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Abstract
We initiate the study of biologically-inspired spiking neural networks from the perspective of streaming
algorithms. Like computers, human brains face memory limitations, which pose a significant obstacle
when processing large scale and dynamically changing data. In computer science, these challenges
are captured by the well-known streaming model, which can be traced back to Munro and Paterson
‘78 and has had significant impact in theory and beyond. In the classical streaming setting, one
must compute a function f of a stream of updates S = {u1, . . . , um}, given restricted single-pass
access to the stream. The primary complexity measure is the space used by the algorithm.

In contrast to the large body of work on streaming algorithms, relatively little is known about
the computational aspects of data processing in spiking neural networks. In this work, we seek
to connect these two models, leveraging techniques developed for streaming algorithms to better
understand neural computation. Our primary goal is to design networks for various computational
tasks using as few auxiliary (non-input or output) neurons as possible. The number of auxiliary
neurons can be thought of as the “space” required by the network.

Previous algorithmic work in spiking neural networks has many similarities with streaming
algorithms. However, the connection between these two space-limited models has not been formally
addressed. We take the first steps towards understanding this connection. On the upper bound side,
we design neural algorithms based on known streaming algorithms for fundamental tasks, including
distinct elements, approximate median, and heavy hitters. The number of neurons in our solutions
almost match the space bounds of the corresponding streaming algorithms. As a general algorithmic
primitive, we show how to implement the important streaming technique of linear sketching efficiently
in spiking neural networks. On the lower bound side, we give a generic reduction, showing that any
space-efficient spiking neural network can be simulated by a space-efficient streaming algorithm.
This reduction lets us translate streaming-space lower bounds into nearly matching neural-space
lower bounds, establishing a close connection between the two models.
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10:2 Spiking Neural Networks Through the Lens of Streaming Algorithms

1 Introduction

In this work, we seek to understand the role of memory constraints in neural data processing.
We consider data-stream tasks, in which a long stream of inputs is presented over time and a
neural network must evaluate some function f of this stream. Examples include identifying
frequent input patterns (items) or estimating summary statistics, such as the number of
distinct items presented. The network cannot store the full stream and so must maintain
some form of compressed representation in its working memory, which allows the eventual
computation of f . The primary objective is to compute f with as few auxiliary (non-input
or output) neurons as possible. The number of auxiliary neurons can be thought of as the
“space” required by the network.
In computer science, data processing under space limitations is extensively studied in the area
of streaming algorithms [37, 38]. We leverage this body of work to further our understanding
of space-efficient neural networks. We start by designing neural networks for a large class
of data-stream tasks, building off fundamental streaming algorithms and techniques, such
as linear sketching. We also establish general connections between these models, showing
that streaming-space lower bounds can be translated to neural-space lower bounds. We
hope that these connections are a first step in extending work on streaming computation
to better understand neural processing of massive and dynamically changing data under
memory constraints.

The spiking neural network (SNN) model [32, 33]. A spiking network is represented by
a directed weighted graph over n input neurons, r output neurons, and s auxiliary neurons.
The edges of the graph represent synapses of different strengths connecting the neurons. The
network evolves in discrete, synchronous rounds as a Markov chain where each neuron u acts
as a (possibly probabilistic) threshold gate that either fires (spikes) or is silent in each round.
In round t, the firing status of u depends on the firing status of its incoming neighbors in
the preceding round t − 1, and the strength of the connections from these neighbors. In
randomized SNNs, there are two sources of randomness: the spiking behavior of the neurons
and the selection of random edge weights in the network. In deterministic SNNs, the neurons
are deterministic threshold gates and the edge weights are deterministically chosen. Aside
from their relevance in modeling biological computation, SNNs have received significant
attention as more energy efficient alternatives to traditional artificial neural networks [25, 42].

A recent series of works in the emerging area of algorithmic SNNs [33, 34, 11, 29, 28,
43, 8, 26, 41, 35, 40, 16] focuses on network design tasks. In this framework, given a target
function f : {0, 1}n → {0, 1}r, one seeks to design a space-efficient SNN (with few auxiliary
neurons) that converges rapidly to an output spiking pattern matching f(x) when the input
spiking pattern matches x. Space-efficient SNNs have been devised for the winner-takes-all
problem [28, 41], similarity testing and compression [31, 40], clustering [14, 26], approximate
counting, and time estimation [30, 15]. Interestingly, many of these works borrow ideas from
related streaming algorithms. However, despite the flow of ideas from streaming to neural
algorithms, the connection between these models has not been studied formally.

The streaming model [37, 38]. A data-stream is a sequence of updates S = {u1, . . . , um}.
A streaming algorithm A computes some function of S, given restricted access to the stream.
In the standard single-pass model, the algorithm can only read the updates in S once, in the
order they are presented.
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Most commonly, and throughout this work, each update ui represents the insertion or
deletion of an item xi belonging to a universe U with |U | = n. Without loss of generality,
we will always consider U to be the set of integers [n] = 1, . . . , n, and f is a function of the
frequency vector z ∈ Rn, which tracks the total frequency of each item in the stream (the
number of insertions minus the number of deletions). In the insertion-only setting, only
insertions are allowed – i.e., each update increments some entry of z. In the general turnstile
(dynamic) setting, there are both insertions and deletions – i.e., increments and decrements
to entries in z. The primary complexity measure of a streaming algorithm is the space
(measured in number of bits) required to maintain the evaluation of f on the data-stream.

Neural networks from a streaming perspective. Our primary goal is to devise space-
efficient spiking neural networks that solve natural data-stream tasks, which mirror data
processing tasks solved in real biological networks. In light of the large collection of space-
efficient streaming algorithms that have been designed for various problems, we start by
asking:

I Question 1. Is it possible to translate a space-efficient streaming algorithm for a given
task into a space-efficient SNN algorithm for that task? Do generic reductions from SNNs to
streaming exist?

The streaming literature is also rich with space lower bounds. For many classical data-stream
problems, these lower bounds are nearly tight. To obtain space lower bounds for SNNs, we
ask if reductions in the reverse direction exist:

I Question 2. Is it possible to translate a space-efficient SNN for a given task into a
space-efficient streaming algorithm for that task?

