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—— Abstract

Sequential effect systems are a class of effect system that exploits information about program order,
rather than discarding it as traditional commutative effect systems do. This extra expressive power
allows effect systems to reason about behavior over time, capturing properties such as atomicity,
unstructured lock ownership, or even general safety properties. While we now understand the
essential denotational (categorical) models fairly well, application of these ideas to real software
is hampered by the variety of source level control flow constructs and control operators in real
languages.

We address this new problem by appeal to a classic idea: macro-expression of commonly-used
programming constructs in terms of control operators. We give an effect system for a subset of
Racket’s tagged delimited control operators, as a lifting of an effect system for a language without
direct control operators. This gives the first account of sequential effects in the presence of general
control operators. Using this system, we also re-derive the sequential effect system rules for control
flow constructs previously shown sound directly, and derive sequential effect rules for new constructs
not previously studied in the context of source-level sequential effect systems. This offers a way to
directly extend source-level support for sequential effect systems to real programming languages.
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1 Introduction

Effect systems extend type systems to reason about not only the shape of data, and available
operations — roughly, what a computation produces given certain inputs — but to also reason
about how the computation produces its result. Examples include ensuring data race freedom
by reasoning about what locks a computation assumes held during its execution [1, 23, 11, 10],
restricting sensitive actions (like UT updates) to dedicated threads [33], ensuring deadlock
freedom [24, 34, 1, 69], checking safe region-based memory management [72, 50], or most
commonly checking that a computation handles (or at least indicates) all errors it may
encounter — Java’s checked exceptions [35] are the most widely used effect system.

Most effect systems discard information about program order: the same join operation
on a join semilattice of effects is used to overapproximate different branches of a conditional
or different subexpressions executed in sequence. Despite this simplicity, these traditional
commutative effect systems (where the combination of effects is always a commutative
operation) are powerful. Still, many program properties of interest are sensitive to evaluation
order. For example, commutative effect systems handle scoped synchronized blocks as in Java
with ease: the effect of (the set of locks required by) the synchronized’s body is permitted
to contain the synchronized lock, in addition to the locks required by the overall construct.
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But to support explicit lock acquisition and release operations that are not block-structured,
an effect system must track whether a given expression acquires and/or releases locks, and
must distinguish their ordering: releasing and then acquiring a given lock is not the same as
acquiring before releasing. To this end, sequential effect systems (so named by Tate [70])
reason about effects with knowledge of the program’s evaluation order.

Sequential effect systems are much more powerful than commutative effect systems,
with examples extending through generic reasoning about program traces [68, 67] and
even propagation of liveness properties from oracles [45] — well beyond what most type
systems support. The literature includes sequential effect systems for deadlock freedom [34,
69, 1, 10], atomicity [25, 26], trace-based security properties [68, 67], safety of concurrent
communication [4, 57], general linear temporal properties with a liveness oracle [45], and more.
Yet for all the power of this approach, for years each of the many examples of sequential effect
systems in the literature individually rederived much structure common to all sequential
effect systems. Recent years have seen efforts to unify understanding of sequential effect
systems with general frameworks, first denotationally [70, 42, 55, 6], and recently as an
extension to the join semilattice model [30]. These frameworks can describe the structure of
established sequential effect systems from the literature.

However, these generic frameworks stop short of what is necessary to apply sequential
effect systems to real languages: they lack generic treatments of critical features of real
languages that interact with evaluation order — control operators, including established
features like exceptions and increasingly common features like generators [14].. And with the
exception of the effect systems used to track correct return types with delimited continuations
(answer type modification [16, 5, 44]), there are no sequential effect systems that consider
the interaction of control and sequential effects. This means promising sequential effect
systems [68, 67, 45, 25, 34, 4, 57, 69, 10] cannot currently be applied directly to real languages
like Java [35], Racket, C# [52], Python [71], or JavaScript [54].

Control operators effectively reorder, drop, or duplicate portions of a program’s execution
at runtime, changing evaluation order. In order to reason precisely about flexible rearrange-
ment of evaluation order, a sequential effect system must reason about control operators.
The classic example is again Java’s try-catch: if the body of a try block both acquires and
releases a lock this is good, but if an exception is thrown mid-block the release may need to
be handled in the corresponding catch. Clearly, applying sequential effect systems to real
software requires support for exceptions in a sequential effect system. Working out just those
rules is tempting, but exceptions interact with loops. The effect before a throw inside a loop —
which a catch block may need to “complete” (e.g., by releasing a lock) — depends on whether
the throw occurs on the first or nth iteration. Many languages include more than simply
try-catch, for example with the generators (a form of coroutine) now found in C# [52],
Python [71], and JavaScript [54]. These interact with exceptions and loops. Treating each
new control operator individually seems inefficient.

An alternative to studying all possible combinations of individual control constructs in
common languages is to study more general constructs, such as the very general delimited
continuations [22, 19] present in Racket. These are useful in their own right (for Racket, or
the project to add them to Java [36]), and can macro-express many control flow constructs
and control operators of interest, including loops, exceptions [27], coroutines [39, 40], gener-
ators [14], and more [15]. Then general principles can be derived for the general constructs,
which can then be applied to or specialized for the constructs of interest. This both solves
the open question of how to treat general control operators with sequential effect systems,
and leads to a basis for more compositional treatment of loops, exceptions, generators, and
future additions to languages. This is the avenue we pursue in this paper.
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Delimited continuations solve the generality problem, but introduce new challenges since
sequential effect systems can track evaluation order [68, 67, 31, 45]. The effect of an expression
that aborts out of a prompt depends on what was executed before the abort, but not after.
The body of a continuation capture (call/cc) must be typed knowing the effect of the
enclosing context — the code executing after, but not before (up to the enclosing prompt).
We lay the groundwork for handling modern control operators in a sequential effect system:

We give the first generic characterization of sequential effects for continuations, by
giving a generic lifting of a control-unaware sequential effect system into one that can
support tagged delimited continuations. The construction we describe provides a way to
automatically extend existing systems with support for these constructs, and likewise
will permit future sequential effect system designers to ignore control operations initially
and add support later for free (by applying our construction). As a consequence, we can
transfer prior sequential effect systems designed without control operators to a setting
with control operators.

We give sequential effect system rules for while loops, try-catch, and generators by

deriving them from their macro-expression [20] in terms of more primitive operators. The

loop characterization was previously known (and technically a control flow construct, not

a general control operator), but was given as primitive. The others are new to our work,

and necessary developments in order to apply sequential effect systems to most modern

programming languages. The derivation approach we describe can be applied to other
control operators that are not explicitly treated in the paper.

We demonstrate how prior work’s notion of an iteration operator [30, 31] derived from

a closure operator on the underlying effect lattice is not specific to loops, but rather

provides a general tool for solving recursive constraints in sequential effect systems.

We prove syntactic type safety for a type system using our sequential control effect

transformation with any underlying effect system.

2 Background

We briefly recall the details of sequential type-and-effect systems, and tagged delimited
continuations. We emphasize the view of effect systems in terms of a control flow algebra [55)
— an algebraic structure with operations corresponding to the ways an effect system might
combine the effects from subexpressions in a program.

2.1 Sequential Effect Systems

Traditional type-and-effect systems extend the typing judgment I' F e : 7 for an additional
component. The extended judgment form I' F e : 7 | x is read “under local variable
assumptions I, the expression e evaluates to a value of type 7 (or diverges), with effect x
during evaluation.” The last clause of that reading is vague, but carries specific meanings for
specific effect systems. For checked exceptions, it could be replaced by “possibly throwing
exceptions y during evaluation” where x would be a set of checked exceptions. For a data
race freedom type system reasoning about lock ownership, it could be replaced by “and is
data race free if executed while locks x are held.”

The join semilattice structure of standard effect systems is well-known, as are the
corresponding denotational analogues (e.g., indexed monads [74]). The limitation common
to all of these systems, however, is that they discard program order, using the (commutative)
join for any combination of effects. In contrast, there is growing work on sequential [70]
effect systems, which capture a wide array of order-sensitive phenomena. This includes
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effect systems for atomicity [25, 26], deadlock freedom [69, 34, 10, 1], race freedom with
explicit lock acquisition and release [69, 30], message passing concurrency safety [57, 4],
security checks [68], and (with the aid of an oracle for liveness properties) general linear-time
properties [45]. Tate labels these systems sequential effect systems [70], as their distinguishing
feature is the use of an additional sequencing operator to join effects where one is known to
be evaluated before another. Consider the sequential rules for functions, function application,
conditionals, and while loops:

T-App T-WHILE
Tke:7S50|x1 The:7|x2 Thec:boolean|x. They:7|xs
Pheles:o|x1>x2>X I' F while e, ey : unit | xe > (x5 > Xe)*
T-LAMBDA T-1r
Dyx:The:o]|x 'k e :bool | xe The: 7| xe Fkep:7|xy
ITF\z.e):7 S50 |1 F'Fifecerer: 7| xe> (xeUXy)

The sequencing operator > is associative but not (necessarily) commutative. Thus the effect
in the new T-APP reflects left-to-right evaluation order: first the function position is reduced
to a value, then the argument, and then the function body is executed. The conditional
rule reflects the execution of the condition followed by either (via commutative join) the
true or false branch. The while loop uses an iteration operator (—)* to represent 0 or more
repetitions of its argument; we will return to its details later. The effect of T-WHILE reflects
the fact that the condition will always be executed, followed by 0 or more repetitions of the
loop body and checking the loop condition again. The rule for typing lambda expressions
switches from a bottom element, to a general unit effect: identity for sequential composition.

To formalize the intuition above, Gordon [30] proposed effect quantales as a model that
captures prior effect systems’ structure:

» Definition 1 (Effect Quantale). An effect quantale is a join-semilattice-ordered monoid
with nilpotent top. That is, it is a structure (E,U, T,>,I) where:

(E,U,T) is an upper-bounded join semilattice

(E,>,I) is a monoid

T is nilpotent for sequencing (Vx.xa>T =T =T>zx)

> distributes over U on both sides: at>(bUc) = (a>b)U(a>c) and (alUb)>c = (at>c)U(b>c)
The structure extends a join semilattice with a sequencing operator, a designated error
element to model possibly-undefined combinations, and laws specifying how the operators
interact. Top (T) is used as an indication of a type error, for modeling partial join or sequence
operators: expressions with effect T are rejected. Ll is used to model non-deterministic joins
(e.g., for branches) as in the commutative systems, and > is used for sequencing. The default
effect of “uninteresting” program expressions (including values) becomes the unit I rather
than a bottom element (which need not exist). As a consequence of the distributivity laws,
it follows that > is also monotone in both arguments, for the standard partial order derived
from a join semilattice: x Cy=ax Uy =y.

