
The Maximum Binary Tree Problem
Karthekeyan Chandrasekaran
Dept. of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
karthe@illinois.edu

Elena Grigorescu
Purdue University, West Lafayette, IN, USA
elena-g@purdue.edu

Gabriel Istrate
West University of Timişoara, Romania
e-Austria Research Institute, Timişoara, Romania
gabrielistrate@acm.org

Shubhang Kulkarni
Purdue University, West Lafayette, IN, USA
kulkar17@purdue.edu

Young-San Lin
Purdue University, West Lafayette, IN, USA
lin532@purdue.edu

Minshen Zhu
Purdue University, West Lafayette, IN, USA
zhu628@purdue.edu

Abstract
We introduce and investigate the approximability of the maximum binary tree problem (MBT) in
directed and undirected graphs. The goal in MBT is to find a maximum-sized binary tree in a given
graph. MBT is a natural variant of the well-studied longest path problem, since both can be viewed
as finding a maximum-sized tree of bounded degree in a given graph.

The connection to longest path motivates the study of MBT in directed acyclic graphs (DAGs),
since the longest path problem is solvable efficiently in DAGs. In contrast, we show that MBT in
DAGs is in fact hard: it has no efficient exp(−O(logn/ log logn))-approximation algorithm under
the exponential time hypothesis, where n is the number of vertices in the input graph. In undirected
graphs, we show that MBT has no efficient exp(−O(log0.63 n))-approximation under the exponential
time hypothesis. Our inapproximability results rely on self-improving reductions and structural
properties of binary trees. We also show constant-factor inapproximability assuming P 6= NP.

In addition to inapproximability results, we present algorithmic results along two different flavors:
(1) We design a randomized algorithm to verify if a given directed graph on n vertices contains a
binary tree of size k in 2kpoly(n) time. (2) Motivated by the longest heapable subsequence problem,
introduced by Byers, Heeringa, Mitzenmacher, and Zervas, ANALCO 2011, which is equivalent to
MBT in permutation DAGs, we design efficient algorithms for MBT in bipartite permutation graphs.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases maximum binary tree, heapability, inapproximability, fixed-parameter tract-
ability

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.30

Related Version https://arxiv.org/abs/1909.07915

Funding Karthekeyan Chandrasekaran: Supported by NSF CCF-1814613 and NSF CCF-1907937.
Elena Grigorescu: Supported by NSF CCF-1910659 and NSF CCF-1910411.
Gabriel Istrate: Supported by a grant of Ministry of Research and Innovation, CNCS - UEFISCDI
project number PN-III-P4-ID-PCE-2016-0842, within PNCDI III.
Young-San Lin: Supported by NSF CCF-1910659 and NSF CCF-1910411.
Minshen Zhu: Supported by NSF CCF-1910659 and NSF CCF-1910411.

© Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate, Shubhang Kulkarni, Young-San
Lin, and Minshen Zhu;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 30; pp. 30:1–30:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karthe@illinois.edu
mailto:elena-g@purdue.edu
mailto:gabrielistrate@acm.org
mailto:kulkar17@purdue.edu
mailto:lin532@purdue.edu
mailto:zhu628@purdue.edu
https://doi.org/10.4230/LIPIcs.ESA.2020.30
https://arxiv.org/abs/1909.07915
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 The Maximum Binary Tree Problem

1 Introduction

A general degree-constrained subgraph problem asks for an optimal subgraph of a given
graph with specified properties while also satisfying degree constraints on all vertices. Degree-
constrained subgraph problems have numerous applications in the field of network design
and consequently, have been studied extensively in the algorithms and approximation
literature [1,15–17,29,31,32]. In this work, we introduce and study the maximum binary tree
problem in directed and undirected graphs. In the maximum binary tree problem (MBT), we
are given an input graph G and the goal is to find a binary tree in G with maximum number
of vertices.

Our first motivation for studying MBT arises from the viewpoint that it is a variant of the
longest path problem: In the longest path problem, the goal is to find a maximum-sized tree
in which every vertex has degree at most 2. In MBT, the goal is to find a maximum-sized tree
in which every vertex has degree at most 3. Certainly, one may generalize both these problems
to finding a maximum-sized degree-constrained tree in a given graph. In this work we focus
on binary trees; however, all our results extend to the maximum-sized degree-constrained
tree problem for constant degree bound.

Our second motivation for studying MBT is its connection to the longest heapable
subsequence problem introduced by Byers, Heeringa, Mitzenmacher, and Zervas [10]. Let
σ = (σ1, σ2, . . . , σn) be a permutation on n elements. Byers et al. define a subsequence
(not necessarily contiguous) of σ to be heapable if the elements of the subsequence can be
sequentially inserted to form a binary min-heap data structure. Namely, insertions subsequent
to the first element, which takes the root position, happen below previously placed elements.
The longest heapable subsequence problem asks for a maximum-length heapable subsequence
of a given sequence. This generalizes the well-known longest increasing subsequence problem.
Porfilio [30] showed that the longest heapable subsequence problem is equivalent to MBT in
permutation directed acyclic graphs (abbreviated permutation DAGs): a permutation DAG
associated with the sequence σ is obtained by introducing a vertex ui for every sequence
element σi, and arcs (ui, uj) for every pair (i, j) such that i > j and σi ≥ σj . On the other
hand, for sequences of intervals the maximum binary problem is easily solvable by a greedy
algorithm [6] (see also [21] for further results and open problems on the heapability of partial
orders). These results motivate the study of MBT in restricted graph families.

We now formally define MBT in undirected graphs, which we denote as UndirMax-
BinaryTree. A binary tree of an undirected graph G is a subgraph T of G that is connected
and acyclic with the degree of u in T being at most 3 for every vertex u in T . In Undir-
MaxBinaryTree, the input is an undirected graph G and the goal is to find a binary tree
in G with maximum number of vertices. In the rooted variant of this problem, the input is
an undirected graph G along with a specified root vertex r and the goal is to find a binary
tree containing r in G with maximum number of vertices such that the degree of r in the
tree is at most 2. We focus on the unrooted variant of the problem and mention that it
reduces to the rooted variant. We emphasize that a binary tree T of G is not necessarily
spanning (i.e., may not contain all vertices of the given graph). The problem of verifying
whether a given undirected graph has a spanning binary tree is NP-complete. This follows
by a reduction from the Hamiltonian path problem: Given an undirected graph G = (V,E),
create a pendant vertex v′ adjacent to v for every vertex v ∈ V . The resulting graph has a
spanning binary tree if and only if G has a Hamiltonian path.

Next, we formally define MBT in directed graphs. A tree of a directed graph G is a
subgraph T of G such that T is acyclic and has a unique vertex, termed as the root, with the
property that every vertex v in T has a unique directed path to the root in T . A binary tree

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:3

of a directed graph G is a tree T such that the incoming-degree of every vertex u in T is at
most 2 while the outgoing-degree of every vertex u in T is at most 1. In the rooted variant of
the maximum binary tree problem for directed graphs, the input is a directed graph G along
with a specified root r and the goal is to find an r-rooted binary tree T in G with maximum
number of vertices. The problem of verifying whether a given directed graph has a spanning
binary tree is NP-complete (by a similar reduction as that for undirected graphs).

The connection to the longest path problem as well as the longest heapable subsequence
problem motivates the study of the maximum binary tree problem in directed acyclic graphs
(DAGs). In contrast to directed graphs, the longest path problem in DAGs can be solved
in polynomial-time (e.g., using dynamic programming or LP-based techniques). Moreover,
verifying whether a given DAG contains a spanning binary tree is solvable in polynomial-time
using the following characterization: a given DAG on vertex set V contains a spanning
binary tree if and only if the partition matroid corresponding to the in-degree of every
vertex being at most two and the partition matroid corresponding to the out-degree of every
vertex being at most one have a common independent set of size |V | − 1. These observations
raise the intriguing possibility of solving the maximum binary tree problem in DAGs in
polynomial-time. For this reason, we focus on DAGs within the family of directed graphs in
this work. We denote the maximum binary tree problem in DAGs as DAGMaxBinaryTree.

The rooted and the unrooted variants of the maximum binary tree problem in DAGs are
polynomial-time equivalent by simple transformations. Indeed, the unrooted variant can be
solved by solving the rooted variant for every choice of the root. To see the other direction,
suppose we would like to find a maximum r-rooted binary tree in a given DAG G = (V,E).
Then, we discard from G all outgoing arcs from r and all vertices that cannot reach r (i.e.,
we consider the sub-DAG induced by the descendents of r) and find an unrooted maximum
binary tree in the resulting DAG. If this binary tree is rooted at a vertex r′ 6= r, then it can
be extended to an r-rooted binary tree by including an arbitrary r′ → r path P – since the
graph is a DAG, any such path P will not visit a vertex that is already in the tree (apart
from r′). The equivalence is also approximation preserving. For this reason, we only study
the rooted variant of the problem in DAGs.