An affirmative answer to both of these questions would imply that the streaming and SNN
models are, roughly speaking, computationally equivalent. A priori, it is unclear if this is the
case. On the one hand, streaming algorithms have the potential to be more space-efficient
than SNNs. For example, a space-efficient algorithm may still have a lengthy description,
which is not taken into account in its space complexity. In the SNN setting, where the
algorithm description and memory are both encoded by the auxiliary neurons in the network
and their connections, a lengthy description may lead to a large, and hence not space-efficient
network.

On the other hand, SNNs have the potential to be more space-efficient than streaming
algorithms. For example, a randomized SNN with a large number of input neurons but
a small number of auxiliary neurons may have a large number of random bits encoded in
random connections between its inputs and auxiliary neurons. These bits are not counted
as part of its space complexity. In contrast, a streaming algorithm that requires persistent
access to many random bits must store these bits, possibly leading to large space complexity.

1.1 Our Results
We take the first steps towards formally understanding the connections between streaming
algorithms and spiking neural networks. The first part of the paper is devoted to studying
upper bounds for SNNs, addressing Question 1. We design space-efficient neural networks
for a wide class of streaming problems by simulating their respective streaming algorithms.
These simulations must overcome several challenges in implementing traditional algorithms
in neural networks. Most notably, in an SNN, the spiking status of the auxiliary neurons
encodes the working memory of the algorithm, and their connections encode the algorithm
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10:4 Spiking Neural Networks Through the Lens of Streaming Algorithms

itself. A space-efficient network with few auxiliary neurons thus inherently has limited ability
to express complex algorithms. In many data-stream algorithms, the target space complexity
is only polylogarithmic in the input size, making this challenge significant. Additionally,
unlike traditional algorithms, a neural network evolves continuously in response to its inputs.
This leads to synchronization issues – for example, if an input is not presented for a sufficient
number of rounds, the firing status of the network may not converge to a proper state before
the next input is presented.

The second part of the paper focuses on lower-bound aspects, addressing Question 2. We
show that any space-efficient neural network can be translated into a space-efficient streaming
algorithm, while paying a small additive term (logarithmic in the stream length/universe
size). For deterministic SNNs, such a reduction is not difficult. For randomized SNNs, the
reduction is more involved, as it must account for the large number of random bits that may
be implicitly stored in the random edge weights of the network. Throughout, we use the Õ()
notation to hides factors that are poly-logarithmic in n,m and 1/δ, where n is the size of
the domain, m is a bound on the stream length and δ is the error parameter.

1.1.1 Efficient Streaming Algorithms Yield Efficient SNNs
We consider data-stream tasks in which each update is an insertion or deletion of an integer
item x ∈ [n], and f is a function of the frequency vector z ∈ Rn of these items. In the
streaming setting, each update can be thought as an n-length vector with a single ±1 entry,
corresponding to an item insertion or deletion. In the SNN setting, each update may be
encoded as the firing of one of n input neurons along with a sign neuron indicating if the
update is an increment or a decrement. Or, the update may be encoded via O(logn) input
neurons, indicating the item to be inserted or deleted. These different encodings correspond
to different natural settings – the first corresponds to a network that collects firing statistics
from a large set of inputs and the second to a network that records statistics on a large
number of possible input patterns, encoded in the spiking patterns of a smaller number of
input neurons.

In either case, each input is presented for some persistence time, a certain number of
rounds in which the input is fixed to allow the network state to converge before the next
input is presented.

Linear sketching. A linear sketching algorithm is a streaming algorithm in which the state
of the algorithm is a linear function of the updates seen so far. In particular, the state can be
represented as the multiplication of a sketching matrix A ∈ Rr×n with the frequency vector
z ∈ Rn. Such algorithms have many useful properties applicable in both the turnstile setting
and in distributed settings. For example, the additive nature of these algorithms allows one
to split the data-stream across multiple sites, which can process the data in an independent
manner. Additionally, the obliviousness of linear sketching algorithms to the ordering of
the stream yields an efficient generic derandomization scheme using the Nisan’s PRG for
space bounded computation [18]. Linear sketching algorithms constitute the state-of-the-art
algorithms for essentially all problems in the turnstile model, including heavy-hitters, coresets
for clustering problems [19], and `p estimation [9]. In fact, Li, Nguyen and Woodruff [27]
present a general reduction from the streaming turnstile model to linear sketching. This
reduction, and its caveats have been further studied in a recent work by Kallaugher and
Price [21]. Given their ubiquity in turnstile streaming algorithms, an important step in
designing space-efficient SNNs for data-stream problems is an efficient implementation of
linear sketching in the neural setting. We give such an implementation:
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I Theorem 3 (Linear Sketch). Let A be an algorithm approximating a function f(x) in the
turnstile model using a linear sketch with an integer matrix A of size r× n. Let ` be a bound
on the maximum entry in |Ax| for every item x. There exists a network N with n+ 1 input
neurons, r · (dlog `e+ 1) output neurons, O(r · log `) auxiliary neurons which implements A
in the following sense. The first n input neurons x = (x1, . . . , xn) represent the inserted item
[1, n], and the additional input neuron s indicates the sign of the update. Each input update
has a persistence time of O(log `) rounds. The output neurons are divided into r vectors
y1, . . . , yr each of length log `, and r neurons s1, . . . , sr. For every i ∈ {1, . . . , r}, the decimal
value of the binary vector yi is equal to the absolute value of the ith entry of A · z, and the
sign neuron si indicates the sign, where z is the summations of all input items presented in
the current stream.

Theorem 3 applies to linear sketches using integer matrices, which are commonly used, see
[27]. Via scaling, the construction can be extended to rational matrices as well. We note
that the network of Theorem 3 does not implement the “decoding” step which estimates f(z)
from A · z. This step depends on the problem being solved, however it is often very simple
and thus implementable via a space-efficient SNN. E.g., in `p norm estimation one might
just have to compute the `p norm of A · z [18]. In frequency estimation, one might have to
compute an average of a subset of entries in A · z [5].

