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Abstract
In recent years, programming-language support for static memory safety has developed significantly.
In particular, borrowing and ownership systems, such as the one pioneered by the Rust language,
require the programmer to abide by certain aliasing restrictions but in return guarantee that no
unsafe aliasing can ever occur. This allows parallel code to be written, or existing code to be
parallelized, safely and easily, and the aliasing restrictions also statically prevent a whole class of
bugs such as iterator invalidation. Borrowing is easy to reason about because it matches the intuitive
ownership-passing conventions often used in systems languages.

Unfortunately, a borrowing-based system can sometimes be too restrictive. Because borrows
enforce aliasing rules for their entire lifetimes, they cannot be used to implement some common
patterns that pointers would allow. Programs often use pseudo-pointers, such as indices into an
array of nodes or objects, instead, which can be error-prone: the program is still memory-safe by
construction, but it is not logically memory-safe, because an object access may reach the wrong
object.

In this work, we propose deferred borrows, which provide the type-safety benefits of borrows
without the constraints on usage patterns that they otherwise impose. Deferred borrows work by
encapsulating enough state at creation time to perform the actual borrow later, while statically
guaranteeing that the eventual borrow will reach the same object it would have otherwise. The
static guarantee is made with a path-dependent type tying the deferred borrow to the container
(struct, vector, etc.) of the borrowed object. This combines the type-safety of borrowing with the
flexibility of traditional pointers, while retaining logical memory-safety.
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1 Introduction

Managing memory ownership properly is central to safe, correct programming in any pro-
gramming language with a mutable heap. Parallel programs with shared memory can easily
experience non-deterministic, undefined behavior if two concurrently-executing threads write
to the same memory. Even sequential programs can experience subtle correctness issues
related to memory ownership: for example, pointer invalidation occurs when a data struc-
ture traversal simultaneously mutates that data structure, leading to dangling or incorrect
references.

Modern programming languages have developed support for managing ownership correctly
by encoding various invariants statically in the type system. Many works propose to
augment pointers with ownership information or capabilities (indicating temporary exclusive
access) [5, 4, 3, 1, 6, 12, 15, 22, 20]. Another related approach categorizes heap objects into
disjoint heap subregions, and annotates pointers to refer only to particular regions [8, 11, 3, 9].
Among languages in widespread use today, the Rust programming language [18] provides
an ownership and borrowing system that adapts ideas from lexical regions [8] to annotate
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lifetimes on pointers. The language’s type system tracks “borrows” of an owned object –
pointers taken to the object, or copies of those pointers – and ensures that only one mutable
view of the object can be used at a time by blocking access to the original object for the
borrow’s duration. All of these systems work to enforce memory safety in some way by either
disallowing some pointers to exist, or else disallowing some pointers to be accessed, in order
to prevent aliasing, concurrent accesses that would cause correctness issues.

Although these systems can improve correctness for many classes of programs, there is still
resistance to their adoption because they are often not flexible enough. For example, since
its release in 2015, the Rust language has become well-known for the introductory experience
of “fighting the borrow checker”2. The patterns that its ownership-passing and temporary-
borrowing system allows and encourages are unfamiliar to programmers accustomed to
unrestricted pointers in C or Java. As a result, Rust programmers have developed creative
workarounds in their data-structure designs. For example, programs that manipulate graphs
of objects, or otherwise have unpredictable heap graphs, sometimes use indices into a vector
of objects as pseudo-pointers, in place of true pointers (borrows). Unfortunately, this merely
sidesteps the problem, because these pseudo-pointers can be error-prone (as we will show
later), and in any case are more cumbersome to use.

In this paper, we observe that an ownership and borrowing memory-management discipline
is sometimes inflexible for artificial and unnecessary reasons, and that by splitting the borrow
operation into two parts – the lookup, producing a “deferred borrow” handle, and a later
conversion into a real borrow – much of the ease-of-use of an unrestricted language is
recovered. The key idea in this work is to encapsulate a reference to an object that is not
(yet) a borrow, so it does not trigger the restrictive mutual-exclusion rules that mandate
only one usable mutable reference exist. Our language extension uses path-dependent types
to statically bind this reference to the container (such as a vector, key-value map, struct or
tuple) that owns the object. The deferred-borrow reference can later, at the point of actual
use, be recombined with a reference to the container to get a true reference (borrow) of
the pointed-to object. This true borrow lasts only as long as needed (during the use itself),
and thus does not prevent the program from holding many deferred-borrow references to
the same object, several of them mutable at once. Flexibility is achieved without giving up
Rust’s memory safety or suitability for concurrency.

The structure of the remainder of this paper is as follows. In §2, we first provide a tour
of the essential aspects of Rust’s borrowing and ownership system. Then, in §3, we show
how Rust’s borrows do not provide as much flexibility as pointers do, and demonstrate
the alternative approaches that programs often use. We show that while these approaches
attain Rust’s memory safety properties in a literal sense, they lack what we call logical
memory safety: the pseudo-pointers (e.g., indices into vectors), if used incorrectly, can cause
the program to silently access the wrong data. We describe what would be necessary to
avoid these logical memory safety violations. In §4, we introduce an extension to the Rust
type system, static path-dependent types, that provide a minimal building-block for object
references that retain logical memory safety. We prove that static path-dependent types
provide an essential object-binding property. In §5, we finally introduce the concept of a
deferred borrow, which is a general pattern that can be implemented by several types of
containers, such as vectors, key-value maps, structs, and tuples. In §6, we describe how we
have emulated static path-dependent types in the existing Rust type system for evaluation

2 In the 2018 Rust community survey [19], the second and third most difficult-rated topics to learn were
ownership/borrowing and borrow lifetimes, after only the macro system.
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purposes. In §7, we analyze several common data-structure design patterns and qualitatively
describe how the deferred borrows approach compares to other techniques. In §8 we consider
related work.

