
Dynamic Matching Algorithms in Practice
Monika Henzinger
University of Vienna, Faculty of Computer Science, Austria
monika.henzinger@univie.ac.at

Shahbaz Khan
Department of Computer Science, University of Helsinki, Finland
shahbaz.khan@helsinki.fi

Richard Paul
University of Vienna, Faculty of Computer Science, Austria
richard.paul@univie.ac.at

Christian Schulz
University of Vienna, Faculty of Computer Science, Austria
christian.schulz@univie.ac.at

Abstract
In recent years, significant advances have been made in the design and analysis of fully dynamic
maximal matching algorithms. However, these theoretical results have received very little attention
from the practical perspective. Few of the algorithms are implemented and tested on real datasets,
and their practical potential is far from understood. In this paper, we attempt to bridge the gap
between theory and practice that is currently observed for the fully dynamic maximal matching
problem. We engineer several algorithms and empirically study those algorithms on an extensive set
of dynamic instances.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Matching, Dynamic Matching, Blossom Algorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.58

Supplementary Material Source code and instances are available at https://github.com/
schulzchristian/DynMatch.

Funding The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013) /ERC
grant agreement No. 340506.

1 Introduction

The matching problem is one of the most prominently studied combinatorial graph problems
having a variety of practical applications. A matchingM of a graph G = (V,E) is a subset
of edges such that no two elements of M have a common end point. Many applications
require matchings with certain properties, like being maximal (no edge can be added toM
without violating the matching property) or having maximum cardinality. These problems
can be solved in polynomial time. For example, Micali and Vazirani [31] compute a maximum
cardinality matching in O(m

√
n) time. For the weighted case, the fastest algorithm is by

Galil et. al [19] requiring O(mn logn) time which improves the O(n3) time algorithm [18]
for sparse graphs.

However, often the underlying graphs change over time, e.g., edges are inserted or deleted
in the graph as the time progresses. For example, new relations between objects of a network
may be created or removed over time (for example [30]). Even though the matching problem
can be solved in polynomial time, computing a new matching from scratch every time the
graph changes is an expensive task on huge networks, as this ignores the previously computed

© Monika Henzinger, Shahbaz Khan, Richard Paul, and Christian Schulz;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 58; pp. 58:1–58:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-5008-6530
mailto:monika.henzinger@univie.ac.at
https://orcid.org/0000-0001-9352-0088
mailto:shahbaz.khan@helsinki.fi
https://orcid.org/0000-0002-7433-0075
mailto:richard.paul@univie.ac.at
https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@univie.ac.at
https://doi.org/10.4230/LIPIcs.ESA.2020.58
https://github.com/schulzchristian/DynMatch
https://github.com/schulzchristian/DynMatch
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Dynamic Matching Algorithms in Practice

information on the given instance. Hence, in the recent years significant advances have been
made in the design and analysis of fully dynamic maximal matching algorithms. These
theoretical algorithmic ideas have received very little attention from the practical perspective.
Only a few of the dynamic algorithms are implemented and tested on real datasets, and
hence their practical potential is far from being understood.

Contribution and Outline. In this paper, we start to bridge the gap between theory and
practice that is currently observed for the fully dynamic maximal matching problem. We
engineer several dynamic maximal matching algorithms as well as an algorithm that is
able to maintain the maximum matching. To this end, we look at an algorithm due to
Baswana, Gupta and Sen [4], which performs edge updates in O(

√
n) time and maintains a

2-approximate maximum matching, the algorithm of Neiman and Solomon [33], which takes
O(
√
n+m) time to maintain a 3/2-approximate maximum matching, as well as two novel

dynamic algorithms: a random walk-based algorithm as well as a dynamic algorithm that
searches for augmenting paths using a (depth bounded) blossom algorithm. Without depth
bound, the latter algorithm is able to maintain a maximum matching. We perform extensive
experiments comparing the performance of these algorithms on the real-world and artificially
generated instances. Experiments indicate that maintaining optimum matchings can be
done much more efficiently than the naive algorithm that recomputes maximum matchings
from scratch (more than an order of magnitude faster). Second, all non-optimum dynamic
algorithms that we consider in this work are able to maintain near-optimum matchings in
practice while being multiple orders of magnitudes faster than the naive optimum dynamic
algorithm.

2 Preliminaries

2.1 Basic Concepts
Let G = (V = {0, . . . , n− 1}, E) be an undirected graph without parallel edges and self-loops.
We set n = |V |, and m = |E|, N(v) := {u : {v, u} ∈ E} denotes the neighbors of v. The
degree of a vertex v is d(v) := |N(v)|. A matchingM⊆ E in a graph is a set of edges without
common vertices. The cardinality or size of a matching is simply the cardinality of the edge
subsetM. We call a matching maximal, if there is no edge in E that can be added toM. A
maximum cardinality matching Mopt is a matching that contains the largest possible number
of edges of all matchings. An α-approximate maximum matching is a matching, that contains
at least |Mopt|

α edges. A vertex is called free or unmatched if it is not incident to an edge of the
matching. Otherwise, we call it unfree or matched. For a matched vertex u with {u, v} ∈ M,
we call vertex v the mate of u, which we denote as mate(u) = v. For an unmatched vertex u,
we define mate(u) = ⊥. An augmenting path is defined as a cycle-free path in the graph G,
that starts and ends on a free vertex and where edges fromM alternate with edges from
E \M. The trivial augmenting path is a single edge, that has both its endpoints unmatched.
Throughout this paper, we call such an edge a free edge. If we take an augmenting path
and resolve it by matching every unmatched edge and unmatching every matched edge, we
increase the cardinality of the matching by one. Any matching without augmenting paths is a
maximum matching [5] and any matching with no augmenting paths of length at most 2k− 3
is a (k/(k − 1))-approximate maximum matching [23]. Hence, a maximal matching having
no augmenting paths of length one (or free edges) is a 2-approximate maximum matching.
Throughout the paper, we omit the inverse Ackermann function from complexity statements.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:3

Our focus in this paper are fully dynamic graphs, where the number of vertices is fixed,
but edges can be added and removed. All the algorithms evaluated can handle edge insertions
as well as edge deletions. In the following, ∆ denotes the maximum degree that can be found
in any state of the dynamic graph.

2.2 Related Work
Computing large or maximum matchings in graphs is a well researched topic. Edmonds [17]
gave an algorithm that can compute a maximum cardinality matching in a static graph
in time O(mn2). This result was later improved to O(mn0.5) by Micali and Vazirani [31].
Recently, algorithms use simple data reductions rules such as [25] to speed up computations,
or shrink-trees instead of blossoms [16] to speed up computations in static graphs. In practice,
these algorithms can still be time consuming for many applications involving large graphs.
Hence, several near linear time approximation algorithms exist in practice such as the local
max algorithm [11], the path growing algorithm [15] and the global paths algorithm [28]. As
the focus of this work are dynamic graphs, we refer the reader to the quite extensive related
work section of [16] for more recent static matching algorithms.