Gordon [30] also showed how to exploit closure operators [8, 9, 29] to impose a well-behaved
notion of iteration (the (—)* operator from T-WHILE) that coincides with manually-derived
versions for the effect quantales modeling prior work for many effect quantales. Gordon [31]
recently generalized the construction, and showed that large general classes of effect quantales
meet the criteria to have such an iteration operator. The effect quantales for which the
generalized iteration is defined are called lazly iterable. An effect quantale is laxly iterable if
for every element x, the set of subidempotent elements ({s | s> s C s}) greater than both x
and I has a least element. This is true of all known effect quantales corresponding to systems
in the literature.



C.S. Gordon

The iteration operator for an iterable effect quantale takes each effect x to the least
subidempotent effect greater than or equal to « U I (which exists, by the definition of laxly
iterable). This iteration operator satisfies 5 essential properties for any notion of iteration [31],
which we will find useful when deriving rules for loops. Iteration operators are extensive
(Ve.e C e*), idempotent (Ve.(e*)* = e*), monotone (Ve,f.e C f = e* T f*), foldable
(Ve.e>e* Ce* and e* > e C e*), and possibly-empty (Ve. I T e*). Another useful property
of iteration that we will sometimes use is that Va,y.z* Uy* C (x Uy)*. Gordon [30, 31]
gives more details on closure operators and the derivation of iteration. We merely require its
existence and properties.

For our intended goal of giving a transformation of any arbitrary sequential effect
system into one that can use tagged delimited continuations, we require some abstract

characterization. We choose effect quantales as the abstraction for lifting for several reasons.

First, they characterize the structure of a range of concrete systems from prior work [30, 31],
while other proposals omit structure that is important to these concrete systems. Second,
while effect quantales are not maximally general, they remain very general: the motivating

example for Tate’s work [70] (which 4s maximally general) can be modeled as an effect quantale.

Third, we would like to check whether our derived rules are sensible; effect quantales are the
only abstract characterization for which imperative loops have been investigated, offering
appropriate points of comparison. Finally, the iteration construction on effect quantales
offers a natural approach to solving recursive constraints on effects, which we will use in
deriving closed-form derived rules for macro-expressed control flow constructs and control
operators.

As a running example throughout the paper, we will use a simplification of various trace
or history effect systems [68, 67, 45]. For a set (alphabet) of events X, consider the non-empty
subsets of ¥* — the set of possibly-empty strings of letters drawn from ¥ (the strings, not the
subsets, may be empty). This gives an effect quantale 7 (X) whose elements are these subsets

or an additional top-most error element Err. Join is simply set union lifted to propagate Err.

Sequencing is the double-lifting of concatenation, first to sets (A-B = {zy |z € AAy € B}),
then again to propagate Err. The unit for sequencing is the singleton set of the empty string,
{e}. If ¥ is a set of events of interest — e.g., security events — then effects drawn from

this effect quantale represent sets of possible finite event sequences executed by a program.

Effects drawn from this effect quantale show the possible sequences of operations code may
execute, which will allow us to show explicitly how fragments of program execution are
rearranged when using control operators. For our examples, we will assume a family of
language primitives event[a] with effect (0,0, {«}) (similar to Koskinen and Terauchi [45]),
where « is drawn from a set X of possible events. The key challenge we face in this paper
is, viewed through the lens of 7 (X), to ensure that when continuations are used, the effect
system does not lose track of events of interest or falsely claim a critical event occurs where
it may not.

2.2 Tagged Delimited Continuations

Control operators have a long and rich history, reaching far beyond what we discuss here.

Many different control operators exist, and many are macro-expressible [20] in terms of
each other (i.e., can be translated by direct syntactic transformation into another operator),
though some of these translations require the assumption of mutable state, for example. But
a priori there is no single most general construct to study which obviously yields insight
on the source-level effect typing of other constructs. A suitable starting place, then, is to
target a highly expressive set of operators that see use in a real language. If the operators
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E:=e|(Ee)|(vE)| (%tEwv)]|(cll/cct E)| (call/comp t E) | (abort ¢ e)

E-App 7 E-PROMPTVAL -
o1 (M. €) v) 5 oy efv/a] i (% L v h) = 0w

oebolie E’ contains no prompts for ¢
E-ABORT

FrcoNTexT o3 Ele] % o E[e] o3 B[(% € E'[(abort £ v)] h)] = o E[h v]

E’ contains no prompts for ¢

o3 E[(% € E'[(call/cc £ k)] B)] = o3 B[(% € E'[(k (cont £ E'))] h)]

E-CALLCC

E’ contains no prompts for ¢

o3 E[(% € E'[((cont £ E") v)] h)] = o3 E[(% £ E"[v] h)]

E-INVOKECC

Figure 1 Operational semantics.

are sufficiently expressive, this provides not only a sequential type system for an expressive
source language directly, but also supports deriving type rules for other languages’ control
constructs, based on their macro-expression in terms of the studied control operators.

We study a subset of the tagged delimited control operators [22, 19, 64, 65, 66] present
in Racket [27], shown in Figure 1. The semantics include both local (—) and global (=)
reductions on configurations consisting of a state o and expression e. All continuations in
Racket are delimited, and tagged. There is a form of prompt that limits the scope of any
continuation capture: (% tag e e2) is a tagged prompt with tag tag, body e, and abort
handler e2. Without tags, different uses of continuations — e.g., error handling or concurrency
abstractions — can interfere with each other [64]; as a small example, if loops and exceptions
were both implemented with undelimited continuations, throwing an exception from inside
a loop inside a try-catch would jump to the loop boundary, not the catch. Thus prompts,
the continuation-capturing primitives call/cc and call/comp, and the abort primitive all
specify a tag, and only prompts with the specified tag are used to interpret continuation and
abort boundaries. This permits jumping over unrelated prompts (e.g., so exceptions find the
nearest catch, not merely the nearest control construct). In most presentations of delimited
continuations, tags are ignored (equivalently, all tags are equal), while most implementations
retain them for the reasons above. Here the tags are essential to the theory as well: an abort
that “skips” a different prompt must be handled differently by our type-and-effect system.

call/cc tag £ is the standard (delimited) call-with-current-continuation: f is invoked
with a delimited continuation representing the current continuation up to the nearest prompt
with tag tag (E-CALLCC). Invoking that continuation (E-INVOKECC) replaces the context
up to the nearest dynamically enclosing prompt with the same tag, leaving the delimiting
prompt in place. Both capture and replacement are bounded by the nearest enclosing prompt
for the specified tag. The surrounding captured or replaced context (E’ in both rules) may
contain prompts for other tags, but not the specified tag. Racket also includes (abort t e)
(absent in many formalizations of continuations), which evaluates e to a value, then replaces
the enclosing prompt (of the specified tag t) with an invocation of the handler applied to
that value (E-ABORT). Racket’s rules differ from some uses of abort in the literature. Figure
1’s rules are Flatt et al’s rules [27] without continuation marks and dynamic-wind. Flatt et al.
formalized Racket’s control operators in Redex [21, 43], including showing they passed the
Racket implementation tests for those features. We have verified the rules above continue to
pass the relevant tests in Redex (see supplementary material [32]).
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We chose this set of primitives, over related control operators [63] such as shift/reset
or shift0/reset0 which can simulate these primitives, for several reasons. First, they are
general enough to use for deriving rules for higher-level constructs like generators from their
macro-expansion. Second, the control operators we study are implemented as primitives in a
real, mature language implementation (Racket), used in real software [46]. And finally, it
is known [27] how these control operators interact with other useful control operators like
dynamic-wind [38] (relevant to finally or synchronized blocks) and continuation marks [13].
Thus our Racket subset is a suitable basis for future extension, while we are unaware
of established extensions of shift/reset, shift0/reset0, etc. with continuation marks or
dynamic-wind.

The operators we study can express loops, exceptions, coroutines [39, 40|, and gener-
ators [14]. Racket also includes compositional continuations, whose application extends
the current context rather than discarding it, giving completeness with respect to some
denotational models [66], and alleviating space problems when using call/cc to simulate
other families of control operators (it is known to macro-express another popular form of
delimited continuations, the combination of shift and reset [27]). Our technical report [32]
extends our development to include compositional continuations as well.

One final point about the semantics worth noting is the presence of effect annotations on
the reduction arrows. These semantics are further adapted from Flatt et al. [27] to “emit”
the primitive effect of the reduction, which is typical of syntactic type safety proofs for effect
systems, including ours (Section 6). They do not influence evaluation, but only mark a
relationship between the reduction rules and static effects. Non-unit (non-I effects) arise
from a choice of primitives that depends on the particular effect system studied.

3 Growing Sequential Effects: Control, Prophecies, and Blocking

To build intuition for our eventual technical solution, we motivate its components through a
series of progressively more sophisticated use cases. We will use 7(X) in all of our examples,
because we find traces to be an effective way of explaining the difficulties the effect system
must address related to program fragments (i.e., events) being repeated, skipped, or reordered.
A reader may choose to impart security-specific meanings to these events (as Skalka et al. [68]
do) or as any other protocol of personal interest (e.g., lock acquisition and release). However,
our development in Section 4 is not specific to this effect quantale, but instead parameterized
over an arbitrary effect quantale. Our goal is to develop a sequential effect system based on
transforming an underlying base effect quantale ) into a structure we will call C(Q) with
sequencing and join operations, and a unit effect. This ensures our transformation works for
any valid effect quantale, which includes all sequential effect systems we are aware of [30, 31].

» Use Case 1 (Control-Free Programs). Since programs are not required to use control
operators, our solution must include a restriction equivalent to the class of underlying effects
to reason about. For example, if event[a] has effect {a} € T(X) and event[8] has effect
{B} € T(X), we should expect the effect of event[a]; event[3] to be somehow equivalent
to sequencing those underlying effects — {«} > {8} = {af}. This suggests underlying effects
should be at least a component of continuation-aware effects.

