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Abstract
The recent emergence of fast, dense, nonvolatile main memory suggests that certain long-lived data
structures might remain in their natural, pointer-rich format across program runs and hardware
reboots. Operations on such structures must be instrumented with explicit write-back and fence
instructions to ensure consistency in the wake of a crash. Techniques to minimize the cost of this
instrumentation are an active topic of current research.

We present what we believe to be the first general-purpose approach to building buffered durably
linearizable persistent data structures, and a system, Montage, to support that approach. Montage
is built on top of the Ralloc nonblocking persistent allocator. It employs a slow-ticking epoch clock,
and ensures that no operation appears to span an epoch boundary. If a crash occurs in epoch e, all
work performed in epochs e and e− 1 is lost, but all work from prior epochs is preserved.

We describe the implementation of Montage, argue its correctness, and report on experiments
confirming excellent performance for operations on queues, sets/mappings, and general graphs.
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1 Background and Overview

A data structure that is intended to survive system crashes is generally expected to be
durably linearizable [3], meaning (1) it is linearizable during crash-free operation, (2) each
operation persists (reaches a state that will survive a crash) between its invocation and
response, and (3) the order of persists matches the linearization order. At the cost of locality
(trivial composability), a buffered durably linearizable data structure may preserve only some
consistent prefix of its happens-before history on a crash.

Publications over the past few years have described some two dozen general-purpose
systems to provide failure atomicity for outermost critical sections or speculative transactions
on a concurrent data structure. The need for operations to persist before returning is a
significant source of overhead in these systems. As an example of how one might reduce
this overhead, Nawab et al. presented a buffered durably linearizable hash table (Dalí [5])
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Figure 1 Persistent mapping throughput – 2:1:1 get:insert:remove; T = transient only.

that persists on a periodic (as opposed to incremental) basis. More recently, Haria et al.’s
MOD project [2] proposed that in history-preserving (“functional”) tree structures, each
update can be persisted by updating a single root pointer, eliminating the need for logging.
Concurrently, Memaripour et al.’s Pronto project [4] proposed that concurrent objects log
their high level (abstract) operations (rather than low-level updates), together with occasional
checkpoints; on a crash, they can then replay the suffix of the log past the most recent
checkpoint. Similarly, Zuriel et al.’s SOFT [6] keeps the abstract state of a set – its keys and
values – in both DRAM and NVM; the NVM copy is used only for recovery.

Inspired in part by these previous projects, we present what we believe to be the first
general-purpose approach to buffered durably linearizable structures. Our system, Montage,
preserves the abstract state of the concurrent object without necessarily persisting its concrete
state. In a mapping, for example, it persists only a bag of key-value pairs; the look-up
structure (hash table, tree, skip list) lives entirely in transient DRAM. During normal
(crash-free) execution, Montage employs a slow-running epoch clock, and ensures that no
operation appears to span an epoch boundary. If a crash occurs in epoch e, Montage recovers
the state of the abstraction from the end of epoch e − 2 and rebuilds the concrete structure.

Our implementation of Montage is built on top of Ralloc [1], a lock-free allocator for
persistent memory. Montage itself is also lock-free during normal operation, except for
epoch advances: if the data structure is itself nonblocking, a stalled thread will not impede
operations of its peers; it can, however, indefinitely prevent those operations from persisting.

2 Implementation and Correctness

A typical concurrent object in Montage consists of a collection of payload blocks in nonvolatile
memory, together with an index or other supporting structure in transient memory (DRAM).
A global epoch clock is also kept in persistent memory. Each payload block indicates the
epoch in which it was created. During recovery from a crash in epoch e, all blocks created
in epochs e and e − 1 are discarded in Ralloc. A block that was created in epoch e can be
modified in place in epoch e (under protection of whatever synchronization would normally
be used for the concurrent object). A block created in epoch d < e is not modified in place;
rather, a new block is created to replace it. The old block is reclaimed once the epoch counter
has advanced to e + 2, at which point we know that the new block will survive a crash. An
old block can be deleted by replacing it with an “anti-block.”

An operation that has updated a block in epoch e must abort and start over if it accesses
any block that was created in epoch e + 1; this ensures that the epoch boundary represents a
consistent cut across the happens-before relationship. Epoch advance from e to e + 1 must
wait until (1) all blocks that were to be reclaimed in epoch e − 2 have been reclaimed, and
(2) all operations that began in epoch e − 1 have completed and have persisted their updates.

Many details can be tuned for better performance. Buffered durable linearizability requires
that updates to persistent data be written back and fenced by the end of the subsequent
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epoch, but not necessarily before. To reduce the likelihood of cache misses induced by writing
back (and, as a side effect, evicting) data that may still be useful, a thread can keep the
addresses of its updates in a (transient) buffer for delayed write-back. To move the overhead
of persistence off the critical path, buffers may be emptied by a background thread. To
ensure nonblocking progress in application threads, updates to the epoch clock can also be
confined to a background thread. Epoch length can be adjusted to trade run-time overhead
against the amount of data that may be lost on a crash.

In the wake of a crash, Ralloc helps Montage iterate through all potentially in-use blocks
in the heap, keeping those that are not from the two most recent epochs. The application
then re-creates any needed transient structures.

3 Concrete examples

We have implemented several data structures in Montage, including a nonblocking queue,
blocking and nonblocking mappings based on hash tables and trees, and general graphs
with dynamic creation and deletion of vertices and edges. As a general rule, we avoid
unbounded-length chains of pointers in persistent memory, since an update at the end of
the chain could recursively necessitate new versions of all the predecessor blocks. Rather,
we keep such chains in transient memory when needed, and arrange to rebuild them after a
crash. In a queue, for example, each payload block contains a sequence number that indicates
its place in line. In a graph, each edge is represented by a relationship block in persistent
memory that contains the unique IDs of its endpoint vertices. Pointers from vertices to edges
appear only in transient memory. Anecdotally, adapting a structure to Montage requires
relatively modest programmer effort beyond the creation of the original concurrent object.

Figure 1 reports throughput for five persistent mappings: Dalí [5], synchronously logged
and (on ≤ 20 threads) “full” (asynchronous) versions of Pronto [4], MOD [2], SOFT [6], and
Montage. The Montage implementation uses a background thread to perform writes-back
and advance the epoch every 100ms. All implementations use a lock-based hash table as
index. For comparison, we also measure a transient hash table (with data in DRAM or in
NVM) and Montage without persistence (T). Only SOFT outperforms Montage, with the
significant disadvantage of being limited by the size of DRAM. We interpret these results as
a strong endorsement of buffered durable linearizability, and of Montage in particular.
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