In the dynamic setting, the maximum matching problem has been prominently studied
ensuring α-approximate guarantees. A major exception is the randomized algorithm by
Sankowski [36] which maintains a maximum matching in O(n1.495) update time. One can
trivially maintain a maximal (2-approximate) matching in O(n) update time by resolving
all trivial augmenting paths of length one. Ivković and Llyod [24] designed the first fully
dynamic algorithm to improve this bound to O((n + m)

√
2/2) update time. Later, Onak

and Rubinfeld [34] presented a randomized algorithm for maintaining a O(1)-approximate
matching in a dynamic graph that takes O(log2 n) expected amortized time for each edge
update. This result led to a flurry of results in this area. Baswana, Gupta and Sen [4] improved
the approximation ratio of [34] from O(1) to 2 and the amortized update time to O(logn).
Further, Solomon [38] improved the update time of [4] from amortized O(logn) to constant.
However, the first deterministic data structure improving [24] was given by Bhattacharya
et al. [8] maintaining (3 + ε) approximate matching in Õ(min(

√
n,m1/3/ε2)) amortized

update time, which was further improved to (2 + ε) requiring O(logn/ε2) update time by
Bhattacharya et al. [9]. Recently, Bhattacharya et al. [7] achieved the first O(1) amortized
update time for a deterministic algorithm but for a weaker approximation guarantee of O(1).
For worst-case bounds, the best results are by Gupta and Peng [21] requiring O(

√
m/ε) update

time for (1 + ε) approximation, Neiman and Solomon [33] requiring O(
√
m) update time for

3/2 approximation, Bernstein and Stein [6] requiring m1/4/ε2.5 for (3/2 + ε) approximation.
Recently, Charikar and Solomon [12], and Arar et al. [2] (using [10]), independently presented
the first algorithms requiring O(poly logn) worst-case update time both maintaining (2 + ε)
approximation. Recently, Grandoni et al. [20] gave an incremental matching algorithm that
achieves a (1 + ε)-approximate matching in constant deterministic amortized time. Despite
this variety of different algorithms, to the best of our knowledge, there has been no effort
made so far, to engineer and evaluate these algorithms on real-world instances.

3 Algorithms

We now present the fully dynamic algorithms for the maximal matching problem under
consideration. We implemented and tested a variety of simple, combinatorial algorithms that
seemed likely to work well in practice. We begin with random walk based dynamic algorithms,
followed by dynamic algorithms based on (bounded) augmenting path search and finally

ESA 2020

58:4 Dynamic Matching Algorithms in Practice

review the algorithms by Baswana, Gupta and Sen [4] and Neiman and Solomon [33]. All of
the algorithms are fully dynamic. Throughout this section, we provide a brief description
of these algorithms and their implementation. In each case, we explain how we handle
initialization, edge insertions and edge deletions separately.

3.1 Random Walk-based Algorithms

In general finding long augmenting paths in networks is an expensive step. The main idea of
the random walk based methods proposed in this section is to use random walks in order
to detect augmenting paths, and hence to improve the size of the matching. We start by
explaining the general idea to use random walks for finding augmenting paths and then
explain how we handle edge insertions and deletions.

3.1.1 Random Walks For Augmenting Paths

The algorithm works as follows: we start at a free vertex u and randomly choose a neighbour
w of u. If this neighbour is free, then we match the edge (u,w) and our random walk
stops. If w is matched, we unmatch (w,mate(w)) and match (u,w). Note that u 6= mate(w)
since u is free in the beginning and therefore mate(u) = ⊥, but mate(mate(w)) = w and
w 6= ⊥. Afterwards, the previous mate of w is free. Hence, we continue our random walk at
this vertex. Our random walk performs O(1

ε) steps (see below). Here, ε basically controls
the quality of the matching (see below). Since picking a random neighbor can be done in
constant time, the overall time for the random walk update algorithm is O(1

ε). Note that the
length of the random walk is a natural parameter of the algorithm that we will investigate in
the experimental evaluation.

Also note that if the algorithm does not end by matching two free vertices, the matching
may not be maximal even if it was initially – this can be the case if the vertex freed last
is incident to a free vertex. There are multiple possibilities to fix this. Our default is to
undo all changes that have been done in this case. The overall running time of a random
walk is then O(1/ε). Another possibility is ∆-settling: The algorithm tries to settle visited
vertices. The algorithm scans through their neighbors to find a free vertex and stops if once
it was successful or the number of steps exceeds 1/ε. If the random walk was not successful,
the algorithm tries to match the last vertex touched by the random walk by scanning its
neighbors instead of undoing all changes. This also ensures that the matching is maximal
but requires O(∆) additional time per visited vertex. The running time of the ∆-settling
random walk is then O(∆/ε).

We now explain how we perform edge insertions and deletions.

Edge Insertion. Our algorithm handles edge insertions as follows: when inserting an edge
(u, v), if both the endpoints are free, we match it. Note that the simple algorithms stops
here if at least one of the endpoints is not free. The random walk based algorithms try to
improve insertion by doing the following: If both endpoints are matched, thus prohibiting to
match the inserted edge, we do nothing. If only one of the endpoints is matched, w.l.o.g let
this be u, we unmatch u and w := mate(u) and match (u, v). We then start a random walk
as described above to find augmenting paths from w. If the random walk is unsuccessful to
further increase the size of the matching, we undo all changes and restore the matching to
the state before we unmatched u and w.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:5

Edge Deletion. Deleting a matched edge (u, v) leaves the two endpoints u and v free. If
possible, our algorithm matches them in O(∆) time by scanning their neighbors in order to
maintain a maximal matching. If u and v cannot be matched and the matching before edge
deletion was maximal, then the matching remains maximal. However, a free vertex may be a
starting point for an augmenting path of arbitrary length. Hence, we start a random walk as
described above from u if it is free and do the same for v.

3.1.2 Analysis
The algorithm can maintain a (1 + ε)-approximation, if the random walks are of appropriate
length and repeated sufficiently often. More precisely, if the algorithm uses random paths of
length 2/ε− 1 and the process is repeated until successful or ∆2/ε−1 logn times, then with
high probability the matching is a (1 + ε) approximation of the maximum matching (at each
point in time).

I Lemma 1. The random walk based algorithm maintains a (1 + ε)-approximate maximum
matching if the length of the walk is 2/ε− 1 and the walks are repeated ∆2/ε−1 logn times.

Proof. If no augmenting path of length ≤ 2/ε− 1 exists, then the matching is a (1/ε+1
1/ε) =

(1 + ε)-approximate maximum matching. To see this, rewrite the length of the path to
2(1/ε+ 1)− 3 and set k = 1/ε+ 1 in the approximation lemma above. If there is such a path
from a free node, then the probability of finding it is ≥ (1

∆)2/ε−1 since one possibility is the
that random walker makes the “correct” decision at every vertex of the path. The probability
that λ random walks of length 2/ε− 1 do not find an augmenting path of length 2/ε− 1 is
≤ (1− 1

∆2/ε−1)λ ≤ e−
1

∆2/ε−1 ·λ. Thus for λ ≥ ∆2/ε−1 logn the probability is ≤ 1/n. J

Parallelization. Note that multiple repetitions of the random walks can be easily parallelized
as they are completely independent if changes are made thread-local. If one random walker
finds an augmenting path, it is accepted and the other random walkers can be stopped.