» Use Case 2 (Aborting Effects). The simplest control behavior we can use is to abort to a
handler, and this interacts with both sequencing and conditionals. Consider:

(% t ((if c (event[al) (abort t 3)); event[$]) (An. event[~]) )
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Assuming c is a variable (i.e., pure), there are two paths through this term:
If ¢ is true, the code will emit events o and § (in order), and not execute the handler
If ¢ is false, the code will abort to the handler, which will emit event ~.
So intuitively, the effect for this term should contain those traces; ideally the effect would
be {af,~}, containing only those traces. For an effect system to validate this effect for this
term, it must not only track ordinary underlying effects, but also two aspects of the abort
operation’s behavior: it causes some code to be discarded (the event[3]), and it causes the
handler to run. We can track this information by making effects pairs of two components:
a set of behaviors up to an abort (which we will call the control effect set, since it tracks
effects due to non-local control transfer), and an underlying effect for when no abort occurs.
We could then give the body of the prompt the effect ({abort({e})}, {a8}) to indicate that
it either executes normally producing a trace a3, or it aborts to the nearest handler after
doing nothing (more precisely, after performing actions with the unit effect for 7(X)). The
type rule for prompts can then recognize the body may abort, and for each possible prefix of
an aborting execution, add into the overall (underlying) effect of the prompt the result of
sequencing that prefix with the handler’s effect: here, ({¢} > {7}) U{af} = {af,~}.
Above the body effect was given as a whole from intuition, but in general this must be
built compositionally from subexpression effects, motivating further questions. First, what is
the effect of the subterm abort t 37 In particular, what is its underlying effect? One sound
choice would be I ({€} for T(X)), but this would introduce imprecision: it would produce
effects suggesting it was possible to execute only event 8 (since the conditional’s underlying
effect would include both a and the empty trace €, sequenced with ). Instead, we will make
the underlying component optional, writing 1 when it is absent. We will continue to use
metavariables ) to indicate a definitely present element of the underlying effect quantale,
but will use the convention of underlining metavariables (e.g., @) when they may be L. This
permits the conditional’s underlying effect to only contain the trace «, because joining the
branches’ effects can simply ignore the missing underlying effect from the aborting branch.
Second, we should consider how the sequencing and join operations interact with abort
effects. While component-wise union/join is a natural (and working) starting point, sequencing
is less obvious. Prefixing the last example’s body with an extra event is instructive:

(% t (event[d]; (if c (event[a]) (abort t 3)); event[B]) (An. event[vy]) )

Execution could generate two traces: daf and dv. So both traces in the effect for the last
body should gain this § prefix: not only the underlying effect component, but also the portion
related to the abort. This suggests the following definition of sequencing:

(C1,Q1) > (C2,Q2) = (C1U (@1 > C2), Q1 > Q2)

Assuming there is a lifting (given later) of the underlying sequencing to possibly-absent
underlying effects (Q1 > Q2), this reflects the natural ways of combining paths through
these terms: the control effect set collecting abort behaviors should include both the abort
behaviors from C; (an execution corresponding to one of those behaviors means nothing
from the second effect will execute), as well as the result of first executing normal behaviors
of the first effect (e.g., {d}) before the aborting behaviors of the second — @ > Ca. So
the effect of this new example’s prompt body should be the join of the two branches
(({abort({e})}, L) U (0, {a}) = ({abort({e})},{a})), sequenced between the effects of event
0 and event §: (0,{d}) > ({abort({e})}, {a}) > (0,{B}) = (I, {d}) > ({abort({e})}, {a}) =
({abort({0})}, {6a5}). Repeating our informal prompt handling above gives us the new
expected underlying effect {daf, 6v}. We refer to the way the control effect set accumulates
prefixes on the left as left-accumulation of effects. This definition is associative, and distributes



C.S. Gordon

over the component-wise union/join. For now we continue with the simplifying assumption
that all tags are t (equivalent to untagged continuations), and consider issues with multiple
tags in Use Case 6. A final detail deferred to Section 4 is that the value thrown by an abort
must be of the type expected by the corresponding handler.

This is already part-way to our goal of deriving type rules for common control operators
from delimited continuations: the work so far supports basic checked exceptions:

[try e catch C' = e.] = (% C [€] [ec]) [throwce] = (abort to [e])

The formal rules for prompts and aborts will directly dictate the rules for these macro-
expressions of checked exceptions, just as the informal discussion here transfers directly to
these macro-expressed checked exceptions.

» Use Case 3 (Invoking Simple Continuations). Operationally, invoking an existing continuation
is similar to using abort in that it discards the surrounding context up to the nearest prompt.
But unlike uses of abort, invoking a continuation does not cause handler execution — instead
(by E-INVOKECC) the prompt and handler remain in place. For the type rule for prompts
to treat this additional mechanism, effects must indicate that invocation may occur. We
can do this by extending effects slightly: instead of C' in the effect (C, Q) only containing
prefixes of aborting computations, it should also include prefixes of continuation invocations
— this is why elements of C were labeled abort(—) in the previous example, and we can now
include effects tagged by replace(—) to indicate control behaviors that replace the current
continuation with a new one. Considering a term invoking a continuation k:

(% t (event[d]; (if c (event[al) (k ))); event[B]) (An. event[y]) )

As in the previous example, one possible trace of this program is a8 when c is true. When c
is false, however, this program will emit event §, then invoke k, replacing the rest of the body
with k’s captured continuation (with unit in its hole). Thus typing this requires also knowing
additional information about k, not required in the abort case. We require continuations to
carry a latent effect similar to functions: while the latent effect of a function (Az.e) describes
the effect of the term obtained by substituting an appropriately-typed value v into e — the
effect of e[v/x] — the latent effect of a continuation (cont™ ¢ E) describes the effect of plugging
an appropriately-typed value v into E’s hole — the effect of E[v].

Assuming k has only underlying effects — e.g., if k = (cont'"® ¢ (e;event[n])), then we
should expect the type rule for invocation to take that underlying effect from k’s latent effect
and move it to the control effect set, under replace(—). So if ¥’s latent effect is (0, {n}), the
effect of (x (O) should be ({replace({n})}, L). Sequential composition should be extended
to treat replace control effects similar to abort control effects, by accumulating on the left.
With that adjustment, we can conclude the body above has effect ({replace({0n})}, {das5}).
The type rule for prompts can treat these similarly to abort control effects, but without
sequencing them with the handler (which doesn’t execute in this case), producing an overall
effect (0, {0af,dn}). Notice that this is slightly different from abort(—) control effects: those
track only the prefix effect before the abort, but the approach just outlined would have
replace(—) control effects include prefix effects before invoking the continuation and the
underlying effect of behaviors after the control operation. This corresponds to the location
of the behavior that executes after the control operation — remote for aborts (the handler is
non-local) and local for continuation invocation (the continuation is at the call site).

» Use Case 4 (Invoking Continuations that Abort or Invoke Other Continuations). The example
above assumed k had only underlying effects, but in general k’s body might use abort or
invoke other continuations. In such cases, k’s latent effect would be some pair (C, Q) for
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non-empty control effect set C. It turns out simply treating those naively — including them
into the control effect set for invoking k — is adequate for now (we revisit this when considering
multiple tags). If k = (cont""* ¢ (e;event[n];abort ¢ 3)) in the previous example, then the
latent effect will be ({abort({n})}, L), and simply making the effect of (x ()) be the same
(dropping the absent underlying latent effect since the continuation can only return via
control operators, but making the application’s underlying effect | because by definition it
does not return directly) gets the expected result at the prompt, including the trace dny
from emitting 0, invoking k, emitting n (from k’s restored body) and aborting to the handler.
Because the latent control effects from k’s body already includes the prefixes from the start
of ¥’s body to the abort, the existing left accumulation in our definition of > correctly
accumulates prefixes from the site of continuation invocation, into the continuation, to its
uses of control operations. In general (for a single tag), invoking a continuation with latent
effect (C, Q) has effect (C'U {replace(@)}, L), though this assumes a non-empty underlying
effect for the continuation — an assumption the final type rules will need to relax, along with
extension for multiple tags, and issues with the continuation’s argument and result type.

» Use Case 5 (Capturing Continuations). Typing uses of call/cc is the most complex problem
this effect system must address. For a term (call/cc t (Mk. e)), the rule must type the
body function, which means choosing a type for the variable k that will be bound to the
continuation. We defer continuation argument and result types for now. The latent effect of
the continuation parameter depends on the effect of the code in the captured context — code
that is (at runtime) “between” the call/cc and the (dynamically) nearest prompt. Consider
applying a purely local type rule for call/cc to this simple example:

(% t ((call/cc t (\k. e)); (foo 3)) ...)

Here the context captured will clearly be (e; (foo 3)). This is awkward when typing the
subterm (call/cc t (Ak. e)), because that context is not a subterm of what is being typed.

We will take a “guess and check” approach! to typing call/cc, assuming a certain latent
effect and ensuring it can be checked elsewhere when additional information is available
(in our case, in the type rule for prompts), essentially a form of prophecy [2, 3]. We track
prophecies in a third (final) component, the prophecy set, resulting in three-component
effects (P,C, Q). We call these three-part effects continuation effects, using metavariable
X- An individual prophecy records the assumed latent effect of a continuation. Since that
continuation may capture further continuations, the prophecy must predict a full continuation
effect, making prophecies and continuation effects mutually recursive.

Prophecies alone are only local guesses about non-local phenomena; the effect system
requires a way to validate them. Intuitively, a prophecy that a call/cc captures a continuation
with latent effect (P, C, Q) is valid if in any dynamic context the call/cc is evaluated, the
effect of the program text “between” the capture and the nearest prompt has an effect less than
(P,C, Q) in the partial order (to be defined). Checking this statically is non-trivial. While
the full context captured is visible in (% t ((call/cc t (Xk. e)); event[al) (An. ...)),
enclosing the call/cc in a function makes it non-local, and that function may be invoked
in multiple contexts. Minor changes to the context may also (need to) break typability: if
this call/cc’s body requires that the context has only underlying effect {a}, then adding an
additional event to the end of the prompt’s body must make the expression untypable.

! In the sense that a human constructing a typing derivation involving call/cc would need to informally
guess a prophecy, then use the type rules to check that it was a sound guess.
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We can again turn to the idea of accumulation, but to the right. Thus we write indi-
vidual prophecies (again, ignoring tags and argument and result types of continuations) as
prophecy x obs x/ — indicating that for a certain call/cc, an effect of xy was prophecized,
meaning that the term whose effect contains this prophecy assumed a latent effect x for the
continuation, and the effect of the term fragment between the call/cc and the boundary of
the term has effect x’, which we call the observation. We will extend sequential composition
to accumulate effects to the right into the observation. When type checking a prompt, there
is no more to accumulate because the prompt is the boundary of the continuation capture:
at that point, the observation reflects the actual effect of the code statically on control flow
paths between call/cc and the prompt, so the prophecy was sound if the observed effect is
less than the prophecy effect.

With this prophecy-and-observation approach, let us consider:

(% t (((call/cc t (Ak. e)); event[al); event[B]) (An. ...))

