
Brief Announcement: Polygraph: Accountable
Byzantine Agreement
Pierre Civit
UPMC, Paris 6, France
pierrecivit@gmail.com

Seth Gilbert
National University of Singapore, Singapore
seth.gilbert@comp.nus.edu.sg

Vincent Gramoli
The University of Sydney, Australia
EPFL, Lausanne, Switzerland
vincent.gramoli@sydney.edu.au

Abstract
In this paper, we introduce Polygraph, the first accountable Byzantine consensus algorithm. If among
n users f < n/3 are malicious then it ensures consensus, otherwise it eventually detects malicious
users that cause disagreement. Polygraph is appealing for blockchains as it allows to totally order
blocks in a chain whenever possible, hence avoiding double spending and, otherwise, to punish at
least n/3 malicious users when a fork occurs. This problem is more difficult than it first appears.
Blockchains typically run in open networks whose delays are hard to predict, hence one cannot
build upon synchronous techniques [5, 1]. One may exploit cryptographic evidence of PBFT-like
consensus [2], however detecting equivocation would be insufficient. We show that it is impossible
without extra logs of at least Ω(n) rounds [3]. Each round of Polygraph exchanges O(n2) messages.

2012 ACM Subject Classification Security and privacy → Distributed systems security

Keywords and phrases Fault detection, cryptography, equivocation, consensus

Digital Object Identifier 10.4230/LIPIcs.DISC.2020.45

Funding Part of this work is funded by ARC projects DP180104030 and FT180100496.

The Accountable Byzantine Agreement problem. We consider n processes, f < n are
Byzantine. Let t0 be dn3 e − 1. Processes are sequential and asynchronous. We assume a PKI
and that the network is partially synchronous. A verification algorithm V takes as input the
state of a process and returns a set G of undeniable guilty processes, that is, every process-id
of G is tagged with an unforgeable proof of culpability. We define the Accountable Byzantine
Agreement problem similarly to the Byzantine Agreement: each process begins with a binary
input and outputs a decision, satisfying the three usual properties (agreement, validity, and
termination), and that there exists a verification algorithm that can identify at least t0 + 1
Byzantine users whenever there is disagreement.

I Definition 1 (Accountable Byzantine Agreement (Acc)). An algorithm solves Acc if each
process takes an input value, possibly produces a decision, and satisfies the following properties:

Agreement: If f ≤ t0, then every honest process decides the same value.
Validity: If all processes are honest and have the same input value, then that is the only
decision value.
Termination: If f ≤ t0, every honest process eventually decides a value.
Accountability: There exists a verification algorithm V such that: if two honest processes
decide distinct values, then eventually for every honest process pj, for every state sj
reached by pj from that point onwards, the verification V (sj) outputs a set of size at least
t0 + 1, containing exclusively Byzantine processes.

© Pierre Civit, Seth Gilbert, and Vincent Gramoli;
licensed under Creative Commons License CC-BY

34th International Symposium on Distributed Computing (DISC 2020).
Editor: Hagit Attiya; Article No. 45; pp. 45:1–45:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierrecivit@gmail.com
mailto:seth.gilbert@comp.nus.edu.sg
https://orcid.org/0000-0001-5632-8572
mailto:vincent.gramoli@sydney.edu.au
https://doi.org/10.4230/LIPIcs.DISC.2020.45
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Polygraph

Polygraph. Polygraph is the first accountable Byzantine agreement protocol. It builds upon
DBFT [4], an efficient consensus algorithm for blockchains. The notation broadcast(TAG,m)→
msgs denotes that pi sends a message to every other process, with message type TAG, message
content m and location msgs to store received messages. We assume that every message is
signed by the sender so the receiver can authenticate it. Finally, we write “receive k messages”
to explain “receive messages from k distinct processes”.