3.2 Blossom-based (Optimum) Algorithms
Note that the random walk algorithm also yields a static (1 + ε)-approximate maximum
matching algorithm: use a simple greedy algorithm as initialization and then run the random
walks as stated above from the remaining free nodes. However, the amount of repetitions to
achieve the approximation is fairly high. Simply, running a modified BFS to find augmenting
paths bounded in depth by 2/ε− 1 from a free node has a theoretically faster running time
O(∆2/ε−1) per free node. Note however that the theoretical bound for the dynamic random
walk algorithm is fairly pessimistic: our algorithm stops as soon as one augmenting path has
been found – this path can also be shorter or in practice there may be multiple possibilities
for augmenting paths so that the probability of finding it increases. So the natural question
arises, whether a bounded augmenting path search is superior over random walk based
methods stated above. Hence, we propose the following dynamic algorithms for the dynamic
matching problem.

In most implementations (such as Boost [37]) finding an augmenting path starting from
a free node takes Ω(n+m) running time due to initialization of the data structures of the
modified BFS. These data structures are initialized every time an augmenting path search
is started. Hence, the observed performance of Edmonds blossom algorithm to find an
optimum matching in libraries such as Boost is Θ(n(n+m)) if no algorithm to initialize the
matching is used and O(F (n + m)) if some greedy algorithm is used as initialization and

ESA 2020

58:6 Dynamic Matching Algorithms in Practice

F is the number of remaining free nodes after greedy initialization. The later is the reason
why in practice greedy initialization strategies generally help to find optimum matchings.
However, finding an augmenting path can easily be implemented such that it a) stops as
soon as an augmenting path is found, and b) has running time Θ(n′ +m′), where n′ and m′
refers to the number of nodes and edges touched by the augmenting path search modified
BFS [39, 29]. The first augmenting path search needs time O(n+m) to initialize the typical
data structures. All searches then do book keeping of the changes they made in the data
structures and undo them afterwards. Note that this clearly changes the behaviour of the
algorithm in practice: if there are many short augmenting paths the algorithm will run much
faster than Θ(n(n+m)). The implementation does not change the worst-case complexity,
but improves the best case to O(m) [29]. In fact, in our experience the static version of our
implementation scales close to linear in m in practice (as there are many short augmenting
paths in real world instances). In the following, we always use this variant of augmenting
path search and each of the dynamic operations does book keeping to be able to quickly
search for augmenting paths.

Edge Insertion. Let (u, v) be the inserted edge. If u and v are free, then we match that
edge directly. Otherwise, we start an augmenting path search from u if u is free and from v

if v is free. If both u and v are not free, then we perform a breadth first search from u to
find a free node reachable via an alternating path. From this node we start an augmenting
path search. Note that an augmenting path must use (u, v) as both connected components
did not contain an augmenting path with the component before as the algorithm maintains
a maximum matching. Also note that the last case will be an expensive step in practice as
the algorithm tries to maintain a maximum matching, newly inserted edges will often not
result in a new augmenting path and hence the augmenting path search takes Θ(n+m) time.
Without the third case of the algorithm, we call it unsafe. That is in case both u and v are
not free, the unsafe configuration of the algorithm does nothing.

Not using the unsafe option, the algorithm maintains a maximum matching. This is due
to the fact that if the graph did not contain an augmenting path before insertion, the only
way we can create one is due to the insertion of the new edge. The first and second case are
obvious. In the third case, after finding a single free node, the augmenting path search must
use the newly inserted edge (u, v) (which is not matched, but both endpoints are non-free).
Hence, it is sufficient to find a single free node. After running the augmenting path search,
the matching size has either increased by one, or there was no augmenting path. Hence,
the matching must be maximum. Lastly, note that the third case is only necessary if both
endpoints of the inserted edge are in different connected components.

Note that when considering insertions only, the algorithm is more expensive than just
running the static algorithm. This is due to the fact that the static algorithm runs an
augmenting path search from each free node once, while our dynamic algorithm does try to
find augmenting paths every time we insert an edge (since the graph may have changed at
other places not close to the inserted edge). The overall worst case complexity in this case is
O(m(n+m)) compared to O(n(n+m)) for the static algorithm. In our experiments, this
effect is especially noticeable if we start a search from a node where a previous augmenting
path search has been unsuccessful.

Hence, besides using the unsafe option which drops the property that the matching is
maximum, we propose the following optimization called lazy augmenting path search. Here,
we start an augmenting path search from u and v only if at least m′/2 edges have been
inserted or deleted since the last augmenting path search from u or v or no augmenting path

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:7

search has been started. Note that this effectively amortizes the cost for the augmenting
path search, yielding amortized constant time per edge. Our experiments indicate that this
speeds up the overall time of the algorithm drastically, while being only slightly worse than
the optimum algorithm. Our third optimization limits the search depth of the augmenting
path search to 2/ε − 1. This ensures that there is no augmenting path of length 2/ε − 1
and hence is a deterministic (1 + ε)-approximate matching algorithm (if the deletion part
algorithm ensures this as well, and the algorithm is run with the safe option). Note that
the worst case complexity of the optimum version of the insertion operation is O(n+m),
but in practice augmenting paths (if present) are much shorter. The bounded version of our
algorithm has, however, worse case complexity of O(∆2/ε−1).

Edge Deletion. Let (u, v) be the deleted edge. After the deletion we start an augmenting
path search from any free endpoint u or v. Depending on the configuration of the algorithm
this either does a full run for an augmenting path or stops when the augmenting path search
reached depth 2/ε− 1. In the first case, this guarantees that the matching is maximum if it
was maximum before and in the latter case, our algorithm maintains an (1 + ε) approximate
maximum matching. If case we use lazy augmenting path search, we start an (depth bounded)
augmenting path search from u and v only if at least m′/2 edges have been inserted or
deleted since the last augmenting path search from u or v. Otherwise, we limit augmenting
path search from u and v to augmenting paths of length min(3, 2/ε− 1).

3.3 Baswana, Gupta and Sen Algorithm
Baswana, Gupta and Sen (BGS) presented an randomized algorithm in [4], that maintains a
maximal matching in a dynamic graph in amortized O(

√
n) update time with high probability.

They also present a multi-level variant that runs in O(logn) amortized time. To be self
contained, we briefly review the main concepts of the algorithm and follow their description
closely.

Levels and Ownership of Edges. The algorithm uses the concept of ownership for edges.
More precisely, based upon the number of edges that a vertex owns, the algorithm partitions
the set of vertices into two levels 0 and 1. An edge is always owned by at least one of its
endpoints. If both endpoints are at level 0, then both vertices own the edge. If only one
endpoint is at level 1, then this endpoint owns the edge. If both endpoints are at level 1,
then exactly one endpoint, namely the first mentioned vertex owns the edge. If a new edge
(u, v) with level(u) = level(v) = 1 is inserted, it will therefore be owned by the vertex u.

Algorithm 1 Random-Settle(u): find a random edge (u, v) from the set of owned edges of u,
matches it and returns the previous mate of v.
Let (u, v) be a uniformly randomly selected edge from Ou
forall (v, w) ∈ Ou do

remove (v, w) from Ow
if v is matched then

x← mate(v); M ←M \ {(v, x)}
else

x← NULL
M ←M ∪ {(u, v)}, level(u)← 1, level(v)← 1
return z

ESA 2020

58:8 Dynamic Matching Algorithms in Practice

The set Ou denotes the set of edges owned by a vertex u. The level of an edge is defined
by level(e = {u, v}) = max(level(u), level(v)). BGS maintains the following invariants: (1)
Every vertex on level 1 is matched. (2) Every free vertex on level 0 has all neighbours
matched. (3) Every vertex on level 0 owns less then

√
n edges (at any moment of time). (4)

Both endpoints of each matched edge are on same level.

