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Abstract
We consider a fundamental online scheduling problem in which jobs with processing times and
deadlines arrive online over time at their release dates. The task is to determine a feasible preemptive
schedule on m machines that maximizes the number of jobs that complete before their deadline.
Due to strong impossibility results for competitive analysis, it is commonly required that jobs
contain some slack ε > 0, which means that the feasible time window for scheduling a job is at
least 1 + ε times its processing time. In this paper, we answer the question on how to handle
commitment requirements which enforce that a scheduler has to guarantee at a certain point in
time the completion of admitted jobs. This is very relevant, e.g., in providing cloud-computing
services and disallows last-minute rejections of critical tasks. We present the first online algorithm for
handling commitment on parallel machines for arbitrary slack ε. When the scheduler must commit
upon starting a job, the algorithm is Θ( 1

ε
)-competitive. Somewhat surprisingly, this is the same

optimal performance bound (up to constants) as for scheduling without commitment on a single
machine. If commitment decisions must be made before a job’s slack becomes less than a δ-fraction
of its size, we prove a competitive ratio of O( 1

ε−δ ) for 0 < δ < ε. This result nicely interpolates
between commitment upon starting a job and commitment upon arrival. For the latter commitment
model, it is known that no (randomized) online algorithms admits any bounded competitive ratio.
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1 Introduction

We consider the following fundamental online scheduling model: jobs from an unknown job
set arrive online over time at their release dates rj . Each job has a processing time pj ≥ 0 and
a deadline dj . There are m identical machines to process these jobs or a subset of them. A
job is said to complete if it receives pj units of processing time within the interval [rj , dj). We
allow preemption, i.e., the processing of a job can be interrupted at any time. We distinguish
schedules with and without migration. If we allow migration, then a preempted job can
resume processing on any machine whereas it must run completely on the same machine
otherwise. In the three-field notation this problem is P | online rj ,pmtn |

∑
(1− Uj) [16].
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41:2 Optimally Handling Commitment Issues in Online Throughput Maximization

In a feasible schedule, two jobs are never processing at the same time on the same machine.
The number of completed jobs in a feasible schedule is called throughput. The task is to find
a feasible schedule with maximum throughput.

As jobs arrive online, we cannot hope to find an optimal schedule [12]. To assess the
performance of online algorithms, we resort to standard competitive analysis. This means,
we compare the throughput of an online algorithm with the throughput achievable by an
optimal offline algorithm that knows the job set in advance.

It is well-known that “tight” jobs with dj − rj ≈ pj prohibit competitive online decision
making as jobs must start immediately and do not leave a chance for observing online
arrivals [6]. Thus, it is commonly required that jobs contain some slack ε > 0, i.e., every
job j satisfies dj − rj ≥ (1 + ε)pj . The competitive ratio of our online algorithm will be a
function of ε; the greater the slack, the better should the performance of our algorithm be.
This slackness parameter has been considered in previous work, e.g., in [2, 4, 8, 14, 15,24, 26].
Other results for scheduling with deadlines use speed scaling, which can be viewed as another
way to add slack to the schedule, e.g., [1, 3, 17,18,25].

In this paper, we focus on the question how to handle commitment requirements in online
throughput maximization. Modeling commitment addresses the issue that a good-throughput
schedule may abort jobs close to their deadlines in favor of many shorter and more urgent
tasks [13], which may not be acceptable for the job owner. Consider a company that starts
outsourcing mission-critical processes to external clouds and that needs a guarantee that
jobs complete before a certain time point when they cannot be moved to another computing
cluster anymore. In other situations, a commitment to complete jobs might be required even
earlier just before starting the job, e.g., for a faultless copy of a database [8].

Different commitment models have been formalized [2, 8, 24]. The requirement to commit
at a job’s release date has been ruled out for online throughput maximization by strong
impossibility results (even for randomized algorithms) [8]. We distinguish (i) commitment
upon job admission and (ii) δ-commitment. In the first model, an algorithm may discard
a job any time before its start, we say its admission. This reflects a situation such as the
faultless copy of a database. In the second model, δ-commitment, an online algorithm must
commit to complete a job when its remaining slack is not less than a δ-fraction of the job
size, for 0 < δ < ε. The latest time for committing to job j is then dj − (1 + δ)pj . This
models an early enough commitment (parameterized by δ) for mission-critical jobs. Recently,
a first unified approach has been presented for these models in [8]. Gaps in the performance
bounds remained and it was left open if scheduling with commitment is even “harder” than
without commitment.

In this work, we give tight results for online throughput maximization on parallel machines
and answer the “hardness” question to the negative. We give an algorithm that achieves
the provably best competitive ratio (up to constants) for the aforementioned commitment
models. Somewhat surprisingly, we show that the same competitive ratio of O( 1

ε ) can be
achieved for both, scheduling without commitment and with commitment upon admission.
Further, our algorithm does not require job migration. For parallel machines, our algorithm
is the first online algorithm with bounded competitive ratio for arbitrary slack parameter ε.

Previous results

Preemptive online scheduling with hard deadlines and models for admission control have
been studied rigorously, see, e.g., [5, 14,15] and references therein. Already in the 90s several
impossibility results were shown for jobs without slack [6, 7, 21–23]. The only positive result
independent of slack for online throughput maximization without commitment seems to be a
randomized O(1)-competitive single-machine algorithm [20]. The best possible deterministic
algorithm in this setting is Θ(1/ε)-competitive for instances with ε-slack [8].
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Throughput maximization with commitment has attracted researchers more recently [2,
8, 24]. We summarize the state-of-the art for the particular problem of online throughput
maximization with commitment. For a single machine, Chen et al. [8] presented a universal
algorithmic framework, which achieved bounded competitive ratios for several commitment
models and even the tight result for scheduling without commitment. More precisely, their
algorithm is O(1/ε2)-competitive for commitment upon admission and O(ε/((ε − δ)δ2))-
competitive, for 0 < δ < ε, in the δ-commitment model. This improved on an earlier algorithm
by Azar et al. [2] for the δ-commitment model (in the context of truthful mechanisms for a
weighted setting) that is O(1/ε2)-competitive if the slack ε is sufficiently large. Chen et al.
showed a lower bound of Ω(1/ε) for deterministic scheduling algorithms without commitment,
which is tight in that model and also holds for the more restrictive commitment models. A
significant gap between lower and upper bounds remained. On parallel machines, there is a
competitive algorithm for online throughput maximization with commitment if the slack ε is
sufficiently large [2].