The type rule for call/cc can assume a surrounding context effect of (0,0, {aS}). Let us
assume for simplicity the inner body of the call/cc is pure (unit effect). Then the effect of
the call/cc term can be ({prophecy (0,0, {a3}) obs (0,0,1)},0,I) (writing the unit effect
as simply I for readability). Then the effect of sequencing that with the event[al (i.e.,
(0,0,{a})) should both update the underlying effect and the observation of the prophecy:
({prophecy (0,0, {a8}) obs (0,0,{a})},0,{a}). Repeating this for the next event, we would
get ({prophecy (0,0, {as}) obs (0,0,{aB})},0,{aB}). At that point, this has typed the
entire body of the prompt, and the type rule for the prompt can check that the observed
effect is no greater than the prophecized effect — in this case trivially since they are equal.

» Use Case 6 (Trouble with Tags). Work with delimited continuations typically formalizes work
without tags, but then adds them to the implementation as a “straightforward” extension.
There are, however, several ways in which handling multiple tags is non-trivial in this context,
warranting an explicit treatment. First, nested continuations result in more subtlety when
handling control effect sets in the prompt rule. An obvious change is for a prompt tagged t
to ignore aborts and continuation invocations (elements of the control effect set) that target a
different tag (which requires tracking the target tag for each replace or abort effect). However,
this is insufficient. A continuation k that restores up to tag ¢ may include a latent abort to
tag t2 — but if the nearest prompt is tagged t2, this is subtle. Consider the continuation
k = (cont“"t ¢ (e;abort ¢2 3)) in the context of:

(% t2 (%t (B t2 (& O); eventl[al) ...) ...) (An. event[S3]))

k is invoked nested inside multiple prompts of different tags: when k is restored, it will
discard and replace the inner t2 prompt (white background) entirely. This is important:
after context restoration, the abort inside k will be executed, passing 3 to the outermost
handler and emitting event : the innermost t2 prompt contains an abort to t2, yet the
innermost handler will not execute; the outermost handler will.

% t2 (% t (Q; abort t2 3) ...) (An. event[B])) =* (An. event[3]) 3

Our initial effect for invoking continuations with further control effects (Use Case 4) would
have the inner prompt’s body effect contain abort ¢2 {e}, which our suggested prompt
handling would then join into the innermost prompt due to the matching tag. This has two
problems: it spuriously suggests the innermost prompt’s handler could execute, introducing a
kind of imprecision; and because that abort effect would no longer be present in the effect of
the outermost prompt’s body, it would be missed that the outer handler could run, making
the approach unsound. We must refine our approach for these “jumps.”
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c € ControlEffect ::= replace £: Q ~~ 7 Invoked continuation up to ¢, with prefix &
underlying effect @, continuation result type
-
| abort £Q ~ T Abort up to £ after effects ), throwing value
of type 7
| [ Blocked control effect, frozen until nearest

prompt for ¢ (triggered inside restored con-
tinuation targeting ¢)

p € Prophecy ::= prophecy £ x ~ 7 obs X' Prophecy of latent continuation effect , effect
X' observed since point of prophecy (call/cc)
| @, Prophecy blocked until ¢

x € ContinuationEffect = set Prophecy x set ControlEffect x option UnderlyingEffect

Figure 2 Grammar of continuation effects over an existing effect quantale Q € UnderlyingEffect.

We resolve this by adding one final nuance to control effect sets. We allow control effects
to be either basic (the replace or abort effects we have already seen, with target tags) or
blocked [c], for a control effect ¢. A blocked control effect [@; is ignored by prompts (left in the
control effect set) until a prompt tagged t is reached — that prompt will unblock the effect,
leaving c in the control effect set of the prompt. When invoking a continuation, instead
of simply including the latent control effects in the effect of the invocation, the type rule
will include the latent control effects blocked until the target tag of the continuation. So
in the example above, the inner prompt’s body effect would instead include t.
This would be ignored (propagated) by the inner prompt’s typing (so the inner handler
would not be spuriously considered), unblocked by the middle prompt’s typing, and finally
resolved in the outer prompt’s typing (which would trigger consideration of the outer handler).
Because the overall effect of any execution path that triggers such blocked control effects
must still execute code along the way to the continuation invocation, blocked control effects
still accumulate on the left.

Prophecies raise similar issues that lead to similar introduction of blocked prophecies: if
k above instead captured a continuation up to a prompt tagged t2, the white-background
portion of the term discarded when k was invoked would not be part of the captured
continuation, so it should not be incorporated into the observation part of a prophecy.
Because of this, blocked prophecies must not accumulate while blocked. The difference is this:
blocked control effects continue to accumulate on the left because control operations do not
discard code that occurs on the way to a control effect, while blocked prophecies must “skip
over” the code discarded by control operations, which always appears to the right (later in
source program order).

4 Continuation Effects

This section makes the outlines of the previous section precise, and fills in missing details
(such as coordinating the type of a value thrown with the argument type of a handler). Figure
2 defines the effects of C(Q) derived from the examples above, for underlying effect quantale Q.
Continuation-aware effects of an underlying effect quantale ) are effects x of three components:
a prophecy set P, a control effect set C, and an optional underlying effect (). Basic control
effects include effects representing aborts to a tagged prompt (abort £ @Q ~~ 7) or invoking
continuations that replace the context up the nearest tagged prompt (replace ¢ : Q ~ 7), as
suggested by Use Cases 2 and 3. These versions are additionally tagged with the specific
prompt tag they target (¢), and each carries a type 7 — for replacement this is the result
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type of the restored continuation, and for aborts this is the type of the value thrown (each
intuitively a kind of result type for each control behavior). Both control effects and prophecies
may also be blocked until a prompt with a certain tag if they originate inside a continuation
that was invoked (per Use Case 6). Note that blocking constructors may nest arbitrarily
deeply, because one restored continuation may restore another continuation which may
restore another. .. and so on. For a term with effect (P, C, Q):
The prophecy set P contains prophecies for all uses of call/cc within the term (some
possibly blocked if introduced by restoring a continuation).
The control effect set C' describes all possible exits of the term via control operations
(abort or continuation invocation). For aborts of continuation invocation that occur
directly, C will contain basic control effects. For aborts or continuation invocation that
may occur in the body of a restored continuation, there will be blocked control effects.
The underlying effect @ describes (an upper bound on) the underlying effect of any
execution of the term that does not exit via control operator.

To define sequencing and join formally, we must first lift the underlying effect quantale’s
operators to deal with missing effects:

T fQi=TVQ=T c,Tg i%iIV@:T
Q1> Q2 otherwise 2 &1

Q1 UQ2 otherwise
We also require a way to prefix control effects with an underlying effect, to implement left
accumulation (recursively), extending the ideas of Use Cases 2, 3, and 6 to the final definition:

Qr@ = [@>d|,
Qrreplace £: Q' ~71 = replace £: (Q> Q') ~ T
Qrabort £ Q ~ 71 = abortl(Q>Q)~T

and we will lift this to operate on control effect sets and possibly-absent underlying effects:
Q> C=if (Q= 1) then () else (map (Q>_) C)

Likewise, we must define a means of right-accumulating in prophecies:

’prophecy ¢ (P,C,Q)~ T obs (P',C",Q")

> X' = ’prophecy L (P,C,Q) ~ 7 obs (P,C",Q")
prophecy ¢ (P,C,Q) ~» T obs (P',C", Q") » (P",C",Q")

= prophecy ¢ (P,C,Q) ~» 7 obs (P'» (P",C",Q"))UP",C'U(Q' >C"),Q" > Q")

V4

which we also lift to operate on prophecy sets (not shown, but analogous to the lifting of
left-accumulation). Finally, this is enough to define sequencing and join:

(P1,C1,Q1) U (P, Co,Q2) = (PLUP,CrUC,Q1UQ2)
(P1701,&)[>(P2,02,@) = ((Pl>(PQ,CQ,@))UPQ,ClU(&DCQ),@D@)

Joins are implemented component-wise, using set union on prophecy or control effect sets,
and the (option-lifted) join from the underlying effect quantale. The sequencing operator,
and its relation to the accumulation on prophecies, is a bit complex and warrants some
further explanation. The sequence operator > is defined according to the ideas driven by
Use Cases 2, 3, and 5. Underlying effects are sequenced by reusing the underlying effect
quantale. Control effects are handled by left-accumulating. In fact, in the case where there
are no prophecies (call/ccs) involved, the handling of the control effect sets and underlying
effects is exactly as in Use Case 2, just extended for the additional control effects. Deferring

23:13

ECOOP 2020



23:14

Lifting Sequential Effects to Control Operators

the right-accumulation » for one further moment, the full sequencing operator produces a
resulting prophecy set as the union of prophecies from the second effect (which are unaffected
by the first) with the result of the first effect’s prophecies accumulating effects from the
right, since that effect will (in the type rules) correspond to behavior that will be part of the
captured continuation. The right accumulation for prophecies implemented by » essentially
just implements sequential composition of the observation with the accumulated effect —
the recursive use of » could equivalently just be >, but direct recursion is easier to prove
things about than mutual recursion. As suggested by Use Case 6, blocked prophecies do
not accumulate. It is easy to confirm that the unit element for > is (0,0, I), where I is the
identity of the underlying effect quantale.

» Remark 2 (Sets of Underlying Effects). We have described most of the structure of lifting an
effect quantale to support delimited control: sequencing and join operators that distribute
over each other, along with a unit for sequencing. We have not yet stated whether the result
C(Q) of the lifting is an effect quantale. As described so far, it is not quite an effect quantale:
there is no single distinguished top in the partial order induced by U: for any effect (P, C, @),
a larger effect can be obtained by adding new control effects or prophecies. And because the
underlying T can appear in multiple ways, conceptually many different incomparable effects
should be considered erroneous. Introducing a distinguished top element Err, and wrapping
the sequencing and join definitions above with an additional operation producing Err any
time the operations above produce effects containing underlying top. This would produce an
effect quantale, but we take an alternative approach that also enhances flexibility, without
adding special cases for T throughout the system.