2 Background: Ownership and Borrowing

In order to understand the need for deferred borrows, we first describe borrowing-and-
ownership-based memory management as it is practiced in the Rust programming language [18].
We will describe how the language uses ownership to establish unique, unaliased access to
heap objects, which permits statically-verifiable safe parallelism (§2.1). Then, because a pure
ownership tree is cumbersome and difficult to use, we describe how Rust allows borrowing of
owned objects by a form of lifetime-restricted pointer (§2.2). Finally, we look at how Rust
container types typically use borrowing to encode safety invariants and extend the memory
safety of core Rust data structures to the library level (§2.3).

2.1 Object Ownership and Linear Move Semantics

The Rust language, as many other memory safe languages or type systems before it [5, 4, 3],
begins with establishing unique ownership for every object. An instance of an object (in
Rust, a struct) can either exist on the stack or on the heap. In the former case, the local
variable binding owns the object; in the latter, the heap memory is ultimately managed by
an object on the stack, even if this is just a Box<T> (a pointer type).

The language uses affine types to ensure that a given object instance is not duplicated.
When a non-copyable type is assigned (only primitive data types are trivially copyable), the
object is moved out of the original storage slot (e.g., local variable binding), and the storage
slot becomes inaccessible.

Fig. 1 shows a simple demonstration of moving ownership. We can see several examples
of both stack-allocated and heap-allocated objects in this program. The s local variable
is assigned an object initializer for a struct of type S; the storage for s is allocated in the
stack frame. Several of its fields own heap storage, however: for example, the t field owns an
instance of T that is stored on the heap, and the children field owns a vector (array-backed
list) of S, also stored on the heap.

There are two important aspects to Rust’s ownership system on display here. First,
without borrowing (which we introduce below), storage is organized into a strict tree of
access paths. There is data at s, and s.t, and s.children[0], and s.children[0].t. Each
object has exactly one access path, however: there is no aliasing of heap references.

Second, Rust enforces move semantics. When the program assigns local variable t the
value of s.t, the assignment moves the object, and s.t is no longer accessible. The program’s
attempt to access s.t.a later is thus a static compilation error. Likewise, s.children
becomes inaccessible after a move. These assignment semantics preserve the above property:
by never duplicating non-trivial (non-copyable) data, we never create aliasing pointers. Of
course, this restriction will be relaxed later, but only in a controlled way.

By providing exactly one path to any particular object, the ownership system can provide
both (i) precise memory management – when a path goes out of scope, its subtree of memory
resources is freed – and (ii) safe, deterministic (race-free) parallelism, by passing ownership
of entire subtrees to separate parallel tasks. Despite these advantages, it is cumbersome:
many common programming idioms rely on holding multiple references to particular heap
objects. We now describe how pointers can be re-introduced in a limited but safe way.
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struct S {
value: u64,
t: Box<T>,
children: Vec<S>,

}
struct T {

a: u64,
b: u64,

}

fn main() {
// `s` lives on the stack, and is the unique owner of:
// `t`, a `T` instance that is also on the stack
// `children`, a `Vec` whose storage (and S instances)
// are on the heap
let mut s: S = S { value: 1,

t: Box::new(T { a: 1, b: 2 }),
children: vec![ /* ... */ ] };

s.value += 1;
s.t.a = 100;
s.children.push(S { ... });

let t = s.t; // moves `t` out of `s`
let children = s.children; // moves `children` out of `s`
s.t.a = 1; // ERROR! (s.t moved out of already)

}

Figure 1 Rust ownership system: examples.

2.2 Safe Pointers: Lifetime-constrained Borrows
In order to allow references to a particular object, Rust permits borrows. A borrow is a kind
of pointer that can be created from an owned access path, and that has an explicit lifetime
that is statically restricted to maintain the safety properties that we introduced with unique
ownership above. In particular:

A borrow temporarily restricts access to an access path, just as a move out of that path
permanently restricts access.
A borrow can only exist as long as the original borrowed object exists: for example, it
cannot be returned from a function if it borrows an object on that function’s stack frame.

Both of these restrictions are implemented using lifetimes. A lifetime is, conceptually, a
static description of a period of time during execution: either a local scope or a contiguous
range of program points. Semantically, every borrow has a lifetime, and every local variable
does, as well. In Rust’s syntax, a lifetime is written as ’a, and a borrow of an object of type
T is written &’a T. Though every borrow semantically has a lifetime, lifetimes are usually
inferred and so they can be omitted.

When a borrow is created, the borrow’s lifetime is constrained such that the borrowed
object must outlive the borrow, and the lifetime of the local variable that holds the borrow
(as a value) must be outlived by the borrow lifetime. This is illustrated in Fig. 2.

Note that borrows can be included in data structures: when a an aggregate datatype
(such as a struct) has a member whose type is a borrow, the lifetime of that borrow must be
defined as a generic parameter of the type. This need arises because such a type is (usually)
defined outside of any function scope, and hence no lifetimes are otherwise in scope. This
implicitly creates an outlives-constraint: when one object contains a pointer to (i.e., a borrow
of) the other, the latter must outlive the former. This is analogous to the local-variable case
above.
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struct S { ... }

fn main() {
let mut s: S = S { ... };

s.a = 1;

let mut s_borrow: &mut S = &mut s; // \
// |

s.a = 2; // ERROR: s is currently borrowed // | borrow lifetime
// |

s_borrow.a = 2; // OK. // /

// s_borrow is now dead -- `s` can be accessed again.

s.a = 3;
}

Figure 2 Rust borrowing examples.

2.2.1 Access Path-based Disjointness
The borrow system supports two types of borrows: mutable (as &mut T) and immutable (as
&T). Multiple immutable borrows may have overlapping lifetimes, and read-only accesses to
the original, borrowed, object may occur while such borrows exist. In contrast, if a mutable
borrow is created, then no other mutable borrow of that object may have an overlapping
lifetime, and the original object is inaccessible during its lifetime, as illustrated in Fig. 2.

In order to maintain this single-access-path invariant that enables safe parallelism, the
Rust borrow system tracks disjointness of borrows. In particular, for any given object stored
within a local variable or field of a struct (identified by an access path starting from a local
variable), the compiler tracks which borrows are active for which contiguous spans of static
program points, and ensures that no two incompatible borrows or direct accesses overlap.