Algorithm 1 The Polygraph Protocol.
1: bin-propose(vi):
2: ei = vi

3: ri = 0
4: τi = 0
5: `i [0] = ∅
6: repeat:
7: ri ← ri + 1; � increment round
8: τi ← τi + 1 � increment timer
9: ci ← ((ri − 1) mod n) + 1 � rotate coordinator
. Phase 1:

10: bv-broadcast(EST[ri], ei, `i[ri − 1], i, bvsi)
11: if i = ci then � coordinator rebroadcasts
12: wait until (bvi [ri] = {w}) � bv-delivered bvs
13: broadcast(CO[ri], w)→ msgsi

14: start-timer(τi)
15: wait until (bvsi [ri] 6= ∅ ∧ timer expired)

. Phase 2:
16: if (CO[ri], w) ∈ msgsi from pci

∧
17: w ∈ bvsi[ri]) then auxi ← {w}
18: else auxi ← bvsi[ri]
19: sigi = sign(auxi, ri, i) � sign the messages
20: broadcast(ECHO[ri], auxi[ri], sigi)→ msgsi
21: wait until valsi = values(msgsi, bvsi, auxi) 6= ∅

. Decision phase:
22: if valsi = {v} then � if one value, adopt it
23: ei ← v
24: if v = (ri mod 2) then � if parity matches
25: if no previous decision by pi then decide(v)
26: else
27: ei ← (ri mod 2) � otherwise, adopt parity bit
28: `i[ri] = justify(valsi , ei , ri , bvsi ,msgsi)

Rules:
1. Every message that is not properly signed by the

sender is discarded.
2. Every message that is sent by bv-broadcast without

a valid ledger after Round 1, except for messages
containing value 1 in Round 2, are discarded.

3. On first discovering a ledger l that conflicts with
a certificate, send ledger l to all processes.

29: bv-broadcast(MSG, val, l, i, bvs):
30: broadcast(BVAL, 〈val, l, i〉)→ m � bcast message
31: After round 2, and in round 1 if val = 0, discard
32: all messages received without a proper ledger.
33: upon receipt of (BVAL, 〈v, ·, j〉)
34: if received (t0 + 1) messages (BVAL, 〈v, ·, ·〉) and
35: (BVAL, 〈v, ·, ·〉) not yet broadcast then
36: Let l 6= ∅ be any ledger in these messages.
37: broadcast(BVAL, 〈v, l, j〉)
38: if received (2t0 + 1) times (BVAL, 〈v, ·, ·〉) then
39: Let l 6= ∅ be any ledger in these messages.
40: bvs← bvs ∪ {〈v, l, j〉}

41: values(msgs, b_set, aux_set): � check messages
42: if ∃S ⊆ msgs where the following conditions hold:
43: (i) |S| contains (n− t0) distinct ECHO[ri] msgs
44: (ii) aux_set is equal to the set of values in S.
45: then return(aux_set)
46: if ∃S ⊆ msgs where the following conditions hold:
47: (i) |S| contains (n− t0) distinct ECHO[ri] msgs
48: (ii) Every value in S is in b_set.
49: then return(V = the set of values in S)
50: else return(∅)

51: justify(valsi , ei , ri , bvsi ,msgsi): � compute ledger
52: if ei = (ri mod 2) then
53: if ri > 1 then
54: return `[ri]i = l s.t. (EST[ri], 〈v, l, ·〉) ∈ bvsi

55: else return `[ri]i = ∅
56: else return `[ri]i = (n− t0) signed messages
57: from msgsi containing only value ei

58: if valsi = {(ri mod 2)}∧ no previous decision
59: by pi in previous round then
60: certi = (n− t0) signed messages from msgsi
61: containing only value ei

62: broadcast(ei, ri, i, certi) � broadcast certificate

The protocol proceeds in asynchronous rounds where processes maintain an estimate.
Each round proceeds in two phases, after which a possible decision is taken. In the first phase,
each process bv-broadcasts its estimate using a reliable broadcast service that guarantees
while f < n/3 that: (i) every message broadcast by t0 + 1 honest processes is eventually
delivered to every honest process; (ii) every message delivered to an honest process was
broadcast by at least t0 + 1 processes. All processes then wait until they receive at least
one message, and until an increasing timer expires. A rotating coordinator for each round
broadcasts its estimate with a special designation. In the second phase, if a process receives a
message from the coordinator, then it chooses the coordinator’s value to “echo” it to everyone.
Otherwise, it simply echoes all the messages received in the first phase. At this point, each
process pi waits until it receives ECHO messages from enough (n − t0) distinct processes
where every value in those messages was also received by pi in the first phase. Finally, the
processes try to decide. If process pi has only one candidate value v, then pi adopts that
value v as its estimate. In that case, it can decide v if it matches the parity of the round,
i.e., if v = ri mod 2. Otherwise, if pi has more than one candidate value, then it adopts as
its estimate ri mod 2, the parity of the round.