Using sets of structures containing underlying effects can lead to the extra set structure
being “too picky” in distinguishing effects, in the sense of distinguishing intuitively equivalent
effects. Consider the following join:

(0, {abort £ {a}}, L) U (0, {abort £ {5}}, L) = (0,{abort £ {a},abort £ {5}},1)

which could be the effect of if ¢ (event[al; abort £ 3) (event[3]; abort ¢ 3). Their join
is not the very similar (0, {abort ¢ {a, 5}}), which also indicates an abort after one of the
two same underlying effects, and is the effect of a minor rewrite of the last expression:
(if ¢ (event[a]) (event[$1)); abort ¢ 3. Both effects indicate executing o or [ before
aborting, and replacing one with the other inside a prompt body will not change the prompt’s
effect (per Use Cases 2 and 3): the prompt will sequence each with the handler effect, and
join them together). Yet because U is defined using set union, they are incomparable in
the induced partial order x C y <> x LIy = y, because joining them yields a third effect:
(0, {abort £ {a},abort £ {8}, abort £ {, 3}}, L). This is not a valuable distinction. We would
like at least (@, {abort £ {«},abort £ {8}}, L) C (0, {abort ¢ {a, 5}}) because every abort
prefix on the left is over-approximated by an abort prefix on the right.? One way to achieve
this would be to replace the set union of control effect sets or prophecy sets in the sequencing
and join operators with operators that also recursively joined the underlying effects of all
aborts to the same tag, joined the underlying effects of all replacements to the same tag, and
joined the observed effects of all prophecies to the same tag with the same prediction (plus
joining types). The partial order induced by this modification would establish this desirable
order.

Directly extending LI and > as given to both recursively join when combining sets and
lift underlying T to a special Err would yield a proper effect quantale, but add significant
complexity that is orthogonal to the key ideas of our approach. Instead, we make two

2 While in this 7(X) example the effects are equivalent, examples in other effect quantales only justify C.
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CiCC _/\ Ve, Q,T.replace £: Q ~ 7€ C1 = 3Q .replace £: Q' ~ 7€ C2 NQE Q'
t=v2= V0,Q,T.abort £ Q ~ 7€ Cr=3Q .abort L Q' ~TE€CaAQL Q'

PCP=
(V€,x, X', 7. prophecy £ x ~> T obs X' € Py = 3x". prophecy £ x ~» 7 obs X" € P, A X' C x")A
(V6,0 ,x, X', 7.[prophecy £ x ~» T obs X’ € PL= 3x"[prophecy ¢ x ~ 7 obs "], € P AX' C X”)
(P,C,QC(P,C',Q)<+PCPACCC'ANQEQ'

x =~ x" = (NoUnderlyingTop(x, X') Ax C X’ A X’ C %) V (UnderlyingTop(x) A UnderlyingTop(x"))

Figure 3 Direct partial order and equivalence on continuation effects.

adjustments. First, we define a direct partial order on continuation effects in Figure 3,
where an effect y is less than another effect x’ if every prophecy observation, abort effect,
replacement effect, or underlying effect in x is over-approximated by some corresponding

component in x’. This captures the intuition behind the desirable ordering outlined above.

We also define a corresponding equivalence relation = on continuation effects, which equates
all continuation effects containing an underlying T (anywhere in the effect) and otherwise
uses the partial order to induce equivalence. In the type rules considered in Section 4, this
is the notion of subeffecting used (rather than the traditional partial order derived from a
join), and all effects are considered modulo the equivalence relation. Quotienting C(Q) by
the equivalence = yields a proper effect quantale, equivalent to the direct but verbose version
outlined above. See our technical report [32]) for further details.

We consider a type-and-effect system for a language with the constructs from Figure 1.
Our extended technical report [32] extends these results for composable continuations. Our
expressions and types are:

| Az.e| (ee) | (%L Ev)|(call/ccle)| (abortfe) | (contl E) |ifeee
Az.e) | cont £ E | vy
Types 7,7 == unit | bool | 7 % 7 | (cont £ 7 x 7) | uX. T

Expressions e ::=p
Values v ::= (

p and v, are parameters of the system following Gordon’s work [30, 31]: primitives (which
can include operations such as locking primitives or event[a]) and primitive values (e.g., for
encoding locations). Gordon’s soundness framework also parameterizes operational semantics
by an abstract notion of state, and semantics for primitives manipulating state; we assume
(and later use) a similar framework, which admits a range of concrete examples.

Types include common primitive types, function types with latent effects, equirecursive
types (needed for typing loops), as well as a type for continuation values that we discuss with
the type rule for invoking continuations. The type rules for lambda abstraction, function
application, and conditionals are as in Section 2 (though using continuation effects), so
we do not discuss them further. Typing uses of primitives requires additional rules and
parameters to define the additional types (e.g., lock or location types) and their relationship
to operational primitives, following Gordon [30, 31]. For intuition, readers may assume p
is simply the event[_] primitive from our running example. We include subtyping (<:),
including the standard type-and-effect subsumption rule, and function subtyping that is
covariant in the body’s latent effect. Figure 4 gives central type rules for this paper, for
prompts, aborts, continuation capture, and continuation invocation.

We will discuss the type rules in relation to the Use Cases from Section 3.

T-ABORT handles Use Case 2. As suggested in that discussion, the effect of an abort is to
introduce a control effect signifying an abort to the targeted label, with an absent underlying
effect. The initial prefix of the abort is “empty” — the underlying unit effect I — and the
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V7' Q. (abort £ Q ~ ) €10, = 7' <:o VQ,T . (replace £: Q ~ T ) € =T < T
( VX proph, T » Py, Cp, Qp. prophecy £ Xpropn ~ 7’ obs (Pp, Cp, Qp) € P, = )

Py, © Prrony A Cry € Cproghiy @ € Quregn A7 <27

V-EFFECTS et = e
validEffects(P, C, Q, ¢, 7,0)
The:7|(P.C,Q) Trh:o Y% 11 \alidEffects(P,C,Q,¢,7,0)
T-PrROMPT — =

PG e )| (P 6\ 6Qu (| )
NonTrivial (x&) The:(cont 7 xu7y) 7] Xe
T (call/ec £ e) : 7| (xe > x) > ({prophecy ¢ xi ~> v obs (0,0,1)},0,1)
Pkk:cont 7 (P,C,Q) 7" | xk I'ke:7' | xe
' (ke):7| x> xe > (P,[Cl, U (Qr> {replace £: I ~ 7Y, 1)

Phe:7|xe
't abort £ e:o|xer> (0, {abort £ I~ 7}, 1)

T-CALLCONT

T-AppCONT

T-ABORT

Figure 4 Typing control operators with continuation effects.

control effect tracks the type of the thrown value. The overall effect of an abort expression
sequences this after the effect of reducing e to a value, since this occurs earlier in evaluation
order than the abort operation itself. A subtlety worth noting, is that this also ensures a
call/cc inside e will correctly accumulate the pending abort in the captured context.

T-ApPPCONT handles Use Cases 3 and 4. First consider the basic case where the invoked
continuation has only simple underlying effects (i.e., P and C in the continuation’s latent
effect are both (). As with T-ABORT, subterms are reduced to values before the control
behavior occurs, so those effects are sequenced before the control behavior itself. With that
taken care of, we may temporarily assume both k and e are already syntactic values to
simplify discussion of effect. In this case the rule simplifies to exactly what the example in
Use Case 3 suggested: the underlying effect is absent (because the term does not return
normally, but via a control behavior), and a control effect is introduced reflecting that a
continuation with underlying effect @ is invoked. A subtlety here is that we cannot simply
write replace £: Q ~» 7", because @ may be L, which would make that control effect invalid.
Instead we (ab)use the left-accumulation operator on control effects: prefixing the unit-effect
replacement effect with @ will give the expected result when @ is present, and otherwise
result in the empty set. The replacement effect also records the result type of the invoked
continuation, and the rule also ensures the argument provided to the continuation is the
expected type.

T-ApPPCONT also handles Use Case 4, adjusted per Use Case 6: the latent control effects of
the continuation are included, but blocked until ¢, to ensure no prompt rule (discussed shortly)
resolves those behaviors before the behaviors escape a prompt tagged ¢. Unlike the discussion
in Section 3, this finished rule also supports the case where the restored continuation contains
(possibly-nested) uses of call/cc, blocking the latent prophecies as well.

The conclusion of T-APPCONT critically overloads the syntax for constructing blocked
prophecies and control effects, to block prophecy sets and control effect sets. This overload
almost maps the appropriate blocking constructor over each set — however, it first checks
that this will not result in a control effect of the form [, for some tag ¢ (similarly for
prophecies). Such a control effect would represent a control effect that should propagate
directly through two prompts tagged ¢, but this is dynamically impossible: any number of
nested restorations of continuations to the same tag remains within the same prompt, e.g.:
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(% ¢ ((cont ¢ (e; ((cont ¢ (e; abort £ 5)) 4))) 3) h)
= (b £ (3; ((cont ¢ (e; abort ¢ 5)) 4)) h) = (% £ ((cont ¢ (e; abort £ 5)) 4) h)
= (% ¢ (4; abort ¢ 5) h) = (% ¢ (abort ¢ 5) h) = (h 5)

Naively mapping the blocking constructor would yield the control effect set
{[abort £ I ~ nat)|,} for the body; our discussion with Use Case 6 about each prompt
removing one layer of blocking (which we will see does inform T-PROMPT) would then
not pair the abort with the local handler that is invoked. With the modified mapping,
the simplification of the control effect set is instead {g} (only one layer of
blocking), which will match the abort to the correct handler.

T-CALLCONT is a bit more subtle. Standard for any type rule for call/cc, the rule
ensures the result type of the expression itself (7) is also the return type of the body function

(for executions that return normally) and the argument type assumed for the continuation
(since the location of the call/cc becomes the hole the argument replaces at invocation). As
suggested in the discussion of Use Case 5, the effect arising from the use of call/cc itself is a
prophecy effect, recording the assumed latent effect of the captured continuation and the
assumed result type of the captured continuation — both of which make their way into the
assumed type of the argument to the call/cc body. The initial observation is empty, because
this effect corresponds intuitively to the point in the execution from which the prediction
begins — but this point is the heart of another key subtlety. As with other rules, the subterm
e must be reduced before anything else, so its effect is sequenced before others. But naively
ordering the body’s (latent) effect would place it after the prophecy, as dynamically the
continuation is captured before the body is evaluated (since the continuation becomes the
argument in E-CALLCC). However, this would result in the prophecy effect observing the
body of the call/cc — which is incorrect, as that behavior will not be part of the captured
continuation. Thus we place the prophecy after the body’s latent effect.
For a small variation on Use Case 5’s first example, this gives us:

Xel>({prophecy t (0,0,{a} obs (0,0,1))},0,1) (0,0.{a})
—_—— —
(%t ( (call/cc t (Mk.€)) ; event[a]) ...)
Xe>({prophecy t (0,0,{a} obs (8,0,{c}))}.0,{a})

The individual effects of the call/cc and event expressions (given above the term) simplify
to the effect below the term. The prophecy from the call/cc observes the event that would
be captured in its context. Because e’s effect y. is to the left of the resulting prophecy, €’s
non-captured behavior is not observed, and the prophecy under the term will appear in the
prophecy set of the overall prompt’s body.

