be added onto any basic type system for the π-calculus. As for πref,
we follow Milner’s sorting. The types of the sorting impose a partition on the two sets of
names (reference names and plain names). Thus we assume such a sorting, under which
all processes are well-typed. We separate the base type system (Milner’s sorting) from the
typing rules for reference names so as to show the essence of the latter rules. Accordingly,
we only present the additional typing constraints for reference names.
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TNil
∅ ` 0

TOut
∅ ` a〈m〉

TInp
∅ ` P

∅ ` a(x).P
TRep

∅ ` P
∅ ` !P

TPar
∆1 ` P ∆2 ` Q

∆1 ]∆2 ` P | Q
TResN

∆ ` P
∆ ` (νa)P

TResR
∆, ` ` P

∆ ` (ν`)P

TRefO
` ` `〈m〉

TRefI
` ` P

∅ ` `(x).P

Figure 2 Typing conditions for reference names in Aπ processes.

We write: RefTypes for the the set of reference types (i.e., types that contain reference
names); Type(n) is the type of name n; ObType(n) is the type of the objects of n (i.e., the
type of the names that may be carried at n). For example in well-typed processes such as
n〈m〉 and n(m).P , name m will be of type ObType(n).

Notations. We use `, . . . to range over reference names, a, b, . . over plain names, n,m, . . .
over the set of all names. ∆ ranges over finite sets of reference names. We sometimes write
∆− x as abbreviation for ∆− {x}. Moreover ∆1 ]∆2 is defined only when ∆1 ∩∆2 = ∅, in
which case it is ∆1 ∪∆2; we write ∆, x for ∆ ] {x}.

The type system is presented in Figure 2. Judgements have the form ∆ ` P , where P is
an Aπ process. Rule TRefO along with Rule TPar ensures that every reference names in ∆
appears in subject of exactly one unguarded output. Rule TResR ensures that new reference
names are always in ∆ while Rule TRefI ensures that ∆ is constant after a communication
between references (by re-emitting an output after one has been consumed).

Intuitively, if ∆ ` P , then P must make available the names in ∆ immediately and exactly
once in output subject position. We say that ` is output receptive in P if there is exactly
one unguarded output at `, and moreover this output is not underneath a replication. Then
∆ ` P holds if

any ` ∈ ∆ is output receptive in P ;
in any subterm of P of the form (ν`′)Q or `′(m).Q, name `′ is output receptive in Q.

This intuition is formalised in Lemma 9, and in Proposition 10 that relates types and
operational semantics.

Typing is important because it allows us to derive the required behavioural equivalences.
For instance, allowing parallel composition with the ill-typed process `(x). 0 would invalidate
barbed equivalence between the (translations of the) terms in law (1).

In the remainder of the paper, it is assumed that all processes are well typed, meaning
that each process P obeys the underlying sorting system and that there is ∆ s.t. ∆ ` P
holds. Two processes P,Q are type-compatible if both ∆ ` P and ∆ ` Q, for some ∆; we
write ∆ ` P,Q in this case. In the remainder of the paper, all relations are on pairs of
type-compatible processes. Similarly, all compositions (i.e., of a context with processes) and
actions are well-typed.

The type system satisfies standard properties, like uniqueness of typing (∆ ` P and
∆′ ` P imply ∆ = ∆′), and preservation by structural congruence (P ≡ Q and ∆ ` P imply
∆ ` Q). As claimed above, if ∆ ` P , then names in ∆ are output receptive:
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I Lemma 9. If ∆, ` ` P then P ≡ (νñ)(`〈m〉 | Q), with ` 6∈ ñ, and there is no unguarded
output at ` in Q.

The following standard property relies on the standard LTS for Aπ, which is given in
Appendix B.

I Proposition 10 (Subject reduction). If ∆ ` P and P µ−→ P ′, then
1. if µ = τ , µ = a〈m〉, µ = a〈m〉 or µ = (νb)a〈b〉, then ∆ ` P ′.
2. if µ = (ν`)a〈`〉 then ∆, ` ` P ′.
3. if µ = `〈m〉 and ` /∈ ∆, then ∆, ` ` P ′
4. if ` /∈ ∆, then ∆, ` ` P | `〈m〉.
5. if µ = `〈m〉 or µ = (νb)`〈b〉, then ∆− ` ` P ′.
6. if µ = (ν`′)`〈`′〉, then (∆− `), `′ ` P ′.