We present inapproximability results for MBT in DAGs and undirected graphs. On
the algorithmic side, we show that MBT in directed graphs is fixed-parameter tractable
when parameterized by the solution size. We observe that the equivalence of the longest
heapable subsequence to MBT in permutation DAGs motivates the study of MBT even in
restricted graph families. As a first step towards understanding MBT in permutation DAGs,
we design an algorithm for bipartite permutation graphs. We use a variety of tools including
self-improving and gadget reductions for our inapproximability results, and algebraic and
structural techniques for our algorithmic results.

1.1 Related work
Degree-constrained subgraph problems appeared as early as 1978 in the textbook of Garey
and Johnson [18] and have garnered plenty of attention in the approximation community
[1,15–17,23,29,31,32]. A rich line of works have addressed the minimum degree spanning
tree problem as well as the minimum cost degree-constrained spanning tree problem leading
to powerful rounding techniques and a deep understanding of the spanning tree polytope
[12, 13, 16, 19, 25, 28, 32]. Approximation and bicriteria approximation algorithms for the
counterparts of these problems in directed graphs, namely degree-constrained arborescence
and min-cost degree-constrained arborescence, have also been studied in the literature [7].

ESA 2020

30:4 The Maximum Binary Tree Problem

In the maximum-edge degree-constrained connected subgraph problem, the goal is to
find a connected degree-constrained subgraph of a given graph with maximum number of
edges. This problem does not admit a PTAS [3] and has been studied from the perspective
of fixed-parameter tractability [4]. MBT could be viewed as a maximum-vertex degree-
constrained connected subgraph problem, where the goal is to maximize the number of
vertices as opposed to the number of edges – the degree-constrained connected subgraph
maximizing the number of vertices may be assumed to be acyclic and hence, a tree. It
is believed that the connectivity constraint makes the maximum-edge degree-constrained
connected subgraph problem to become extremely difficult to approximate. Our results
formalize this belief when the objective is to maximize the number of vertices.

Switching the objective with the constraint in the maximum-vertex degree-constrained
connected subgraph problem leads to the minimum-degree k-tree problem: here the goal is
to find a minimum degree subgraph that is a tree with at least k vertices. Minimum degree
k-tree admits a O(

√
(k/∆∗) log k)-approximation, where ∆∗ is the optimal degree and does

not admit a o(logn)-approximation [23]. We note that the hardness reduction here (from set
cover) crucially requires the optimal solution value ∆∗ to grow with the number n of vertices
in the input instance, and hence, does not imply any hardness result for input instances in
which ∆∗ is a constant. Moreover, the approximation result implies that a tree of degree
O(
√
k log k) containing k vertices can be found in polynomial time if the input graph contains

a constant-degree tree with k vertices.
We consider the maximum binary tree problem to be a generalization of the longest

path problem as both can be viewed as asking for a maximum-sized degree-constrained
connected acyclic subgraph. The longest path problem in undirected graphs admits an
Ω
(
(logn/ log logn)2/n

)
-approximation [9], but it is APX-hard and does not admit a

2−O(log1−ε n)-approximation for any constant ε > 0 unless NP ⊆ DTIME
(

2logO(1/ε) n
)
[22].

Our hardness results for the max binary tree problem in undirected graphs bolsters this
connection. The longest path problem in directed graphs is much harder: For every ε > 0
it cannot be approximated to within a factor of 1/n1−ε unless P = NP, and it cannot be
approximated to within a factor of (log2+ε n)/n under the Exponential Time Hypothesis [9].
However, the longest path problem in DAGs is solvable in polynomial time. Our hardness
results for the max binary tree problem in DAGs are in stark contrast to the polynomial-time
solvability of the longest path problem in DAGs.

On the algorithmic side, the color-coding technique introduced by Alon, Yuster, and
Zwick [2] can be used to decide whether an undirected graph G = (V,E) contains a copy
of a bounded treewidth pattern graph H = (VH , EH) where |VH | = O (log |V |), and if so,
then find one in polynomial time. The idea here is to randomly color the vertices of G by
O (log |V |) colors and to find a maximum colorful copy of H using dynamic programming.
We note that the same dynamic programming approach can be modified to find a maximum
colorful binary tree. This algorithm can be derandomized, thus leading to a deterministic
Ω ((1/n) logn)-approximation to UndirMaxBinaryTree.

In parameterized complexity, designing algorithms with running time βkpoly(n) (β > 1
is a constant) for problems like k-Path and k-Tree is a central topic. For k-Path, the
color-coding technique mentioned above already implies a (2e)kpoly(n)-time algorithm.
Koutis [26] noticed that k-Path can be reduced to detecting whether a given polynomial
contains a multilinear term. Using algebraic methods for the latter problem, Koutis obtained
a 21.5kpoly(n) time algorithm for k-Path. This was later improved by Williams [36] to
2kpoly(n). The current state-of-art algorithm is due to Björklund, Husfeldt, Kaski and
Koivisto [8], which is also an algebraic algorithm with running time 1.66kpoly(n). All of

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:5

these algorithms are randomized. Our study of the k-BinaryTree problem, which is the
problem of deciding whether a given graph G contains a binary tree of size at least k, is
inspired by this line of results.

Several NP-hard problems are known to be solvable in specific families of graphs. Bipartite
permutation graphs is one such family which is known to exhibit this behaviour [24, 33–35].
Our polynomial-time solvability result for these families of graphs crucially identifies the
existence of structured optimal solutions to reduce the search space and solves the problem
over this reduced search space.

1.2 Our contributions
1.2.1 Inapproximability results
Directed graphs. We first focus on directed graphs and in particular, on directed acyclic
graphs. It is well-known that the longest path problem in DAGs is solvable in polynomial-
time. In contrast, we show that DAGMaxBinaryTree does not even admit a constant-
factor approximation. Furthermore, if DAGMaxBinaryTree admitted a polynomial-time
exp (−O (logn/ log logn))-approximation algorithm then the Exponential Time Hypothesis
would be violated.

I Theorem 1. We have the following inapproximability results for DAGMaxBinaryTree
on n-vertex input graphs:
1. DAGMaxBinaryTree does not admit a polynomial-time constant-factor approximation

assuming P 6= NP.
2. If DAGMaxBinaryTree admits a polynomial-time exp (−O (logn/ log logn))-approxi-

mation, then NP ⊆ DTIME (exp (O (
√
n))), refuting the Exponential Time Hypothesis.

3. For any ε > 0, if DAGMaxBinaryTree admits a quasi-polynomial time
exp

(
−O

(
log1−ε n

))
-approximation, then NP ⊆ DTIME

(
exp

(
logO(1/ε) n

))
, thus re-

futing the Exponential Time Hypothesis.
Remark. The longest path problem in DAGs can be solved using a linear program (LP)

based on cut constraints. Based on this connection, an integer program (IP) based on
cut constraints can be formulated for DAGMaxBinaryTree. In the full version of this
work [11], we show that the LP-relaxation of this cut-constraints-based-IP has an integrality
gap of Ω(n1/3) in n-vertex DAGs.

Undirected graphs. Next, we turn to undirected graphs. We show that UndirMax-
BinaryTree does not have a constant-factor approximation and does not admit a quasi-
polynomial-time exp(−O(log0.63 n))-approximation under the Exponential Time Hypothesis.

I Theorem 2. We have the following inapproximability results for UndirMaxBinaryTree
on n-vertex input graphs:
1. UndirMaxBinaryTree does not admit a polynomial-time constant-factor approximation

assuming P 6= NP.
2. For c = log3 2 and any ε > 0, if UndirMaxBinaryTree admits a quasi-polynomial

time exp
(
−O

(
logc−ε n

))
-approximation, then NP ⊆ DTIME

(
exp

(
logO(1/ε) n

))
, thus

refuting the Exponential Time Hypothesis.
We summarize our hardness results for MBT on various graph families in Table 1 and

contrast them with the corresponding known hardness results for the longest path problem
on those families.

ESA 2020

30:6 The Maximum Binary Tree Problem

Table 1 Summary of inapproximability results. Here, n refers to the number of vertices in the
input graph and ε is any positive constant. We include the known results for longest path for
comparison. Text in gray refer to known results while text in black refer to our contributions.