Edge Insertion. Let (u, v) be the edge being inserted. If either u or v are at level 1, then
there is no violation of any invariant. The algorithm adds (u, v) to Ou if level(u) = 1 and
to Ov otherwise. If both endpoints of (u, v) are at level 0, then the algorithm proceeds as
follows: If both endpoints are free, the edge is added to the matching. Adding the edge (u, v)
to the sets Ou and Ov increases the number of edges owned by u and v. If at least one set
Ou or Ov exceeds the threshold of

√
n in size, the vertex with the higher number of owned

edges will be repaired. Let u be that vertex. Repairing a vertex u is done by calling the
procedure Random-Settle on u. As a result, u moves to level 1 and gets matched to some
vertex y selected randomly uniformly from the set of owned edges Ou. The vertex y is also
moved to level 1 to satisfy invariant 4. If w and x were the earlier mates of u and y at level
0, respectively, then matching u and y has rendered w and x free. The algorithm tries to
settle each of those by scanning their set of owned edges for free vertices.

Edge Deletion. Let (u, v) be an edge that is deleted. If the edge has not been matched,
then after removing the edge from the graph all invariants still hold. If it has been matched,
then u and v are now free. Therefore, the first invariant may be violated. If (u, v) is at level
0, then the algorithm tries to settle both endpoints by scanning their sets of owned edges.
If (u, v) is at level 1, then u the algorithm does the following: First, u disowns all its edges
whose other endpoint is at level 1. If Ou is still greater than or equal to

√
n, then u stays at

level 1 and executes Random-Settle(u). If u owns less than
√
n edges, it moves to level 0

and tries to settle it by scanning its set of owned edges. The transition of u from level 1 to 0
leads to an increase in the number of edges owned by each of its neighbors at level 0. This
may violate the size constraint of owned edges for those neighbors. Hence, the algorithm calls
Random-Settle for each neighbor that violates the constraint, which moves it to level 1.

3.4 Neiman and Solomon Algorithm
In contrast to the BGS algorithm [4], which is randomized, Neiman and Solomon (NS) [33]
present a deterministic algorithm for maintaining a maximal matching in a dynamic graph.
Their approach guarantees, that the maintained matching is a 3/2-approximate maximum
matching and that update time is O(

√
m) in worst case, where m denotes the number of edges

present in the graph in the moment of the update. NS maintains the following invariants:
There are no augmenting paths of length ≤ 3, ensuring 3/2-approx matching. All free vertices
have degree at most

√
2n+ 2m.

I Lemma 2 ([33]). Any free vertex of degree larger than
√
m can always be matched, so as

to generate a free vertex with degree less than
√
m. This can be achieved in O(

√
m) time.

Edge Insertion. Let (u, v) be the edge being inserted. If both the endpoints are free, the
edge is simply added to the matching. Also, if both endpoints are matched it does not entail
any further processing. However, if exactly one endpoint of the edge, say u, is matched,
they try to remove a possible augmenting path of length 3 as follows. The neighbours of
the mate of u say u′ = mate(u), are scanned for a free vertex, say x. If such a free vertex
exists, an augmenting path of length 3 has been found, which is augmented increasing the
matching size.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:9

Edge Deletion. Let (u, v) be the edge being deleted. If the edge was unmatched, its deletion
cannot create any new augmenting paths. However, if it was a matched edge, both the
endpoints become free after the edge deletion. First, the algorithm checks for both freed
vertices whether they have free neighbours and if so matches the freed vertices with those
free neighbours. Now, in order to eliminate augmenting paths of length 3 starting from a free
vertex, say u, all neighbours w of u are scanned checking if mate(w) has a free neighbour.
By providing appropriate data structures, this can be done in O(

√
n) time. If an augmenting

path has been found, it is augmented increasing the size of the matching by one. If no
augmenting path has been found, vertex u remains free, but only if its degree is at most√

2m. If the degree of u exceeds
√

2m, using Lemma 2 a surrogate can be found in O(
√
m).

The overall update time of the algorithm is bound by the bounded degree of all free vertices,
making any linear search through the neighbourhood N(u) of a vertex u cost at most
O(
√
n+m). Bounding the degree can further be achieved in O(

√
m) time using Lemma 2.

4 Experimental Evaluation

Implementation and System

We implemented the algorithms described in the previous section. The codes are written in
C++ and have been compiled using g++-7.3.0 with flags -O3. All codes are sequential. We
plan to further improve the codes and then to release them to make it available to a larger
audience. Our experiments are conducted on one core of a machine with AMD Opteron
Processors 6174 with 2.2GHz and 256GB of RAM. Dynamic Graph Data Structure: our
algorithms use the following dynamic graph data structure. For each node v, we maintain a
vector Lv of adjacent nodes, and a hash table Hv that maps a vertex u that is incident to v
to its position in Lv. This data structure allows for expected constant time insertion and
deletion as well as a constant time operation to select a random neighbor of v. The deletion
operation on (v, u) is implemented as follows: get the position of u in Lv via a lookup in
Hv(u). Swap the element in Lv with the last element w in the vector and update the position
of w in Hv. Finally, pop the last element (now u) from Lv and delete its entry from Hv.

Instances and Methodology

By default we perform ten repetitions per instance. We measure the total time taken
to compute all edge insertions and deletions and generally use the geometric mean when
averaging over different instances in order to give every instance a comparable influence on
the final result. In order to compare different algorithms, we use performance profiles [14].
These plots relate the matching size / running time of all algorithms to the corresponding
matching size / running time produced / consumed by each algorithm. More precisely, the
y-axis shows #{objective ≥ τ ∗best}/#instances, where objective corresponds to the result of
an algorithm on an instance and best refers to the best result of any algorithm shown within
the plot. When we look at running time, the y-axis shows #{t≤ fastest/τ}/#instances (as a
function of the parameter τ), where t corresponds to the time of an algorithm on an instance
and fastest refers to the time of the fastest algorithm on that instance. The parameter τ ≤ 1
in this equation is plotted on the x-axis. For each algorithm, this yields a non-decreasing,
piecewise constant function. Thus, if we are interested in the number of instances where an
algorithm is the best/fastest, we only need to look at τ = 1.

ESA 2020

58:10 Dynamic Matching Algorithms in Practice

Instances
We evaluate our algorithms on a number of large graphs. These graphs are collected from
[3, 13, 27, 26, 35]. Table 3 summarizes the main properties of the benchmark set. Our
benchmark set includes a number of graphs from numeric simulations as well as complex
networks. These include static graphs as well as real dynamic graphs. As our algorithms do
only handle undirected graphs, we consider all input graphs to be undirected by ignoring
edge directions and we remove self-loops and parallel edges. We perform two different types
of experiments. First, we use the algorithms using insertions only, i.e. we start with an
empty graph and insert all edges of the static graph in a random order. We do this with
all graphs from Table 3. Second, we use real dynamic instances from Table 4. Most of
these instances, however, only feature insertions (with the exception being dewiki and
wiki-simple-en which have both real insert and real delete operations). Hence, we perform
additional experiments with fully dynamic graphs from these inputs, by undoing x percent
of the update operations performed last.