Beyond our generic linear sketching reduction, we give neural solutions for two challenging
problems in the insertion-only model, namely, distinct elements and median estimation.
These simulation results are less general and provide several tools for bypassing critical
obstacles that arise in streaming to SNN reductions.

Distinct elements. In the distinct elements problem one must approximate the number of
distinct items appearing in a data-stream with repeated items. It is well known that an
exact solution by a single-pass streaming algorithm requires linear space. In fact, as we
discuss later on, one can also show that the exact computation requires linear space in the
SNN setting. Therefore, we restrict our attention to (1 + ε) approximation for the number
of distinct elements for any ε ∈ (0, 1). This problem has been studied thoroughly in the
streaming literature [6, 2, 12, 13, 22, 3, 20, 44, 1].

In this work, we provide an efficient neural implementation for the well-known LogLog
streaming algorithm by [12, 13]. The LogLog and its improved variant the hyper-Loglog
algorithms provide sub-optimal space bounds, but due to their simplicity they are commonly
used in practice. As we will see, they are efficiently implementable in the neural setting. In
addition, we provide a nearly matching space lower bound.

I Theorem 4 (Neural Computation of Distinct Elements). For every n ∈ N, ε, δ ∈ (0, 1),
given n input neurons x representing the elements in [n] there exists a network N with
logn output neurons and Õ(1/ε2) auxiliary neurons that encode the logarithm of an (1± ε)
approximation of the number of distinct elements in the current stream, with probability 1− δ.
In addition, any SNN requires Ω(logn+ 1/ε2) neurons to compute an (1± ε) approximation
for the problem, with constant probability.

The lower bound is obtained via a communication complexity reduction that mimics the
corresponding streaming reduction. We note that this reduction works perfectly, i.e., without
any asymptomatic loss in the space-bound (compared to the streaming bound).

Count-Min sketch. A common tool used in many of the streaming algorithms is the
Count-Min sketch data structure, which maintains frequency estimates for all items in a
stream. Count-Min sketch is in fact a linear sketch, and thus can be implemented via
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Theorem 3. However, it is not immediately clear how to implement certain important
operations, like approximate frequency (count) queries via this reduction. We thus provide a
direct implementation. Our implementation applies in the setting where there are O(logn)
input neurons representing each insertion/deletion of an item x ∈ [n]. However, it can easily
be extended to the setting in which there are n input neurons, one for each item.

I Definition 5 (Count-Min Sketch [10]). Given parameters ε, δ > 0, the Count-Min sketch is
a probabilistic data structure that serves as a frequency table of items in a stream. It supports
two operations: (i) inc(x) increases the frequency of x by one; (ii) count(x) returns an (1 + ε)
approximation of the frequency of x with probability 1− δ.

For given parameters ε, δ > 0, the Count-Min sketch data structure contains ` = O(log 1/δ)
hash tables T1, . . . T` each with b = O(1/ε) bins, and each table Ti is indexed using a different
pairwise-independent hash function hi. The inc(x) operation applies Ti[hi(x)]← Ti[hi(x)]+1
for every i ∈ [`]. The count(x) operation returns mini∈[`] Ti[hi(x)], which is shown to provide
a good approximation for the frequency of x. The Count-Min data structure is used in many
streaming algorithms including heavy-hitters, range queries, quantile estimation, and more.
We provide an efficient implementation of a Count-Min sketch data structure, and show:

I Theorem 6 (Neural Implementation of Count-Min Sketch). For every n,m ∈ N and ε, δ ∈
(0, 1) there exists a network N with logn input neurons, O(1/ε·poly(logm, log 1/δ))) auxiliary
neurons, and Õ(1) persistence time that implements a Count-Min sketch with approximation
ration (1 + ε) and success probability 1− δ, for an input stream of length at most m.

Our neural implementation of the Count-Min sketch can immediately be used to give, e.g., a
simple neural approximate heavy-hitters algorithm, which returns TRUE if a presented item
has frequency ≥ m/k in a data-stream for some integer k, and FALSE if it has frequency
≤ (1 − ε)m/k. Setting ε′ = O(ε/k), a count(x) query will return a frequency estimate
≥ m/k for any true heavy-hitter x and ≤ m/k for any x with frequency ≤ (1− ε)m/k. By
keeping a counter for m using O(logm) neurons and performing a comparison operation
with the output of count(x), we can thus solve the heavy hitters problem. Other applications
of Count-Min sketch require more complex processing of the data structure’s output. To
illustrate how this processing can be implemented efficiently in an SNN, we detail one such
application, to median approximation.

Approximate median. One of the most fundamental statistical measures of a data-stream is
its quantile. The 1/2-quantile known as the median, attracts most attention in the streaming
literature [37, 36, 5, 7]. Its non-linearity nature makes it considerably harder to maintain
compared to its linear cousin, the mean. As in many other streaming problems, the exact
computation of the median requires linear space both in the streaming and in the SNN setting
(as will be discussed later on). This motivates the study of the relaxed (1 + ε) approximation
task. In the latter, the algorithm is allowed to output an item j provided that the total
number of items with value at most j is in [m/2− εm,m/2 + εm].

Cormode and Muthukrishnan [10] presented an elegant streaming algorithm for this
problem using a space of Õ(1/ε) bits. The algorithm is based on the Count-Min sketch data
structure, combined with a dyadic decomposition technique that is used in a number of other
streaming algorithms. One of our key technical algorithmic contributions is in providing an
efficient neural implementation of this algorithm.

I Theorem 7 (Approximate Median). For every n,m ∈ N and ε, δ ∈ (0, 1), there exists a
neural network Nn,m solving the ε-approximate median problem using O(1/ε·poly(logm, logn,
log 1/δ)) auxiliary neurons and persistence time Õ(1) with probability 1− δ.
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1.1.2 Streaming Lower Bounds Yield SNN Lower Bounds

Our second contribution focuses on Question 2, showing that space-efficient SNNs can be
translated into space-efficient streaming algorithms, and thus that lower bounds in the
streaming model imply lower bounds in the neural setting. The underlying intuition for this
transformation is based on the following observation.