T-CALLCONT has one extra antecedent, constraining the prophecy to predict a non-trivial
effect, to avoid degeneracy. The simplest problematic prediction would be to predict an
effect of (0,0, L). Consider the effect of the code event[al; (& ()). The effect would be
(0,0,{a})> (0,0, L) = (0,0, L). This is problematic: the term does have a behavior, but the
effect reflects no behavior. This could be introduced by a circularity:

(% t (let k = (call/cc t (Ak. k)) in (event[al; (k O))) ...)

This term is in fact the macro-expansion for an infinite loop that executes the event forever.

Assuming the degenerate latent effect in the call/cc gives k the degenerate effect, which
gives the body of the the let-expression — the context captured by call/cc — a degenerate
effect, allowing the observed effect to match the prophecy (both degenerate). Requiring
a non-empty control effect set or underlying effect avoids this collapse. (This is not a
termination-sensitivity issue; a terminating while loop has the same challenge, but a larger
term.)
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P\? 0= {p\®¢|pe PAOuterTag(p) # £} C\{={ce C|OuterTag(c) # ¢}
C|?:{Q/I>Q|abortéQ,w EC’}U{Q'|rep|ace£'Q'w eC}

ﬁ,:::::::::::::::::::::::

[prophecy ¢ (P,C,Q) ~ T obs (P',C’, Q')[

,,,,,,,,,,,,,,,,,,,,,,,,,,

[prophecy ¢ (P,C,Q) ~ 7 obs (P',C", Q' )[w‘ *[

(prophecy £ x ~» 7 obs (P, C’, Q")) \® £ = prophecy £’ x ~» 7 obs (P’ \? £,C"\ £,Q" U (C’ |Q))
([prophecy ¢ x ~ 7 obs (P’,C’, Q")])) \? £ = prophecy £’ x ~» 7 obs (P'\? ¢,C" \ ¢,Q" U (C” |Q))
(prophecy £ x ~» 7 obs (P’,C’, Q") until £) \@ £ = prophecy £’ x ~» T obs (P, C’, Q")) until £ (if £ # ¢'")

| = prophecy ¢’ (P C, Q) ~ T obs (LPJDEC,}[x Q"

)

prophecy ¢’ (P,C, Q) ~ 7 obs (P',C’,Q’ )L,, (ife#£2")

NS

Figure 5 Auxilliary definitions used by type rules.

T-PROMPT is the most complex type rule in the system, because it serves many roles. In
addition to giving an overall type and effect to the prompt, it must check that:

Any abort to this handler throws values whose type is a subtype of the handler’s argument.

Any continuation invoked in the body that will restore up to this prompt has a result
type that is a subtype of the prompt’s own result type.

Any call/cc that captures a continuation delimited by this prompt was typed assuming
the result was a supertype of the prompt’s actual result type.

Any call/cc that captures a continuation delimited by this prompt was typed assuming

a valid latent effect for that continuation (i.e., that prophecies targeting that tag are

upper-bounds on the observations).

The first three checks are handled by the subtyping constraints in the auxiliary judgment
V-EFFECTS. Notice that the antecedents of V-EFFECTS quantify over elements of unblocked
control effect sets and prophecy sets. Unblocking, written [—), is defined for prophecies in
Figure 5: it maps a corresponding per-element unblocking operatlon, which is a no-op on
elements that were not blocked, a no-op on elements blocked until a different tag, and strips
off a block constructor for ¢ if that is the outermost constructor. Unblocking for control
effect sets is defined analogously. Intuitively, this corresponds to the fact that any control
effect or prophecy blocked until a prompt for ¢ has now reached a prompt for /.

The last of the checks above is handled by the prophecy-related antecedent of V-EFFECTS,
which nearly checks that the observations for a given prophecy are a subeffect of what
was predicted — that would be (P,,Cp, @p) T Xproph, which would be sound but overly
conservative. Instead, the comparison of the prophecy and observation, compares the

unblocked versions of prophecy and control effect sets: \P )l pmph\ and C C \ pmph\ .

This is useful because if a context captured by call/cc Contams an 1nvocat10n of 1tse17fitihe
prophecy arising from T-CALLCONT will observe a blocked version of its own prophecy (from
T-AppPCONT), making the naive subeffect check too conservative: no prophecy can predict
a blocked version of itself. Rather than being an esoteric concern, this is actually quite
practical: encodings of loops using delimited continuations do exactly this. Unblocking for
the prompt’s tag in V-EFFECTS resolves this: just like the quantifications unblock because
those sets have now reached the corresponding prompt, the prophecy validation must reflect
that the observation has now “reached” the corresponding prompt.

Let us revisit the example of Use Case 5 discussed above with T-CALLCONT. The
prophecy in that derivation contains no blocked prophecies, so T-PrROMPT will effectively
check that the observation is less than the prophecy — that (0,0, {a}) C (0,0, {«}), which
trivially succeeds because the prophecy predicted its context’s behavior exactly.
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We can see the role of unblocking more clearly by revisiting the motivating example for
requiring prophecized effects to be non-trivial (eliding types for brevity).

({prophecy t (0,{replace t a™}, L) obs (0,0,1))},0,I) (0,0,{a}) @4 replace ta” t}’J‘)
PR AN PSS g A~
(%t (let k = (call/cc t (Nk.k)) in (event[a]; ( k() ))--)

The effect of the prompt’s body is the sequencing (with t>) of the three individual subterm
effects written above the term fragments, writing o* for the set of all finite traces consisting
of only . Simplifying the sequencing of the two right-most effects first will result in a control
effect set {|replace ¢ ({a} > a*)| } (invoke the continuation after an « event, with aggregate

which is true because {a} > a* T o in T(X) (the set of non-empty finite traces containing
only « is a subset of the set of possibly-empty finite traces containing only «).

Finally, T-PROMPT must give a type and effect to the prompt expression itself. The
underlying effect must include (1) the body’s underlying effect, (2) the effect of any possible
paths through the body that abort to the local handler and execute it (including those
resulting from invoking continuations up to this prompt prior to aborting), and (3) the effect
of any possible paths through the body that invoke one or more continuations up to this
prompt before returning normally. (1) is simply Q. (2) is the result of sequencing any abort
prefix for ¢ in the (unblocked) control effect set (which will incorporate aborts resulting
from continuation invocation as well). (3) is simply the set of replacement effects in the
(unblocked) C. (2) and (3) are computed via a projection operator —|;" applied to the
unblocked control effect set, defined in Figure 5. The superscript on the operator is the
underlying effect of the handler (constrained to have no control effects), and the subscript is
the choice of relevant prompt tag. The resulting set of underlying effects is joined together
with the body’s underlying effect.

The prophecy and control effect sets of the overall prompt should propagate prophecies

and control effects targeting other prompts, and remove those targeting the prompt at hand.

To this end, the conclusion of T-PROMPT unblocks both sets and then removes (1) prophecies
related to this prompt (which have now been validated) and (2) control effects related to
this prompt (which have been incorporated into the prompt’s underlying effect, because
they address control behaviors scoped to this prompt). The (unblocked) control effects are
simply filtered with — \ ¢ (Figure 5), which retains only basic control effects targeting other
tags and control effects still blocked until other tags. (Thus, the nested control effect from
Use Case 6 appears blocked in the effect of the innermost prompt.) The prophecy set is
filtered similarly, but the filtered results are also transformed — the remaining observations
must be adapted to model the changes to effects from going “through” this prompt. Thus
the filtering operation — \% £ on prophecy sets (Figure 5) selects those prophecies related
to other prompts, then recursively transforms their observations — recursively filtering (and
transforming) the observed prophecy and control effect sets, and joining transformations of
their content into the observations’ underlying effect, just as in the conclusion of T-PROMPT
itself. This is important due to interactions between tags: a prophecy to an outer prompt
may observe in its context aborts to an inner prompt: — \? ¢ joins such abort prefixes with
the handler that would run, and joins that into the underlying effect of the prophecy.
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5 Iterating Continuation Effects

Prior work on effect quantales [30, 31] introduced the notion of lax iterability to introduce
a loop iteration operator, as outlined in Section 2. We would like to reuse this operator
construction for two reasons. First, we would like to check that if we macro-express loop
constructs and derive rules for them as we proposed earlier, that they are consistent with
manually-derived rules from prior work, which use the iteration operator. Second, the
iteration operator has properties that make it useful for solving recursive constraints over
effects, such as those that arise in building derived rules for control flow constructs and
control operators later in the paper. Of course, lax iterability and the construction are
defined on standard effect quantales,® so do not apply directly to C(Q). Fortunately, one can
apply the construction to C(Q) quotiented by ~ (a standard effect quantale), and since those
elements are equivalence classes, simply use the behavior on elements to iterate in C(Q):

» Theorem 3 (Lax lIterability with Continuations). For a lazly iterable underlying effect
quantale Q, the effect quantale C(Q)/ = is also laxly iterable, with the closure operator given
by lifting the following operator from elements of C(Q) to the corresponding equivalence class.

(P.C.Q" =(JP»(PCQ,Q>CQ)

€N

Notice that when P = () and C = 0, this specializes to the intuitive embedding of
the (L-extended) underlying iteration: (0,0, Q*). When only P = () this specializes to
(0, Q" > C,Q"), intuitively reflecting that any control exits occur after repeating @ some
number of times first. While these examples “merely” drop certain components of Theorem 3,
it helps to work from the simplest case up to the more complex versions, since the examples
above correspond intuitively to various execution paths. The infinite union in the prophecy
set is the most subtle part of the operation to explain. Consider an expression with the
structure while ¢ (... (call/cc t...) ...): Assume the tag ¢ for the continuation captured
inside the loop does not occur elsewhere inside the loop — in particular, that the captured
continuation would extend outside the loop. Considering the runtime execution, in some sense
the prophecy captured by the first loop iteration must predict not only the regular execution
and exceptional executions of future iterations, but even the need for more prophecies to be
generated by the call/ccs in future iterations as well! This is why the set of prophecies must
still be sequenced with some form of themselves, rather than just some subset. During static
typechecking, we must therefore conservatively overapproximate the number of iterations
following a prophecy. It may be 0, 1, 2, ...or any number. So the approximation must
consider all of those possibilities, hence the infinite union of finite repetitions following the
prophecies. This requires prophecy sets to be possibly-infinite, but only countably so.

6 Type Safety

We have proven syntactic type soundness for the type system presented in Section 4. We
summarize the proof here; see the technical report for full details [32]. We continue to reuse
Gordon’s parameterization for soundness [30, 31], making the proof generic over a choice
of abstract states (ranged over by o) and related parameters subject to some restrictions.