4.1 Random Walk and Blossom-based Algorithms
In this section, we use our algorithms with random insertions only. More precisely, we
use the static graphs from Table 3. For each experiment, we start with an empty graph
and insert edges of the static input in random order until all edges are insert all edges are
inserted compare the result of our dynamic algorithms the maximum matching on the final
graph Edmond [17].

Random Walk-Based Algorithms. We start with random walk-based algorithms. Prelimin-
ary experiments have shown that decreasing ε is more effective in getting better solutions than
performing more repeated random walks at the start node. Hence, we exclude algorithms that
perform multiple repetitions of random walks per insert operation here from the evaluation
and focus on the different values of ε. We vary ε ∈ {0.1, 0.25, 0.5, 1, 2}. Recall that the path
length of a single random walk is then bounded by 2/ε− 1. If all paths of that length were
explored, the algorithms would be guaranteed to give a (1 + ε)-approximation. Figure 1 sum-
marizes the result. It is not surprising that the algorithm needs more running time for smaller
ε, but also yields better results with increasing path lengths. On average, the algorithm is
2.4%, 3.2%, 4.2%, 5.5%, 11.5% percent away from the optimum for ε = 0.1, 0.25, 0.5, 1, 2
respectively. Thus, even though the algorithms are not guaranteed to explore all paths of
length 2/ε − 1, they achieve in practice an approximation that is much better than the
theoretical bound for algorithms that explore all such paths. The strongest configuration
(ε = 0.1) is at most 1% away from the optimum matching size in 50% of the cases. Note that
the random walk algorithm does not achieve the guarantee of 1% approximation as claimed
by Lemma 1 since we did not perform the vast amount of repetitions necessary to get the
result in expectation – instead we performed a single repetition of the random walker for
each insertion. As excepted the running time does increase with decreasing ε. However, due
to random walks that can finish early because they managed to match an edge, the effect is
less visible than theory expects. The running time increase over the random walk using ε = 2
(which is essentially a random walker not allowed to move, and hence boils down to the very
simple greedy algorithm), is 12%, 17%, 21%, 27% for ε = 1, 0.5, 0.25, 0.1, respectively.

Enabling ∆-settling generally improves the result. On average, the random walk with
∆-settling is now 1.1%, 1.4%, 1.8%, 2.2%, 3.7% away from the optimum matching for
ε = 0.1, 0.25, 0.5, 1, 2, respectively. On average in our experiments using ∆-settling has a
negligible impact on running time. Hence, we recommend to use ∆-settling when using
random walk-based algorithms and do so in the following unless otherwise mentioned.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1

re
l.

in

st
an

ce
s

≥
τ

op
t

τ

 Quality Random Walks

Opt
Random Walk ε=0.1

Random Walk ε=0.25
Random Walk ε=0.5

Random Walk ε=1
Random Walk ε=2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.975 0.98 0.985 0.99 0.995 1

re
l.

in

st
an

ce
s

≥
τ

op
t

τ

 Quality Blossom-Based

Opt
Unsafe Dyn Opt

Unsafe Dyn Opt+LP
Unsafe Dyn Opt ε=0.1

Unsafe Dyn Opt+LP ε=0.1
Unsafe Dyn Opt ε=0.25

Unsafe Dyn Opt+LP ε=0.25

Figure 1 Performance profile for matching size |M| for Random Walk and for Unsafe Dyn Opt.

(Optimum) Blossom-Based Algorithms. We now consider dynamic blossom-based al-
gorithms from Section 3.2. We start this section with the version of the algorithm that
maintains the optimum matching, and compare it to the naive dynamic optimum matching
algorithm that recomputes a maximum matching from scratch each time an edge is inserted.
Since the running time of the naive optimum algorithm is fairly excessive, we run it only
on the graphs of our benchmark set having less than 25k nodes. First of all, our dynamic
algorithm that maintains the optimum matching is more than an order of magnitude faster
than the naive optimum algorithm (roughly a factor 12). We expect that the difference will
be even more pronounced if even larger graphs are used. Running our dynamic optimum
algorithm with the unsafe option indeed significantly speeds up the algorithm – the lazy
augmenting path search configuration is more than two orders of magnitude over the safe
version of our algorithm (roughly a factor 115). The improvements in running time stem

ESA 2020

58:12 Dynamic Matching Algorithms in Practice

from the fact that our algorithms try to maintain a very large matching. Hence, the case
that is executed by the safe option often does not find an augmenting path which implies
that the augmenting path search has to look at the overall network and hence reaches its
worst-case complexity. Of course, the unsafe option does not have a guarantee on optimality
anymore. In our experiments, the unsafe option computes matchings that are 0.02% worse
than the optimum on average. We conclude that the algorithm maintains near-optimum
matchings while being three orders of magnitude faster than the naive optimum dynamic
algorithm. Henceforth, we only consider the unsafe version of our algorithm.

We now switch our set of graphs back to all of our benchmark graphs from Table 3. Using
lazy augmenting path search in the unsafe algorithm additionally speedups up computations.
Unsafe+LP is on average 20.5 faster than the unsafe algorithm without lazy augmenting
path search – again at the cost of solution quality. The algorithm is already only 30% slower
than running the static algorithm a single time on the final graph that contains all edges. On
the other hand, the unsafe dynamic algorithm using lazy augmenting path search computes
0.6% worse matchings that the unsafe algorithm without lazy augmenting path search.

Lastly, we focus on the third variation of the algorithm, which is to bound the depth of
the augmenting path search to that is done during update operations. The depth is bounded
to 2/ε− 1 so that given ε and running the safe option of the algorithm would maintain a
1 + ε approximate matching. We, however, only consider the unsafe version of the algorithm.
We use same values of ε = 0.1, 0.25, 0.5, 1 as in the random walk-based algorithms section,
but do not consider ε = 2, since this is again essentially the very simple greedy algorithm.
Moreover, we run the algorithm with and without the lazy augmenting path search.

First of all, running without lazy augmenting path search, the algorithm indeed maintains
the approximation guarantee. On average, the algorithm is 0.1%, 0.4%, 1.5% and 3.6%
worse than the optimum algorithm for ε = 0.1, 0.25, 0.5, 1, respectively. Using the lazy
augmenting path search, speeds up to algorithm by a factor of 5.52, 2.65, 2.03, 1.76 for
ε = 0.1, 0.25, 0.5, 1, respectively. With lazy augmenting path search, the algorithm is 0.6%,
1.00%, 2.2%, 4.3% worse than the optimum for ε = 0.1, 0.25, 0.5, 1, respectively (and hence
still achieves the approximation guarantee). The algorithm using ε = 0.1 is only 0.2% worse
than the algorithm not bounding the depth. However, the algorithm is also not much faster.
On average, bounding the search depth with ε = 0.1 improves running time by 6%. Figure 1
shows a summarizing performance profile.

4.2 Comparison of Algorithms
Dynamic Sequences from Static Graphs. We now compare all of the different non-optimal
algorithms against each other for the insertion-only case. For random-walks, we always enable
∆-settling, for blossom-based algorithm always use the unsafe option and with and without
lazy augmenting path search. Table 1 shows average results for matching size and running
time after all edges and operations have been performed. Figure 2 shows performance profiles
for running time and for matching size.