I Observation 8. A spiking neural network with deterministic edge weights and n input
neurons and S non-input neurons can be simulated by a streaming algorithm using S bits of
space.

In the SNN model, the spiking behavior of neurons in a given round depends only on the
firing states of their incoming neighbors in the previous round. Thus, to simulate the behavior
of the network as one pass over the data-stream, it is sufficient to maintain the firing states
of all non-input neurons in the network, thus storing S bits of information. When the edge
weights of the network are randomly sampled such a small-space simulation becomes more
involved. The explicit storage of all the edge weights might be too costly since there can be
Ω(nS + S2) edges in a network with n input neurons and S non-inputs. Nevertheless, we
show that a small-space simulation is still possible using a pseudorandom number generator,
if we pay an additive logarithmic overhead in the length of the stream and universe size.

I Theorem 9. Any SNN N with n input neurons, S non-input neurons for S = poly(n),
and poly(n) persistence time can be simulated over a data-stream of length m using a total
space of O(S + log(nm)). The success guarantee of the simulation is 1− 1/poly(n,m).

Theorem 9 is a powerful tool, since it lets us apply any streaming space lower bound (of which
there are many) to give an SNN lower bound, with a loss of an O(log(nm)) factor. In some
cases, we can avoid this loss by more directly considering the lower-bound technique. This is
obtained when the streaming lower bounds are derived via a reduction to communication
complexity with shared randomness that can be applied in the SNN setting with no loss.
For example, using this tighter approach we show that our neural network for the distinct
elements problem is nearly space-optimal (see the full version for details).

1.2 Preliminaries

Spiking neural networks. A deterministic neuron u is modeled by a deterministic threshold
gate. Letting b(u) to be the threshold value of u, then u outputs 1 if the weighted sum of its
incoming neighbors exceeds b(u). A spiking neuron is modeled by a probabilistic threshold
gate, which fires with a sigmoidal probability that depends on the difference between its
weighted incoming sum and b(u).

A Neural Network (NN) N = 〈X,Z, Y,w, b〉 consists of n input neurons X = {x1, . . . , xn},
m output neurons Y = {y1, . . . , ym}, and k auxiliary neurons Z = {z1, ..., zk}. In spiking
neural networks (SNN), the neurons can be either deterministic threshold gates or probabilistic
threshold gates. The directed weighted synaptic connections between V = X ∪ Z ∪ Y are
described by the weight function w : V × V → R. A weight w(u, v) = 0 indicates that a
connection is not present between neurons u and v. Finally, for any neuron v, the value
b(v) ∈ R is the bias value (activation threshold). Additionally, each neuron is either inhibitory
or excitatory: if v is inhibitory, then w(v, u) ≤ 0 and if v is excitatory, then w(v, u) ≥ 0 for
every u. This restriction arises from the biological structure of the neurons.
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10:8 Spiking Neural Networks Through the Lens of Streaming Algorithms

Network dynamics. The network evolves in discrete, synchronous rounds as a Markov chain.
The firing status of every neuron u in round τ denoted as στ (u), depends on the firing status
of its neighbors in round τ − 1, via a standard sigmoid function. For each neuron u, and each
round τ ≥ 0, let στ (u) = 1 if u fires (i.e., generates a spike) in round τ . For every neuron u
and every round τ ≥ 1, let pot(u, τ) =

∑
v∈V w(v, u) · στ−1(v)− b(u) denote the membrane

potential at round τ . A deterministic threshold gate u fires in round τ iff pot(u, τ) ≥ 0.
A probabilistic threshold gate fires with a probability that depends on pot(u, τ). All our
network constructions in this work use deterministic threshold-gates, and the randomness of
the network comes from the randomized selection of the edge weights.

Neural networks for data-stream problems. A data-stream problem is defined by a relation
Pn ⊂ Zn×Z. The length of the stream is upper bounded by some integer m. Each data-item
is represented by a binary vector of length n. A value i ∈ [1, n] is represented by having the
ith input neuron fire while all other input neurons are idle. Each input is presented for some
persistence time, at the end of which the output neurons of the network encode (in binary)
the evaluation of a given relation over the current stream. To avoid cumbersome notation,
we may assume that m and n are powers of 2.

1.3 Basic Tools
Our constructions are based on the following neural network modules.

Neural timers and counters. For a given time parameter t, a neural timer NT t is an SNN
network that consists of an input neuron x, an output neuron y, and additional auxiliary
neurons. The network satisfies that in every round τ , y fires in round τ iff x fires at some
round τ ′ for τ ′ ∈ [τ − t, τ ]. It is fairly trivial to design a neural timer network with O(t)
auxiliary neurons. [15] presented a construction of a considerably more succinct network
NT t with only O(log t) neurons. In the related setting of neural counting, the network is
required to encode the number of firing events of its input neuron within a given time window.
Specifically, given time parameter t, a neural counter network NCt has a single input neuron
x, and dlog te output neurons that encode the number of firing events of x within a span of t
rounds.

I Fact 10. [30, 15] For every integer parameter t, there exist (i) a neural timer network
NT t with O(log t) neurons, and (ii) a neural counter network NCt with O(log t) auxiliary
neurons, such that for every round i, the output neurons encode fi by round i + O(log t)
where fi is the number of firing events up to round i. Both networks NT t and NCt are
deterministic.

We next describe new tools introduced in this work which will be heavily used in our
constructions. Missing proofs are deferred to the full version of the paper.

Potential encoding. Our SNN constructions are based on a module that encodes the
potential p of a given neuron x by its binary representation using log p neurons. We will use
this modules in the constructions of Theorem 3 and Lemma 14.

I Lemma 11. Let x be a deterministic neuron such that pot(x, t′) ≤ 2` for every t′ ∈
[t, t+O(`)] for some integer ` ∈ N>0. There exists a deterministic network POT`(x) which
uses ` identical copies of x (the same input and bias), 2` auxiliary neurons, and ` output
neurons y0 . . . y`−1 that encodes pot(x, t) in a binary form within O(`) rounds.
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Implementing pairwise-independent hash functions. Many streaming algorithms in the
insertion only model are based on the notion of pairwise independent hash functions.