2.2.2 Two Guarantees: Safety and Unique Mutability
The borrow system in Rust provides pointers that have been statically verified to retain
two important properties: memory safety and unique mutability. Memory safety arises from
outlives-constraints, and means that a pointer cannot be dangling; every pointer dereference
thus accesses valid memory, and the program can never crash from an invalid pointer access.
Unique mutability arises from disjointness constraints, and means that if a pointer is mutable
(can be used for writes), then it is the only available access path to its pointee. This is what
allows for safe parallelism: because of unique mutability, a program cannot have data races.
Both sorts of constraints, and both resulting guarantees, also allow for the creation of safe
container types that extend the access path-based system to dynamically-sized, heap-resident
containers.

2.3 Borrows and Container Types
The power of Rust’s ownership and borrow system arises from the way in which its basic
primitives – borrows with lifetimes, and constraints between lifetimes – can be used by
libraries to build type-safe containers.

Consider, for example, the simple vector (array-backed ordered list with O(1) element
access) API in Fig. 3. This API has two functions: get_index_mut, which returns a pointer
to a storage slot within the vector, and append, which appends a new element.

ECOOP 2020
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struct Vector<T> { ... }
impl<T> Vector<T> {

// The 'a lifetime (usually implied, but written explicitly here) ties
// the returned borrow to an implicit borrow of `self` at the callsite.
// The callee cannot use the `Vector` in any other way while the
// borrow to the element is live.
fn get_index_mut<'a>(&'a mut self, index: usize) -> &'a mut T { ... }
fn append(&mut self, t: T) { ... }

}

fn main() {
let mut v = Vector<u32>::new(...);

let elem0 = v.get_index_mut(0); // borrows `v`, returns borrow to elem
*elem0 = 1;
// `elem0` borrow now dead (not used below). Borrow lifetime on `v` ends.

let elem1 = v.get_index_mut(1);
let elem2 = v.get_index_mut(2); // ERROR: `v` already borrowed mutably.
*elem1 = 2;
*elem2 = 3;

let elem3 = v.get_index_mut(3);
// The mutable borrow also serves to "freeze" the underlying storage
// location in place (no other method on the `Vector` can be invoked,
// because we cannot borrow its `self` again). This is needed
// because the borrow is just a pointer: the container must not
// e.g. reallocate its storage to grow an array, rehash a table or
// rotate a tree, etc.
v.append(4); // ERROR: `v` already borrowed mutably.
*elem3 = 4;

}

Figure 3 Rust lifetime constraints used in container APIs.

In order to return a borrow to internal storage – an element contained within, and whose
memory is managed by, the vector – the get_index_mut function must take a borrow of
the vector itself, Given the borrow of the whole vector, it can safely return a borrow of a
piece of that vector, as long as the returned borrow’s lifetime is contained within the original
borrow’s lifetime (trivially true here as the lifetime is the same ’a).

This lifetime-outlives constraint, relating a borrow of the original container to that of its
element, serves two important purposes. First, the borrow on the container serves as a proxy
for the borrow of the element itself. Because the Rust borrow-checker does not have a precise
understanding of vector indices or hashmap keys (for example), it cannot directly track
the access-paths that name these storage locations. Hence, although it might be perfectly
valid (assuming a well-behaved data structure implementation) to borrow both v[i] and
v[j] mutably if i ≠ j, because the element storage slots are disjoint, the borrow checker
cannot actually verify this. The container API leverages the borrow checker in a sound but
conservative way, requiring a borrow of the entire container when an element is borrowed.
Because it is always sound to “over-borrow,” this maintains the no-dangling-pointer and
no-aliasing-mutable-pointer safety properties of Rust’s type system.

Second, and just as importantly, this lifetime constraint and container-borrow mechanism
freezes the container layout in place so that the raw pointer (which is how a borrow is
implemented) remains valid. Here, any access with get_index_mut borrows the container
mutably, which prevents any other access to the original object. Idiomatic container APIs also
allow immutable element borrows, which borrow the container immutably: this allows other
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read-only access to the container, but still prevents any mutation. This works because any
other function that mutates the container – e.g., append, which might cause the underlying
storage to be reallocated if more space is needed – takes a &mut self parameter, requiring
a mutable borrow, which is incompatible with the outstanding (immutable or mutable)
borrow.

3 Inflexible Borrows and Workarounds

Now that we have seen how Rust enables safe aliasing through borrows with carefully checked
disjoint-lifetime and disjoint-mutability properties, let us consider how these limitations
impact program design.

3.1 Borrowing-Incompatible Data Structures
Two basic patterns of pointer-based data structure design are problematic when borrows are
used in place of pointers, corresponding to each of the constraints that the borrowing system
imposes.

First, the borrowing system requires the borrowed object to outlive the borrow itself, to
preserve the language’s memory-safety property. When one object points to another, the
lifetime of the former must be strictly shorter than the latter. This immediately rules out
cycles of borrows. Common data structures that are cyclic, such as graphs, doubly-linked
lists, and trees with parent pointers, thus cannot be implemented in safe Rust.

Second, the borrowing system requires borrows to be safe relative to each other, and
in particular, allows no more than one mutable borrow to exist at a time. There are many
programming idioms that require holding pointers to inner elements of a data structure: for
example, a “secondary index” might refer to elements in a vector or map indexed by an
alternate key, or an algorithm may keep a stack of pointers to nodes as it traverses a graph or
tree. Some of these pointers may later be used to update the data structure. Unfortunately,
Rust cannot allow these pointers (borrows) to be mutable.

Both of these problems can be seen in Fig. 4. Program 1 shows a simple graph-
manipulation program in C++, demonstrating the ease by which the graph node type
can be defined. In contrast, in Program 2, we run into trouble as soon as we try to define
the node types, caused by both reference cycles and aliasing mutable borrows. We clearly
cannot carry over our habits of freely handling pointers as we had done in C++.