First of all, both the blossom-based (with lazy augmenting path search) and random
walk-based algorithms dominate the algorithms by Neiman Solomon and Baswana Gupta Sen
(BGS). The algorithms find consistently larger matchings and do so in less time. However,
note that the real-world instances we look at rarely have nodes with more than

√
n neighbors,

so that the BGS algorithm is roughly similar to the simple greedy algorithm. We also try to
use c ·

√
n as a threshold for different values of c, but this always resulted in worse matching

sizes.

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

re
l.
 #

 i
n
s
ta

n
c
e
s
 ≥

 τ
 o

p
t

τ

 Quality

Opt
Unsafe Dyn Opt+LP ε=0.1

Unsafe Dyn Opt+LP ε=0.25
Random Walk Δ ε=0.1

Random Walk Δ ε=0.25
Neiman Solomon

BGS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

re
l.
 #

 i
n
s
ta

n
c
e
s
 t

A
 <

 f
a
s
te

s
t
a
lg

o
/τ

τ

Time

Unsafe Dyn Opt+LP ε=0.1
Unsafe Dyn Opt+LP ε=0.25

Random Walk Δ ε=0.1
Random Walk Δ ε=0.25

Neiman Solomon
BGS

Figure 2 Performance profile for matching size |M| and time for all algorithms. In all cases, if
an algorithm has a curve closer to the upper left corner, then the algorithm is better.

In general, performance differences in running time are not very big (except if we don’t
use lazy augmenting path search in the blossom-based algorithms). Secondly, for the same
values of ε the blossom-based algorithms compute slightly better results than their random
walk-based counter parts. This is not surprising as the blossom-based algorithms explore
larger subgraphs for each edge that has been inserted. We conclude here that both types of
algorithms are feasible in practice and have an advantage in solution quality over Neiman
Solomon and Baswana Gupta Sen on graphs with random insertions. Moreover, both of
these algorithm yield a clear trade-off between running time and solution quality via the ε
parameter. On the other hand, all of the algorithms considered here are roughly five orders
of magnitude faster than the naive dynamic optimum algorithm (only considering instances
having less than 25k nodes) and except Baswana Gupta Sen, all of these algorithms are
within a 4% range of the optimum matching size.

ESA 2020

58:14 Dynamic Matching Algorithms in Practice

Real-World Dynamic Instances. We now switch to the real-world dynamic instances. As
already mentioned, most of these instances are insertion-only. Hence, we perform additional
experiments with fully dynamic graphs from these inputs, by undoing x percent of the update
operations performed last (call them Ox). More precisely, we perform the operations in Ox
in reverse order. More precisely, if an edge operation was an insertion in Ox, we perform a
delete operation and if it was a delete operation we insert it. As before, we compute the
update on the graph after each removal/insertion. The connection to practice in this case,
is that with undoing operations, we want to restore a previous state. Table 2 summarizes
the results of the experiment and Figure 3 compares the algorithms on the two real-world
dynamic graphs dewiki and wiki_simple_en. Overall, the situation is similar to experiments
with random insertions that we have seen before. The random walk with ∆-settling and
ε = 0.5 dominates Baswana, Gupta, Sen and Neiman Solomon in terms of running time and
matching size for every number of undo operations. The blossom-based algorithm with lazy
path search, however, yields smaller matchings if no operations are undone. We believe that
this is due to the edges not being inserted randomly and hence the lazy augmenting path
search heuristic is less effective, and misses augmenting paths that have been created over
time. If operations are undone, the blossom-based algorithms outperform Neiman Solomon
in terms of matching size, but are also considerably slower as the deletion operations search
for augmenting paths of lengths three (except for ε = 1). The blossom-based algorithm
without lazy augmenting path search get very close to the optimum solutions. The best
algorithm here is blossom-based algorithm without lazy augmenting path search for ε = 1/3.
On average, it computes solutions that are < 0.6% away from the optimum (for every amount
of undo operations done).

In general, all algorithms improve quality relative to the optimum matching size, if we
undo operations. This is due to the fact that the matching may have changed over time
and hence new (short) augmenting paths may be found. In case of random-walks this is
also simply due to the fact that additional work is performed and the likelihood to find
an augmenting path is increased by running additional random walks. Summing up, all
of the algorithms, except Baswana, Gupta, Sen, compute/maintain very large matchings.
Blossom-based and random walk-based algorithm are highly flexible and are able to trade
solution quality for time. Overall, random walk-based algorithms seem to be the method of
choice in practice.

Table 1 Random insertions from static graphs: mean of the matching size relative to optimum after
all operations have been done as well as mean increase in running time over Random Walk,∆,ε = 0.25.

algorithm mean |M| / |Mopt| rel. time

BGS 0.885 32%
Neiman Solomon 0.964 28%
Unsafe Dyn Opt+LP ε = 0.1 0.994 27%
Unsafe Dyn Opt+LP ε = 0.25 0.990 11%
Unsafe Dyn Opt ε = 0.1 0.999 613%
Unsafe Dyn Opt ε = 0.25 0.996 192%
Unsafe Dyn Opt ε = 0.5 0.985 101%
Unsafe Dyn Opt ε = 1 0.964 67%
Random Walk,∆ ε = 0.1 0.989 5%
Random Walk,∆ ε = 0.25 0.986 1

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:15

Table 2 Real-world dynamic instances: mean of the matching size relative to optimum after all
operations have been done as well as the mean increase in running time over Random Walk,∆,ε = 0.5.

undo op 0 5% 10% 25%

algorithm mean |M| / |Mopt|

BGS 0.845 0.847 0.848 0.851
Neiman Solomon 0.968 0.971 0.973 0.976
Unsafe Dyn Opt+LP ε = 0.1 0.947 0.985 0.990 0.996
Unsafe Dyn Opt+LP ε = 0.25 0.942 0.982 0.988 0.993
Unsafe Dyn Opt ε = 0.33 0.994 0.996 0.997 0.998
Unsafe Dyn Opt ε = 0.5 0.988 0.991 0.992 0.994
Unsafe Dyn Opt ε = 1 0.968 0.971 0.973 0.976
Random Walk,∆ ε = 0.1 0.982 0.984 0.985 0.986
Random Walk,∆ ε = 0.25 0.981 0.983 0.984 0.985
Random Walk,∆ ε = 0.5 0.978 0.980 0.981 0.982

algorithm rel. time

BGS 4% 14% 13% 18%
Neiman Solomon 64% 82% 92% 112%
Unsafe Dyn Opt+LP ε = 0.1 82% 306% 383% 633%
Unsafe Dyn Opt+LP ε = 0.25 23% 149% 200% 346%
Unsafe Dyn Opt ε = 0.33 1 551% 1 551% 1 598% 1814%
Unsafe Dyn Opt ε = 0.5 679% 682% 713% 800%
Unsafe Dyn Opt ε = 1 210% 212% 223% 250%
Random Walk,∆ ε = 0.1 25% 26% 24% 24%
Random Walk,∆ ε = 0.25 10% 11% 9% 11%
Random Walk,∆ ε = 0.5 1 1 1 1

5 Conclusion

We looked at several dynamic matching algorithms including Baswana, Gupta and Sen [4],
Neiman and Solomon [33], as well as random walk-based algorithms and blossom-based
algorithms. We performed extensive experiments comparing the performance of these
algorithms on the real-world and artificially generated instances. In terms of results, first we
have shown that maintaining optimum matchings can be done much more efficiently than
the naive algorithm that recomputes maximum matchings from scratch. Second, we have
seen that all non-optimum dynamic algorithms that we considered in this work are able to
maintain near-optimum matchings in practice while being multiple orders of magnitudes
faster than the naive optimum dynamic algorithm. In practice, random walk-based algorithms
with ∆-settling will be the method of choice.