We can remark that in case 3, we have ` /∈ ∆, as otherwise the context would not be able
to trigger an input (since, by typing, it could not generate an output on `).

Barbed congruence. As usual in typed calculi, the definitions of the barbed relations take
typing into account, so that the composition of a context and a process be well-typed. In the
case of reference names, an additional ingredient has to be taken into account, namely the
accessibility of reference names. If a process has the possibility of accessing a reference, then
a context in which the process is tested should guarantee the availability of that reference.
For this, we define the notion of completing context and complete process. Then, roughly,
barbed congruence becomes “barbed congruence under all completing contexts”.

A process P is complete if each reference name that appears free in P is “allocated” in P .
We write frn(P ) for the set of free reference names in P .

I Definition 11 (Open references and complete processes). The open references of P such
that ∆ ` P are the names in frn(P )\∆; similarly the open references of processes P1, . . . , Pn
is the union of the open references of the Pi’s. P is complete if it contains no open reference.
frn(P ) ⊆ ∆ and ∆ ` P , for some ∆.

A context C is completing for P if C[P ] is complete.
(Note that an Aπ complete process might have free reference names, if these are not open
references; in contrast, a πref reference-closed process does not have free references.)

I Lemma 12. P is complete iff ∅ ` (νñ)P where ñ def= frn(P ).

Completing contexts are the only contexts in which processes should be tested. We
constrain the definitions of typed barbed congruence and equivalence accordingly. The
grammar for the active contexts in Aπ is as expected:

E ::= [ ]
∣∣ E | P ∣∣ (νn)E .

I Definition 13 (Barbed congruence and equivalence in Aπ with reference names). Barbed
congruence is the largest symmetric relation ∼=Arn in Aπ such that whenever P R Q then
P,Q are: closed under reductions whenever they are complete; closed under the contexts that
are completing for P,Q; compatible on barbs whenever they are complete. Barbed equivalence,
∼=e

Arn, is defined analogously except that one uses active contexts in place of all contexts.

This typed barbed equivalence is the behavioural equivalence we are mainly interested in.
The reference name discipline weakens the requirements on names (by limiting the number of
legal contexts), hence the corresponding typed barbed relation is coarser. We are not aware
of existing works in the literature that study the impact of the reference name discipline on
behavioural equivalence.
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I Lemma 14. For all compatible P , Q, P ∼=e
a Q (and hence also P ≈a Q) implies P ∼=e

Arn Q.

We show in Section 4 that the inclusion is strict.

3.4 Validating the Encoding
We now show that the two notions of barbed congruence coincide via the encoding.

I Theorem 15 (Operational correspondence). If P −→ P ′, then EJP K −→ EJP ′K.
Conversely, if EJP K −→ Q, then P −→ P ′, with EJP ′K ≡ Q.

The next lemma shows that, up to asynchronous bisimilarity, we can “read back” well-
typed processes in Aπ, via the encoding, as processes in πref. And similarly for contexts.

I Lemma 16. If ∅ ` P , then there exists R in πref such that EJRK ≈a P .

Theorem 15 and Lemma 16 are the main ingredients to derive the following theorem:

I Theorem 17 (Full abstraction). For any P,Q in πref: P ∼=ref Q iff EJP K ∼=Arn EJQK;
and similarly P ∼=e

ref Q iff EJP K ∼=e
Arn EJQK.

4 Bisimulation with Reference Names

4.1 Two Labelled Bisimilarities
In this section we present proof techniques for barbed equivalence based on the labelled
transition semantics of Aπ. For this we introduce two labelled bisimilarities.

The first form of bisimulation, reference bisimilarity, only relates complete processes;
processes that are not complete have to be made so. Intuitively, in this bisimilarity processes
are made complete by requiring a closure of the relation with respect to the (well-typed)
addition of output messages at reference names (the “closure under allocation” below).
Moreover, when an observer consumes an output at a reference name, say `〈n〉, then,
following the discipline on reference names, he/she has to immediately provide another such

output message, say `〈m〉. This is formalised using transition notations such as P `〈n〉[m]−−−−−→ P ′,
which makes a swap on ` (reading its original content n and replacing it with m). As a
consequence of the appearance of such swap transitions, ordinary outputs at reference names
are not observed in the bisimulation. Similarly for inputs at reference names: an input
P

`〈m〉−−−→ P ′ from a complete process P is not observed, since it is supposed to interact with
unique output at ` contained in P (which exists as P is complete). Finally, an observer
should respect the completeness condition by the processes and should not communicate a
fresh reference name – to communicate such a reference, say `, an allocation for ` (an output
message at `) has first to be added.