One approach, sometimes seen in core data-structure libraries, is to use “unsafe” raw
pointers that circumvent the type system. While the Rust language allows this C-like flexibility
via an escape hatch, the memory safety then relies completely upon the programmer’s care.
We thus do not consider this approach further.

3.2 A Solution: Pseudo-Pointers
A common approach to allow arbitrary object references in safe Rust is to use names for
objects that are not actually borrows (pointers), such as indices in a vector. Program 3
in Fig. 4 demonstrates this approach. Node references are by indices into a vector, and
this vector is the true owner of the nodes. Rust’s tree-ownership model that described
in §2 is retained, and the program is completely memory-safe. There is no issue when
visitEdge needs to take references to two different nodes to mutate, because these references
(indices) are not actually potentially-aliasing borrows, only integers. We call these integers
pseudo-pointers.

ECOOP 2020
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Program 1: C++, using unrestricted native pointers
// Define a graph as a list of pointers to nodes; define a node's edges
// simply as pointers to other nodes.
typedef vector<Node*> Graph;
struct Node { vector<Node*> outEdges; };
void visitEdge(Node* n, Node *neigh) { ... }

void updateGraph(Graph& g) {
for (Node* n : g)

for (Node* neighbor : n->outEdges)
visitEdge(n, neighbor);

}

Program 2: Rust, using references (borrows)
// Problem 1: we will not be able to construct a graph instance of Node<'a>
// because each node needs to outlive its pointed-to nodes; the cyclic
// dependency is impossible to resolve.
//
// Problem 2: we cannot hold mutable borrows of neighboring nodes in
// `outEdges`, because more than one borrow might exist (the type
// system will not allow us to create these borrows).
type Graph<'a> = Vec<Node<'a>>;
struct Node<'a> { outEdges: Vec<&'a mut Node> }

Program 3: Rust, using node indices
// Define a graph as an owned vector of nodes; define out-edges as
// indices of other nodes in this vector.
type Graph = Vec<Node>;
type NodeIndex = usize;
struct Node { outEdges: Vec<NodeIndex> }

// NOTE: this is cumbersome: every access to a node `n' is really
// `g.nodes[n]'.
fn visitEdge(g: &mut Graph, n: NodeIndex, neighbor: NodeIndex) { ... }

fn updateGraph<'a>(g: &mut Graph<'a>) {
for n_idx in 0..g.len() {

// Note: we need to copy the outEdges list here because `visitEdge'
// below takes temporary mutable ownership of the entire graph `g'.
let neighs = g[n_idx].outEdges.clone();
for neigh_idx in &neighs {

visitEdge(g, n_idx, neigh_idx);
}

}
}

Figure 4 A graph-processing program, in C++ (first program) and Rust (second and third
programs), that demonstrates the difficulties imposed by borrowing (second program) and the
type-unsafety of the usual workaround (third program).

However, this approach has several downsides. First, and most directly, it is cumbersome.
To make it work, we need to (i) pass a borrow to the true owner (here, the Graph object)
everywhere along with the pseudo-pointers, and (ii) explicitly dereference the node by
indexing the vector at each point of use. However, beyond the mere ergonomics issues, a
potential correctness issue looms: the vector access g[n_idx] may not refer to the same
Node at access time that it did when the index was taken! If, for example, the program
removes a node and compacts the node-vector, all node indices become invalid, but the type
system does not prevent their use. Even worse, if the program contains multiple vectors of
the appropriate type (say, the program maintains several graphs simultaneously), an index
intended for one may be used to access another. We define a new term to encapsulate these
issues: logical memory safety.
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3.3 Logical Memory Safety
Rust provides memory safety in the sense that any memory accessed by a Rust program must
be valid memory and must be a valid, still-live instance of the object implied by the type of
the pointer (borrow). Nothing in the vector-based approach invalidates this property, nor
could it, because the guarantee is true for any safe Rust program. Unfortunately, nothing in
the Rust type system ensures that the correct memory will be accessed, because correctness
is a program-specific property.

We define logical memory safety in the context of a program that uses pseudo-pointers
to mean that every access to an object via a reference (such as a vector index) accesses the
same object that the reference was created to refer to. This property provides essentially
the same guarantee that a borrow does: a borrow also ensures that the pointed-to object
remains accessible, and remains the same object, during the lifetime of the borrow.

3.4 Maintaining Safety: Deferred Borrows with Irrevocable Binding
We can now concisely state the goal of this work: we wish to provide logical memory safety for
object references without the limitations of borrows, i.e., in a way that retains the flexibility
of pseudo-pointers.

We build on pseudo-pointers, because they resolve the conflicting-borrows problem right
away. This is because they defer the actual borrow of the container until the referred-to
object is used. In other words, nodes[node_idx] borrows nodes mutably, but only for as
long as the particular operation on this node. This property is the origin of our term deferred
borrow, which we expand further in §5.

To make pseudo-pointers logically memory-safe, let us consider what would be needed: in
concrete terms, for the vector-based approach, we must ensure that an object’s index in the
vector is constant once added (by only appending to the vector). In addition, we must ensure
that an index created for some particular vector is only ever used to access that vector, and
not another, even if their static types match.

We can provide the append-only property at the library API level by encoding the
invariant into the types: for example, provide a .to_append_only() method on Vec<T> that
consumes the Vec (as we can do with linear types!) and returns an AppendOnlyVec<T>.

Ensuring that indices are only used with a particular vector, however, is more challenging.
The existing Rust type system cannot encode this restriction. We must somehow irrevocably
bind an index with a vector object, and require this binding when the access node[node_idx]
occurs. In the following section, we now show how this can be done with static path-dependent
types.

4 Static Path-Dependent Types in Rust

Our key contribution to the core Rust language that enables deferred borrows is the static
path-dependent type. Path-dependent types have been proposed previously in a dynamic
context [7, 14, 2], e.g. in Scala: in that context, a type is an element of some class, and each
class instance has a different type (i.e., the dynamic object identity is part of the type). In
contrast, our path-dependent types are static. This is an extension to an ordinary type that
ties a value to another particular value in-scope, by its access path (local variable plus struct
field(s)).