In future work, it may be interesting to transfer results to the weighted case, and to
combine our algorithms with simple data reductions rules such as [25]. It could be interesting
to use these dynamic matching algorithms to derive dynamic multilevel algorithms for
example for graph partitioning [32, 1]. Another direction will be to explore the parallelization
potential of random walk-based algorithms. Lastly, it may be interesting to incorporate
dynamic transitive closure algorithms (e.g. [22]) into the delete operation of the dynamic
optimum matching algorithm to further reduce the number of augmenting path searches.

ESA 2020

58:16 Dynamic Matching Algorithms in Practice

 1.16

 1.18

 1.2

 1.22

 1.24

 1.26

0 400 000 000

|M
|
/
|M

| B
G

S

ops

dewiki

Unsafe Dyn ε=0.3
Unsafe Dyn ε=0.5

Random Walk Δ ε=0.1
Random Walk Δ ε=0.5

Neiman Solomon

 1.1

 1.12

 1.14

 1.16

 1.18

 1.2

 1.22

0 800 000

|M
|
/
|M

| B
G

S

ops

wiki simple en

Unsafe Dyn ε=0.3
Unsafe Dyn ε=0.5

Random Walk Δ ε=0.1
Random Walk Δ ε=0.5

Neiman Solomon

Figure 3 Matching size over time compared to Baswana, Gupta, Sen on the two real dynamic
instances dewiki and wiki_simple_en.

References
1 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-quality shared-memory

graph partitioning. In Marco Aldinucci, Luca Padovani, and Massimo Torquati, editors, Euro-
Par 2018: Parallel Processing - 24th International Conference on Parallel and Distributed
Computing, Turin, Italy, August 27-31, 2018, Proceedings, volume 11014 of Lecture Notes in
Computer Science, pages 659–671. Springer, 2018. doi:10.1007/978-3-319-96983-1_47.

2 Moab Arar, Shiri Chechik, Sarel Cohen, Cliff Stein, and David Wajc. Dynamic matching:
Reducing integral algorithms to approximately-maximal fractional algorithms. In 45th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2018, pages 7:1–7:16,
2018.

3 D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking
for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining.
Springer, 2014.

https://doi.org/10.1007/978-3-319-96983-1_47

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:17

4 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
O(logn) update time. SIAM J. Comput., 44(1):88–113, 2015.

5 Claude Berge. Two theorems in graph theory. Proceedings of the National Academy of Sciences,
43(9):842–844, 1957. doi:10.1073/pnas.43.9.842.

6 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Proceedings of the 27th Symposium on Discrete Algorithms SODA, pages 692–711.
SIAM, 2016. doi:10.1137/1.9781611974331.ch50.

7 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic fully
dynamic approximate vertex cover and fractional matching in O(1) amortized update time.
In 19th International Conf. on Integer Programming and Combinatorial Optimization IPCO,
pages 86–98, 2017.

8 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. SIAM J. Comput., 47(3):859–887, 2018.

9 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approx-
imation algorithms for fully dynamic matching. In Proceedings of the 48th Annual Symposium
on Theory of Computing, pages 398–411. ACM, 2016.

10 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms SODA, pages 470–489. SIAM, 2017.

11 Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari Sitchinava. Efficient
parallel and external matching. In Euro-Par 2013, volume 8097 of LNCS, pages 659–670.
Springer, 2013. doi:10.1007/978-3-642-40047-6_66.

12 Moses Charikar and Shay Solomon. Fully dynamic almost-maximal matching: Breaking the
polynomial worst-case time barrier. In 45th International Colloquium on Automata, Languages,
and Programming ICALP, pages 33:1–33:14, 2018.

13 T. Davis. The University of Florida Sparse Matrix Collection, http://www.cise.ufl.
edu/research/sparse/matrices, 2008. URL: http://www.cise.ufl.edu/research/sparse/
matrices/.

14 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with performance
profiles. Math. Program., 91(2):201–213, 2002. doi:10.1007/s101070100263.

15 D. Drake and S. Hougardy. A Simple Approximation Algorithm for the Weighted Matching
Problem. Information Processing Letters, 85:211–213, 2003.

16 Andre Droschinsky, Petra Mutzel, and Erik Thordsen. Shrinking trees not blossoms: A recursive
maximum matching approach. In Proceedings of the Symposium on Algorithm Engineering and
Experiments, ALENEX 2020, pages 146–160. SIAM, 2020. doi:10.1137/1.9781611976007.12.

17 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17(3):449–467,
1965.

18 Harold Neil Gabow. Implementation of Algorithms for Maximum Matching on Nonbipartite
Graphs. PhD thesis, Stanford University, Stanford, CA, USA, 1974.

19 Zvi Galil, Silvio Micali, and Harold N. Gabow. An O(|E||V| log |V|) algorithm for finding
a maximal weighted matching in general graphs. SIAM Journal Computing, 15(1):120–130,
1986.

20 Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay
Solomon. (1 + ε)-approximate incremental matching in constant deterministic amortized time.
In Proceedings of the 20th Symposium on Discrete Algorithms, pages 1886–1898. SIAM, 2019.
doi:10.1137/1.9781611975482.114.

21 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In 54th
Symposium on Foundations of Computer Science, FOCS, pages 548–557. IEEE Computer
Society, 2013. doi:10.1109/FOCS.2013.65.

ESA 2020

https://doi.org/10.1073/pnas.43.9.842
https://doi.org/10.1137/1.9781611974331.ch50
https://doi.org/10.1007/978-3-642-40047-6_66
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1007/s101070100263
https://doi.org/10.1137/1.9781611976007.12
https://doi.org/10.1137/1.9781611975482.114
https://doi.org/10.1109/FOCS.2013.65

58:18 Dynamic Matching Algorithms in Practice

22 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster fully dynamic transitive
closure in practice. In Simone Faro and Domenico Cantone, editors, 18th International
Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy, volume
160 of LIPIcs, pages 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.SEA.2020.14.

23 J. E. Hopcroft and R. M. Karp. A n5/2 algorithm for maximum matchings in bipartite. In
12th Annual Symposium on Switching and Automata Theory (SWAT), pages 122–125, 1971.
doi:10.1109/SWAT.1971.1.

24 Zoran Ivkovic and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In 19th
International Workshop Graph-Theoretic Concepts in Computer Science, volume 790 of LNCS,
pages 99–111, 1993.

25 Viatcheslav Korenwein, André Nichterlein, Rolf Niedermeier, and Philipp Zschoche. Data
reduction for maximum matching on real-world graphs: Theory and experiments. In 26th
European Symposium on Algorithms ESA, volume 112 of LIPIcs, pages 53:1–53:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2018. doi:10.4230/LIPIcs.ESA.2018.53.

26 Jérôme Kunegis. KONECT: the koblenz network collection. In Leslie Carr, Alberto H. F.
Laender, Bernadette Farias Lóscio, Irwin King, Marcus Fontoura, Denny Vrandecic, Lora
Aroyo, José Palazzo M. de Oliveira, Fernanda Lima, and Erik Wilde, editors, 22nd World Wide
Web Conference, WWW ’13, pages 1343–1350. International World Wide Web Conferences
Steering Committee / ACM, 2013. doi:10.1145/2487788.2488173.