A relation R is closed under allocation if P R Q implies P | `〈n〉 R Q | `〈n〉 for any `〈n〉

such that P | `〈n〉 and Q | `〈n〉 are well-typed. We write P `〈n〉[m]−−−−−→ P ′ if P `〈n〉−−−→ P ′′ and

P ′ = `〈m〉 | P ′′, for some P ′′; similarly for P (νn)`〈n〉[m]−−−−−−−−→ P ′. Then, as usual, P `〈n〉[m]====⇒ P ′

holds if P =⇒ P ′′
`〈n〉[m]−−−−−→ P ′′′ =⇒ P ′ for some P ′′, P ′′′, and similarly for P (νn)`〈n〉[m]=======⇒ P ′.

We let α range over the actions µ plus the aforementioned “update actions” `〈n〉[m] and
(νn)`〈n〉[m].
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Setting m to be the object of an update actions, we write ∆ ` α when: (i) if the object
of α is a free reference name then it is in ∆, and (ii) α is not an input or an output at a
reference name.

I Definition 18 (Reference bisimilarity). A symmetric relation R closed under allocation is a
reference bisimulation if whenever P R Q with P,Q complete, ∆ ` P,Q and P α−→ P ′ with
∆ ` α, then
1. either there exists Q′ such that Q α̂=⇒ Q′ and P ′ R Q′ for some Q′
2. or α is an input a〈m〉 and Q | a〈m〉 =⇒ Q′ with P ′ R Q′ for some Q′.
Reference bisimilarity, written ≈, is the largest reference bisimulation.

We now show that ≈ coincides with barbed equivalence. The structure of the proof is
standard, however some care has to be taken to deal with closure under parallel composition.

I Lemma 19. If P ≈ Q, and ∅ ` R, then P | R ≈ Q | R.

I Proposition 20 (Substitutivity for active contexts). If P ≈ Q, then E[P ] ≈ E[Q] for any
active context E.

I Theorem 21 (Labelled characterisation). P ≈ Q iff P ∼=e
Arn Q.

In reference bisimilarity, the tested processes are complete: hence all their references
must explicitly appear as allocated, and when a reference is accessed, an extension of the
store is made so to remain with complete processes (and if such an extension introduces
other new references, a further extension is needed). The goal of the bisimilarity ≈ip below
is to allow one to work on processes with open references, and make the extension of the
store only when necessary. The definition of the bisimulation exploits an inductive predicate
to accommodate finite extensions of the store, one step at a time. This predicate can be
thought of as an inductive game, in which the “verifier” can choose rule Base and close the
game, or choose rule Ext and a reference `; in the latter case the “refuter” chooses the value
stored in `.

I Definition 22 (Inductive predicate). The predicate ok(∆,R, P,Q, µ) (where ∆ is a set
of names, R a process relation, P,Q processes, and µ an action) holds if it can be proved
inductively from the following two rules:

Base

{
Q | n〈m〉 =⇒ Q′ for µ = n〈m〉
Q

µ=⇒ Q′ otherwise
P ′ R Q′

ok(∆,R, P ′, Q, µ)

Ext
` /∈ ∆ ∀ m : ok((∆, `),R, P ′ | `〈m〉, Q | `〈m〉, µ)

ok(∆,R, P ′, Q, µ)

I Definition 23 (Bisimilarity with inductive predicate, ≈ip). A symmetric relation R is a
≈ip-bisimulation if whenever P R Q with ∆ ` P,Q, and P µ−→ P ′ with ∆′ ` P ′, we can
derive ok(∆ ∪∆′,R, P ′, Q, µ). We write ≈ip for the largest ≈ip-bisimulation.

The names in ∆ ∪∆′ are the reference names that appear in output subject position
in P ′ or Q. Therefore, when using rule Ext of the inductive predicate, the condition ` /∈ ∆
ensures us that the message at ` can be added without breaking typability.