In a natural generalization of our problem, jobs have associated individual weights
and we aim for a schedule with maximum weighted throughput. The special case with
each job j satisfying wj = pj (aka machine utilization) is well understood. A simple
greedy algorithm achieves the best possible competitive ratio Θ(1/ε) [11, 14] on a single
machine in both commitment models, even for commitment upon arrival. For scheduling with
commitment onm parallel identical machines there is anO( m

√
1/ε)-competitive algorithm and

an almost matching lower bound [26]. It is worth mentioning that machine utilization without
commitment even allows for constant competitive ratios independent of slack [6,21,22,27].
General weighted (and even unweighted) throughput maximization is much less tractable. For
general weights, there is no bounded competitive ratio possible in any of the aforementioned
commitment models [2, 8, 24]. For weighted throughput maximization without commitment
requirements there is an O(1/ε2)-competitive online algorithm [24].

The power of migration has been investigated in several contexts: While it is typically
large in online scheduling, cf. machine-utilization [26] and resource-minimization [9, 10], we
show that, in our online setting, the guarantees that can be achieved by migratory and
non-migratory algorithms are within a constant factor, similar to the offline problem [19].

Our results and techniques

Our main result is one algorithm that is best possible (up to constant factors) for online
throughput maximization with and without commitment on parallel identical machines. Our
algorithm does not migrate jobs and still achieves a competitive ratio that matches the
general lower bound for migratory algorithms.

For scheduling with commitment upon admission, we give an (up to constant factors)
optimal online algorithm with competitive ratio Θ(1/ε). For scheduling with δ-commitment,
our result interpolates between the models commitment upon starting a job and commitment
upon arrival. If δ ≤ ε/2, the competitive ratio is Θ(1/ε) which is best possible [8]. For δ → ε,
the commitment requirements essentially implies commitment upon job arrival which has
unbounded competitive ratio [8]. Note that this is the first online algorithm with bounded
competitive ratio for arbitrary slackness parameter ε.

I Theorem 1. Consider throughput maximization on parallel identical machines with or
without migration. There is an O( 1

ε−δ′ )-competitive online algorithm with commitment where
δ′ = ε/2 in the commitment upon admission model and δ′ = max{δ, ε/2} in the δ-commitment
model.

ESA 2020



41:4 Optimally Handling Commitment Issues in Online Throughput Maximization

Clearly, scheduling with commitment is more restrictive than without commitment. Hence,
our algorithm is also (up to constants) optimal for the problem P | online rj ,pmtn |

∑
(1−Uj)

without any commitment requirements as its competitive ratio matches the lower bound [8].

I Theorem 2. There is a Θ(1/ε)-competitive algorithm for online throughput maximization
on parallel identical machines without commitment requirements, with and without migration.

The challenge in online scheduling with commitment is that, once we committed to
complete a job, the remaining slack of this job has to be spent very carefully. The key is a job
admission scheme which is implemented by different parameters. The high-level objectives are:
(i) never start a job for the first time if its remaining slack is too small (parameter δ),
(ii) during the processing of a job, admit only significantly shorter jobs (parameter γ), and
(iii) for each admitted shorter job, block some time period (parameter β) during which no

other jobs of similar size are accepted.
While the first two goals are quite natural and have been used before [8, 24], the third goal
is crucial for our new tight result. The intuition is the following: suppose we committed
to complete a job with processing time 1 and have only a slack of O(ε) left before the
deadline of this job. Suppose that c substantially smaller jobs of size 1/c arrive where c is
the competitive ratio we aim for. On the one hand, if we do not accept any of them, we
cannot hope to achieve c-competitiveness. On the other hand, accepting too many of them
fills up the slack and, thus, leaves no room for even smaller jobs. The idea is to keep the
flexibility for future small jobs by grouping jobs of similar size (within a factor two) into
classes. This gives the fine-grained classification of jobs which is crucial for our new tight
result. We distinguish two time periods with different class structures that guide acceptance.
During the scheduling interval of a job j, we have a more restrictive acceptance scheme that
ensures the completion of j whereas in the blocking period we guarantee the completion of
previously accepted jobs. In contrast, the previous algorithm in [8] uses one long region with
a uniform acceptance threshold and is then too conservative in accepting jobs.

As a key contribution on the technical side, we give a strong bound on the processing
volume of any feasible non-migratory schedule in terms of the accepted volume of a certain
class of online algorithms. It is crucial for our analysis and might be of independent interest.

2 The blocking algorithm

In this section, we describe the blocking algorithm which handles scheduling with commitment.
We assume that the slackness constant ε > 0 and, in the δ-commitment model, 0 < δ < ε

are given. If δ is not part of the input or if δ ≤ ε/2, we set δ = ε
2 .

The algorithm never migrates jobs between machines, i.e., a job is only processed by the
machine that initially started to process it, we say the job has been admitted to this machine.
Moreover, our algorithm commits to completing a job upon admission. Hence, its remaining
slack has to be spent very carefully on admitting other jobs while being competitive. As our
algorithm does not migrate jobs, it transfers the admission decision to the shortest admitted
and not yet completed job on each machine. Then, a job only admits significantly shorter
jobs and prevents the admission of too many jobs of similar size. To this end, the algorithm
maintains two types of intervals for each admitted job, a scheduling interval and a blocking
period. A job can only be processed in its scheduling interval. Thus, it has to complete in
this interval while admitting other jobs. Job j only admits jobs that are smaller by a factor
of γ = δ

16 < 1. For an admitted job k, job j creates a blocking period of length at most βpk,
where β = 16

δ , which blocks the admission of similar-length jobs (cf. Figure 1).
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For scheduling, the algorithm follows the Shortest Processing Time (SPT) order for the
set of uncompleted jobs assigned to a machine, which is independent of the admission scheme.
SPT ensures that, in the blocking periods of any job k admitted by j, j has highest priority.