Family Assumption Max Binary Tree Longest Path
DAGs P 6= NP No poly-time Ω(1)-apx (Thm 1) Poly-time solvable

ETH No poly-time exp(−O(log n
log log n

))-apx Poly-time solvable
No quasi-poly-time

exp(−O(log1−ε n))-apx (Thm 1)
Directed P 6= NP Same as DAGs No poly-time 1

n1−ε
-apx [9]

ETH Same as DAGs Same as P 6= NP
Undirected P 6= NP No poly-time Ω(1)-apx (Thm 2) No poly-time Ω(1)-apx [22]

ETH No quasi-poly-time No quasi-poly-time
exp(−O(log0.63−ε n))-apx (Thm 2) exp(−O(log1−ε n))-apx [22]

1.2.2 Algorithmic results

Fixed-parameter tractability. We denote the decision variant of MBT as k-BinaryTree–
here the goal is to verify if a given graph contains a binary tree with at least k vertices.
Since k-BinaryTree is NP-hard when k is part of the input, it is desirable to have an
algorithm that runs in time f(k)poly(n) (i.e., a fixed parameter algorithm parameterized by
the solution size). Our first algorithmic result achieves precisely this goal. Our algorithm is
based on algebraic techniques.

I Theorem 3. There exists a randomized algorithm that takes a directed graph G = (V,E),
a positive integer k, and a real value δ ∈ (0, 1) as input, runs in time 2kpoly(|V |) log(1/δ)
and
1. outputs “no” if G does not contain a binary tree of size k;
2. outputs a binary tree of size k with probability 1− δ if G contains one.

Bipartite permutation graphs. Next, motivated by its connection to the max heapable
subsequence problem, we study MBT in bipartite permutation graphs. A bipartite permutation
graph is a permutation graph (undirected) which is also bipartite. We show that bipartite
permutation graphs admit an efficient algorithm for MBT. Our algorithm exploits structural
properties of bipartite permutation graphs. We believe that these structural properties could
be helpful in solving MBT in permutation graphs which, in turn, could provide key insights
towards solving MBT in permutation DAGs.

I Theorem 4. There exists an algorithm to solve UndirMaxBinaryTree in n-vertex
bipartite permutation graphs that runs in time O(n3).

We summarize our algorithmic results for MBT in Table 2 and contrast them with the
corresponding best known bounds for the longest path problem.

Table 2 Summary of algorithmic results. Here, n refers to the number of vertices in the input
graph. We include the known results for longest path for comparison. Text in gray refer to known
results while text in black refer to our contributions.

Problem Max Binary Tree Longest Path
FPT parameterized by solution size (Dir.) 2kpoly(n)-time (Thm 3) 1.66kpoly(n)-time [8]
Bipartite permutation graphs (Undir.) O(n3)-time (Thm 4) O(n)-time [35]

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:7

We remark again that our inapproximability as well as algorithmic results are also
applicable to the maximum degree-constrained tree problem for larger, but constant degree
constraint. We focus on the degree constraint corresponding to binary trees for the sake of
simplicity in exposition.

1.3 Proof techniques
In this section, we outline the techniques underlying our results.

1.3.1 Inapproximability results
At a very high level, our inapproximability results for MBT rely on the proof strategy for
hardness of longest path due to Karger, Motwani, and Ramkumar [22], which has two main
steps: (1) a self-improving reduction whose amplification implies that a constant-factor
approximation immediately leads to a PTAS, and (2) a proof that there is no PTAS. However,
we achieve both these steps in a completely different manner compared to the approach of
Karger, Motwani, and Ramkumar. Both their steps are tailored for the longest path problem,
but fail for the maximum degree-constrained tree problem. Our results for MBT require
several novel ideas, as described next.

Karger, Motwani and Ramkumar’s self-improving reduction for the longest path proceeds
as follows: given an undirected graph G, they obtain a squared graph G2 by replacing each
edge {u, v} of G with a copy of G by adding edges from u and v to all vertices in that edge
copy. Let OPT (G) be the length of the longest path in G. They make the following two
observations: Obs (i) OPT (G2) ≥ OPT (G)2 and Obs (ii) a path in G2 of length at least
αOPT (G2) can be used to recover a path in G of length at least

√
αOPT (G). The first

observation is because we can extend any path P in G into a path of length |E(P)|2 by
traversing each edge copy also along P . The second observation is because for any path P2
in G2 either P2 restricted to some edge copy of G is a path of length at least

√
|E(P2)| or

projecting P2 to G (i.e., replacing each sub-path of P2 in each edge copy by a single edge)
gives a path of length at least

√
|E(P2)|. We note that a similar construction of the squared

graph for directed graphs also has the above mentioned observations: replace each directed
arc (u, v) of G with a copy of G by adding arcs from u to all vertices in that edge copy and
from all vertices in that edge copy to v.

In order to obtain inapproximability results for the maximum binary tree problem, we
first introduce different constructions for the squared graph in the self-improving reduction
compared to the ones by Karger et al. Moreover, our constructions of the squared graph
differ substantially between undirected and directed graphs. Interestingly, our constructions
also generalize naturally to the max degree-constrained tree problem. Secondly, although our
reduction for showing the lack of PTAS in undirected graphs for MBT is also from TSP(1, 2),
it is completely different from that of Karger et al. and, once again, generalizes to the max
degree-constrained tree problem. Thirdly, we show the lack of PTAS in DAGs for MBT by
reducing from the max 3-coloring problem. This reduction is altogether new – the reader
might recall that the longest path problem in DAGs is solvable in polynomial-time, so there
cannot be a counterpart of this step (i.e., lack of PTAS in DAGs) for longest path. We next
present further details underlying our proofs.

Self-improving reduction for directed graphs. We focus on the rooted variant of MBT in
directed graphs. We first assume that the given graph G contains a source (if not, adding
such a source vertex with arcs to all the vertices changes the optimum only by one). In

ESA 2020

30:8 The Maximum Binary Tree Problem

contrast to the squared graph described above (i.e., instead of adding edge copies), we replace
every vertex in G by a copy of G (that we call as a vertex copy) and for every arc (u, v) in G,
we add an arc from the root node of the vertex copy corresponding to u to the source node
of the vertex copy corresponding to v. Finally, we declare the root node of the root vertex
copy to be the root node of G2. Let α ∈ (0, 1] and OPT (G) be the number of vertices in the
maximum binary tree in G. With this construction of the squared graph, we show that (1)
OPT (G2) ≥ OPT (G)2 and (2) an α-approximate rooted binary tree T2 in G2 can be used
to recover a rooted binary tree T1 in G which is a

√
α-approximation. We emphasize that if

G is a DAG, then the graph G2 obtained by this construction is also a DAG.

Inapproximability for DAGs. In order to show the constant-factor inapproximability result
for DAGs, it suffices to show that there is no PTAS (due to the self-improving reduction for
directed graphs described above). We show the lack of a PTAS in DAGs by reducing from
the max 3-coloring problem in 3-colorable graphs. It is known that this problem is APX-hard
– in particular, there is no polynomial-time algorithm to find a coloring that colors at least
32/33-fraction of the edges properly [20]. Our reduction encodes the coloring problem into a
DAGMaxBinaryTree instance in a way that recovers a consistent coloring for the vertices
while also being proper for a large fraction of the edges. Our ETH-based inapproximability
result is also a consequence of this reduction in conjunction with the self-improving reduction.
We again emphasize that there is no counterpart of APX-hardness in DAGs for max binary
tree in the longest path literature.

Self-improving reduction for undirected graphs. For UndirMaxBinaryTree, the self-
improving reduction is more involved. Our above-mentioned reduction for DirMaxBinary-
Tree heavily exploits the directed nature of the graph (e.g., uses source vertices) and hence,
is not applicable for undirected graphs. Moreover, the same choice of squared graph G2 as
Karger et al. [22] fails since Obs (ii) does not hold any more: the tree T2 restricted to each
edge copy may not be a tree (but it will be a forest). However, we observe that T2 restricted
to each edge copy may result in a forest with up to four binary trees in it. This observation
and a more careful projection can be used to recover a tree of size at least

√
|V (T2)|/4 (let

us call this weakened Obs (ii)). Yet, weakened Obs (ii) is insufficient for a self-improving
reduction. One approach to fix this would be to construct a different squared graph G42

that strengthens Obs (i) to guarantee that OPT (G42) ≥ 16OPT (G)2 while still allowing
us to recover a binary tree of size

√
|V (T2)|/4 in G from a binary tree T2 in G42. Such

a strengthened Obs (i) coupled with weakened Obs (ii) would complete the self-improving
reduction. Our reduction is a variant of this approach: we introduce a construction of
the squared-graph that strengthens Obs (i) by a factor of 2 while also weakening Obs (ii)
only by a factor of 2. We prove these two properties of the construction by relying on a
handshake-like property of binary trees which is a relationship between the number of nodes
of each degree and the total number of nodes in the binary tree.