The following up-to technique allows us to erase common messages on reference names
along the bisimulation game.
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For this, we use the notation Ms, where s is a finite list of pairs (`,m), to describe parallel
compositions of outputs on reference names (i.e., Ms

def=
∏

(`,m)∈s `〈m〉), and ∆s `Ms where
∆s contains all first components of pairs of s. Intuitively, Ms represents a chunk of store.

I Definition 24 (≈ip-bisimulation up to store). An ≈ip-bisimulation up to store is defined like
≈ip-bisimulation (Definition 23), using a predicate ok’(∆∪∆′,R, P ′, Q, µ). This predicate is
defined by a modified version of rule Ext where ok′ is used instead of ok, both in the premise
and in the conclusion, and the following modified version of the Base rule:

Base-Up

P ′ ≡ P ′′ |Ms

{
Q | n〈m〉 =⇒≡ Q′′ |Ms for µ = n〈m〉
Q

µ=⇒≡ Q′′ |Ms otherwise
P ′′ R Q′′

ok’(∆,R, P ′, Q, µ)

Rule Base-Up makes it possible to erase common store components before checking that the
processes are related by R.

I Proposition 25. If R is a ≈ip-bisimulation up to store, then R⊆ ≈ip.

I Proposition 26 (Soundness of ≈ip). ≈ip ⊆ ≈.

Intuitively, the inclusion holds because a ≈ip-bisimulation is closed by parallel composition
with Ms processes. We leave the opposite direction, completeness, as an open issue.

4.2 Examples
We now give examples of uses of the various forms of labelled bisimulation (≈a, ≈, ≈ip, ≈ip
up to store) for Aπ to establish equivalences between processes with references. In some
cases, we use the “up-to structural congruence” (≡) version of the bisimulations – a standard
“up-to” technique. In the examples we consider barbed equivalence; the results can be lifted
to barbed congruence using closure under substitutions.

The first example is about a form of commutativity for the write construct.

I Example 27. We wish to establish !` / a. ` / b ∼=e
ref !` / b. ` / a. For this, we prove the law

!` / a. ` / b ∼=e
ref !` / a | !` / b, which will be enough to conclude, by commutativity of parallel

composition. The two given processes are mapped into Aπ as

P1
def= !`(_). (`〈a〉 | `(_). `〈b〉) and P2

def= (!`(_). `〈a〉) | (!`(_). `〈b〉).

We can derive P1 ≈a P2, using the singleton relation R def= {(P1, P2)}, and showing that R
is an asynchronous bisimilarity up-to context and structural congruence [18] (this known
’up-to’ technique allows one to remove additional processes created from the replications
after a transition). We can then conclude by Lemma 14.

We now consider Examples 3 and 4 from Section 2.

Proof of Example 3. Let R1, R2 be the encodings of P1, P2 in the example:

R1
def= (ν`)

(
`〈a〉 | EJP K | !`(_). `〈a〉 | !`(_). `〈b〉

)
R2

def= (ν`)
(
`〈b〉 | EJP K | !`(_). `〈a〉 | !`(_). `〈b〉

)
We then have R1 =⇒≡ R2 and R2 =⇒≡ R1, which implies R1 ≈a R2 (where ≈a is

asynchronous bisimilarity), as {(R1, R2)} ∪ I, where I = {(P, P )} is the identity relation, is
an asynchronous bisimulation up to ≡. We can then conclude by Theorems 8 and 17. J
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Proof of Example 4. Let R1, R2 be the encodings of P1, P2 in the example:

R1
def= `(_). (`〈b〉 | EJP K) | !`(_). `〈b〉 | !`(x). (`〈x〉 | `(_). `〈x〉)

R2
def= EJP K | !`(_). `〈b〉 | !`(x). (`〈x〉 | `(_). `〈x〉)

Then for all m, processes `〈m〉 | R1 and `〈m〉 | R2 are complete. We define

R def= {
(
R1 | `〈m〉 | BX , R2 | `〈m〉 | BX

)
} ,

where X def= {x1, . . . , xn} is a possibly empty finite set of names, and

BX
def= `(_). `〈x1〉 | . . . | `(_). `〈xn〉

Then R∪ I is a ≈ip-bisimulation.