Scheduling interval Blocking period

τ

Figure 1 Scheduling interval, blocking period, and processing intervals.

For admitting jobs, the algorithm keeps track of available jobs at any time point τ . A
job j with rj ≤ τ is called available if it has not yet been admitted to a machine by the
algorithm and its deadline is not too close, i.e., dj − τ ≥ (1 + δ)pj .

Whenever a job j is available at a time τ when there is a machine i such that this
time is not contained in the scheduling interval of any other job, the shortest such job j is
immediately admitted to i, creating the scheduling interval S(j) = [τ, τ +(1+δ)pj) := [aj , ej)
and an empty blocking period B(j) = ∅. In general, however, the blocking period is a finite
union of time intervals associated with job j, and its size is the sum of lengths of the intervals,
denoted by |B(j)|. Four types of events trigger a decision of the algorithm at time τ : the
release of a job, the end of a blocking period, the end of a scheduling interval, and the
admission of a job. In any of these four cases, the algorithm calls the class admission routine.
This subroutine iterates over all machines i and checks if j, the shortest job on i whose
scheduling interval contains τ , can admit the currently shortest available job j?.

To this end, any admitted job j classifies available jobs k with rk ∈ S(j) and pk < γpj
depending on their processing time. More precisely, job j maintains a class structure
(Cc(j))c∈N0 where Cc(j) contains all jobs k that are available at some time during S(j) and
satisfy γ

2c+1 pj ≤ pk < γ
2c pj . Only jobs k ∈ Cc(j) for c ∈ N0 qualify for admission by j. Upon

admission by j, job j? obtains two disjoint consecutive intervals, the scheduling interval
S(j?) = [aj? , ej?) and the blocking period B(j?) of size at most βpj? . At the admission
of job j?, the blocking period B(j?) is planned to start at ej? , the end of j?’s scheduling
interval. During B(j?) of job j? ∈ Cc(j), j only admits jobs k of higher classes, i.e., k ∈ Cc′(j)
for c′ > c. Particularly, j only admits job j? ∈ Cc(j) if the blocking period of the last job
in Cc(j) admitted to the same machine has completed.

Hence, when job j decides if it admits the currently shortest available job j? at time τ ,
it makes sure that j? indeed belongs to a class Cc(j) and that no higher class c′ ≥ c is
blocking τ , i.e., it checks that τ /∈ B(k) for all jobs k ∈ Cc′(j) admitted to the same machine.
In this case, we say that j? is a child of j and that j is the parent of j?, denoted by π(j?) = j.
If job j? is admitted at time τ by job j, the algorithm sets aj? = τ and ej? = aj? + (1 + δ)pj?

and assigns the scheduling interval S(j?) = [aj? , ej?) to j?.
If ej? ≤ ej , the routine sets fj? = min{ej , ej? +βpj?} which determines B(j?) = [ej? , fj?).

As the scheduling and blocking periods of children k of j are supposed to be disjoint, we have
to update the blocking periods. First consider the job k ∈ Cc′(j) for c′ < c admitted
to the same machine whose blocking period contains τ (if it exists), and let [e′k, f ′k) be the
maximal interval of B(k) containing τ . We set f ′′k = min{ej , f ′k + (1 + δ+ β)pj?} and replace
the interval [e′k, f ′k) by [e′k, τ) ∪ [τ + (1 + δ + β)pj? , f ′′k ). For all other jobs k ∈ Cc′(j) with
B(k) ∩ [τ,∞) 6= ∅ admitted to the same machine, we replace the remaining part of their
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41:6 Optimally Handling Commitment Issues in Online Throughput Maximization

blocking period [e′k, f ′k) by [e′k + (1 + δ+ β)pj? , f ′′k ) where f ′′k := min{ej , f ′k + (1 + δ+ β)pj?}.
In this update we follow the convention [e, f) = ∅ if f ≤ e. Observe that the length of the
blocking period might decrease due to such updates.

Note that ej? > ej is also possible as j does not take the end of its own scheduling
interval ej into account when admitting jobs. Thus, the scheduling interval of j? would end
outside j’s scheduling interval and inside j’s blocking period. During B(j), π(j), the parent
of j, did not allocate the interval [ej , ej?) for completing jobs admitted by j but for ensuring
its own completion. Hence, the completion of both j? and π(j) is not necessarily guaranteed
anymore. To prevent this, we modify all scheduling intervals S(k) (including S(j)) of
jobs admitted to the same machine that contain time τ and the corresponding blocking
periods B(k). For each job k admitted to the same machine with τ ∈ S(k) (i.e., including j)
and ej? > ek we set ek = ej? . We also update their blocking periods (in fact, single intervals)
to reflect their new starting points. If the parent π(k) of k does not exist, B(k) remains
empty; otherwise we set B(k) := [ek, fk) where fk = min{eπ(k), ek + βpk}. Note that, after
this update, the blocking intervals of any but the largest such job will be empty. Moreover,
the just admitted job j? does not get a blocking period in this special case.

During the analysis of the algorithm, we show that any admitted job j still completes
before aj+(1+δ)pj and that ej ≤ aj+(1+2δ)pj holds in retrospective for all admitted jobs j.
Thus, any job j that admits another job j? tentatively assigns this job a scheduling interval
of length (1 + δ)pj? but, for ensuring j’s completion, it is prepared for losing (1 + 2δ)pj? time
units of its scheduling interval S(j). We summarize the blocking algorithm in Algorithm 1.