We define a type T/x to be a subtype of T that has the path x. Intuitively, a path can
refer to any storage place that the borrow-checker tracks: e.g., a local variable binding or a
subfield of one. The path can then be used to constrain function arguments so that, e.g., a

ECOOP 2020
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value of type T/x can only be combined with exactly the value in local x. This provides the
necessary conditions for logical memory safety of deferred-borrow smart pointer objects, as
each can be paired with the container from which it must eventually borrow.

4.1 Types with Static Dependent Paths
We augment the type system of Rust so that any type τ can be annotated with a path p
to form type τ/p. The path describes a storage slot, or place in the terminology of Weiss
et al. [21]’s formulation. Concretely, this is a root binding optionally extended with a path
of struct fields. A root binding is (i) a local immutable variable binding in scope, within a
function body; (ii) a formal parameter index, within a function type; or (iii) the self root,
within a struct. In each of these contexts, the path corresponds to a fixed location that will
hold the same value until it goes out of scope or is moved out of.

To communicate our intended semantics, we sketch a set of definitions and inference rules
in Fig. 5. This scheme is built on top of that of Weiss et al. [21] for the Oxide language, which
describes a small core language that captures Rust’s ownership and borrowing semantics.
We first extend the type unification and subtyping judgments with rules to allow the path
annotations on types to flow through the program. We extend the expression typing judgment
to weaken path-dependent types when the corresponding path is dropped or moved out of, or
when a mutable binding is modified: formally, when the place π is removed from the outgoing
typing context Γ in T-Move’, we weaken any type τ/π in the typing context to simply τ .
Finally, we modify the typing rules for function application and struct-field projection to
translate the roots between the three domains (locals, function parameters, or a struct’s self ).
This allows struct field types and function parameter types to naturally refer to “neighboring”
values, as we will see below.

4.2 Static Path-Dependent Types in Rust: Syntax and Examples
We now show how static path-dependent types might appear in several Rust snippets to
give a flavor of their integration into the language. First, consider that we have a struct
definition:

struct S<'a> { c: &'a Container, r: Option<ContainerRef/self.c> }

This struct holds a borrow (over whose lifetime it is parameterized) to some Container
type that we have presumably defined elsewhere. It also holds a value of type ContainerRef.
In this struct definition, however, we have augmented this type with a path self.c. In a
struct field type context, any path on a path-dependent type must start with the self path
prefix, and this prefix indicates that the following path refers to a neighboring field in the
same struct instance. Here, whatever ContainerRef that is stored in r of a given instance
will be irrevocably tied via its path to the container in c.

To use this value, we might write a function like the following:

fn foo() {
let c = Container::new_with_contents();
let mut s = S { c, r: None };
let r = s.c.deferred_index(/* index = */ 42);
s.r = Some(r);

let elem = s.c.defborrow(s.r.unwrap());
// ...

}
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Static Path-Dependent Types

Note: This formalization extends that of Oxide [21], which captures the Rust ownership
and borrowing system in a small core language. We omit a repetition of most of
Oxide’s rules and definitions, and show only those relevant to tagged types below.

e Expression x Variable/Identifier p Path
τ Type π Storage Place i, n Naturals

Language Extensions
τ ∶∶= . . . ∣ τ/p Path-dependent type
p ∶∶= π Storage-place path (in expression context)

∣ i.x1. . . . .xn Formal parameter path (in function type)
∣ self.x1. . . . .xn Struct path (in struct field type)

T ; Σ; ∆; Γ ⊢ π ∶ τ ⇒ Γ′ (Typing judgment)

Γ ⊢uniq π ∶ τs τs noncopyable
T-Move’ Σ; ∆; Γ ⊢ π ∶ τs

⇒ filter(Γ − π,π)

Similar adaptation to T-Let, omitted for brevity: filter path x from Γ in the
out-context of let x . . ..

Σ; ∆; Γ ⊢ ef ∶ (τ
s
1 , . . . , τ

s
n) → τs

f ⇒ Γ′
Σ; ∆; Γi−1 ⊢ ei ∶ funcpath(τs

i , (e1, . . . , en)) ⇒ Γi, 1 ≤ i ≤ n
T-App’ Σ; ∆; Γ ⊢ ef(e1, . . . , en) ∶ τ

s
f ⇒ Γn

places-typ meta-function modified so that struct-field types are filtered through
structpath; if x ∶ {x1 ∶ τ/self.π, . . .} ∈ Γ, then x.x1 ∶ x.π ∈ Gamma.

filter(Γ, π) = Γ[τ/π. . . .↦ ⋅]

funcpath(τ, (e1, . . .)) = τ[τ ′/i.π ↦ x.π if ei = x]

structpath(τ, π) = τ[τ ′/self.π′ ↦ π.π′]

τ1 ∼ τ2 ⇒ τ (Type unification)

τ1 ∼ τ2 ⇒ τ
U-Path

τ1/p ∼ τ2/p⇒ τ/p

Σ ⊢ τ1 <∶ τ2 ↝ δ (Subtyping)

Σ ⊢ τ1 <∶ τ2 ↝ δ
S-Path Σ ⊢ τ1/p <∶ τ2 ↝ δ

Figure 5 Static path-dependent types: definitions and rules as an extension of the Oxide
formalization [21].
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In this function, we create an instance of S, and initially fill its field c with a new
Container. Let us say that the method Container::deferred_index returns a value of
type ContainerRef/s.c (we will see how such a function can be declared below). Then
r has this type as well. This type unifies with the type of field s.r because T/self.c in
struct-field type context maps to T/s.c for the struct at the particular place s.

How do we pass these path-qualified values between functions? Analogously to our
approach for struct-field types, we allow parameter roots in parameter (and return value)
types. Thus the type of one parameter can be bound to the value of another parameter. For
example, we might define deferred_borrow above as follows:

impl Container {
fn deferred_index(&self, index: usize) -> ContainerRef/0 {

ContainerRef { /* ... */ }
}

}

The return type ContainerRef/0 refers to the 0-th parameter, in this case self: thus,
the returned ContainerRef is bound to the passed-in Container.