Inapproximability for undirected graphs. In order to show the constant-factor inapproxim-
ability result, it suffices to show that there is no PTAS (due to the self-improving reduction).
We show the lack of a PTAS by reducing from TSP(1, 2). We mention that Karger, Motwani,
and Ramkumar [22] also show the lack of a PTAS for the longest path problem by reducing
from TSP(1, 2). However, our reduction is much different from their reduction. Our reduction
mainly relies on the fact that if we add a pendant node to each vertex of a graph G and obtain
a binary tree T that has a large number of such pendants, then the binary tree restricted to
G cannot have too many nodes of degree three. Our ETH-based inapproximability result is
also a consequence of this reduction in conjunction with the self-improving reduction.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:9

1.3.2 Algorithmic results
A 2kpoly(n) time algorithm for k-BinaryTree. The proof of this result is inspired by the
algebrization technique introduced in [26, 27, 36] for designing randomized algorithms for
k-Path and k-Tree – in k-Path, the goal is to recover a path of length k in the given graph
while k-Tree asks to recover a given tree on k vertices in the given graph. Their idea is to
encode a path (or the given tree) as a multilinear monomial term in a carefully constructed
polynomial, which is efficiently computable using an arithmetic circuit. Then, a result due
to Williams [36] is used to verify if the constructed polynomial contains a multilinear term –
Williams’ result gives an efficient randomized algorithm, which on input a small circuit that
computes the polynomial, outputs “yes” if a multilinear term exists in the sum of products
representation of the input polynomial, and “no” otherwise. The subgraph that is sought may
then be extracted using an additional pass over the graph. Our main technical contribution
is the construction of a polynomial PG whose multilinear terms correspond to binary trees of
size k in G and which is efficiently computable by an arithmetic circuit. We remark that the
polynomial constructions in previous results do not readily generalize for our problem. Our
key contribution is the construction of a suitable polynomial, based on a carefully designed
recursion.

Efficient algorithm for bipartite permutation graphs. Our main structural insight for
bipartite permutation graphs is that there exists a maximum binary tree which is crossing-
free with respect to the so-called strong ordering of the vertices. With this insight, MBT in
bipartite permutation graphs reduces to finding a maximum crossing-free binary tree. We
solve this latter problem by dynamic programming.

Organization. We present the 2kpoly(n) time algorithm for k-BinaryTree in Section 2.
We present our hardness results for DAGs in Section 3. We conclude with a few open
problems in Section 4. Due to page limits, we formulate an IP for DAGs and discuss its
integrality gap, show our hardness results for undirected graphs, and design an efficient
algorithm for bipartite permutation graphs in the full version [11].

1.4 Preliminaries
MBT in directed graphs. Given a directed graph G = (V,E) and a vertex r ∈ V , we say
that a subgraph T where V (T) ⊆ V and E(T) ⊆ E, is an r-rooted tree in G if T is acyclic
and every vertex v in T has a unique directed path (in T) to r. If the in-degree of each vertex
in T is at most 2, then T is an r-rooted binary tree. The problem of interest in directed
graphs is rooted-DirMaxBinaryTree: Given a directed graph G = (V,E) and a root
r ∈ V , the goal is to find an r-rooted binary tree in G with maximum number of vertices.
The problem DAGMaxBinaryTree is a special case of rooted-DirMaxBinaryTree in
which the input directed graph is a DAG. We recall that the rooted and unrooted variants of
the maximum binary tree problem in DAGs are equivalent.

MBT in undirected graphs. Given an undirected graph G = (V,E), we say that a subgraph
T , where V (T) ⊆ V and E(T) ⊆ E, is a binary tree in G if T is connected, acyclic, and
degT (v) ≤ 3 for every vertex v ∈ V (T). We will focus on the unrooted variant, i.e., Undir-
MaxBinaryTree, since the inapproximability results for the rooted variant are implied by
inapproximability results for the unrooted variant. Here, we are given an undirected graph
G and the goal is to find a binary tree in G with maximum number of vertices.

ESA 2020

30:10 The Maximum Binary Tree Problem

2 A 2kpoly(n) time algorithm for k-BinaryTree

In this section, we present a randomized algorithm that solves k-BinaryTree exactly and
runs in time 2kpoly(n) where n is the number of vertices in the input graph. We recall that
k-BinaryTree is the problem of deciding whether a given directed graph contains a binary
tree of size k. Our algorithm is inspired by an algebraic approach for solving the k-Path
problem – the algebraic approach relies on efficient detection of multilinear terms in a given
polynomial.

k-Path, polynomials and multilinear terms. We begin with a recap of the algebraic ap-
proach to solve k-Path– here, the goal is to verify if a given (directed or undirected) graph
G contains a path of length at least k. There has been a rich line of research dedicated to
designing algorithms for k-Path with running time βkpoly(n) where β > 1 is a constant
and n is the number of vertices in G (cf. [2, 8, 26,36]). In particular, the algorithms in [26]
and [36] are based on detecting multilinear terms in a polynomial.

We now recall the problem of detecting multilinear terms in a polynomial. Here, we
are given a polynomial with coefficients in a finite field Fq and the goal is to verify if it
has a multilinear term. We emphasize that the input polynomial is given implicitly by
an arithmetic circuit consisting of additive and multiplicative gates. In other words, the
algorithm is allowed to evaluate the polynomial at any point but does not have direct access
to the sum-of-products expansion of the polynomial. We recall that a multilinear term in
a polynomial p ∈ Fq[x1, x2, · · · , xm] is a monomial in the sum-of-products expansion of p
consisting of only degree-1 variables. For example, in the following polynomial

p(x1, x2, x3) = x2
1x2 + x3 + x1x2x3,

the monomials x3 and x1x2x3 are multilinear terms, whereas x2
1x2 is not a multilinear term

since x1 has degree 2. We will use the algorithm mentioned in the following theorem as a
black box for detecting multilinear terms in a given polynomial.

I Theorem 5 (Theorem 3.1 in [36]). Let P (x1, · · · , xn) be a polynomial of degree at most k,
represented by an arithmetic circuit of size s(n) with additive gates (of unbounded fan-in),
multiplicative gates (of fan-in two), and no scalar multiplications. There is a randomized
algorithm that on input P runs in 2ks(n)·poly(n) log (1/δ) time, outputs “yes” with probability
1− δ if there is a multilinear term in the sum-product expansion of P , and outputs “no” if
there is no multilinear term.

The idea behind solving k-Path with the help of this theorem is to construct a polynomial
pG based on the input graph G so that pG contains a multilinear term if and only if G
contains a simple path of length k. At the same time, pG should be computable by an
arithmetic circuit of size poly(n). Koutis and Williams achieved these properties using the
following polynomial:

pG(x1, · · · , xn) :=
∑

(vi1 ,vi2 ,...,vik): a walk in G

xi1xi2 . . . xik
.

We recall that a walk in G is a sequence of vertices in which neighbouring vertices are adjacent
in G. From the definition, it is easy to observe that there is a one-to-one correspondence
between simple k-paths in G and multilinear terms in pG. Moreover, it can be shown that
there is an arithmetic circuit of size O

(
k2(m+ n)

)
that computes pG, where m is the number

of edges and n is the number of vertices in G. See Chapter 10.4 of [14] for alternative
constructions of this polynomial.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:11

The polynomial construction for k-BinaryTree. Following the above-mentioned approach,
we construct a polynomial PG with the property that PG contains a multilinear term if and
only if G contains a binary tree of size k. Unfortunately, there is no immediate generalization
of walks of length k that characterize binary trees on k vertices. So, instead of defining the
polynomial conceptually, we will define the polynomial recursively by building the arithmetic
circuit that computes PG, and will prove the correspondence between multilinear terms in
PG and binary trees of size k in G. In the definition of our polynomial, we also need to
introduce an auxiliary variable to eliminate low-degree multilinear terms in PG (which is not
an issue in the construction of the polynomial for k-Path).

Let G = (V,E) be the given directed graph. For v ∈ V , let ∆in
v := {u ∈ V : (u, v) ∈ E}.

We begin by defining a polynomial P (k)
v for every v ∈ V and every positive integer k, in

(n+ 1) variables {xv}v∈V ∪ {y}:

P
(k)
v :=


xv if k = 1
xv · yk−1 if k > 1 and ∆in

v = ∅

xv

 ∑
u∈∆in

v

P
(k−1)
u +

k−2∑
`=1

 ∑
u1∈∆in

v

P
(`)
u1

 ∑
u2∈∆in

v

P
(k−1−`)
u2

 if k > 1 and ∆in
v 6= ∅

Next, we define P (k)
G :=

∑
v∈V P

(k)
v . We recall that a polynomial is homogenous if every

monomial has the same degree. By induction on k, the polynomial P (k)
v is a degree-k

homogeneous polynomial and so is P (k)
G . Moreover, by the recursive definition, we see that

P
(k)
v can be represented as an arithmetic circuit of size O(k2n) since there are kn polynomials

in total, and computing each requires O(1) addition gates (with unbounded fan-in) and O(k)
multiplication gates (with fan-in two). We show the following connection between multilinear
terms in P (k)

G and binary trees in G.