Reusing the same notations, R′ def= {
(
R1 | BX , R2 | BX

)
} is an ≈ip-bisimulation up to

store: this up-to technique allows us to remove the `〈m〉 particles. J

The following example shows some benefits of using ≈ip and ≈ip up to store in the proof of
a property that generalises (the Aπ version of) law (1), which involves a “useless read”.

I Example 28. Consider ∅ ` P0 R Q0, whereR is an asynchronous bisimulation, ObType(`) ∈
RefTypes, and x is a fresh name. Then ∅ ` `(x). (P0 | `〈x〉) ≈ Q0.

In general, `(x). (P0 | `〈x〉) and Q0 are not related by ≈a (take P0 = Q0 = a〈n〉), thus
the inclusion in Lemma 14 is strict.

To prove `(x). (P0 | `〈x〉) ≈ Q0 using a ≈-bisimulation, we need a relation such as

R1
def= {(`(x). (P0 | `〈x〉), Q0)}
∪ {(`(x). (P0 | `〈x〉) | `〈`′〉 | `′〈m〉, Q0 | `〈`′〉 | `′〈m〉)

∣∣ for any m}
∪ {(`(x). (P0 | `〈x〉) | `〈`′〉 | `′〈m〉 |Ms, Q0 | `〈`′〉 | `′〈m〉 |Ms)

∣∣ for any m,Ms}
∪ {P | `〈`′〉 | `′〈m〉 |Ms, Q | `〈`′〉 | `′〈m〉 |Ms)

∣∣ for any m,Ms,with P R Q}

and prove that R1 ∪R−1
1 (where R−1

1 is the inverse of R1) is a ≈-bisimulation.
We can simplify the proof and avoid the several quantifications in R1 (in particular on

Ms, whose size is arbitrary), and prove that R2 is an ≈ip-bisimulation, for

R2
def= R∪ {(P | `〈m〉, Q | `〈m〉), for any m,with P R Q}
∪ {(`(x). (P0 | `〈x〉), Q0), (Q0, `(x). (P0 | `〈x〉))}.

The last component ofR2 is dealt with using rule Ext of the inductive predicate (Definition 22),
and this brings in the second component (the closure of R under messages on `).

We can simplify the proof further, by removing such second component, and show that
R3 is an ≈ip-bisimulation up to store, for

R3
def= R∪ {(`(x). (P0 | `〈x〉), Q0), (Q0, `(x). (P0 | `〈x〉))}.
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5 Future work

In languages with store, which are usually sequential languages, bisimulation is commonly
defined on configurations. In πref, a configuration would be written (νñ)〈P, s〉, where s is
an explicit store and ñ is a set of private names shared between process P and store s. We
could in principle read back ≈ onto πref, and define a behavioural equivalence between πref

configurations. The LTS on configurations would then have specific actions to describe how
an observer may act on the visible part of the store. The labelled transition semantics for
πref and πref configurations would however be more complex than those for Aπ; for instance
the forms of actions, expressing external observations, would be much broader.

The swap operation arises naturally in the encoding into Aπ. We do not know if and
how swap increases the discriminating power of external observers. We believe that, without
swap, the two processes in Example 5 could not be distinguished. This point deserves further
investigation, which we leave for future work. Similarly we leave for future work proving or
disproving the completeness of the bisimilarity with an inductive predicate (Definition 23).

It would be interesting to see if the labelled bisimilarities we have considered, whose
bisimulation clauses are different from those of ordinary bisimilarity, can be recovered in an
abstract setting, e.g., using coalgebras [12, 2, 21]. This would be particularly interesting for
≈ip-bisimulation, whose definition involves a mixture of induction and coinduction.