Algorithm 1 Blocking algorithm.
Scheduling routine: At all time τ and on all machines i, run the job with shortest

processing time that has been admitted to i and has not yet completed

Event: Upon release of a new job at time τ:
Call admission routine.

Event: Upon ending of a blocking period or scheduling interval at time τ:
Call admission routine.

Admission routine:
j? ← a shortest available job at τ, i.e.,

j? ∈ arg min{pj | rj ≤ τ and dj − τ ≥ (1 + δ)pj}
i ← 1
while j? is not admitted and i ≤ m do

K ← the set of jobs on machine i whose scheduling intervals contain τ

if K = ∅
1. admit job j? to machine i, aj? ← τ, ej? ← aj? + (1 + δ)pj? , and fj? ← ej?

2. call admission routine
else

j ← arg min{pk | k ∈ K}
if j? ∈ Cc(j) and there exists no c′ ≥ c with t ∈ B(j′) for j′ ∈ Cc′(j), then

1. admit job j? to machine i, aj? ← τ and ej? ← aj? + (1 + δ)pj?

if ej? ≤ ej, then
fj? ← min{ej , ej? + βpj?}
set S(j?)← [aj? , ej? ) and B(j?)← [ej? , fj? )

else
set ej ← ej? and fj? ← ej?

modify S(k) and B(k) for k ∈ K
2. update B(k) for k ∈ Cc′(j) admitted to machine i with c′ < c and

B(k) ∩ [τ,∞) 6= ∅
3. call admission routine

else
i ← i+ 1
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Roadmap for the analysis

During the analysis, it is sufficient to concentrate on instances with small slack, as also
noted in [8]. For ε > 1 we run the blocking algorithm with ε = 1, which only tightens
the commitment requirement, and obtain constant competitive ratios. Thus, we assume
0 < ε ≤ 1. Moreover, in the δ-commitment model, committing to the completion of a job j
at an earlier point in time clearly satisfies committing at a remaining slack of δpj . Therefore,
we may assume δ ∈ [ ε2 , ε).

The blocking algorithm does not migrate any job. In the analysis, we first compare the
throughput of our algorithm to the solution of an optimal non-migratory schedule. We then
use a well-known result by Kalyanasundaram and Pruhs to compare this to an optimal
solution that may exploit migration. Here, ωm is the maximal ratio of the throughput of an
optimal migratory schedule to the throughput of an optimal non-migratory schedule [19].

I Theorem 3 (Theorem 1.1 in [19]). ωm ≤ (6m− 5)/m.

The proof of our results consists of two parts. In the first part, Section 3, we show that
the blocking algorithm completes all admitted jobs on time. The second part, Section 4, is
to show that the blocking algorithm admits sufficiently many jobs to be competitive.

3 Completing all admitted jobs on time

We show that the blocking algorithm finishes every admitted job on time in Theorem 5. Our
choice of parameters guarantees that Inequality (1) is satisfied.

As the blocking algorithm does not migrate jobs, it suffices to consider each machine
individually in this section. The proof relies on the following observations: (i) the sizes of
admitted jobs belonging to different classes of job j are geometrically decreasing, (ii) the
scheduling intervals of jobs are completely contained in the scheduling intervals of their
parents, and (iii) scheduling in Shortest Processing Time order guarantees that job j has
highest priority in the blocking periods of its children. We start by proving the following
technical lemma about the length of the final scheduling interval of an admitted job j. In
the proof we use that π(k) = j for two jobs j and k implies that pk < γpj .

I Lemma 4. Let 0 < δ < ε be fixed. If γ > 0 satisfies (1 + 2δ)γ ≤ δ, then the length of the
scheduling interval S(j) of an admitted job j is upper bounded by (1 + 2δ)pj . Moreover, S(j)
contains the scheduling intervals of all descendants of j.

Proof. By definition of the blocking algorithm, the end point ej of the scheduling interval of
job j is only modified when j or one of j’s descendants admits another job. Let us consider
such a case: If job j admits a job j? whose scheduling interval does not fit the scheduling
interval of j, we set ej = ej? = aj? + (1 + δ)pj? to accommodate the scheduling interval S(j?)
within S(j). The same modification is applied to any ancestor k of j with ek < ej? . This
implies that, after such a modification of the scheduling interval, neither j nor any affected
ancestors k of j are the smallest jobs in their scheduling intervals anymore. In particular, no
job whose scheduling interval was modified in such a case at time τ is able to admit jobs
after τ . Hence, any job j can only admit other jobs within the interval [aj , aj + (1 + δ)pj).
In particular, aj? ≤ aj + (1 + δ)pj for any job j? with π(j?) = j.

Thus, by induction, it is sufficient to show that aj? + (1 + 2δ)pj? ≤ aj + (1 + 2δ)pj for
admitted jobs j? and j with π(j?) = j in order to prove the lemma. Note that π(j?) = j

implies pj? < γpj . Thus,

aj? + (1 + 2δ)pj? ≤ (aj + (1 + δ)pj) + (1 + 2δ)γpj ≤ aj + (1 + 2δ)pj ,

where the last inequality follows from the assumption (1 + 2δ)γ ≤ δ. J
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I Theorem 5. Let 0 < δ < ε be fixed. If 0 < γ < 1 and β ≥ 1 satisfy

β/2
β/2 + (1 + 2δ) (1 + δ − 2(1 + 2δ)γ) ≥ 1, (1)

then the blocking algorithm completes a job j admitted at aj ≤ dj − (1 + δ)pj on time.

Our choice of parameters guarantees that Inequality (1) is satisfied.

Proof. Let j be a job admitted by the blocking algorithm with aj ≤ dj − (1 + δ)pj . Hence,
showing that a job j completes before time d′j := aj + (1 + δ)pj proves the theorem. Due
to scheduling in SPT order, each job j has highest priority in its own scheduling interval
if the time point does not belong to the scheduling interval of a descendant of j. Thus, it
suffices to show that at most δpj units of time in [aj , d′j) belong to scheduling intervals S(k)
of descendants of j. By Lemma 4, the scheduling intervals of any descendant k′ of a child k
of j is contained in S(k). Hence, it is sufficient to only consider K, the set of children of j.
In order to bound the contribution of each child k ∈ K, we partition K into two sets. The
first set K1 contains all children of j that where admitted as the first jobs in their class Cc(j).
The set K2 contains the remaining jobs.