I Lemma 6. The graph G has a binary tree of size k rooted at r if and only if there is a
multilinear term of the form

∏
v∈S xv in P (k)

r where |S| = k.

Proof. We first show the forward direction, i.e., if G has a binary tree T of size k rooted at
r, then there is a multilinear term of the form

∏
v∈T xv in P (k)

r . We prove this by induction
on k. The base case k = 1 follows since P (1)

r = xr. Suppose that the forward direction holds
when |T | ≤ k − 1. For |T | = k, we consider two cases.
1. The root r has only one child c. The subtree Tc of T rooted at c has size k − 1. By

induction hypothesis there is a multilinear term
∏

v∈Tc
xv in P (k−1)

c . Since c ∈ ∆in
r , for

some polynomial Q we can write

P (k)
r = xr

(
P (k−1)

c +Q
)
.

Therefore xr ·
∏

v∈Tc
xv is a term in P (k)

r . This term is multilinear and equals to
∏

v∈T xv

since r /∈ Tc.
2. The root r has two children c1, c2. Suppose that the subtree Tc1 rooted at c1 has size `,

thus the subtree Tc2 rooted at c2 has size k− 1− `. The induction hypothesis implies that
P

(`)
c1 has a multilinear term

∏
v∈Tc1

xv, and P (k−1−`)
c2 has a multilinear term

∏
v∈Tc2

xv.
Since c1, c2 ∈ ∆in

r , for some polynomial Q we can write

P (k)
r = xr

(
P (`)

c1
P (k−1−`)

c2
+Q

)
.

Therefore xr

(∏
v∈Tc1

xv

)(∏
v∈Tc2

xv

)
is a term in P (k)

r . This term is multilinear and
equals to

∏
v∈T xv because T is the disjoint union of r, Tc1 and Tc2 .

ESA 2020

30:12 The Maximum Binary Tree Problem

In both cases, the polynomial P (k)
r has a multilinear term

∏
v∈T xv. This completes the

inductive step.
Next, we show that if P (k)

r has a multilinear term of the form
∏

v∈S xv where |S| = k,
then there is a binary tree T rooted at r in G with vertex set S. We prove this also by
induction on k. The base case k = 1 is trivial since P (1)

r = xr and there is a binary tree of
size 1 rooted at r. Suppose that the statement holds for k − 1 or less (k > 1).

Let
∏

v∈S xv be a multilinear term in P (k)
r . We note that r ∈ S since every term in P (k)

r

contains xr. Moreover, we may assume that ∆in
r 6= ∅ since otherwise P (k)

r = xr · yk−1 which
does not contain any term of the form

∏
v∈S xv. According to the definition of P (k)

r , we
could have two cases.
1. The term

∏
v∈S\{r} xv is a multilinear term in P (k−1)

c for some c ∈ ∆in
r . The induction

hypothesis implies that there is a binary tree Tc rooted at c with vertex set S \ {r}. Let
T be the binary tree obtained by adding the edge (c, r) to Tc. Then T is a binary tree
rooted at r with vertex set S.

2. The term
∏

v∈S\{r} xv is a multilinear term in P (`)
c1 P

(k−1−`)
c2 for some c1, c2 ∈ ∆in

r and
some integer 1 ≤ ` ≤ k − 2. In this case, since P (`)

c1 and P
(k−1−`)
c2 are homogeneous

polynomials of degree ` and k − 1− `, we can partition S \ {r} into two sets S1 and S2
with |S1| = ` and |S2| = k − 1− ` such that

∏
v∈S1

xv is a multilinear term in P (`)
c1 , and∏

v∈S2
xv is a multilinear term in P (`)

c2 . Applying the induction hypothesis, we obtain
a binary tree Tc1 (rooted at c1) with vertex set S1 and a binary tree Tc2 (rooted at c2)
with vertex set S2. Let T be the binary tree obtained by adding edges (c1, r) and (c2, r)
to Tc1 ∪ Tc2 . Then T is a binary tree rooted at r with vertex set S1 ∪ S2 ∪ {r} = S.

In both cases, we can find a binary tree T rooted at r with vertex set S. This completes the
inductive step. J

With this choice of P (k)
G , we call the algorithm appearing in Theorem 5 on input polynomial

P̃
(k)
G := y · P (k)

G , and output the result. We note that every multilinear term of the form∏
v∈S xv in P

(k)
G becomes a multilinear term of the form y ·

∏
v∈S xv in P̃

(k)
G , and every

multilinear term of the form y ·
∏

v∈S xv in P (k)
G becomes y2 ·

∏
v∈S xv in P̃ (k)

G , which is no
longer a multilinear term. In light of Lemma 6, the graph G contains a binary tree of size k
if and only if the degree-(k + 1) homogeneous polynomial P̃ (k)

G has a multilinear term. The
running time is 2k+1 ·O(k2n) · poly(n+ 1) log (1/δ) = 2k · poly(n) log (1/δ).

We remark that this algorithm does not immediately tell us the tree T (namely the edges
in T). However, we can find the edges in T with high probability via a reduction from the
search variant to the decision variant. This is formalized in the next lemma.

I Lemma 7. Suppose that there is an algorithm A which takes as input a directed graph
G = (V,E), an integer k and δ′ ∈ (0, 1) runs in time 2kpoly (|V |) log (1/δ′) and

outputs “yes” with probability at least 1− δ′ if G contains a binary tree of size k,
outputs “no” with probability 1 if G does not contain a binary tree of size k.

Then there also exists an algorithm A′ which for every δ ∈ (0, 1) outputs a binary tree
T of size k with probability at least 1 − δ when the answer is “yes”, and runs in time
2kpoly (|V |) log (1/δ).

Proof. The algorithm A′ iterates through all arcs e ∈ E and calls A on (G − e, k) with
δ′ = δ/m where G− e = (V,E \ {e}) and m = |E|. If for some e ∈ E the call to A outputs
“yes”, we remove e from G (i.e., set G ← G − e) and continue the process. We will show
that when the algorithm terminates, the arcs in G constitute a binary tree of size k (if there
exists one) with probability at least 1− δ.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:13

Suppose the order in which A′ processes the arcs is e1, e2, · · · , em, and the graph at
iteration t is denoted by G(t). Let Bt denote the event “G(t−1) − et contains a binary tree of
size k, but the call to A

(
G(t−1) − et, k

)
returns no”. Due to the assumption we made for A,

event Bt happens with probability at most δ′. Since the algorithm A has perfect soundness,
whenever A′ removes an edge we are certain that the remaining graph still contains a binary
tree of size k (otherwise the call to A would never return “yes”). That means if G(0) = G

contains a binary tree of size k then G(t) contains a binary tree of size k for all 0 ≤ t ≤ m.
Therefore if none of the events Bt happens, the final graph G(m) is a binary tree of size k.
The probability of failure is upper bounded by

Pr
[

m⋃
t=1

Bt

]
≤ m · δ′ = m · δ

m
= δ.

Since algorithm A′ makes m calls to algorithm A, the running time of
A′ is m · 2kpoly (|V |) log (1/δ′) = 2kpoly (|V |) log (1/δ). J

Theorem 5 in conjunction with Lemmas 6 and 7 complete the proof of Theorem 3.

3 Hardness results for DAGs

In this section, we show the inapproximability of finding a maximum binary tree in DAGs.
The size of a binary tree denotes the number of vertices in the tree.

3.1 Self-improvability for directed graphs
We show that an algorithm for rooted-DirMaxBinaryTree achieving a constant factor
approximation can be used to design a PTAS in Theorem 11. We emphasize that this result
holds for arbitrary directed graphs and not just DAGs. The idea is to gradually boost up
the approximation ratio by running the constant-factor approximation algorithm on squared
graphs. Our notion of squared graph will be the following.

I Definition 8. Given a directed graph G = (V,E) with root r, the squared graph G2 is the
directed graph obtained by performing the following operations on G:
1. Construct G′ = (V ′, E′) by introducing a source vertex s, i.e., V ′ := V ∪ {s}. We add

arcs from s to every vertex in G, i.e., E′ := E ∪ {(s, v) : v ∈ V }.
2. For each u ∈ V (we note that V does not include the source vertex), we create a copy of

G′ that we denote as a vertex copy G′u. We will denote the root vertex of G′u by ru, and
the source vertex of G′u by su.

3. For each (u, v) ∈ E, we create an arc (ru, sv).
4. We declare the root of G2 to be rr, i.e. the root vertex of the vertex copy G′r.
We define G2k+1 recursively as G2k+1 :=

(
G2k

)2
with the base case G1 := G.