3 Lax iterability is defined for a version of effect quantales using partial operators [31] instead of the
distinguished T used here to simulate partiality. But the definitions simplify to those used here when
given total operations and using side-conditions to reject effects containing T.
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Progress is uninteresting (if primitives satisfy progress), in the sense that effects play no
essential role (they are merely “pushed around” and the proof looks otherwise like standard
progress proofs). Preservation is similar to the common formulation for syntactic type
soundness results of sequential effect systems [34, 30, 68, 67]. It follows from single-step
preservation: informally, for a well-typed runtime state o and term e, if o;e = o’; ¢/, then
o’ and ¢’ are also well-typed, and moreover if the static effects of e and ¢’ are x and y’
respectively, then (0,0, ¢) > x’ C x — that is, sequencing the actual effect of the reduction
with the residual effect of the reduced expression is soundly bounded by the effect of the
original expression. This is the typical form of syntactic type safety proofs for sequential
effect systems [34, 25].

Explaining the formal statement requires explaining the full details of parameterization.

For brevity and lack of space, we offer the formal statement of single-step preservation
specialized for our running example of 7(X) and event[—] with trivial (i.e., unit) state* for
which many of the conditions simplify to True:

» Corollary 4 (Single-Step Preservation for 7(X)). IfT'Fe: 7 | x and ();e = (); €, then
there exists a 7/ <: 7 and a x' such thatT'Fe : 7| x and gr> X' C x.

A key lemma for soundness of the rule for call/cc precisely relates prophecy observations
to typing continuations. Informally, we prove that for a term El[e], if the effect of e contains
a prophecy prophecy £ x ~ 7;0bs (0,0, I) and E contains no prompts for tag ¢, then (1) the
effect of E[e] contains a prophecy prophecy £ x ~ 7 obs x’ (accumulating some observation),
and (2) plugging an appropriately-typed value v into E produces a term E[v] with static
effect ¥’ (exactly matching the observation). The assumptions of the lemma are exactly the
conditions when considering E-CALLCC in the preservation proof: E[e] is the body of the
delimiting prompt and e is a use of call/cc, so by T-CALLCONT an appropriate prophecy
exists in e’s effect ensuring the prophecy is gives sound latent effect for typing the captured
continuation.

» Remark 5 (Syntactic vs. Semantic Soundness). Our proof imparts no semantic meaning to
effects beyond syntactically relating the dynamic and static effects — it does not check that a
certain effect enforces what it is meant to (e.g., deadlock freedom), unless like some finite

trace effects [68, 45] the relation between static and dynamic effects is already the intent.

This is common to any syntactic type safety approach for generic effects [51]. Gordon [31]
has extended his proof approach for semantic pre- and post-condition type properties, such as
ensuring locking effects accurately describe lock acquisition and release, but limited to safety
properties; in principle this should be adaptable to our setting. Denotational approaches
to abstract effect systems [42, 55, 70, 6] inherently give actual semantics, and therefore can
ensure liveness properties.

7 Deriving Sequential Effect Rules

Section 4 developed the core type rules which give sequential effects to programs making
direct use of tagged delimited control. As we have discussed, most programs do not use the
full power of delimited control, and instead use only control flow constructs or weaker control
operators. This section uses the new type type-and-effect rules to derive sequential effect
rules for a range of control flow constructs and weaker control operators macro-expressed in
terms of prompts.

4 Meaningful loops obviously require more meaningful state.
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Our examples fall into two groups. First, we consider checking consistency of derived
rules for typical control flow constructs with those hand-designed in prior work — for infinite
loops and while loops. Second, we consider derived rules for constructs never before addressed
in sequential effect systems: exceptions and generators.

In each case, we give a derived type rule for the construct of interest. While we are most
explicit in Section 7.1, in each case our process for deriving the rule is the following:

1. Assume closed typing derivations for subexpressions (e.g., loop bodies)

2. Apply the type rules from Section 4 to give a closed-form rule for the macro’s expansion
to be well-typed under the assumed subexpression types. Typically these have several
undetermined choices for metavariables representing effects, with non-trivial constraints
to close the typing derivation.

3. Simplify the type rule by giving solutions to the constrained-but-undetermined metav-
ariables in terms of the subexpressions’ effects. This gives type rules that are simpler,
and possibly less general, but given entirely in terms of the subexpressions’ effects. The
simplifications are typically involve rewriting by the laws satisfied by C(Q), and using the
iteration operator from prior work [30, 31] to solve recursive constraints on undetermined
effects.

Due to space constraints, we show detailed derivations only for simple infinite loops (Section

7.1), giving only final results for others. The calculations for the remaining examples are

done in the same way, and are available in the accompanying technical report [32].

7.1 Infinite Loops

Consider a simple definition of an infinite loop using the constructs we have derived here:
[loop e] = (% ¢ (let cc = (call/cc £ (Mk.k)) in ([e]; cc cc)) (A_.tt))

The term above executes e repeatedly, forever (assuming e does not abort). Thus, its effect
ought to indicate that e’s effect, which we take to be (0,0,Q.)," is repeated arbitrarily
many times. We take this expansion as the body of a macro [loop e]. This program can be
well-typed in our system, with an appropriate effect (assuming the underlying effect quantale
is laxly iterable per Section 2). The body of the call/cc is pure, but for the expression to be
well-typed, the call/cc’s own effect must prophecize some effect (0, C,, @,) of the enclosing
continuation up to the prompt for ¢ (because no call/cc occurs in the continuation of another,
the prophecy set can be empty).

The right-accumulator of the prophecy effect, initially (0,0, I), eventually accumulates
a control set (Q. > e) U ((Qe > Qp) > {replace £ : I ~~ unit}) and underlying effect
1, because between capturing the continuation and the prompt, the program evaluates
e (underlying effect @Q.) and then invokes the captured continuation (prophecized effect
(0,Cp, Qp), underlying effect L). This is also the resulting control effect set for the body; we
will refer to it as C. The type rule for the prompt itself removes all {-related prophecies and
control effects, leaving both empty (since we assume no control effects escape e, C, should
only contain /-related effects, while the prophecy set contains the single prophecy from the
call/cc). For the underlying effect, T-PROMPT joins the immediate underlying effect Q.
(from the overall judgment, not the prophecy) with all ¢-related behaviors in C' — e has no
escaping control effects, and the macro-expanded loop contains no aborts, so C, ought to
have only replace effects, meaning C' contains only replace effects, and Q. LI |\C|} will join

5 Note the non-_L underlying effect; well-typed expressions do not have degenerate effects.
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the underlying effect of all continuations invoked by the body. T-PROMPT also performs
some checking of result types (which all hold trivially since all types involved are unit), and
prophecy validity checks that yield constraints we can solve to derive a closed-form type rule
for the loop.

Completing a typing derivation with final underlying effect Q, = Q. U | |\C}|} is possible
given the solutions to the effect-related constraints imposed by validEffects: L T @, and
(Qe > ) U ((Qe > Qp) > {replace £ : I ~ unit}) C Cp. These could be read off a hypothet-
ical derivation (see appendices in the technical report [32]) yielding the derived rule

Fke:7|(0,0,Q.) L E% (eré)u((Qe D%) > {replace £ : I ~ unit}) C C,
T+ [loop €] : unit | (8,0, Q. U |_|[012|£)

However, this rule is more complex than we would like for a simple infinite loop (note
we have not expanded C = (Q. > e) U ((Qe > @p) > {replace £ : I ~> unit})), and also
exposes details of the continuation-aware effects — which is undesirable if the goal is to derive
closed rules for using the loop by itself, without developer access to full continuations, and
there is an additional requirement that the prophecy used in the derivation is non-trivial
(from T-PROMPT). These constraints can be satisfied by @, = Q% (thus not L, ensuring a
non-trivial prophecy), with C,, = {replace £ : Q} ~» unit} (so = C}). The choice for C,
ensures than any “unrolling” of the loop to include any number of Q. prefixes (as generated
by the left operand of the union in the last constraint) is in fact less than the replacement
effect (Q. > Q} C Q7). This then implies that Q. L |{C}|} C Q.U (Q:) C Q:, by properties
of Gordon’s iteration operator [30, 31] (Section 2). Assuming cc ¢ T" (or hygienic macros)
and applying subsumption, this leads us to the pleasingly simple derived rule:

Tke:7|(0,0,Q.)
[ [loop €] : unit | (0,0,Q%)

D-INnrFLoOOP

7.2 Other Derived Rules

We have similarly macro-expressed traditional while loops, exceptions (try-catch and throw),
and generators [14] (a form of coroutine now common in C#, Python, and JavaScript), and
derived rules for each. Figure 6 gives derived rules for these constructs under a variety of
conditions, each derived following a similar process to D-INFLOOP.

Loops do not require the use of control operators to express, of course. However, they are
an important consistency check. Notably, D-WHILE recovers, via the approach above, exactly
the rule for while loops that was hand-crafted in prior work [25, 26] and only recently given
general treatment [30, 31]. D-ABORTINGWHILE is a limited generalization of D-WHILE, for
the case where the condition or body by use abort (e.g., throw exceptions). The underlying
effect — for when the loop completes normally — is as in D-WHILE. The control effect reflects
the various times an abort may be thrown, based on the assumptions about aborts in ¢
and e: during the initial execution of the condition, the initial execution of the body, or by
subsequent executions of the condition or body. The derived rules for try-catch and throw
reflect their simple expression in terms of prompts and abort.

The generator rule is more complex, requiring a bit of careful thought about the well-
formedness condition GenProphs, but still following the general approach taken for D-Loop.
Recall that generators are a construct for producing some sequence of values asynchronously:
a generator is an object that may be queried repeatedly, and each query either produces a new
value or indicates there are no more values. This is similar to an iterator, except generators
are written in direct style. A language or library typically exposes a yield construct to
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D-WHILE D-FurLLINFLOOP
F}‘EZ(@,@,Qe) FFC:(@,QLQC) FF@ZTE'Xe
T+ [while c €] : unit | (0,0, Q> (Qe > Qc)™) T+ [loop €] : unit | x;

D-ABORTINGWHILE
1¢C. 1 ¢Ce AbortsOnly(C. U C¢) Lkc:(0,C, Q) F'ke:(0,CeQe)

I+ [while; ¢ ¢ : unit | (0, {C V(@ &?;D(&)DUQ(S?: - gfc%) ~ Ce)’} LQe b (Qe > Qo))

D-TrYCATCH

Lhe:7](0, {(;t;O("; fC Q~ C},Qe) D-THROW

Tkh:C =222 1 (0,0,1) Tke:C|(0,0,Q.)