I Definition 12 (Pairwise Independence Hash Functions). A family of functions H : [a]→ [b]
is pairwise independent if for every x1 6= x2 ∈ [a] and y1, y2 ∈ [b], we have: Pr[h(x1) =
y1 and h(x2) = y2] = 1/b2.

For ease of notation, assume that a, b are powers of 2.

I Definition 13 (Pairwise Independence Hash SNN). Given two integers a, b, a pairwise
independent hash network Na,b is an SNN with an input layer of log a neurons, an output
layer of log b neurons, and a set of s auxiliary spiking neurons. For every input value x
presented at round t, let N (x) be the value of the output layer after τa,b rounds. Then, for
every x 6= x′ ∈ [a], it holds that Pr[N (x) = N (x′)] = 1/b.

We show a neural network implementation of a pairwise independent hash function using the
construction of pairwise hash function by [4].

I Lemma 14 (Neural Implementation of Pairwise Indep. Hash Function). There exists a
pairwise independent hash network Na,b with s = O(log b · log log a) auxiliary neurons that
computes the output value of each input within O(log log a) rounds (persistence of the input
neurons).

2 Linear Sketching

A linear sketching algorithm is a streaming algorithm in which the state of the algorithm at
time t is a linear function of the updates seen up to time t. We start with a formal definition.

I Definition 15 (Linear Sketching Algorithm, [23]). A linear sketching algorithm L gives
a method for processing a vector x ∈ Rn. The algorithm is characterized by a (typically
randomized) sketch matrix A ∈ Rr×n, and by a possibly randomized decoding function
f : Rr → O where O is some output domain. Algorithm L is executed by first computing
A · x and then outputting f(A · x). Note that f only takes A · x as input, f cannot depend on
A in any other way, e.g. it cannot share randomness with A.

Linear sketching algorithms provide the state-of-the-art space bounds for a large collection
of problems in the turnstile model.

The challenge and our approach. Throughout we assume the sketching matrix is integral,
i.e., A ∈ Zr×n, which captures most of the classic implementations in the turnstile model.
We start by describing a straw man approach for computing the value Ax in the neural
setting: Take a single-layer neural network with an input layer of length n+ 1 and an output
layer of length r. Specifically, the input layer contains n neurons x1, . . . , xn that represent
the absolute value of the update, and an additional sign neuron that indicates the sign of the
update. For example, an update vector [0, 0,−1, 0] is represented by letting x3 = 1, s = 1
and x1, x2, x4 = 0. The output layer is defined by r output neurons y1, . . . , yr. The edge
weights are specified by the matrix A where w(xj , yi) = Ai,j . It is then easy to verify that
the weighted sum of the incoming neighbors of each neuron yj (i.e., its potential) is the value
of the jth bit in Ax.

This naive description fails for various reasons. First, from a biological perspective, each
input neuron can be either inhibitory or excitatory. This implies that the sign of the outgoing
edge weights of a given neuron must be either a plus (excitatory) or a minus (inhibitory).
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Mathematically, this requires the sketch matrix A to be sign-consistent (i.e., the sign of all
entries in a given raw are either a plus or a minus). However, in general, the given sketch
matrix might not be sign-consistent. The second technicality is that the neurons y1, . . . , yn
have a binary output (either firing or not) rather then an integer value. The third aspect to
take into account is concerned with the update mechanism. Specifically, given a stream of
data items, one should make sure that each data item would be processed exactly once by
the network. This requires a more delicate update mechanism.

In the high-level, we handle the sign-consistency challenge by dividing the sketch matrix
A into a non-negative matrix A+ and a non-positive matrix A− where A = A+ −A−. Then,
given a new update (x, s), the network computes Ax and −Ax using A+x and A−x. The final
output Ax is computed by using these values combined with the sign neuron s. To handle
the second challenge, we use the module of Lemma 11 to translate the potential of each
output neuron yj (corresponding to the j’th bit in the sketch) into its binary representation.
The output layer consists of O(r logn) output neurons that encode the value of the current
r-length sketch. The complete implementation details are given to the full version.

Due the space consideration, the neural implementation for the distinct-element problem
(Proof of Theorem 4) is deferred to the full version of the paper. In this proof we also
demonstrate how to translate the streaming lower bound into a matching space lower bound
for the neural setting.

3 Median Approximation

Before presenting the neural computation of the approximate median, we describe the neural
implementation of the Count-Min Sketch and prove Theorem 6.

3.1 A Neural Implementation of Count-Min Sketch
We follow the streaming implementation of Count-Min by [10] described as follows. The
algorithm maintains a data structure that consists of ` = O(log 1/δ) hash tables T1, . . . T`,
each with b = O(1/ε) bins, and each table Ti is indexed using a different pairwise-independent
hash function hi (i.e., the output domain of hi is {0, 1}log b). The operation inc(x) increases
the value in each bin Ti[hi(x)] for every i ∈ [`]. The count(x) operation returns the value
mini∈[`] Ti[hi(x)].

I Fact 16 ([10]). Pr[count(x) /∈ (f(x), f(x) + O(m/b))] ≤ 1/2Ω(`) where f(x) is actual
frequency of x in the stream of length m.

I Definition 17 (Neural Count-Min Sketch). Given parameters ε, δ > 0, a neural Count-Min
sketch network Nε,δ has an input layer of logn + 1 neurons denoted as a, x1, . . . xlogn, an
output layer of logm neurons y1, . . . ylogm, and a set of s auxiliary neurons. The neurons
x1, . . . xlogn encode the binary representation of an element x ∈ [n] and the neuron a indicates
whether this is an inc or count operation, where a = 1 indicates an inc operation. For every
fixed input value x = (x1, . . . xlogn) presented at round t and a = 0 (i.e., a count operation),
let Nδ,ε(x) be the value encoded in binary by the output layer y1, . . . ylogm in round t+ τn,m.
It holds that Pr[Nδ,ε(x) /∈ (f(x), f(x) +O(εm′))] ≤ δ, where m′ ≤ m is the stream length by
round t and f(x) is the current frequency of x.