Paths can always be stripped from types, but cannot be added in ordinary value dataflow,
due to the subtyping rule S-Path which specifies that τ/p <∶ τ . A value acquires a path at
construction time: e.g., above, the return value is constructed with the struct-literal form for
ContainerRef, and implicitly has type ContainerRef/0.

Finally, the function defborrow can place a path on an inbound parameter type, requiring
that parameter to have the path in order for the function call to typecheck. In this running
example, defborrow() requires the passed-in ContainerRef to be associated with the self
Container in order for the call to succeed:

impl Container {
fn defborrow(&self, r: ContainerRef/0) -> &Elem {

// ...
}

}

In summary, we see that static path-dependent types qualify arbitrary types with storage
paths. The paths available depend on the context. For an expression in a function body,
these are precisely the local storage paths, rooted at local variables. For a struct definition’s
fields, these are paths rooted at self and a field name in the same struct. Finally, for
function parameter and return types, these are the numbered roots 0 to n-1 referring to the
n parameters of the function.

4.3 Correctness: Value-Correspondence Lemma
Building on the above intuition for “binding” one value to another, we can now describe the
condition that path-dependent types ensure:

I Lemma 1. If a storage place π is in scope with any type and with value v at a program
point defined by typing environment Γ, and another storage place π′ is in scope with type τ/π
and with value v′ at the same program point, then for any dynamic execution, the value v′ is
stored in a place of type τ ′ <∶ τ/π only as long as the value v remains in storage place π.

Proof sketch. Follows from the dynamic semantics. As long as the binding π it remains in
scope, the value remains v (because bindings in Oxide are immutable). The rules T-Let and
T-Move in the Oxide formalization [21] on which our formalization is built ensure that π is
dropped from the typing context Γ when it is moved out of or when it falls out of scope. Our
modifications to these rules apply our meta-function filter() to the typing context, weakening
any type τ/π to simply τ . J
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4.4 Generics and Path Parameters
For brevity, we have not included a formalization of generic path parameters, though we
describe them informally here. In order to allow data structures to contain path-dependent
types that refer to paths outside of the struct in question (i.e., outside of the self path),
we allow generic parameters to provide paths. Field types are known at instantiation time
according to the actual path provided as a parameter, as for type and lifetime generics.

4.5 Alias Analysis and Type-Tag Propagation
We note briefly that this type system can be seen as the combination of path-dependent types
(in the dynamic sense of earlier work [7, 14, 2]) with a static must-alias analysis, so that all
dynamic checks are replaced with static reasoning at type-check time. The rules for unifying
dependent paths attached to types essentially form a very simple path-based intraprocedural
must-alias analysis. When seen this way, one can also imagine several precision enhancements
by adopting more advanced static must-alias techniques, as in e.g. Kastrinis et al. [10].

5 Deferred Borrows

In §3, we saw how the existing Rust borrow system can be inflexible in the face of some
common program design patterns. We described the foundation of a solution in §3.4,
describing how one might combine an index-based scheme (what we call pseudo-pointers)
with some sort of strong binding between these indices and the particular container instances
to which they refer in order to attain logical memory safety, a stronger property than Rust’s
language-level memory safety. Now that we have introduced static path-dependent types, we
can show how to use these to achieve exactly this goal.

Our key insight in this work is that we can alleviate the inflexibility of the borrow system,
caused by the conflict of multiple outstanding borrows, by avoiding a borrow until the point
of use while retaining safety in other ways. This is the origin of the name deferred borrow.

A deferred borrow is an API concept that uses path-dependent types to provide a more
flexible interface to a container. As we described in §2.3, borrows of container elements perform
proxy borrows (borrows with the same lifetime) of the entire container; this approximation is
necessary to retain memory safety because the borrow checker cannot reason about abstract
index spaces or storage locations such as vector indices. The idea of a deferred borrow is to:
1. Freeze the existence of the reference element (e.g., disallow element deletion); and
2. Return some state that can allow a lookup and true borrow of the element later, even if

the internal storage of the container has been rearranged in the meantime. This later
lookup performs a borrow of the entire container, as an ordinary element reference does.

3. Tie this state to the container with a path-dependent type.

This strategy provides all the same guarantees as a true Rust borrow. First, while the
true borrow is outstanding at the point of use, we have memory safety simply by reduction
to the usual Rust container access idiom: the entire container is borrowed for the duration of
the element access. However, for the entire existence of the deferred-borrow element reference,
we also have a substantially similar guarantee: (i) the container is put into a state so that
the element cannot disappear; (ii) the element reference is tied to this particular container;
so (iii) when the deferred borrow is converted into a real borrow, the borrow will refer to
exactly the desired element.
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It is important to note that all of these properties were provided by a true borrow
simply because a true borrow performs a borrow of the entire container for the duration
of the element access. In contrast, a deferred borrow synthesizes this same guarantee from
pieces. By doing so, without holding an outstanding borrow on the container, many of the
unnecessary restrictions are avoided. In particular, while a deferred borrow exists, any of the
container elements can be accessed or mutated, even if the outstanding deferred borrow also
allows mutable access; and, if the container is implemented properly, the program can also
append new elements to the container. In other words, we separate a “bookmark” phase, in
which an element is identified, from a “use” phase, in which it is exposed for access.

5.1 Definition and Correctness Conditions
A deferred borrow idiom properly implemented by a container grants logical memory safety,
as long as the container upholds the contract: a deferred borrow object returned by a lookup
operation must convert into the same borrow at any future point if dereferenced with the
same container object. Combining the value-correspondence lemma of §4.3 with this contract,
we have the full guarantee to the user of the container API.