I'Ftry ecatch C = h] : 7| (0,0,Q. U (Q > Qr)) T+ [throwe €] : 7| (0, {abort {c Qe ~ C}, 1)
Vé/,P/,C/,Q/’P//7C//’ //77_.
prophecy ¢ (P',C’, Q') ~ 7 obs (P",C",Q") € P =
¢ = ¢ AT = bool A GenProphs(P’, ¢, E) A C" C {abort £ E* ~ (option 7)}
ANQ CE NPT, CP,ANC"EC'AQ"CQ

GenProphs(P, ¢, E) =

D-ITERATE
({prophecy gen (Pp,Cp,E™)~>(option 7) obs (0,0,I)},{abort gen I~>(option 7)}, L)
'k f: (

unit) EN
| (0,0,1)
(unit unit) unit
C C {abort gen (E*) ~> (option 7)} GenProphs(P, gen, E)

T | [iterate init gen f] : unit 0BT, option 7 | (0,0,1)

(0,{abort gen I~+(option 7)}, L) (P,C,E™)

Figure 6 A collection of derived rules.

produce a value for the client. (This now describes Python, C#, F#, and JavaScript,
among other languages.) After the client consumes each value and queries the generator
again, control resumes immediately after the last-executed yield, continuing until another
value is yielded or generation is complete. Consider a simple client of Coyle and Crogono’s
implementation using Scheme macros and call/cc [14] (see our technical report for Racket
code [32]):

(define next (iterate (A (yield done) (yield "a") (yield "b") (done))))

the iterator body takes two arguments, yield and done for yielding a value, and indicating
generation is complete respectively. next is the result of building a generator from this
function; iterate (the generator implementation) supplies functions for yield and done
(described below).

Our macro iterate init gen f (init and gen are tags) expands to a heap-storage-based
generator encoding similar to Coyle and Crogono’s [14] (and also given explicitly with type
annotations in our technical report [32]). A prompt is used to delimit the scope of the
generator body. Yielding a value captures the current continuation up to that prompt, stores
it in a heap cell, then uses abort to throw the yielded value. The rule D-ITERATE assumes
f is a function of two arguments as above: the first is a function playing the role of yield,
the second a function that marks the iterator as complete (done). The macro returns a
function which, when invoked, returns an option containing either the next element produced
by the generator, or a failure. When invoked, this function introduces a new prompt for
tag gen, and invokes the stored continuation to produce the next element (via the yield
parameter) or a completion. The rule assumes the activity “between” successive yields
can be over-approximated by an underlying effect F, and stores the continuations with
underlying effect E*. Because uses of the first parameter, yield, capture continuations, a
prophecy choice must be made (P,) for that particular generator, for the yield to predict
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the appropriate remainder of the generator body. D-ITERATE is specialized here to the
assumption that all prophecies and aborts in the generator body are related to the tag gen
only, which allows us to lift the requirements of prophecy validation into the GenProphs
predicate. A complete rule permitting at least exceptions to escape a generator is possible,
but would be very complex (so much so that C# strongly restricts their interactions [53]).

8 Related Work

Recent years have seen great progress on semantic models for sequential effect systems [70,
42, 55], centering on what are now known as graded monads: monads indexed by some kind
of monoid (to model sequential composition), commonly a partially-ordered monoid following
Katsumata [42]. Gordon [30] focused on capturing common structure for prior concrete
effect systems, leading to the first abstract characterization of sequential effect systems with
singleton effects, effect polymorphism, and iteration of sequential effects.

To the best of our knowledge we are the first to use the term “accumulator” as we do to
identify this as a reusable technique. However accumulators have appeared before. Koskinen
and Terauchi’s effect system [45] uses left-accumulators for safety and liveness properties
(requiring an oracle for liveness). Effects in their system are a pair of sets, one a set of finite
traces (for terminating executions) and the other a set of infinite traces (for non-terminating
executions). The infinite traces left-accumulate: code that comes after a non-terminating
expression in program-order never runs. On the other hand, finite executions from code
before an infinite execution extend the prefix of the infinite executions. Earlier, Neamtiu et
al. [56] defined contertual effects to track what (otherwise order-unaware) effects occurred
before or after an expression, to ensure key correctness properties for code using dynamic
software updates.

Effect systems treating continuations are nearly as old as effect systems themselves [41].

To the best of our knowledge, we are the first to integrate sequential effects with exceptions,
generators, or general delimited continuations — or any control flow construct beyond while
loops, including any form of continuation, tagged or otherwise. As mentioned in Section
2, the original motivation for tags was to prevent encodings of separate control operators
from interfering with each other [64], which is critical for our goals, strictly more expressive
than untagged continuations, and motivates important elements of the theory (blocking).
The only other work we know of focusing on effects with tagged delimited continuations is
Pretnar and Bauer’s variant [62] of algebraic effects and handlers [62] where operations may
be handled by outer handle constructs (not just the closest construct as in other algebraic
effects work). Their commutative effects ensures all algebraic operations are handled by
some enclosing handler.

Tov and Pucella [73] examined the interaction of untagged delimited continuations with
substructural types (a coeffect [58]). Delbianco and Nanevski adapted Hoare Type Theory
for untagged algebraic continuations [17], which include prompts and handlers, but place
handlers at the site of an abort rather than at the prompt in order to satisfy some useful
computational equalities (see below). As a consequence, encoding non-trivial control flow
constructs in their system becomes significantly more complex; for example, simulating
the standard semantics of throwing exceptions to the nearest enclosing catch block for the
exception type would require catching, dispatching, and re-throwing at every prompt. This
and lack of tagging would make compositional study of multiple control flow constructs /
control operators difficult, and as our work shows the treatment of multiple tags is not a trivial
extension of untagged semantics. Atkey [6] considered denotational semantics for (untagged)
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composable continuations in his parameterized monad framework for (denotational) sequential
effect systems, essentially giving a denotation of a type-and-effect system for answer type
modification [5, 16] — a kind of sequential effect which can be used to allow continuations to
temporarily change the result type of a continuation, as long as it is known (via the effects)
that it will be changed back. Thus Atkey considered answer type modification effects as
an instance of a sequential effect specific to using control operators, rather than having an
application-domain-focused effect (like exceptions or traces) work with continuations or giving
an account of general sequential effects for control operators. Readers familiar with answer
type modification may wonder about directly supporting it in our generic core language.
We have not yet considered this deeply, but note that (i) directly ascribing answer type
modifications to control operations would require assigning specific answer type modification
effects to the control operations, not just effects derived from primitives, but (ii) Kobori et
al. [44] showed that tagged shift/reset can express answer type modification in a type system
that does not track answer types explicitly, so such an extension may provide no additional
power (treating convenience as another matter).

Algebraic effects with handlers [60] are a means to describe the semantics of effects in
terms of a set of operations (the effectful operations) along with handlers that interpret those
operations as actions on some resource. The combination yields an algebra characterizing
equality of different effectful program expressions, hence the term “algebraic”. Languages
with algebraic effects include an effect system to reason about which effects a computation
uses, to ensure they are handled. Some implementations even use Lindley and Cheney’s
effect adaptation [49] of row polymorphism [75] to support effect inference [47]. Handlers for
algebraic effects receive both the action to interpret and the continuation of the program
following the effectful action. Thus they can implement many control operators, including
generators and cooperative multithreading [48], as with the delimited continuations we
study. In an untyped setting without tagging, algebraic handlers can simulate (via macro
translation) shift0/reset0 [28], which can simulate prompts and handlers [63] (with correct
space complexity, not only extensionally-correct behavior); with those limitations, handlers
are as powerful as the constructs we study. For the common commutative effect system for
handlers that ensures all operations are handled, Forster et al. [28] prove that the translation
from handlers to prompts (shift0) is not type-and-effect preserving, and conjecture the
reverse translation also fails to preserve types. They conjectured that adding polymorphism
to each system would enable a type-and-effect preserving translation (again, without tagging,
for a commutative effect system), which was recently confirmed by Pirdg et al. [59] for a
class of commutative effect systems.

The effect systems considered for algebraic effects thus far have only limited support
for reasoning about sequential effects. The types given for individual algebraic effects do
support reasoning about the existence of a certain type of resource before and after the
computation [12, 7]. However, the way this is done corresponds to a parameterized monad [6],
which Tate showed [70] crisply do not include all meaningful sequential effect systems. His
examples that cannot be modeled as parameterized monads include examples that can be
modeled as effect quantales [31], such as the non-reentrant locking effect system Tate uses to
motivate aspects of his approach.

General considerations of sequential effect systems have not yet been explored for algebraic
effects. When it is considered, it seems likely ideas from our development (particularly
prophecies) will be useful. For example, Dolan et al. [18] offer two reasons for dynamically
enforcing linearity of continuations in their handlers: performance, but also avoiding the
sorts of errors prevented by sequential effect systems, such as closing a file twice by reusing a
continuation.
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It also seems plausible that our approach could be adapted to algebraic effects and
handlers. With an effectively-tagged version of handlers [62], a similar macro-expression of
control flow constructs and control operators is likely feasible, in particular adapting our
notion of prophecy and observation to handlers: in this case, the continuations themselves are
seen by handlers that are direct subexpressions of the handling construct itself, so prophecies
might observe “outside-in” rather than our system’s “inside-out” accumulation.

The approach we take to deriving type rules for control flow constructs and control

operators is reminiscent of work done in parallel with ours by Pombrio and Krishnamurthi [61].

They address the problem of producing useful type rules when a language semantics and
type rules are defined directly for a simpler core language, and a full source language is
defined using syntactic sugar (i.e., macros) that expand into core language expressions with
the intended semantics, such as the approach taken by ;g [37]. There the issue is that type
errors given in terms of the elaborated core terms are difficult to understand for developers
writing in the unelaborated source language. Pombrio and Krishnamurthi offer an approach
to automatically lift core language type rules through the desugaring process to the source
language, providing sensible source-level type errors. Their work focuses on type systems
without effects, but including such notions as subtyping and existential types. They do
not consider control operators (delimited continuations) or effects (neither commutative nor
sequential). Extending their approach to support the language features and types (effects)
we consider would make our approach more useful to effect system designers, though this is
non-trivial due to the many ways to combine sequential effects.

9 Conclusions

We have given the first general approach to integrating arbitrary sequential effect systems
with tagged delimited control operators, which allows lifting existing sequential effect systems

without knowledge of control operators to automatically support tagged delimited control.

We have used this characterization to derive sequential effect system rules for standard
control flow structures macro-expressed via continuations, including deriving known forms
(loops) and giving the first characterization of exceptions and generators in sequential effect
systems.
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