Equivalences for higher-order languages with state are known to be hard to establish.
Various approaches exist, from Kripke logical relations to trace semantics and game se-
mantics [10, 11, 17, 4]. It would be interesting to compare the proof techniques offered by
these approaches with those shown in this paper, and developments of them. More generally,
more experimentation is needed to test the bisimilarities proposed in this paper and the
associated proof techniques, on examples from high-level languages that include higher-order
features, mutable state, and concurrency.
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A Additional Material for the Examples in Section 2.2

Proof of Example 5. To get a idea of how Ps and Qs evolve, let us consider first E
def= (ν` =

z)[ ]. Then E[Qs] can reduce to one of the following:
1. (ν` = z)(νt)` / a. (t | !t. ` / b. (c | ` / a. (t | c)))
2. (ν` = a)(νt)(t | !t. ` / b. (c | ` / a. (t | c))) | cn | cn

3. (ν` = a)(νt)(` / b. (c | ` / a. (t | c)) | !t. ` / b. (c | ` / a. (t | c))) | cn | cn

4. (ν` = b)(νt)(` / a. (t | c) | !t. ` / b. (c | ` / a. (t | c))) | cn | cn+1 .
Similarly, E[Ps] can reduce to those four processes but with the role of a and b swapped.
Notice that when E[Qs] =⇒ Q′, then there is a correspondence between the value stored in
` (i.e a or b) and the presence of more c processes than c processes (or the same number).
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We now consider the following context:

E0
def= (ν` = z)([ ] | ` on z(x). [x = b]s0. s1. (P11 | P12) | s0 | s1)

P11
def= ` . (x). [x = z]s11 | s11 P12

def= c. ` . (x). [x = z]s12 | s12

with s0, s11, s12 fresh names.
At first s0 and s1 are the only observables, meaning E0[Ps] ↓s0 and E0[Ps] ↓s1 , but then

E0[Ps] −→−→−→ (ν` = z)((νt)(t | !t. ` / a. (c | ` / b. (t | c))) | s1. (P11 | P12) | s1) def= P ′

where the three reductions have been derived using rules R-Write, R-Swap, and R-Comm
respectively. Finally, we have P ′ 6⇓s0 , whereas P ′ ↓s1 .

Thus, to avoid the observable s0, process E0[Qs] must reduce to a process with b stored
in ` before doing the swap in E0. This implies that the swap is executed in a state that
corresponds to case 4 above. So for any Q′ with E[Qs] =⇒ Q′ and Q′ 6↓s0 and Q′ ⇓s1 , such
process Q′ has one of the following forms:

1. Q′1
def= (ν` = a)((νt)(t | !t. ` / b. (c | ` / a. (t | c)) | cn | cn) | s1. (P11 | P12) | s1)

2. Q′2
def= (ν` = a)((νt)(` / b. (c | ` / a. (t | c)) | !t. ` / b. (c | ` / a. (t | c)) | cn | cn)
| s1. (P11 | P12) | s1)

3. Q′3
def= (ν` = b)((νt)(` / a. (t | c) | !t. ` / b. (c | ` / a. (t | c)) | cn | cn+1) | s1. (P11 | P12) | s1)

4. Q′4
def= (ν` = z)((νt)(` / a. (t | c) | !t. ` / b. (c | ` / a. (t | c)) | cn | cn+1) | s1. (P11 | P12) | s1)

Then we use either P11 or P12 depending on the form of Q′. If Q′ is of the first three forms,
then we use P11.

Indeed, P ′ −→−→ (ν` = z)((νt)(t | !t. ` / a. (c | ` / b. (t | c))) | P12) def= P ′′ using rules
R-Read and R-Comm respectively. Notice that P ′′ 6⇓s11 . On the other hand, z does not appear
anywhere else than in a matching in Q′, thus there is no reduction Q′ =⇒ Q′′ with Q′′ 6↓s11

for any Q′′.
In the other case, it holds that Q′4 −→−→−→ (ν` = z)((νt)(` / a. (t | c) | !t. ` / b. (c |

` / a. (t | c)) | cn | cn) | P11) def= Q′′ using rules R-Comm, R-Read, and R-Comm respectively.
Then we have Q′′ 6⇓s12 . However, the only output c is behind a write ` / a in P ′. Thus, there
is no P ′ =⇒ P ′′ with P ′′ 6↓s12 .