Given a directed graph G with n− 1 vertices, the number of vertices in G2k satisfies the
recurrence relation∣∣∣V (G2k

)∣∣∣ =
∣∣∣V (G2k−1

)∣∣∣ · (∣∣∣V (G2k−1
)∣∣∣+ 1

)
=
∣∣∣V (G2k−1

)∣∣∣2 +
∣∣∣V (G2k−1

)∣∣∣ .
Hence, we have∣∣∣V (G2k

)∣∣∣+1 ≤
(∣∣∣V (G2k−1

)∣∣∣+ 1
)2
≤
(∣∣∣V (G2k−2

)∣∣∣+ 1
)22

≤ · · · ≤
(∣∣∣V (G20

)∣∣∣+ 1
)2k

= n2k

.

ESA 2020

30:14 The Maximum Binary Tree Problem

r

v1 v2

(a) G rooted at the black node.

s0

s1

s2

r

(b) G2 rooted at the black node. Source nodes are
represented by diamonds.

Figure 1 Directed Squared Graph.

We use OPT (G) to denote the size (number of vertices) of a maximum binary tree in
G. The following lemma shows that OPT (G) is super-multiplicative under the squaring
operation.

I Lemma 9. For any fixed root r, OPT (G2) ≥ OPT (G)2.

Proof. Suppose we have an optimal r-rooted binary tree T1 of G, i.e. |V (T1) | = OPT (G).
We construct an rr-rooted binary tree T2 of G2 as follows:
1. For v ∈ V (G), define T ′v = Tv ∪{sv} to be the optimal rv-rooted binary tree in the vertex

copy G′v where Tv is identical to T1 and the source vertex sv is connected to an arbitrary
leaf node in Tv.

2. For every vertex v ∈ T1, add T ′v to T2. This step generates |V (T1) |·(|V (T1) |+ 1) vertices
in T2.

3. Connect the copies selected in step 2 by adding the arc (ru, sv) to T2 for every arc
(u, v) ∈ T1.

Since T1 is an r-rooted binary tree (in G), it follows that T2 is an rr-rooted binary tree (in
G2). Moreover, the size of T2 is

|V (T2) | = |V (T1) | · (|V (T1) |+ 1) ≥ OPT (G)2
,

which cannot exceed OPT
(
G2). J

The following lemma shows that a large binary tree in G2 can be used to obtain a large
binary tree in G.

I Lemma 10. For every α ∈ (0, 1], given an rr-rooted binary tree T2 in G2 with size

|V (T2) | ≥ αOPT
(
G2)− 1,

there is a linear-time (in the size of G2) algorithm that finds an r-rooted binary tree T1 of G
with size

|V (T1) | ≥
√
αOPT (G)− 1.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:15

Proof. Let U :={v : v∈V (G) such that rv∈V (T2)} and A :={(v, w) : v, w∈V (G), (rv, sw)∈
E(T2)}. We note that T ′1 := (U,A) is an r-rooted binary tree in G. This is because the
path from every v ∈ U to the root r is preserved, and the in-degree of every node w ∈ U
is bounded by the in-degree of sw (in T2), which is thus at most 2, and similarly the out-
degree of every node is at most 1. We also remark that T ′1 can be found in linear time. If
|U | ≥

√
αOPT (G) >

√
αOPT (G)−1, then the lemma is already proved. So, we may assume

that |U | <
√
αOPT (G).

We now consider T ′v := (V (T2) ∩ V (G′v) , E (T2) ∩ E (G′v)) for v ∈ U . We can view T ′v as
the restriction of T2 to G′v, hence every node of T ′v has out-degree at most 2. Since T2 is
an rr-rooted binary tree in G2, every vertex in V (T2) ∩ V (G′v) has a unique directed path
(in T2) to rr, which must go through rv, thus every vertex in V (T2) ∩ V (G′v) has a unique
directed path to rv. It follows that T ′v is an rv-rooted binary tree in the vertex copy G′v.

We now show that there exists v ∈ U such that |V (T ′v) | ≥
√
αOPT (G). Suppose not,

which means for every v ∈ U we have |V (T ′v) | <
√
αOPT (G). Then

|V (T2) | =
∑
v∈U

|V (T ′v) | <
∑
v∈U

(√
αOPT (G)

)
<
√
αOPT (G) ·

√
αOPT (G)

= αOPT (G)2 ≤ α ·OPT
(
G2) ,

a contradiction. The last inequality is due to Lemma 9.
In linear time we can find a binary tree T ′v with the desired size |V (T ′v) | ≥

√
αOPT (G).

To complete the proof of the lemma, we let T1 := T ′v \ {sv} which is (isomorphic to) an
r-rooted binary tree in G with size at least

√
αOPT (G)− 1. J

I Theorem 11. If rooted-DirMaxBinaryTree has a polynomial-time algorithm that
achieves a constant-factor approximation, then it has a PTAS.

Proof. Suppose that we have a polynomial-time algorithm A that achieves an α-approxima-
tion for rooted-DirMaxBinaryTree. Given a directed graph G, root r and ε > 0,
let

k := 1 +
⌈

log2
log2 α

log2(1− ε)

⌉
be an integer constant that depends on α and ε. We construct G2k and run algorithm A on
G2k . Then, we get a binary tree in G2k of size at least αOPT

(
G2k

)
− 1. By Lemma 10, we

can obtain an r-rooted binary tree in G of size at least

α2−k

OPT (G)− 1 ≥ α2−k+1
OPT (G) ≥ (1− ε)OPT (G).

The first inequality holds as long as

OPT (G) ≥ 1√
1− ε− (1− ε)

≥ 1
α2−k − α2−k+1 .

We note that if OPT (G) is smaller than 1/
(
α2−k − α2−k+1

)
which is a constant, then we

can solve the problem exactly by brute force in polynomial time. Finally, we also observe
that for fixed ε, the running time of this algorithm is polynomial since there are at most
n2k = nO(1) vertices in the graph G2k . J

ESA 2020

30:16 The Maximum Binary Tree Problem

3.2 APX-hardness for DAGs
Next, we show the inapproximability results for DAGs. We begin by recalling DAGMax-
BinaryTree: We begin by recalling the problem:

DAGMaxBinaryTree

Given: A directed acyclic graph G = (V,E) and a root r ∈ V .

Goal: An r-rooted binary tree in G with the largest number of nodes.

We may assume that the root is the only vertex that has no outgoing arcs as we may discard
all vertices that cannot reach the root. We show that DAGMaxBinaryTree is APX-hard
by reducing from the following problem.

Max-3-Colorable-Subgraph

Given: An undirected graph G that is 3-colorable.

Goal: A 3-coloring of G that maximizes the fraction of properly colored edges.

It is known that finding a 3-coloring that properly colors at least 32/33-fraction of edges
in a given 3-colorable graph is NP-hard [5,20]. In particular, Max-3-Colorable-Subgraph
is APX-hard. We reduce Max-3-Colorable-Subgraph to DAGMaxBinaryTree. Let
G = (V,E) be the input 3-colorable undirected graph with n := |V | and m := |E|. For
ε > 0 to be fixed later, we construct a DAG, denoted D(G, ε), as follows (see Figure 2 for an
illustration):

a

c

vi

r
(1)
i

...

r
(p1)
i

...

g
(1)
i

...

g
(p2)
i

...

b
(1)
i

...

b
(p3)
i

...

vj

r
(1)
j

...

r
(q1)
j

...

g
(1)
j

...

g
(q2)
j

...

b
(1)
j

...

b
(q3)
j

...

.

aR
e

TR
e

aG
e

TG
e

aB
e

TB
e

.

B

Figure 2 DAG D(G, ε) constructed in the reduction from Max-3-Colorable-Subgraph to
DAGMaxBinaryTree.

1. Create a directed binary tree B rooted at node c with n := |V | leaf nodes. We will
identify each leaf node by a unique vertex v ∈ V . Create a super root a and arc c→ a.
This tree and the super root would have 2n nodes, including the super root node a, n
leaf nodes, and n− 1 internal nodes.

2. For every i ∈ V , we introduce three directed paths of length n that will be referred to as
Ri, Gi and Bi. Let Ri be structured as r(1)

i ← r
(2)
i ← · · · ← r

(n)
i , and similarly introduce

g
(k)
i and b(k)

i with the same structure. Also add arcs r(1)
i → vi, g(1)

i → vi and b(1)
i → vi.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:17

3. For every edge e = {i, j} ∈ E, introduce three directed binary trees that will be referred to
as TR

e , T
G
e , and TB

e , each with t =
⌈

2εn(n+1)+4n2

εm

⌉
nodes. Let the roots of the binary trees

TR
e , T

G
e , and TB

e be aR
e , a

G
e , and aB

e respectively. Add arcs aR
e → r

(p1)
i and aR

e → r
(q1)
j

where r(p1)
i and r(q1)

j are two nodes in Ri and Rj with in-degree strictly smaller than 2.
We note that Ri is a path with n nodes so such a node always exists. Similarly connect aG

e

to g(p2)
i and g(q2)

j , and aB
e to b(p3)

i and b(q3)
j in the directed paths Gi and Bi, respectively.