We start with K2. Consider a job k ∈ Cc(j) admitted by j. By Lemma 4, we know
that |S(k)| = (1 + µδ)pk where 1 ≤ µ ≤ 2. Let k′ ∈ Cc(j) be the previous job admitted by j
in class c. Then, B(k′) ⊆ [ek′ , ek). Since scheduling and blocking periods of children of j are
always disjoint, j had highest scheduling priority in B(k′). Hence, during B(k′) ∪ S(k) job j
was processed for at least |B(k′)| units of time. In other words, j was processed for at least
a |B(k′)|
|B(k′)∪S(k)| -fraction of B(k′) ∪ S(k). We can rewrite this ratio by

|B(k′)|
|B(k′) ∪ S(k)| = βpk′

βpk′ + (1 + µδ)pk
= νβ

νβ + (1 + µδ) ,

where ν := pk′
pk
∈ ( 1

2 , 2]. By differentiating with respect to ν and µ, we observe that the last
term is increasing in ν and decreasing in µ. Thus, we can lower bound this expression by

|B(k′)|
|B(k′) ∪ S(k)| ≥

β/2
β/2 + (1 + 2δ) .

Therefore, j was processed for at least a β/2
β/2+(1+2δ) -fraction in

⋃
k∈K B(k) ∪

⋃
k∈K2

S(k).
We now consider the set K1. The total processing volume of these jobs is bounded by∑∞
c=0

γ
2c pj = 2γpj . By Lemma 4, we know that |S(k)| ≤ (1 + 2δ)pk. Combining these two

observations, we obtain
∣∣∣⋃k∈K1

S(k)
∣∣∣ ≤ 2(1 + 2δ)γpj . Combining the latter with the bound

for K2, we conclude that j is scheduled for at least∣∣∣[aj , d′j) \ ⋃
k∈K

S(k)
∣∣∣ ≥ β/2

β/2 + (1 + 2δ)
(
(1 + δ)− 2(1 + 2δ)γ

)
pj ≥ pj

units of time, where the last inequality follows from Equation (1). Thus, j completes before
d′j = aj + (1 + δ)pj ≤ dj . J

4 Admitting sufficiently many jobs

After proving that the blocking algorithm completes all admitted jobs on time, we show that
the blocking algorithm admits enough jobs to achieve the competitive ratio of Theorem 1.
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4.1 Key lemma on the size of non-admitted jobs
For the proof of the main result in this section, we rely on the following strong, structural
lemma about the volume processed by a feasible non-migratory schedule in some time interval
and the size of jobs admitted by a certain class of online algorithms in the same time interval.
Let σ be a feasible non-migratory schedule. Let Alg be a non-migratory online algorithm
satisfying the following two properties: (i) Alg never admits a job j later than dj − (1 + δ)pj
for 0 < δ < ε and (ii) retrospectively, for each time τ , there is a threshold uτ ∈ (0,∞]
such that any available job j with dj − τ ≥ (1 + δ)pj that was not admitted by Alg at τ
satisfies pj ≥ uτ . We will show that our blocking algorithm satisfies (i) and (ii) for a
non-trivial uτ that allows us to bound the volume of any feasible schedule.

Without loss of generality, we assume that σ completes all jobs on time that it started.
Let Xσ be the jobs completed by σ and not admitted by Alg. For 1 ≤ i ≤ m, let Xσ

i be
the jobs in Xσ processed by machine i. Let Cx be the completion time of job x ∈ Xσ in σ.

I Lemma 6. Let σ and Alg be defined as above. Let 0 ≤ ζ1 ≤ ζ2 and fix x ∈ Xσ
i as well as

Y ⊂ Xσ
i \ {x}. If

(R) rx ≥ ζ1 as well as ry ≥ ζ1 for all y ∈ Y ,
(C) Cx ≥ Cy for all y ∈ Y , and
(P)

∑
y∈Y py ≥

ε
ε−δ (ζ2 − ζ1)

hold, then px ≥ uζ2 where uζ2 is the upper bound imposed by Alg at time ζ2. In particular,
if uζ2 =∞, then no such job x exists.

Proof. We show the lemma by contradiction. More precisely, we show that, if px < uζ2 , the
schedule σ cannot complete x on time and, hence, is not feasible.

Remember that x ∈ Xσ
i implies that Alg did not admit job x at any point τ . At time ζ2,

there are two possible reasons why x was not admitted: px ≥ uζ2 or dx − ζ2 < (1 + δ)px. In
case of the former, the statement of the lemma holds. Thus, let us assume px < uζ2 and,
therefore, dx − ζ2 < (1 + δ)px has to hold. As job x arrived with a slack of at least εpx at its
release date rx and rx ≥ ζ1 by assumption, we have

ζ2 − ζ1 ≥ ζ2 − dx + dx − rx > −(1 + δ)px + (1 + ε)px = (ε− δ)px. (2)

As all jobs in Y complete earlier than x by Assumption (C) and are only released after ζ1
by (R), the volume processed by σ in [ζ1, Cx) on machine i is greater than ε

ε−δ (ζ2 − ζ1) + px
by (P). Moreover, σ can process at most a volume of (ζ2− ζ1) on machine i in [ζ1, ζ2). These
two bounds imply that σ has to process job parts with a processing volume of at least

ε

ε− δ
(ζ2 − ζ1) + px − (ζ2 − ζ1) > δ

ε− δ
(ε− δ)px + px = (1 + δ)px

in [ζ2, Cx), where the inequality follows using Inequality (2). Thus, Cx > ζ2 + (1 + δ)px > dx
which contradicts the feasibility of σ.