We can finally conclude Ps 6∼=ref Qs. J

Proof of Example 6. Recall the definitions of the two processes (we rename the processes
that are given in the main text, to ease readability):

P
def=(ν`1 = 0, `2 = 0)(R | (νt)(t | !t. `1 / 1. `1 / 0. `2 / 1. `2 / 0. t))

Q
def=(ν`1 = 0, `2 = 0)(R | (νt)(t | !t. `1 / 1. `2 / 1. `1 / 0. `2 / 0. t))

To prove their equivalence, we introduce the following processes:

P ′
def= !t. `1(_). (`1〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t))))

Q′
def= !t. `1(_). (`1〈1〉 | `2(_). (`2〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t))))
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P1 = Q1
def= t

P2
def= `1(_). (`1〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t))))

Q2
def= `1(_). (`1〈1〉 | `2(_). (`2〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t))))

P3
def= `1(_). (`1〈0〉 | `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t)))

Q3
def= `2(_). (`2〈1〉 | `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t)))

P4
def= `2(_). (`2〈1〉 | `2(_). (`2〈0〉 | t))

Q4
def= `1(_). (`1〈0〉 | `2(_). (`2〈0〉 | t))

P5 = Q5
def= `2(_). (`2〈0〉 | t)

P ′ and Q′ are the encodings of the replicated part of P and Q. Then Pi and Qi are the
processes that can be reached from P ′ and Q′.

We now show that the relation R∪R−1 is an ≈ip-bisimulation where we have:

R def=
{

(`1〈n1〉 | (νt)(P ′ | Pi), `1〈n′1〉 | (νt)(Q′ | Qj))
for any n1, n

′
1 ∈ {0, 1}, i, j

}
∪
{

(`2〈n2〉 | (νt)(P ′ | Pi), `2〈n′2〉 | (νt)(Q′ | Qj))
for any n2, n

′
2 ∈ {0, 1}, i, j

}
∪
{

(`1〈n1〉 | `2〈n2〉 | (νt)(P ′ | Pi), `1〈n′1〉 | `2〈n′2〉 | (νt)(Q′ | Qj))
for any n1, n

′
1, n2, n

′
2 ∈ {0, 1}, i, j

}
First, note that the only free names appearing in those processes are `1 and `2. Thus for any
P R Q, the only actions to consider are τ, `i〈n〉 and `i〈n〉, for i = 1, 2.

For any P R Q, we have:
If P τ−→ P0, then P0 R Q

If P `i〈n〉−−−→ P0, then P0 R Q | `i〈n〉

If P `i〈n〉−−−→ P0, then either Q `i〈n〉−−−→ Q0 and P0 R Q0, or Q
`i〈1−n〉−−−−−→ Q0. In this case, we

use rule Ext (from Definition 22) to add the other location if ∆ 6= `1, `2. Then after at
most 5 internal transitions (by cycling around the Pi or Qj), we obtain a process Q0 that

can make the required transition Q0
`i〈n〉−−−→ Q′0 with P0 R Q′0.

As R ∪ R−1 is an ≈ip-bisimulation, we have R ⊆ ≈. Moreover, (ν`1, `2)(EJRK | [ ]) is
an active context, so this implies EJP K ≈ EJQK. By Theorems 21 and 17, we can conclude
P ∼=e

ref Q.
To extend this result to barbed congruence, we notice that for all σ,

1. either Pσ = (ν`1 = 0, `2 = 0)(Rσ | (νt)(t | !t. `1 / 1. `1 / 0. `2 / 1. `2 / 0. t)
2. or Pσ = (ν`1 = 0, `2 = 0)(Rσ | (νt)(t | !t. `1 / 0. `1 / 0. `2 / 0. `2 / 0. t)
3. or Pσ = (ν`1 = 1, `2 = 1)(Rσ | (νt)(t | !t. `1 / 1. `1 / 1. `2 / 1. `2 / 1. t)
As P ∼=e

ref Q holds for any R, it also holds for any Rσ, which prove the first case. Moreover,
the proof never uses the fact that 0 and 1 are distinct, so we can prove in the same way that
cases 2 and 3 hold.

