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—— Abstract

In applications such as sharded data processing systems, data flow programming and load sharing

applications, multiple concurrent data producers are feeding requests into the same data consumer.
This can be naturally realized through concurrent queues, where each consumer pulls its tasks from
its dedicated queue. For scalability, wait-free queues are often preferred over lock based structures.

The vast majority of wait-free queue implementations, and even lock-free ones, support the
multi-producer multi-consumer model. Yet, this comes at a premium, since implementing wait-free
multi-producer multi-consumer queues requires utilizing complex helper data structures. The latter
increases the memory consumption of such queues and limits their performance and scalability.
Additionally, many such designs employ (hardware) cache unfriendly memory access patterns.

In this work we study the implementation of wait-free multi-producer single-consumer queues.
Specifically, we propose Jiffy, an efficient memory frugal novel wait-free multi-producer single-
consumer queue and formally prove its correctness. We then compare the performance and memory
requirements of Jiffy with other state of the art lock-free and wait-free queues. We show that indeed
Jiffy can maintain good performance with up to 128 threads, delivers better throughput than other
constructions we compared against, and consumes less memory.
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1 Background

Concurrent queues are a fundamental data-exchange mechanism in multi-threaded applica-
tions. A queue enables one thread to pass a data item to another thread in a decoupled
manner, while preserving ordering between operations. The thread inserting a data item is
often referred to as the producer or enqueuer of the data, while the thread that fetches and
removes the data item from the queue is often referred to as the consumer or dequeuer of
the data. In particular, queues can be used to pass data from multiple threads to a single
thread - known as multi-producer single-consumer queue (MPSC), from a single thread to
multiple threads - known as single-producer multi-consumer queue (SPMC), or from multiple
threads to multiple threads - known as multi-producer multi-consumer queue (MPMC).

MPSC is useful in sharded software architectures, resource allocation and data-flow
computation schemes. In many sharded architectures, a single thread is responsible for each
shard, in order to avoid costly synchronization while accessing a specific shard. In this case,
multiple feeder threads (e.g., that communicate with external clients) insert requests into the
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queues according to the shards. Each thread that is responsible for a given shard repeatedly
dequeues the next request for the shard, executes it, dequeues the next request, etc. Similarly,
in a data flow graph, multiple events may feed the same computational entity, e.g., a reducer
that reduces the outcome of multiple mappers. Here too each computational entity can be
served by a single thread while multiple threads are sending it items (requests) to be handled.

MPMC is the most general form of a queue and can be used in any scenario. Therefore,
MPMC is also the most widely studied data structure [5, 6, 7, 9, 10, 11, 12]. Yet, this may
come at a premium compared to using a more specific queue implementation.

Specifically, concurrent accesses to the same data structure require adequate concurrency
control to ensure correctness. The simplest option is to lock the entire data structure on
each access, but this usually dramatically reduces performance due to the sequentiality and
contention it imposes [4]. A more promising approach is to reduce, or even avoid, the use
of locks and replace them with lock-free and wait-free protocols that only rely on atomic
operations such as fetch-and-add (FAA) and compare-and-swap (CAS), which are supported
in most modern hardware architectures [3]. Wait-free implementations are particularly
appealing since they ensure that each operation always terminates in a finite number of steps.

Alas, known MPMC wait-free queues suffer from large memory overheads, intricate code
complexity, and low scalability. In particular, it was shown that wait-free MPMC queues
require the use of a helper mechanism [1]. On the other hand, as discussed above, there are
important classes of applications for which MPSC queues are adequate. Such applications
could therefore benefit if a more efficient MPSC queue construction was found. This motivates
studying wait-free MPSC queues, which is the topic of this paper.

2 Contributions

In this work we present Jiffy, a fast memory efficient wait-free MPSC queue. Jiffy is
unbounded in the the number of elements that can be enqueued without being dequeued (up
to the memory limitations of the machine). Yet the amount of memory Jiffy consumes at
any given time is proportional to the number of such items and Jiffy minimizes the use of
pointers, to reduce its memory footprint.

To obtain these good properties, Jiffy stores elements in a linked list of arrays, and only
allocates a new array when the last array is being filled. Also, as soon as all elements in a
given array are dequeued, the array is released. This way, a typical enqueue operation requires
little more than a simple FAA and setting the corresponding entry to the enqueued value
and changing its status from empty to set. Hence, operations are very fast and the number
of pointers is a multiple of the allocated arrays rather than the number of queued elements.

To satisfy linearizability and wait-freedom, a dequeue operation in Jiffy may return a
value that is already past the head of the queue, if the enqueue operation working on the
head is still on-going. To ensure correctness, we devised a novel mechanism to handle such
entries both during their immediate dequeue as well as during subsequent dequeues.

Another novel idea in Jiffy is related to its buffer allocation policy. Naively, when the last
buffer is full, any enqueuer at that point should allocate a new buffer and try adding it to the
queue with a CAS. When multiple enqueuers try this concurrently, only one succeeds and the
others need to free their allocated buffer. However, this both creates contention on the end
of the queue and wastes CPU time in allocating and freeing multiple buffers each time. To
alleviate these, in Jiffy the enqueuer of the second entry in the last buffer already allocates
the next buffer and tries to add it using CAS. This way, almost always, when enqueuers
reach the end of a buffer, the next buffer is already available for them with no contention.
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We have implemented Jiffy and evaluated its performance in comparison with three
other leading lock-free and wait-free implementations, namely WFqueue [13], CCqueue [2],
and MSqueue [7]. We also examined the memory requirements for the data and code of
all measured implementations using valgrind [8]. The results indicate that Jiffy is up to
50% faster than WFqueue and roughly 10 times faster than CCqueue and MSqueue in a
multiple enqueuers single dequeuer workload. Jiffy is also more scalable than the other queue
structures we tested, enabling more than 20 million operations per second even with 128
threads. Finally, the memory footprint of Jiffy is roughly 90% better than its competitors in
the tested workloads, and provides similar benefits in terms of number of cache and heap
accesses. Jiffy obtains better performance since the size of each queue node is much smaller
and there are no auxiliary data structures. For example, in WFqueue, which also employs a
linked list of arrays approach, each node maintains two pointers, there is some per-thread
meta-data, the basic slow-path structure (even when empty), etc. Further, WFqueue employs
a lazy reclamation policy, which according to its authors is significant for its performance.
Hence, arrays are kept around for some time even after they are no longer useful. In contrast,
the per-node meta-data in Jiffy is just a 2-bit flag, and arrays are being freed as soon as they
become empty. This translates to a more (hardware) cache friendly access pattern. Also, in
Jiffy dequeue operations do not invoke any atomic (e.g., FAA & CAS) operations at all.
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