Observe that the online algorithm Alg admits the shortest available job that satisfies pj ≤
uτ . In particular, if uτ =∞ for some time point τ , Alg admits the shortest job if there is
one available. Hence, for 0 ≤ ζ1 ≤ ζ2 with uζ2 =∞, there does not exist a job x ∈ Xσ

i and a
set Y ⊂ Xσ

i \ {x} satisfying (R), (C), and (P) for any machine i. J

4.2 Admitting sufficiently many jobs
I Theorem 7. An optimal non-migratory (offline) algorithm can complete at most a factor
α+ 4 more jobs on time than admitted by the blocking algorithm where α := ε

ε−δ
(
2β + 1+2δ

γ

)
.
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For proving the theorem, we fix an instance and an optimal offline algorithm Opt. Let X
be the jobs that Opt scheduled and the blocking algorithm did not admit. We assume
without loss of generality that Opt completes all jobs in X on time. Let J be the jobs
that the blocking algorithm scheduled. Then, X ∪ J clearly is a superset of the jobs that
Opt scheduled. Hence, to show the theorem it is sufficient to prove that |X| ≤ (α+ 3)|J |.
Let X ⊆ X be the jobs scheduled on the machine with the highest throughput and let J ⊆ J
be the jobs scheduled on the machine with the lowest throughput. In Lemma 11 we develop
a charging scheme of X to jobs in J such that no job gets charged more than α+ 3 jobs.

Without loss of generality, we assume that the union of all scheduling intervals of jobs
in J , i.e.,

⋃
j∈J S(j), forms one interval. If this assumption does not hold, we consider each

maximal interval in
⋃
j∈J S(j) separately. Instead of directly charging the jobs in X to jobs

in J we take a detour and charge jobs in X to intervals that cover
⋃
j∈J S(j). The idea

behind our charging scheme is that Opt is not able to schedule arbitrarily many jobs during
a scheduling interval or a blocking period created by the blocking algorithm. Intuitively, jobs
that were released during a scheduling interval or a blocking period and not admitted by the
algorithm have to satisfy certain lower bounds on their processing times. Thus, the charging
scheme relies on the release date rx and the size px of a job x ∈ X as well as on the precise
structure of the intervals created by the blocking algorithm. The number of jobs we charge
to one interval will depend on the relative length of the interval.

We retrospectively consider the interval structure created by the algorithm on the machine
that schedules J ; let this w.l.o.g. be the first machine. Let T be the set of all time points
corresponding to the admission of a new job, the end of a scheduling interval, and the start
as well as the end of a blocking period of jobs in J . Index the elements in T by their actual
value, i.e., τ1 < τ2 < . . . < τ|T |. Let I be the set of intervals of the form It := [τt, τt+1) for
1 ≤ t < |T |. The next lemma holds as the admission of a job adds at most three time points.

I Fact 8. The set I contains at most 3|J | intervals.

For analyzing the competitive ratio of our algorithm, we first charge jobs x ∈ X to
intervals It ∈ I and then assign this subset to the job that was “responsible” for not
admitting other jobs during It because of its scheduling interval or because of its blocking
period. In Lemma 11, we show that a job j is assigned at most ε

ε−δ (2β + 1+2δ
γ ) = α jobs

and that each interval It gets at most one job. Fact 8 bounds the number of intervals in I.
Combining these observations then proves that |X| ≤ (α+ 3)|J | and, thus, |X| ≤ (α+ 3)|J |.

Consider a time point τ ∈
⋃
j∈J S(j). Let j ∈ J be the shortest job on machine i such

that τ ∈ S(j) ∪B(j). The blocking algorithm only admits an available job k to machine i in
two cases: (i) τ ∈ S(j) and pk < γpj or (ii) τ ∈ B(j) and k belongs to a smaller class of the
parent of j. Condition (ii) clearly is satisfied if pk < pj/2. This implies that at any time τ
the blocking algorithm maintains a threshold uτ,i for each machine i so that only available
jobs smaller than this threshold qualify for admission to machine i. Note that the admission
of a job k at time τ to machine i decreases the threshold uτ,i. If τ does not belong to a
scheduling interval of a job on machine i, we set uτ,i =∞. By taking the maximum of these
upper bounds, we obtain a time-dependent threshold uτ that guides the admission decisions
of the blocking algorithm. Hence, the conditions of Lemma 6 are met by the our algorithm.

Note that these upper bounds only change when a scheduling interval starts or ends, or
when an interval belonging to a blocking period starts or ends. For an interval It ∈ I we
define ut as the threshold on the machine with the lowest throughput, i.e., ut := uτt,1 ∈ (0,∞].
If ut =∞, then the interval It ∈ I does not belong to the scheduling interval of a job in J
and uτ =∞ for all τ ∈ It. Then the next lemma holds.
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I Fact 9. In every interval It = [τt, τt+1) ∈ I the upper bound uτ created by the blocking
algorithm is lower bounded by uτt,1, i.e., uτ ≥ ut for all τ ∈ It.

The charging scheme developed in Lemma 11 is based on a careful modification of the
following partition (Ft)1≤t<|T | of the set X. Fix an interval It ∈ I and define the set Ft ⊂ X
as the set that contains all jobs x ∈ X released during It, i.e., Ft := {x ∈ X : rx ∈ It}. As,
upon release, each job is available, the next corollary directly follows from Fact 9.

I Fact 10. For all jobs x ∈ Ft it holds px ≥ ut. In particular, if ut =∞, then Ft = ∅.

In fact, the charging scheme maintains this property and only assigns jobs in X to
intervals It if px ≥ ut. In particular, no job will be assigned to an interval with ut =∞.

We now formalize how many jobs in X we will assign to a specific interval It. Let
ϕt :=

⌊
ε
ε−δ

τt+1−τt

ut

⌋
+ 1 be the target number of It if ut <∞ and ϕt = 0 if ut =∞.