The constructed graph D(G, ε) is a DAG. We fix a to be the root. The number of nodes
N in D(G, ε) is N = 3mt+ 3n · n+ 2n = 3mt+ 3n2 + 2n. We note that every node vi ∈ V
has in-degree exactly 2 in every a-rooted maximal binary tree in D(G, ε). The idea of this
reduction is to encode the color of vi as the unique path among Ri, Gi, Bi that is not in the
subtree under vi. The following two lemmas summarize the main properties of the DAG
constructed above.

I Lemma 12. Let T be a maximal a-rooted binary tree of D(G, ε). If |V (T)| ≥ (1−ε/4)(N−
n2), then at most εm nodes among ∪e∈E{aR

e , a
G
e , a

B
e } are not in T .

Proof. Suppose more than εm such nodes are missing from T . For each node aR
e that is not

in T , the corresponding subtree TR
e is also not in T (same for aG

e and aB
e). Therefore

|V (T)| < N − εmt = 3mt+ 3n2 + 2n− εmt =
(

1− ε

4

)
· 3mt+ 3n2 + 2n− ε

4mt.

The choice of t implies that εmt/4 > εn(n+ 1)/2 + n2. Therefore

|V (T)| <
(

1− ε

4

)
· 3mt+ 3n2 + 2n− εn(n+ 1)

2 − n2

<
(

1− ε

4

)
· 3mt+

(
1− ε

4

) (
2n2 + 2n

)
=
(

1− ε

4

)
(N − n2),

a contradiction. J

I Lemma 13. If G is 3-colorable, then every a-rooted maximum binary tree in D(G, ε) has
size exactly N − n2.

Proof. We first note that every binary subtree of D(G, ε) has size at most N − n2. This is
because there are n vertices with in-degree 3 (namely v1, v2, · · · , vn). For each such vertex
vi, there are 3 vertices r(1)

i , g
(1)
i and b(1)

i whose only outgoing arc is to vi. Moreover, each
vertex r(1)

i (and similarly g(1)
i and b(1)

i) is the end-vertex of an induced path of length n.
Suppose G is 3-colorable. We now construct an a-rooted binary tree T of size N − n2 in

D(G, ε). We focus on the nodes to be discarded so that we may construct a binary spanning
tree with the remaining nodes. Let σ : V → {Red,Green,Blue} be a proper 3-coloring of
G. If σ(vi) = Red, we discard the path Ri. The cases where σ(vi) ∈ {Green,Blue} are
similar. Since there are no monochromatic edges, there do not exist e = {vi, vj} ∈ E and
C ∈ {R,G,B} such that both parents of aC

e are not in T . Therefore every binary tree TC
e is

contained as a subtree in T . J

I Theorem 14. Suppose there is a PTAS for DAGMaxBinaryTree on DAGs, then for
every ε > 0 there is a polynomial-time algorithm which takes as input an undirected 3-colorable
graph G, and outputs a 3-coloring of G that properly colors at least (1− ε)m edges.

ESA 2020

30:18 The Maximum Binary Tree Problem

Proof. Let G = (V,E) be the given undirected 3-colorable graph. We construct D(G, ε) in
polynomial time. We note that the constructed graph D(G, ε) is a directed acyclic graph.
We now run the PTAS for DAGMaxBinaryTree on D(G, ε) and root a to obtain a
(1− ε/4)-approximate maximum binary tree in D(G, ε). By Lemma 13 and the fact that G
is 3-colorable, the PTAS will output an a-rooted binary tree T of size at least(

1− ε

4

)
(N − n2).

We may assume that T is a maximal binary tree in D(G, ε) (if not, then add more vertices to
T until we cannot add any further). Maximality ensures that the nodes vi are in the tree T
and moreover, the in-degree of vi in T is exactly 2. For each vi ∈ V , let ci be the unique node
among

{
r

(1)
i , g

(1)
i , b

(1)
i

}
that is not in T . We define a coloring σ : V → {Red,Green,Blue}

of G as

∀vi ∈ V, σ(vi) =


Red if ci = r

(1)
i

Green if ci = g
(1)
i

Blue if ci = b
(1)
i .

We now argue that the coloring is proper for at least (1− ε)-fraction of the edges of G.
Suppose we have an edge e = {vi, vj} which is monochromatic under σ, and suppose w.l.o.g.
σ(vi) = σ(vj) = Red. This means that neither r(1)

i nor r(1)
j is included in T . Therefore

aR
e /∈ T since neither of the two vertices with incoming arcs from aR

e are in T . By Lemma 12,
we know that at most εm vertices among ∪e∈E{aR

e , a
G
e , a

B
e } can be excluded from T . Hence,

the coloring σ that we obtained can violate at most εm edges in G. J

Finally, we prove Theorem 1 using the self-improving argument (Theorem 11) and the
APX-hardness of DAGMaxBinaryTree (Theorem 14).

Proof of Theorem 1.
1. We observe that the graph G2 constructed in Section 3 for the self-improving reduction

is a DAG if G is a DAG. Therefore, by Theorem 11, a polynomial-time constant-factor
approximation for DAGMaxBinaryTree would imply a PTAS for DAGMaxBinary-
Tree, a contradiction to APX-hardness shown in Theorem 14.

2. Next we show hardness under the Exponential Time Hypothesis. Suppose there is a
polynomial-time algorithm A for DAGMaxBinaryTree that achieves an
exp (−C · log2 n/ log2 log2 n)-approximation for some constant C > 0. Given the input
graph G with n− 1 vertices, let k be an integer that satisfies

2
√

n ≤ n2k

≤ 22
√

n,

and run A on G2k to obtain a binary tree with size at least

exp (−C · log2 N/ log2 log2 N)OPT
(
G2k

)
,

where N = n2k upper bounds the size of G2k . Recursively running the algorithm suggested
in Theorem 11 k times gives us a binary tree in G with size at least

exp
(
−C · log2 N

log2 log2 N · 2k

)
OPT (G)− 1

≥ exp
(
−C · 2

√
n

log2
√
n
· log2 n√

n

)
OPT (G)− 1

≥ exp (−4C)OPT (G)− 1 ≥ 1
2 · exp (−4C)OPT (G).

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:19

The last inequality holds as long as

OPT (G) ≥ 2 · e4C .

We note that if OPT (G) is smaller than 2e4C which is a constant, we can solve the
problem exactly by brute force in polynomial time. Otherwise the above procedure can
be regarded as a constant-factor approximation for DAGMaxBinaryTree. The running
time is polynomial in

N = n2k

= exp
(
O
(√
n
))
,

which is sub-exponential. Moreover, from item 1 we know that it is NP-hard to approxim-
ate DAGMaxBinaryTree within a constant factor, thus NP ⊆ DTIME (exp (O (

√
n))).

3. The proof of this item is almost identical to the previous one except that we choose a
different integer k. Suppose there is an algorithm A′ for DAGMaxBinaryTree that
achieves a exp

(
−C · log1−ε n

)
-approximation for some constant C > 0, and runs in time

exp
(
O
(

logd n
))

for some constant d > 0. We show that there is an algorithm that
achieves a constant-factor approximation for DAGMaxBinaryTree, and runs in time
exp

(
O
(

logd/ε n
))

.
Given a DAG G on n − 1 vertices as input for DAGMaxBinaryTree, let k =⌈(1

ε − 1
)

log2 logn
⌉
be an integer that satisfies(

2k logn
)1−ε ≤ 2k ≤ 2 (logn)

1
ε−1

.

Running A′ on G2k gives us a binary tree with size at least

exp
(
−C · log1−ε N

)
OPT

(
G2k

)
,

where N = n2k upper bounds the size of G2k . Recursively running the algorithm suggested
in Theorem 11 k times gives us a binary tree in G with size at least

exp
(
−C · log1−ε N

2k

)
OPT (G)− 1

≥ exp
(
−C ·

(
2k logn

)1−ε

2k

)
OPT (G)− 1

≥ exp (−C)OPT (G)− 1 ≥ 1
2 · exp (−C)OPT (G).

The last inequality holds as long as

OPT (G) ≥ 2 · eC .