We first describe the network construction to support the inc(x) operation. Then we explain
the remaining network details for implementing a count(x) operation.
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Supporting inc(x) operation. The network contains ` = O(log 1/δ) sub-networks
H1
n,b, . . . ,H`n,b each implements a pairwise independent hash function hi : {0, 1}logn →
{0, 1}log b using Lemma 14. The output vector of each network Hilogn,b is denoted by hi for
every i ∈ {1, . . . , `}. Every hi has an inhibitory copy h′i.

For each sub-networks Hilogn,b, and for every value j ∈ {1, . . . , b}, the network contains
a counter sub-network that counts the number of data-items x in the stream that satisfies
hi(x) = j. Every counter network is implemented by a neural-counter network from Fact 10
with time parameter t = m. Let Ci,1, . . . , Ci,b be the neural counter networks corresponding
to the ith hash network Hilogn,b. The counter Ci,j is updated based on the values of the
output neurons hi as follows. For every counter Ci,j the network contains an index neuron
ci,j with input from hi and h′i which fires only if1 dec(hi) = j. The input to the counter
Ci,j denoted as ei,j is an AND gate between the input neuron a and the index neuron ci,j ,
firing in inc(x) operations where hi(x) = j. To make sure the counter is incremented once
per inc(x) operation, the network contains an inhibitory neuron denoted as e′i,j which has
the same incoming edges and weights as ei,j , that inhibits the neurons ei,j , ci,j and a. This
guarantees that ei,j would be active for exactly one round per inc(x) operation.

Supporting count(x) operation. To support a count(x) operation, for each counter Ci,j ,
the network includes logm neurons si,j = s1

i,j , . . . s
logm
i,j which hold the value stored in the

counter Ci,j such that hi(x) = j. Each neuron ski,j is an AND gate of the index neuron
ci,j and the jth output neuron of Ci,j . In addition, for every i ∈ {1, . . . , `} there are logm
neurons gi = gi,1, . . . gi,logm where the jth neuron gi,j is an OR gate of all the jth neurons of
the vectors si,1, . . . , si,b. As a result, gi encodes the value stored in hi(x). Finally, the output
value is set to be the minimum value of dec(g1), . . . ,dec(g`) using the minimum computation
network of [34]. The correctness analysis is deferred to the full version of the paper.

3.2 Neural Computation of the Approximate Median

In this section, we present our main technically involved algorithmic result for computing an
estimate for the median of the data-stream.

I Definition 18 (Approximate Median). Given ε, δ ∈ (0, 1) and a stream S = {x1, x2, . . . xm}
with each xi ∈ [n], in the approximate median problem, it is required to output an element
xj ∈ S whose rank is m/2± εm with probability at least 1− δ.

For ease of notation, assume that n is power of 2. Our neural solution is based on the
streaming algorithm of [10], that uses Õ(1/ε) space. Up to the logarithmic terms, this
space-bound is known to be optimal [24].

I Fact 19 (Theorem 5 [10]). For every ε, δ ∈ (0, 1), there exists a randomized streaming
algorithm for computing the ε-approximate median with probability 1− δ and Õ(1/ε) space.

We start by providing a high-level exposition of this streaming algorithm, and then explain
its implementation in the neural setting. The latter turns out to be quite involved, yet
demonstrating the expressive power of SNN networks.

1 For implementation reasons, verifying that dec(hi) = j requires input from both hi and h′
i.
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A high-level description of the streaming algorithm. The algorithm is based on applying
a binary search over range queries which, roughly speaking, compute the frequency of the
elements in a given range.

I Definition 20 (Range Queries). Given a data-stream of numbers S = {x1, . . . , xm} with
each xi ∈ [n], a range query receives a range of number [a, b] ⊆ [1, n] and returns the frequency
of the items {a, a+ 1, . . . , b} in the stream S.

To support range queries with small space, the algorithm maintains logn data structures of
Count-Min sketch, for each of the logn dyadic intervals of [n].

I Definition 21 (Dyadic Intervals). The dyadic intervals of the set [n] are a collection of
logn partitions of n, I1 . . . , Ilogn such that

I0 = {{1}, {2}, {3}, . . . , {n}}
I1 = {{1, 2}, {3, 4}, {5, 6}, . . . , {n− 1, n}}
I2 = {{1, 2, 3, 4}, {5, 6, 7, 8}, . . . , {n− 3, n− 2, n− 1, n}}
. . .

Ilogn = {{1, 2 . . . n}}

Note that every range [i, j] ⊆ [n] can be written as a union of at most logn sets from the
dyadic intervals. Hence, by introducing logn Count-Min data structures with parameters
δ′ = log(logn/δ) and ε′ = ε/ logn for dyadic-intervals of [n], we can answer range queries
within an additive error of m · ε with probability 1− δ. The approximated median is obtained
by employing a Binary search over the range queries 2.

I Definition 22 (SNN for the Approximate Median Problem). Given two integers n,m and
additional parameters ε, δ ∈ (0, 1), an approximate-median network Nn,m has an input layer
of n+ 1 neurons, an output layer of logn neurons and a set of s auxiliary neurons. The input
neurons are denoted as (a, x1, . . . , xn) where the neuron a indicates whether this is a median
query or an insertion operation. When the input layer represents a median query, the neuron
a fires and the neurons x1, . . . xn are idle. For every round t, let St = {a1, a2, . . . at} be the
data-stream presented as input to the network by round t. For any median-query presented in
round t, by round t+ τn,m the output layer encodes an element y ∈ St whose rank in St is
t/2± εt with probability at least 1− δ.

The challenge: The crux of the streaming algorithm is based on a binary search over range
queries. A-priori, it is unclear how to implement such a search using a poly-logarithmic
number of neurons. Specifically, the (implicit) decision tree that governs the binary search
has a linear size. Since the neural network (unlike the streaming algorithm) has to hard-wire
the algorithm description, the explicit encoding of the search tree leads to a linear space
solution. Our key contribution is in showing a succinct network construction that simulates
the binary search of the streaming algorithm using a nearly matching space bound.

We next provide a high-level description of the network. Recall that the type of the
operation is represented by the input neuron a, where a = 1 represents a median query.