If ut <∞, let jt ∈ J be the smallest job with τt ∈ S(j) ∪B(j). Except for one job per
interval It ∈ I which remains assigned to It, the jobs assigned to It will be accounted for
by jt. Suppose that each of the sets Ft satisfies |Ft| ≤ ϕt. Then, at most ε

ε−δ
τt+1−τt

ut
will be

charged to job jt because of interval It. By definition of ut, we have ut ≥ γpjt
if It ⊆ S(jt)

and, if It ⊆ B(jt), we have ut ≥ pjt/2. The total length of intervals It for which j = jt
holds sums up to at most (1 + 2δ)pj for It ⊆ S(j) and to at most 2βpj for It ⊆ B(j). Hence,
in total, the charging scheme assigns at most ε

ε−δ (2β + 1+2δ
γ ) = α jobs in X to job j ∈ J .

In combination with Fact 8, that bounds the number of intervals in I, this would imply
Theorem 7. In general, |Ft| ≤ ϕt does not have to be true as Opt may preempt jobs and
process the parts during several intervals It. In the remainder of this section, we show that
there exists another partition (Gt)1≤t<|T | of the jobs in X such that |Gt| ≤ ϕt holds.

I Lemma 11. |X| ≤ α|J |+ |I|.

Proof. As observed before it suffices to show that there is a partition G =
(
Gt
)

1≤t<|T | such
that |Gt| ≤ ϕt and

⋃
1≤t<|T |Gt = X in order to prove the lemma. The high-level idea of this

proof is the following: Consider an interval It = [τt, τt+1). If Ft does not contain too many
jobs, i.e., |Ft| ≤ ϕt, we would like to set Gt = Ft. Otherwise, we find a later interval It′ with
|Ft′ | < ϕt′ such that we can assign the excess jobs in Ft to It′ .

In order to repeatedly apply Lemma 6, we only assign such excess jobs x ∈ Ft to
Gt′ if their processing time is at least the threshold of It′ , i.e., px ≥ ut′ . Then, by our
choice of parameters, a set Gt′ with ϕt′ many jobs of size at least ut′ “covers” the interval
It′ = [τt′ , τt′+1) as often as required by (P) in Lemma 6, i.e.,∑

x∈Gt′

px ≥ ϕt′ · ut′ =
(⌊

ε

ε− δ
τt′+1 − τt′

ut′

⌋
+ 1
)
· ut′ ≥

ε

ε− δ
(τt′+1 − τt′). (3)

The proof consists of two parts: the first one is to inductively (on t) construct the
partition G =

(
Gt
)

1≤t<|T | of X with |Gt| ≤ ϕt. The second one is the proof that a
job x ∈ Gt satisfies px ≥ ut. During the construction of G we define temporary sets At ⊂ X
for intervals It. The set Gt is chosen as a subset of Ft ∪ At of appropriate size. In order
to apply Lemma 6 to each job in At individually, alongside At, we construct a set Yx,t and
a time τx,t ≤ rx for each job x ∈ X that is added to At. Let C∗x be the completion time
of some job x ∈ X in the optimal schedule Opt. The second part of the proof is to show
that x, τx,t, and Yx,t satisfy

(R) ry ≥ τx,t for all y ∈ Yx,t,
(C) C∗x ≥ C∗y for all y ∈ Yx,t, and
(P)

∑
y∈Yx,t

py ≥ ε
ε−δ (τt − τx,t).
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Then, x, Y = Yx,t, ζ1 = τx,t, and ζ2 = τt satisfy the conditions of Lemma 6 and we can
deduce that the processing time of x is at least the threshold at time τt, i.e., px ≥ uτt

≥ ut.

Constructing G =
(
Gt
)

1≤t≤|T|. We inductively construct the sets Gt in the order defined
by their indices. For simplicity, we add a singleton as last interval, i.e., I|T | = {τ|T |}
with ϕ|T | = 0. We start by setting At = ∅ for all intervals 1 ≤ t ≤ |T |. We define Yx,t = ∅ for
each job x ∈ X and each interval It. The preliminary value of the time τx,t is the minimum
of the start point τt of the interval It and the release date rx of x, i.e., τx,t := min{τt, rx}.
We refer by step t to the step in the construction where Gt was defined.

Starting with t = 1, let It be the next interval to consider during the construction.
Depending on the cardinality of Ft ∪At, we have to distinguish two cases. If |Ft ∪At| ≤ ϕt,
we set Gt = Ft ∪At.

If |Ft ∪ At| > ϕt, we order the jobs in Ft ∪ At in increasing order of completion times
in Opt. The first ϕt jobs are assigned to Gt while the remaining |Ft ∪ At| − ϕt jobs are
added to At+1. In this case, we might have to redefine the times τx,t+1 and the sets Yx,t+1
for the jobs x that were newly added to At+1. Fix such a job x. If there is no job z in
the just defined set Gt that has a smaller release date than τx,t, we set τx,t+1 = τx,t and
Yx,t+1 = Yx,t ∪ Gt. Otherwise let z ∈ Gt be a job with rz < τx,t that has the smallest
time τz,t. We set τx,t+1 = τz,t and Yx,t+1 = Yz,t ∪Gt.

Finally, we also construct G|T | this way. As we will show that px ≥ u|T | for all x ∈ G|T |,
we will get that G|T | = ∅ (since u|T | =∞) and therefore G|T | ≤ ϕ|T | = 0.

Bounding the size of the jobs in Gt. We consider the intervals again in increasing order of
their indices and show by induction that any job x in Gt satisfies px ≥ ut which implies Gt = ∅
if ut =∞. Clearly, if x ∈ Ft ∩Gt, Fact 10 guarantees px ≥ ut. Hence, in order to show the
lower bound on the processing time of x ∈ Gt, it is sufficient to consider jobs in Gt \Ft ⊂ At.
To this end, we show that for such jobs (R), (C), and (P) are satisfied. Then, Lemma 6
guarantees that px ≥ uτt ≥ ut. Therefore, At = ∅ if ut = ∞ as the global bound is also
unbounded, i.e., uτt

≥ ut =∞, by Fact 9.
By construction, A1 = ∅. Hence, (R), (C), and (P) are satisfied for each job x ∈ A1.
Assume that the conditions (R), (C), and (P) are satisfied for all x ∈ At for all 1 ≤ t < s.