P. Civit, S. Gilbert, and V. Gramoli 45:3

Ledgers and certificates. In order to ensure accountability, we need to record enough
information during the execution to justify any decision that is made. To this end, we define
two types of justifications: (i) a ledger designed to justify adopting a specific value and
(ii) a certificate to justify a decision. We attach ledgers to certain messages and discard
any message containing an invalid or malformed ledger. We define a ledger for round r and
value v as follows. If v 6= rmod2, then the ledger consists of the (n− t0) ECHO messages,
each properly signed, received in Phase 2 of round r that contain only value v (and no other
value). If v = rmod 2, then the ledger is simply a copy of any other ledger from the previous
round r − 1 justifying value v. A certificate for a decision value v in round r is (n− t0) echo
messages, each properly signed, received in Phase 2 of round r that contain only value v.

Accountability. We now explain how the ledgers and certificates are used. In every round,
when a process uses bv-broadcast to send a message containing a value, it attaches a ledger
from the previous round justifying why that value was adopted (except in Round 1 where
no ledger is available to justify 1). The bv-broadcast ignores the ledger for the purpose of
deciding when to echo a message. When it echoes a message m, it chooses any arbitrary
non-empty ledger that was attached to a message containing m. However, every message that
does not contain a valid ledger justifying its value is discarded, with the following exception:
in Round 2, messages containing value 1 can be delivered without a ledger.

Whenever there is only one candidate value received in Phase 2, a process adopts that
value and either (i) decides and constructs a certificate or (ii) does not decide and constructs
a ledger. In both cases, this construction simply relies on the signed messages received in
Phase 2 of that round. If a process decides a value v in round r > 1, or adopts v because it
is the parity bit for round r > 1, then it also constructs a ledger justifying why it adopted
that value v. It accomplishes this by examining all the bv-broadcast messages received for
value v and copying a round r − 1 ledger. This is always possible since any message that is
not accompanied by a valid ledger is ignored.

Proving culpability. When a process decides in round r, it sends its certificate to all the
other processes. Any process that decides a different value in a round r′ > r can prove the
culpability of at least dn/3e Byzantine processes by comparing this certificate to its logged
ledgers. We will say that a certificate (e.g., from p1) and a ledger (e.g., from p2) conflict if
they are constructed in the same round r, but for different values v and w. We now discuss
how to find conflicting certificates and ledgers. Assume that process pi decides value v in
round r, and that process pj decides a different value w in a round > r after the network
stabilizes. If pj does not decide v, then, by looking at the messages received in round r + 1
and r + 2, it can identify a ledger that conflicts with the decision certificate of pi and hence
can prove the culpability of at least t0 + 1 malicious processes. (Proofs are in the report [3].)

References
1 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. Technical Report

1710.09437v4, arXiv, January 2019. arXiv:1710.09437v4.
2 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.

ACM Transactions on Computer Systems, 20(4), 2002.
3 Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable Byzantine consensus.

In Workshop on Verification of Distributed Systems (VDS), June 2019. Available at https:
//eprint.iacr.org/2019/587.pdf.

4 Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: Efficient leaderless
Byzantine consensus and its applications to blockchains. In IEEE NCA, 2018. URL: http:
//gramoli.redbellyblockchain.io/web/doc/pubs/DBFT-preprint.pdf.

5 Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. PeerReview: Practical accountability
for distributed systems. SOSP, 2007.

DISC 2020

http://arxiv.org/abs/1710.09437v4
https://eprint.iacr.org/2019/587.pdf
https://eprint.iacr.org/2019/587.pdf
http://gramoli.redbellyblockchain.io/web/doc/pubs/DBFT-preprint.pdf
http://gramoli.redbellyblockchain.io/web/doc/pubs/DBFT-preprint.pdf