2 The same algorithm can be applied for any quantile estimation.
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Supporting an insertion operation. In the high level, the network contains 3 parts (1) a
set of logn neurons that encode the inserted element in its binary form, (2) a neural counter
that counts the length of the current stream, and (3) logn Count-Min sketch sub-networks
that maintain the frequencies of the logn dyadic intervals of [n].
1. The n-length input vector x is connected to logn neurons x′ = (x′1, . . . , x′logn) such that
x′ encodes the binary representation3 of the element presented in the input neurons x.

2. The network contains a counter sub-networks NCm for counting the number of data-items
inserted so far (i.e., the current length of the stream). The counter is implemented by
a neural-counter network from Fact 10 with time parameter t = m. The input neuron
to the NCm sub-network denoted as a′ is an OR gate of the input neurons x. To make
sure the counter is incremented once per insertion operation, the network contains an
inhibitory copy of a′ denoted as r′, which inhibits a′ and the neurons x. As a result, the
input neuron a′ will be active for exactly one round per insertion operation.

3. The network contains logn sub-networks C1, . . . Clogn each implements a Count-Min
sketch with parameters n,m and ε′ = O(ε/ logn), δ′ = O(δ/ logn) using Theorem 6. For
each Count-Min sketch sub-networks Ci, let zi = (zi,1, . . . zi,logn) and bi be its input layer,
where the neuron bi indicates whether the operation is inc or count. The neuron bi is an
OR gate of the neurons in x.
The input neurons zi are connected to the binary representation of the input x′ in the
following manner. For every i ∈ {1, . . . , logn} and every j ≥ i, the neuron x′j is connected
to the neuron zi,j . In addition, for every j < i the neuron zi,j serves as an OR gate
between the neurons of x′. The neurons bi, zi are equipped with self-loops. The Count-
Min sketch sub-networks are then modified such that these neurons will be inhibited
once the computation is complete (by the inhibitory neurons e′i,j of each sub-networks
respectively).

Supporting a median query. Given a median query, the network computes the approximate
median by employing at most logn steps of binary search. In every step4 i ∈ {logn, . . . , 1},
the network obtains a current candidate for the median denoted by χi. Initially, χlogn = n/2.
Each χi would be provided as input for the ith Count-Min sketch Ci. The output neurons of
Ci would then define the next candidate χi−1. Specifically, depending on the rank estimation
of χi, the network defines the new search range. The width of the search range would be
cut by a factor 2 in every step i. Consequently, the algorithm will be using the Count-Min
sketch Ci−1 which is defined over a partitioning Ii−1 in which each set is smaller by factor 2
compared to Ii. We now describe these steps in more details.
1. For every i ∈ {logn, . . . , 1} the network contains an additional Count-Min sub-networks
C′i which counts the frequencies of the data-elements (similar to C1). This additional
Count-Min sub-networks will be useful in a scenario where the median item j∗ has a
very large frequency. In such a case, the frequency of the range [1, j∗] is too large and
the frequency of [1, j∗ − 1] is too small. This special case would be handled using the C′i
sub-networks.

2. For every i ∈ {logn, . . . , 1} the network contains three comparison neurons si, gi, ei
(corresponding to smaller, greater or equal). These neurons receive their input from
the output neurons of the counters Clogn, . . . , Ci, and from the the output of the neural

3 As discussed in the introduction our solution supports both types of input formats: log n-bits of the
binary representation or an n-length vector with one active entry.

4 It is convenient to count the steps in a backward manner, as in the ith step the network will access the
ith Min-Sketch module Ci.
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counter NCm. Let χi = dec(zi), this value would correspond to the median candidate
at phase i of the binary-search. The firing states of the comparison neurons would be
determined as follows. The neuron gi would fire if the frequency estimation of [1, χi] is
greater than m′/2 + ε/2m′. The neuron si would fire if frequency estimation of [1, χi] is
smaller than m′/2− ε/2m′. Finally, ei would fire if the frequency estimation of [1, χi] is
in the range (m′/2− ε/2m′,m′/2 + ε/2).

3. For i ∈ {logn, . . . , 1}, every two consecutive sub-networks Ci+1 and Ci are connected in
a way that guarantees the following. Let χi+1 be median candidate at phase i + 1 of
the binary search (i.e., that was fed as input to Ci+1). Let freq([x, y]) be the estimated
frequency of the range [x, y] obtained by the Count-Min sketch networks Clogn, . . . , Ci+1.
Then candidate χi is defined as:

χi =
{
χi+1 − 2i−1, if freq([1, χi+1]) > m′/2 + ε/2m′

χi+1 + 2i−1, if freq([1, χi+1]) < m′/2− ε/2m′ .

In the remaining case where freq([1, χi+1]) ∈ [m′/2± ε/2m′], the candidate χi+1 is returned
as the output result. Its value will be encoded by the output neurons of the network. The
complete description and its analysis is deferred to the full version of the paper.

4 Streaming Lower Bounds Yield SNN Lower Bounds

We conclude by addressing Question 2, giving a generic reduction that lets us simulate a
space-efficient SNN with a space-efficient neural network. This establishes a tight connection
between the two models – any streaming space lower bound yields a near-matching neural-
space lower bound. Missing proofs of this section appear in the full version of the paper.

Complexity classes in the SNN model. For integer parameters n,m, S, let
SNN det(n,m, S) be the set of all data-stream problems Pn,m defined over universe [n] and
stream length at most m that are solvable by a deterministic SNN with (i) at most O(S)
non-input neurons (i.e., auxiliary and output neurons) and (ii) polynomially bounded edge
weights (by n andm). Let SNN poly

det (n,m, S) be the class of all data-stream problems Pn,m in
SNN det(n,m, S) whose network solution also have in addition a polynomial persistence time
(in n and m). That is, the problems in SNN poly

det (n,m, S) are solvable in polynomial-time
by a deterministic SNN that has properties (i,ii).