27 J. Lescovec. Stanford Network Analysis Package (SNAP). http://snap.stanford.edu/index.
html.

28 J. Maue and P. Sanders. Engineering Algorithms for Approximate Weighted Matching. In
Proceedings of the 6th Workshop on Experimental Algorithms (WEA’07), volume 4525 of
LNCS, pages 242–255. Springer, 2007. doi:10.1007/978-3-540-72845-0_19.

29 Kurt Mehlhorn and Stefan Näher. LEDA: A Platform for Combinatorial and Geometric Com-
puting. Cambridge University Press, 1999. URL: http://www.mpi-sb.mpg.de/%7Emehlhorn/
LEDAbook.html.

30 Aranyak Mehta, Amin Saberi, Umesh V. Vazirani, and Vijay V. Vazirani. Adwords and
generalized on-line matching. In 46th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 264–273. IEEE Computer Society, 2005. doi:10.1109/SFCS.2005.12.

31 Silvio Micali and Vijay V. Vazirani. An O(
√

|V ||E|) algorithm for finding maximum matching
in general graphs. In 21st Symposium on Foundations of Computer Science, pages 17–27.
IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.12.

32 Orlando Moreira, Merten Popp, and Christian Schulz. Evolutionary multi-level acyclic graph
partitioning. In Hernán E. Aguirre and Keiki Takadama, editors, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO 2018, Kyoto, Japan, July 15-19, 2018,
pages 332–339. ACM, 2018. doi:10.1145/3205455.3205464.

33 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Trans. Algorithms, 12(1):7:1–7:15, 2016.

34 Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover.
In STOC, pages 457–464, 2010. doi:10.1145/1806689.1806753.

35 Julia Preusse, Jérôme Kunegis, Matthias Thimm, Thomas Gottron, and Steffen Staab. Struc-
tural dynamics of knowledge networks. In Proc. Int. Conf. on Weblogs and Social Media,
2013.

36 Piotr Sankowski. Faster dynamic matchings and vertex connectivity. In SODA, pages 118–126,
2007. doi:10.1145/1283383.1283397.

37 Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library - User
Guide and Reference Manual. C++ in-depth series. Pearson / Prentice Hall, 2002.

38 Shay Solomon. Fully dynamic maximal matching in constant update time. In 57th Symposium
on Foundations of Computer Science FOCS, pages 325–334, 2016.

39 Robert Endre Tarjan. Data structures and network algorithms, volume 44 of CBMS-NSF re-
gional conference series in applied mathematics. SIAM, 1983. doi:10.1137/1.9781611970265.

https://doi.org/10.4230/LIPIcs.SEA.2020.14
https://doi.org/10.1109/SWAT.1971.1
https://doi.org/10.4230/LIPIcs.ESA.2018.53
https://doi.org/10.1145/2487788.2488173
http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://doi.org/10.1007/978-3-540-72845-0_19
http://www.mpi-sb.mpg.de/%7Emehlhorn/LEDAbook.html
http://www.mpi-sb.mpg.de/%7Emehlhorn/LEDAbook.html
https://doi.org/10.1109/SFCS.2005.12
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1145/3205455.3205464
https://doi.org/10.1145/1806689.1806753
https://doi.org/10.1145/1283383.1283397
https://doi.org/10.1137/1.9781611970265

M. Henzinger, S. Khan, R. Paul, and C. Schulz 58:19

A Instances

Table 3 Basic properties of the benchmark set of static graphs obtained from [3, 13, 27].

graph n m graph n m

144 144 649 1 074 393 eu-2005 862 664 16 138 468
3elt 4 720 13 722 fe_4elt2 11 143 32 818
4elt 15 606 45 878 fe_body 45 087 163 734
598a 110 971 741 934 fe_ocean 143 437 409 593
add20 2 395 7 462 fe_pwt 36 519 144 794
add32 4 960 9 462 fe_rotor 99 617 662 431
amazon-2008 735 323 3 523 472 fe_sphere 16 386 49 152
as-22july06 22 963 48 436 fe_tooth 78 136 452 591
as-skitter 554 930 5 797 663 finan512 74 752 261 120
auto 448 695 3 314 611 in-2004 1 382 908 13 591 473
bcsstk29 13 992 302 748 loc-brightkite_edges 56 739 212 945
bcsstk30 28 924 1 007 284 loc-gowalla_edges 196 591 950 327
bcsstk31 35 588 572 914 m14b 214 765 1 679 018
bcsstk32 44 609 985 046 memplus 17 758 54 196
bcsstk33 8 738 291 583 p2p-Gnutella04 6 405 29 215
brack2 62 631 366 559 PGPgiantcompo 10 680 24 316
citationCiteseer 268 495 1 156 647 rgg_n_2_15_s0 32 768 160 240
cnr-2000 325 557 2 738 969 soc-Slashdot0902 28 550 379 445
coAuthorsCiteseer 227 320 814 134 t60k 60 005 89 440
coAuthorsDBLP 299 067 977 676 uk 4 824 6 837
coPapersCiteseer 434 102 16 036 720 vibrobox 12 328 165 250
coPapersDBLP 540 486 15 245 729 wave 156 317 1 059 331
crack 10 240 30 380 web-Google 356 648 2 093 324
cs4 22 499 43 858 whitaker3 9 800 28 989
cti 16 840 48 232 wiki-Talk 232 314 1 458 806
data 2 851 15 093 wing 62 032 121 544
email-EuAll 16 805 60 260 wing_nodal 10 937 75 488
enron 69 244 254 449 wordassociation-2011 10 617 63 788

ESA 2020

58:20 Dynamic Matching Algorithms in Practice

Table 4 Basic properties of the benchmark set of dynamic graphs with number of update
operations O. Most of the graphs only feature insertions. The only two exceptions are marked with
a *. All of these graphs have been obtained from the KONECT graph database [35].

graph n O

amazon-ratings 2 146 058 5 838 041
citeulike_ui 731 770 2 411 819
dewiki∗ 2 166 670 86 337 879
dnc-temporalGraph 2 030 39 264
facebook-wosn-wall 46 953 876 993
flickr-growth 2 302 926 33 140 017
haggle 275 28 244
lastfm_band 174 078 19 150 868
lkml-reply 63 400 1 096 440
movielens10m 69 879 10 000 054
munmun_digg 30 399 87 627
proper_loans 89 270 3 394 979
sociopatterns-infections 411 17 298
stackexchange-stackoverflow 545 197 1 301 942
topology 34 762 171 403
wikipedia-growth 1 870 710 39 953 145
wiki_simple_en∗ 100 313 1 627 472
youtube-u-growth 3 223 590 9 375 374

	Introduction
	Preliminaries
	Basic Concepts
	Related Work

	Algorithms
	Random Walk-based Algorithms
	Random Walks For Augmenting Paths
	Analysis

	Blossom-based (Optimum) Algorithms
	Baswana, Gupta and Sen Algorithm
	Neiman and Solomon Algorithm

	Experimental Evaluation
	Random Walk and Blossom-based Algorithms
	Comparison of Algorithms

	Conclusion
	Instances