We note that if OPT (G) is smaller than 2eC which is a constant, we can solve the problem
exactly by brute force in polynomial time. Otherwise the above procedure can be regarded
as a constant-factor approximation for DAGMaxBinaryTree. The running time is
quasi-polynomial in N , i.e. for some constant C ′ > 0, the running time is upper-bounded
by

exp
(
C ′
(

logd N
))

= exp
(
C ′
((

2k logn
)d
))
≤ exp

(
C ′
(

logd/ε n
))

. J

ESA 2020

30:20 The Maximum Binary Tree Problem

4 Conclusion and Open Problems

In this work, we introduced the maximum binary tree problem (MBT) and presented
hardness of approximation results for undirected, directed, and directed acyclic graphs, a
fixed-parameter algorithm with the solution as the parameter, and efficient algorithms for
bipartite permutation graphs. Our work raises several open questions that we state below.

Inapproximability of DirMaxBinaryTree. The view that MBT is a variant of the longest
path problem leads to the natural question of whether the inapproximability results for
MBT match that of longest path: Is MBT in directed graphs (or even in DAGs) hard to
approximate within a factor of 1/n1−ε (we recall that longest path is hard to approximate
within a factor of 1/n1−ε [9])? We remark that the self-improving technique is weak to handle
1/n1−ε-approximations since the squaring operation yields no improvement. The reduction
in [9] showing 1/n1−ε-inapproximability of longest paths is from a restricted version of the
vertex-disjoint paths problem and is very specific to paths. Furthermore, directed cycles play
a crucial role in their reduction for a fundamental reason: longest path is polynomial-time
solvable in DAGs. However, it is unclear if directed cycles are the source of hardness for
MBT in digraphs (since MBT is already hard in DAGs).

Bicriteria Approximations. Given our inapproximability results, one natural algorithmic
possibility is that of bicriteria approximations: can we find a tree with at least α·OPT vertices
while violating the degree bound by a factor of at most β? In particular, this motivates
an intriguing direction concerning the longest path problem: Given an undirected/directed
graph G with a path of length k, can we find a c1-degree tree in G with at least k/c2 vertices
for some constants c1 and c2 efficiently?

Maximum Binary Tree in Permutation DAGs. Finally, it would be interesting to resolve
the complexity of MBT in permutation DAGs (and permutation graphs). This would also
resolve the open problem posed by Byers, Heeringa, Mitzenmacher, and Zervas of whether
the maximum heapable subsequence problem is solvable in polynomial time [10].

References
1 Louigi Addario-Berry, Ketan Dalal, and Bruce A Reed. Degree constrained subgraphs.

Electronic Notes in Discrete Mathematics, 19:257–263, 2005.
2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
3 Omid Amini, David Peleg, Stéphane Pérennes, Ignasi Sau, and Saket Saurabh. Degree-

constrained subgraph problems: Hardness and approximation results. In Approximation and
Online Algorithms, pages 29–42, 2009.

4 Omid Amini, Ignasi Sau, and Saket Saurabh. Parameterized complexity of the smallest
degree-constrained subgraph problem. In Parameterized and Exact Computation, pages 13–29,
2008.

5 Per Austrin, Ryan O’Donnell, and John Wright. A new point of NP-hardness for 2-to-1
Label-Cover. In Proceedings of the 15th Annual International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems, APPROX ’12, pages 1–12, 2012.

6 János Balogh, Cosmin Bonchiş, Diana Diniş, Gabriel Istrate, and Ioan Todinca. On the
heapability of finite partial orders. Discrete Mathematics and Theoretical Computer Science,
22(1):paper # 17, 2020.

7 Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive guarantees for degree-
bounded directed network design. SIAM J. Comput., 39(4):1413–1431, October 2009.

K. Chandrasekaran, E. Grigorescu, G. Istrate, S. Kulkarni, Y.-S. Lin, and M. Zhu 30:21

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. Journal of Computer and System Sciences, 87:119–139,
2017.

9 Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest directed
paths and cycles. In Automata, Languages and Programming, pages 222–233, 2004.

10 John Byers, Brent Heeringa, Michael Mitzenmacher, and Georgios Zervas. Heapable sequences
and subseqeuences. In Proceedings of the Meeting on Analytic Algorithmics and Combinatorics,
ANALCO ’11, pages 33–44, 2011.

11 Karthekeyan Chandrasekaran, Elena Grigorescu, Gabriel Istrate, Shubhang Kulkarni, Young-
San Lin, and Minshen Zhu. The maximum binary tree problem. arXiv preprint, 2019.
arXiv:1909.07915.

12 Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. A push–relabel
approximation algorithm for approximating the minimum-degree mst problem and its general-
ization to matroids. Theoretical Computer Science, 410(44):4489–4503, 2009.

13 Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. What Would
Edmonds Do? Augmenting Paths and Witnesses for Degree-Bounded MSTs. Algorithmica,
55(1):157–189, September 2009.

14 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

15 Paul Erdös, Ralph J Faudree, CC Rousseau, and RH Schelp. Subgraphs of minimal degree k.
Discrete Math, 85(1):53–58, 1990.

16 Martin Fürer and Balaji Raghavachari. Approximating the minimum-degree steiner tree to
within one of optimal. Journal of Algorithms, 17(3):409–423, 1994. doi:10.1006/jagm.1994.
1042.

17 Harold N. Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the Fifteenth Annual ACM Symposium on
Theory of Computing, STOC ’83, pages 448–456, 1983.

18 Michael Garey and David Johnson. Computers and Intractability. W. H. Freeman and
Company, 1979.

19 Michel X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the 47th
Annual IEEE Symposium on Foundations of Computer Science, FOCS ’06, pages 273–282,
2006.

20 Venkatesan Guruswami and Ali Kemal Sinop. Improved inapproximability results for maximum
k-colorable subgraph. Theory of Computing, 9:413–435, 2013.

21 Gabriel Istrate and Cosmin Bonchiş. Heapability, interactive particle systems, partial orders:
Results and open problems. In Proceedings of DCFS’2016, 18th International Conference on
Descriptional Complexity of Formal Systems, pages 18–28. Springer, 2016.

22 David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82–98, 1997.

23 Rohit Khandekar, Guy Kortsarz, and Zeev Nutov. On some network design problems with
degree constraints. Journal of Computer and System Sciences, 79(5):725–736, 2013.

24 Ton Kloks, Dieter Kratsch, and Haiko Müller. Bandwidth of chain graphs. Information
Processing Letters, 68(6):313–315, 1998.

25 Jochen Könemann and R. Ravi. A matter of degree: Improved approximation algorithms for
degree-bounded minimum spanning trees. SIAM J. Comput., 31(6):1783–1793, June 2002.

26 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In International
Colloquium on Automata, Languages, and Programming, ICALP ’08, pages 575–586, 2008.

27 Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized
problems. In International Colloquium on Automata, Languages, and Programming, ICALP
’09, pages 653–664, 2009.

28 Jochen Könemann and R. Ravi. Primal-dual meets local search: Approximating msts with
nonuniform degree bounds. SIAM Journal on Computing, 34(3):763–773, 2005.

ESA 2020

http://arxiv.org/abs/1909.07915
https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1006/jagm.1994.1042

30:22 The Maximum Binary Tree Problem

29 Lap Chi Lau, Joseph (Seffi) Naor, Mohammad Salavatipour, and Mohit Singh. Survivable
network design with degree or order constraints. SIAM Journal on Computing, 39(3):1062–1087,
2009.

30 Jaclyn Porfilio. A combinatorial characterization of heapability. Master’s thesis, Williams
College, 2015.

31 R. Ravi, Madhav Marathe, S. S. Ravi, Daniel Rosenkrantz, and Harry B. Hunt III. Approxim-
ation algorithms for degree-constrained minimum-cost network-design problems. Algorithmica,
31(1):58–78, September 2001.

32 Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. J. ACM, 62(1):1–19, March 2015.

33 Jacqueline Smith. Minimum degree spanning trees on bipartite permutation graphs. Master’s
thesis, University of Alberta, 2011.

34 Jeremy Spinrad, Andreas Brandstädt, and Lorna Stewart. Bipartite permutation graphs.
Discrete Applied Mathematics, 18(3):279–292, 1987.

35 Ryuhei Uehara and Yushi Uno. Efficient algorithms for the longest path problem. In
Proceedings of the 15th International Conference on Algorithms and Computation, ISAAC ’04,
pages 871–883, 2004.

36 Ryan Williams. Finding paths of length k in O∗(2k) time. Information Processing Letters,
109(6):315–318, 2009.

	Introduction
	Related work
	Our contributions
	Inapproximability results
	Algorithmic results

	Proof techniques
	Inapproximability results
	Algorithmic results

	Preliminaries

	A 2^{k}poly(n) time algorithm for k-BinaryTree
	Hardness results for DAGs
	Self-improvability for directed graphs
	APX-hardness for DAGs

	Conclusion and Open Problems