We also consider the class of data-stream problems that are solvable by a randomized
SNN. Let SNN rand(n,m, S, δ) be the set of all data-stream problems Pn,m that are solvable
by a randomized SNN with: (i) at most O(S) non-input neurons, (ii) polynomially bounded
edge weights, and (iii) ≤ δ failure probability on any input. The class SNN poly

rand(n,m, S, δ)
is a sub-class of SNN rand(n,m, S, δ) that requires also a polynomial persistence time.

Complexity classes in the streaming model. Let ST det(n,m, S) be the class of all data-
stream problems for which there exists a single-pass deterministic streaming algorithm for
the problem using space O(S) (potentially with exponentially large update time). Also, let
ST rand(n,m, S, δ) be the class of all data-stream problems for which there exists a single-pass
randomized streaming algorithm that solves the problem with failure probability ≤ δ using
space O(S). One can also define the classes ST poly

det (n,m, S) and ST poly
rand(n,m, S, δ) which

require polynomial update time.
We start by showing that any deterministic SNN with space S for a given data-stream

problem Pn,m yields an S-space deterministic streaming algorithm for the problem.
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I Lemma 23. For every n,m, S, we have:
SNN det(n,m, S) ⊆ ST det(n,m, S) and SNN poly

det (n,m, S) ⊆ ST poly
det (n,m, S).

Proof. Fix the parameters n,m, S, and consider a problem Π ∈ SNN det(n,m, S). Let N be
the SNN for the problem Π. Thus N has S auxiliary and output neurons. We now describe
a streaming algorithm for Π that uses space S. The algorithm traverses the stream and feeds
each item as an input to the network N (with sufficient large persistence time). Importantly,
when considering the subsequent input item, the streaming algorithm only keeps the current
firing states of the S auxiliary and output neurons. The correctness follows immediately by
the correctness of the network N . The space complexity is S bits corresponding to the firing
states of the (non-input) neurons in N . The proof that SNN poly

det (n,m, S) ⊆ ST poly
det (n,m, S)

is analogous since the update time of the streaming algorithm is polynomial in the network
size and the persistence time of the network. J

Pseudorandomness for neural networks. Our next goal is to simulate space-efficient ran-
domized SNNs for data-stream problems with small-efficient streaming algorithms. The main
barrier arises in the case where the edge weights of the network N are chosen randomly
according to some distribution. Since an S-space network with n input neurons might have
Ω(Sn+S2) edges, the explicit specification of the edge weights is too costly for our purposes.

To overcome this barrier, we will use Nisan-Wigderson type pseudorandom generators [39],
which fool circuits of a given size, defined as follows:

I Definition 24 (NW-type PRGs.). A function NWPRG: {0, 1}d(n) → {0, 1}n is an NW-
type PRG against circuits of size t(n) if it is (i) computable in time 2O(d(n)) and (ii)
any circuit C of size at most t(n) distinguishes U ← {0, 1}n from NWPRG(s), where
s← {0, 1}d(n), with advantage at most 1/t(n).

I Theorem 25. [17] Assume there exists a function in E = DTIME(2O(n)) with cir-
cuit complexity 2Ω(n). Then, for any polynomial t(·), there exists a NW-type generator
NWPRG: {0, 1}d(n) → {0, 1}n against circuits of size t(n), where d(n) = O(logn).

I Lemma 26. If one does not restrict the running time of the PRG (and allows it to be
computable by a non-uniform circuit), then a version of Theorem 25 holds unconditionally.

Since an SNN with n input neurons, S non-input neurons for S = poly(n), and polynomial
persistence time can be computed in polynomial time, we have the following:

I Lemma 27. Any SNN N with n input neurons, S non-input neurons for S = poly(n),
and persistence time poly(n) in an m-length stream can be simulated using a total space of
O(S + log(nm)). The success guarantee of the simulation is 1− 1/poly(n,m).

Proof. Consider a (centralized, offline) algorithm that given an ordered stream of length
m′ ≤ m of elements in [1, n] evaluates the output of the network N on that stream. This
algorithm can be implemented in time poly(n,m) and thus there exists a circuit of size
M = poly(n,m) that implements this algorithm. Our goal is to simulate this circuit using
a random seed of length O(log(nm)) while reducing the success guarantee by an additive
term of 1/ poly(n,m). To do that, we will use the PRG construction of Lemma 26 that given
a random seed of size O(log(nm)) fools the family of all circuits of size at most M with
probability 1− 1/poly(M).

We now describe how to simulate N using O(log(nm) + S) space. We store a seed of
O(log(nm)) random bits R and the current firing states of all non-input neurons in N . Then,
as we traverse the stream, for every data-item in the stream, the algorithm first applies
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the NWPRG function on the random seed R and outputs poly(n,m) coins that are used to
define the edge weights of N , as well as to simulate the spiking decisions of the S neurons
in the ith step. The evaluation time of this NWPRG function (i.e., outputting each coin)
might be exponential. However, we will only store one pseudorandom coin at a time, when
its value is required as part of an update. By knowing the states of the S non-input neurons
from the previous step, and using the coins to determine the edge weights one at a time
(requiring O(logn) space as the edge weights are polynomially bounded) one can simulate the
firing pattern of the neurons in the given step. When the neurons are probabilistic threshold
gates, the pseudorandom coins are also used to simulate the firing decisions of these neurons.
While each firing probability is real-valued, it can be rounded to 1/poly(n,m) accuracy (and
hence determined by O(log(nm)) random coins) without changing the probability of any
output configuration by more than 1/ poly(n,m). The step ends with the computation of
the firing states of all non-input neurons, which are stored for the next step. The success
guarantee of using these coins rather than fresh random coins is decreased by an additive
term of 1/ poly(n,m). J

Lemma 27 implies that any randomized SNN with space S that solves a streaming problem
Pn,m with probability 1 − δ in polynomial time translates into a randomized streaming
algorithm for Pn,m using space of S +O(log(nm)). We therefore have:

I Theorem 28. SNN poly
rand(n,m, S, δ) ⊆ ST rand(n,m, S +O(log(nm)), δ + 1/ poly(n,m)) .

A useful implication of Theorem 28 is that any space lower-bound in the streaming model
immediately translates into space lower-bound for networks that have a polynomial persistence
time on the input stream. See the full version for the precise formulation.
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