In slightly more precise terms, we can define a deferred-borrow implementation as an API
pattern with the following conditions. Given a mutable container datatype that contains
values of type V indexed by keys of type K and provides the following operations:

insert(c, k, v), which inserts a new storage slot dynamically into container c at abstract
address, or key, k with initial value v,
remove(c, k), which removes a key k from c,
immutable_borrow(c, k) which returns an immutable borrow (pointer) to the storage
slot for k, and has lifetime constraints such that c is immutably borrowed as long as the
returned borrow is in scope,
mutable_borrow(c, k) which likewise returns a mutable borrow tied to a mutable borrow
of the container,

and the usual key-value map semantics (the value seen under the pointer returned by
immutable_borrow or mutable_borrow is that value last stored to a pointer fetched by
mutable_borrow for that key), a deferred-borrow pattern is implemented with the operations:

deferred_get(c, k), which returns some abstract reference type r, tied to the container
with a path-dependent type,
deferred_borrow(c, r), which given any r returned by deferred_get(c, k) at any point in
the past with no interceding remove(c, k) operation, returns an immutable borrow to the
storage slot currently backing k, with lifetime tied to a full-container borrow as above,
and
deferred_get_mut(c, k), likewise but with mutable borrows.

The most important aspect of a deferred-borrow implementation is the property that a
reference remains valid even if the container is later mutated. This implies that the abstract
reference type must somehow keep a logical notion of storage-slot address, rather than a true
pointer, unless the implementation can guarantee that the storage layout will never change.
It is exactly this property that allows us to retain logical memory safety without freezing the
container completely with an ordinary borrow.

The correctness of the deferred-borrow concept arises largely by definition from the above,
in concert with the value-correspondence lemma of §4.3. By using path-dependent types on
the interface above, a deferred-borrow implementation can statically ensure that a reference r
produced from a particular container c is only ever used with that container. The application
in concrete type terms is simple, and will be shown in the next section.
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Table 1 Examples of containers and associated element-reference (deferred borrow) types, with
implementation strategies. A library that provides deferred-borrow types may preserve memory
safety in several ways, trading off allowed mutation with the amount of state that is kept in the
reference and the amount of (deferred) work to convert it into a true borrow.

Deferred-Borrow Element Reference
Base Container Derived Type Reference State Deferred Work Borrow Result
Vec<T> Vec index bounds check;

base plus index
Option<&T>

AppendOnlyVec index base plus index &T
FrozenVec true pointer none &T

HashMap<K, V> HashMap key, lookup hint hash-table
lookup

Option<&T>

AppendOnlyHashMap key, lookup hint hash-table
lookup

&T

FrozenHashMap true pointer none &T

5.2 Containers and Deferred-Borrow APIs

Let us now see how deferred borrows can be implemented concretely. First, we define a
Rust trait that generalizes over any state that, in association with some container, can be
converted into a borrow of an element in that container:

trait DefBorrow<T, Container> {
fn def_borrow<'a>(&self/1, cont: &'a Container) -> &'a T;

}

trait DefBorrowMut<T, Container> {
fn def_borrow_mut<'a>(&self/1, cont: &'a mut Container) -> &'a mut T;

}

These definitions simply mean that a particular “deferred borrow” object is associated
with a particular container, and if a method on the deferred-borrow state is invoked with
that container (invoking it with any other container instance is a type error), it will return a
reference to (borrow of) the element. This borrow creates a true borrow of the container,
but only as long as this particular access needs it; e.g., a program may hold many mutable
deferred borrows, some of them aliasing, and dereference each in turn to perform a single
mutation before dropping the true borrow.

How might this interface be implemented? Let us consider several real container types:
the Vec (vector) and HashMap (key-value map built with a hashtable). Table 1 summarizes
several options for each.

Recall that we need to freeze the existence of the referred-to element when the deferred
borrow is created. A container whose element index space can dynamically shrink and grow
(true for both Vec and HashMap) might do so in one of several ways. it could freeze its
structure entirely, not allowing addition or removal, or it could still allow addition, simply
prohibiting element removal.

In the first case, if any insertion or removal is prohibited, any actual pointer that refers to
the internal storage for a particular element should remain valid, because the container will
not need to reallocate to grow, and so the deferred-borrow object can carry an actual pointer.
The abstraction is thus erased at runtime, and serves only to translate accesses to one of a
large collection of true pointers into borrows of the container to ensure mutual exclusion.
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impl Vec<T> {
// ...
pub fn to_append_only(self) -> AppendOnlyVec<T> {

AppendOnlyVec { vec: self }
}

}

pub struct AppendOnlyVec<T> {
vec: Vec<T>,

}

impl AppendOnlyVec<T> {
pub fn deferred(&self, index: usize) -> AppendOnlyVecRef<T>/0 {

AppendOnlyVecRef { index }
}

pub fn push(&mut self, t: T) {
self.vec.push(t);

}
}

pub struct AppendOnlyVecRef<T> {
index: usize,
_phantom: PhantomData<T>, // keep the Rust type-checker happy by using T.

}

impl DefBorrow<T, AppendOnlyVec<T>> for AppendOnlyVecRef<T> {
fn def_borrow<'a>(&self/1, cont: &'a AppendOnlyVec<T>) -> &'a T {

&cont.vec[self.index]
}

}

Figure 6 Excerpt of the implementation for AppendOnlyVec, one variant of a vector that im-
plements deferred borrows. This variant ensures the existence of elements that have outstanding
deferred borrows simply by disallowing element removals. Deferred borrows are just vector indices
internally; type erasure makes this approach equivalent to “pseudo-pointers” at runtime, but it is
more type-safe.

In the second case, however, the container is still allowed to grow by insertion, and so it
must compute the element location only when the deferred borrow is converted into a true
borrow. In this case, the deferred borrow will contain the logical element address – e.g., a
vector index. This essentially emulates the pseudo-pointer idiom, but with more type-level
safety.

Finally, if we extend the notion of a deferred borrow to one that can return an optional
borrow (i.e., an element borrow or None), we can allow even a standard container with
insertions and removals to produce deferred borrows. In this case, we also must retain a
logical address only in the deferred-borrow object, and perform the lookup late.