Hence, for t < s, the set Gt only contains jobs x with px ≥ ut. Let t ≥ s be the first
index with At 6= ∅ and fix x ∈ At. We want to show that px ≥ ut. By induction and by
Fact 10, py ≥ ut−1 holds for all y ∈ Gt−1. Because x did not fit in Gt−1, |Gt−1| = ϕt−1.

We distinguish two cases based on the jobs in Gt−1. If there is no z ∈ Gt−1 with rz <
τx,t−1, then τx,t = τx,t−1, and (R) and (C) are satisfied by construction and by induction.
For (P), consider∑

y∈Yx,t

py =
∑

y∈Yx,t−1

py +
∑

y∈Gt−1

py ≥
ε

ε− δ
(τt−1 − τx,t−1) + ut−1 · ϕt−1

>
ε

ε− δ
(τt−1 − τx,t−1) + ε

ε− δ
(τt − τt−1) = ε

ε− δ
(τt − τx,t) ,

where the first inequality holds by induction.
If there is a job z ∈ Gt−1 with rz < τx,t−1 ≤ τt−1, then z ∈ At−1. In step t, we chose z with

minimal τz,t−1. Thus, ry ≥ τy,t−1 ≥ τz,t−1 for all y ∈ Gt−1 and rx ≥ τx,t−1 > rz ≥ τz,t−1.
Moreover, by induction, ry ≥ τz,t−1 holds for all y ∈ Yz,t−1. Thus, τx,t and Yx,t satisfy (R).
For (C), consider that C∗x ≥ C∗y for all y ∈ Gt−1 by construction and, thus, C∗x ≥ C∗z ≥ C∗y
also holds for all y ∈ Yz,t−1. For (P), observe that
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∑
y∈Yx,t

py =
∑

y∈Yz,t−1

py +
∑

y∈Gt−1

py ≥
ε

ε− δ
(τt−1 − τz,t−1) + ut−1 · ϕt−1

≥ ε

ε− δ
(τt−1 − τz,t−1) + ε

ε− δ
(τt − τt−1) ≥ ε

ε− δ
(τt − τx,t).

Here, the first inequality follows by induction and the second by definition of ut−1 and ϕt−1.
Hence, Lemma 6 implies px ≥ uτt

≥ ut.

Showing |X| ≤ α|J |+ |I|. By construction, we know that
⋃|T |
t=1 Gt = X. We start with

considering intervals It with ut = ∞. Then, It is not covered by a scheduling interval on
machine i. Thus, uτ = ∞ for all τ ∈ It and Ft = ∅ by Fact 10. In the previous part we
have seen that the conditions for Lemma 6 are satisfied. Hence, Gt = ∅ if ut = ∞. For t
with ut <∞, we have |Gt| = ϕt =

⌊
ε
ε−δ

τt+1−τt

ut

⌋
+ 1. As explained before, we assign these

jobs (except the additive one) to jt, the shortest job in J with It ⊆ S(j) ∪ B(j), without
assigning more than α jobs in X to a particular job in J . Hence, the number of jobs in X is
indeed bounded by α|J |+ |I|. J

Proof of Theorem 7. As discussed before, the union X ∪ J of X, the jobs only scheduled
by Opt, and J , the jobs admitted by the blocking algorithm, is a superset of the jobs that
Opt completed. Lemma 11 shows that |X| ≤ α|J |+ |I|.Combining this with the bound on I
given in Fact 8, we conclude

Opt ≤ m · |X|+ |J | ≤ m (α+ 3) |J |+ |J | ≤ (α+ 4) |J |. J

Proof of Theorem 1. In Theorem 5 we show that the blocking algorithm completes all
admitted jobs J on time. This implies that the blocking algorithm is feasible for the model
commitment upon admission. As no job j ∈ J is admitted later than dj−(1+δ)pj , this shows
that the blocking algorithm also solves scheduling with δ-commitment. Theorem 1.1 in [19]
(Theorem 3) gives a bound on the optimal migratory schedule in terms of an optimal non-
migratory solution. In Theorem 7, we bound an optimal non-migratory solution Opt by |J |,
the throughput of the blocking algorithm. Combining these theorems shows that the blocking
algorithm achieves a competitive ratio of c = 6(α+4) = 6

(
ε
ε−δ
(
2β + 1+2δ

γ

)
+ 4
)
. Our choice

of parameters β = 16
δ and γ = δ

16 implies c ∈ O
(

ε
(ε−δ)δ

)
. In the case where δ ≤ ε/2, we run

the algorithm with parameter δ′ = ε/2. Hence, c ∈ O
( 1
ε−δ′

)
= O

( 1
ε

)
. If δ > ε/2, then we

set δ′ = δ in our algorithm. Thus, ε
δ′ ∈ O(1) and, again, c ∈ O

( 1
ε−δ′

)
. J

Conclusion

We close the major questions regarding online throughput maximization with and without
commitment requirements and give an optimal online algorithm on identical parallel machines
for the problem P | online rj ,pmtn |

∑
(1 − Uj). It remains open whether the problem,

where m is not part of the input, admits an online algorithm with a better competitive ratio
as is the case for Pm | online rj ,pmtn |

∑
pj(1− Uj) [26].

Another interesting question asks whether randomization allows for improved results. On
a single machine, there is indeed an O(1)-competitive randomized algorithm for scheduling
without commitment, even without any slack assumption [20]. We are not aware of any
lower bound that rules out a similar result on multiple machines. Further research directions
include generalizations such as weighted throughput maximization. While strong lower
bounds exist for handling weighted throughput with commitment [8], there remains a gap
for the problem without commitment.
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