We conclude P ∼=ref Q. J

We now present an additional example, which corresponds to a generalisation of Example 6.
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I Example 29. Here we remove the assumption that the two references can only hold values
0 and 1. This enables the context to store fresh names in references. If used with the
original processes, these are distinguished by using those fresh values to block transition
along the lines of Example 5. To make these processes equivalent again, we could add in
parallel a buffer as in Example 4. However, by making these additions, we would also enable
P1 to desynchronise the content in `1 and `2 and have (1, 1). The solution is to prevent
those buffers from writing at a different “time” than the “time” they have read. For this we
introduce a more complex buffer Bji . Consider the following processes:

Bji
def= r(xj). 0

∣∣ !r(xj). ti. `j on xj(yj). (r〈yj〉 | ti)

Sji
def= !ti. `j . (xj). (ti | (νr)(r〈xj〉 | Bji ))

P
def= (νt1, t2, t3, t4)

(
t1
∣∣ !t1. `1 / 1. t2 | S1

1 | S2
1
∣∣ !t2. `1 / 0. t3 | S1

2 | S2
2∣∣ !t3. `2 / 1. t4 | S1

3 | S2
3
∣∣ !t4. `2 / 0. t1 | S1

4 | S2
4

)
Q

def= (νt1, t2, t3, t4)
(
t1
∣∣ !t1. `1 / 1. t2 | S1

1 | S2
1
∣∣ !t2. `2 / 1. t3 | S1

2 | S2
2∣∣ !t3. `1 / 0. t4 | S1

3 | S2
3
∣∣ !t4. `2 / 0. t1 | S1

4 | S2
4

)
We have P ∼=ref Q. If we take E def= (ν`1 = 0)(ν`2 = 0)[ ], we have

E[Q] −→−→ (ν`1 = 1)(ν`2 = 1)Q′ for some Q′. However, there is no sequence of reductions
such that E[P ] =⇒ (ν`1 = 1)(ν`2 = 1)P ′ for any P ′.

If we forget all Sji ’s, then these processes are similar to the ’loop’ used in the previous
example but split into multiple replications. Those Sji ’s help to equate the two processes
even if the context can write any value in `1, `2.

Process Sji can only be activated when ti is available. It then reads the content of `j to
initialise a new buffer Bji .

Process Bji contains value xji that is the object of r〈xji 〉. Process B
j
i can be stopped by

making the communication with the first input on r, or can be used to swap its content with
the content of `j . Note that this swap can only be done when ti is available, so it cannot be
used to desynchronise the content in `1, and `2.

B Operational Semantics of Aπ: Reduction and Labelled Transitions

Reduction

Structural congruence is defined as the smallest congruence that satisfies the following axioms:
P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R !P ≡ P

P | (νn)Q ≡ (νn)P | Q if n /∈ fn(P ) (νn)(νm)P ≡ (νm)(νn)P (νn)0 ≡ 0

[x = x]P ≡ P

Active contexts in Aπ are defined by:

E ::= [ ]
∣∣ E | P ∣∣ (νn)E .

Reduction is defined by the following rules:

P ≡ P ′ P ′ −→ Q′ Q′ ≡ Q
P −→ Q

P −→ P ′

E[P ] −→ E[Q] n(x).P | n〈m〉 −→ P{m/x}
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Inp:
n(x).P n〈m〉−−−→ P{m/x}

Out:
n〈m〉 n〈m〉−−−→ 0

Open:
P

n〈m〉−−−→ P ′

(νm)P (νm)n〈m〉−−−−−−→ P ′ if m 6= n
Rep:

P | !P µ−→ P ′

!P µ−→ P ′

Res:
P

µ−→ P ′

(νn)P µ−→ (νn)P ′ if n /∈ µ
Par:

P
µ−→ P ′

P | Q µ−→ P ′ | Q if bn(µ) ∩ fn(Q) = ∅

Comm:
P

n〈m〉−−−→ P ′ Q
n〈m〉−−−→ Q′

P | Q τ−→ P ′ | Q′

Close:
P

n〈m〉−−−→ P ′ Q
(νm)n〈m〉−−−−−−→ Q′

P | Q τ−→ (νm)(P ′ | Q′) if m /∈ fn(P )
Match:

P
µ−→ P ′

[n = n]P µ−→ P ′

Figure 3 Labelled Transition Semantics for Aπ.

Labelled Transition Semantics

Actions of the LTS are defined as follows:

µ ::= n(m)
∣∣ n〈m〉 ∣∣ (νm)n〈m〉

∣∣ τ .

Transitions are defined in Figure 3. The symmetric versions of rules PAR, COM and CLOSE

are omitted. Weak transitions are defined by =⇒ def= τ−→
∗
, µ=⇒ def= =⇒ µ−→=⇒, and µ̂=⇒ def= µ=⇒ if µ 6= τ

and =⇒ otherwise.
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