Referring again to Table 1, these container variants can be seen as a form of typestate
encoding the restrictions on container mutations that are allowed. The library user can convert
containers only to more constrained variants. Each base type has .to_append_only() and
.to_frozen() methods that consume the original (i.e., have non-borrowed self arguments)
and return the appropriate constrained type, and the append-only type has .to_frozen()
as well.

To provide a complete example, we show a simple implementation of AppendOnlyVec, the
variant of the vector that allows insertions but not removals, in Fig. 6. The main highlights
are that deferred-borrow objects reduce simply to vector indices at runtime (there need not
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be any dynamic checks that the “correct” vector is accessed, because the path-dependent
types ensure that statically), and that the vector indexing operation at true-borrow time
can be assured of success because the underlying vector is not allowed to shrink after any
deferred-borrow objects are produced.

Note that these types are not exhaustive by any means: one can imagine several other
variants that make still different tradeoffs. For example, a container might allow individual
element deletions yet still provide a deferred-borrow type that returns a &T rather than
Option<&T> by dynamically tracking which elements have outstanding element references.
Internal data structure design may also facilitate the creation of more efficient element
references with less deferred lookup work: for example, a container might allocate stable
memory storage (via, e.g., Box<T>) for each element in order to provide element references
that just store pointers even while the container is allowed to grow, or might lazily move
elements for which references are created to such indirected storage. This section’s proposed
types are merely the simplest design points in a large space enabled by a flexible language
mechanism.

5.3 Auto-Dereferencing for Syntactic Sugar

As one final ergonomic improvement, we note that by including the access path to the
associated container, a deferred-borrow value contains all the information necessary to
convert it to a true borrow automatically. The Rust language today contains a feature known
as “auto-dereferencing” wherein the compiler inserts calls to the deref() or deref_mut()
methods on smart pointer types when necessary. (This is similar to e.g. the use of operator
overrides in C++ to implement smart pointers.) This allows transparent implementation of
borrow/pointer-like values by library authors. We propose a modification to this desugaring
step that, for a value t of type T/a that implements the DefBorrow or DefBorrowMut
trait, invokes the deferred borrow t.def_borrow(&a) or t.def_borrow_mut(&mut a) as
appropriate. This will make deferred-borrow references as ergonomic as true borrows in most
circumstances, without additional user intervention.

5.4 Chained Deferred Borrows

We note that there is nothing preventing a deferred borrow’s path from referring to another
deferred borrow object. In particular, consider the case where one vector container contains
vectors as elements. A deferred borrow reference p1 to an element of the outer vector v1
might have type Ref/v1, and could in turn be used to produce a deferred borrow reference
p2, which might have type Ref/p1. Auto-dereferencing could then chain two true borrows at
the time of use, so that a write to p2.a becomes:

let v1: FrozenVec<FrozenVec<u32>> = ...;
let p1 = v1.deferred(0); // type FrozenVecRef/v1
let p2 = p1.deferred(0); // type FrozenVecRef/p1

// `p2.a = x` becomes:
let tmp1 = p1.def_borrow_mut(&mut v1); // type &mut FrozenVec<u32>, lifetime <: `v1`
let tmp2 = tmp1.def_borrow_mut(tmp1); // type &mut u32, lifetime <: `tmp1`
*tmp2 = x;
// tmp2 and tmp1 now out of scope; mutable borrow on `v1` ends.
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6 Deferred-Borrow Prototype: Emulating Paths in Stable Rust

In order to evaluate the utility of deferred borrows, we implemented a prototype library
of container types that provide deferred-borrow element references. Ideally, such a library
would make use of true path-dependent types, as we described in §4. For expediency of
implementation and experimentation, we instead chose to emulate path-dependent types
with type-tagging, which is a strategy that works in stable Rust today (§6.1). We then
illustrate several examples of our container library using this strategy (§6.2).

6.1 Emulating Path-Dependent Types with Type Tagging
Because a path-dependent type is a sort of dependent type – that is, because the type
depends on a value in the program – we cannot implement our proposed system as written
in today’s stable Rust language. Instead, we can emulate many of the type-safety benefits of
path-dependent types, albeit without the convenience of auto-dereferences and with slightly
more syntactic noise, by (i) tagging the container and its references with an extra type
parameter, such that the “tag” type must match for a deference to work, and then (ii)
using a unique type for every container allocation site. This strategy is less powerful than a
true path-dependent type because it will let different objects from the same allocation site
intermingle references, but is sufficient to understand the annotation burden and verify that
the general approach can work.3

To understand this approach, consider first the following snippet using the “true” library
design with path-dependent types:

fn main() {
let v: AppendOnlyVec<T> = ...;
let ref1: AppendOnlyVecRef<T>/v = v.deferred(i);
let w: AppendOnlyVec<T> = ...;
let ref2: AppendOnlyVecRef<T>/w = w.deferred(j);
*ref1 = ...; // auto-derefs to: *ref1.def_borrow_mut(&mut v) = ...;

// This is a type error (we used `w`, not `v`, but ref1 is of type `.../v`)
// *ref1.def_borrow_mut(&mut w) = ...;

}

Instead, we define our container type with an extra type parameter Tag: hence, the
container type becomes AppendOnlyVec<T, Tag>, and its deferred-borrow references are of
type AppendOnlyVecRef<T, Tag>. Thus the example becomes:

fn main() {
struct Tag1 {} // We can wrap this in a macro! (see below)
let v: AppendOnlyVec<T, Tag1> = ...;
let ref1: AppendOnlyVec<T, Tag1> = v.deferred(i);

struct Tag2 {}
let w: AppendOnlyVec<T, Tag2> = ...;
let ref2: AppendOnlyVec<T, Tag2> = w.deferred(j);
*ref1.def_borrow_mut(&mut v) = ...;

}

3 Note that this is subtly different than ownership-type approaches that encode ownership as a generic
parameter, such as Potanin et al. [17]: while that work’s system enforces particular object instances as
owners in a principled way, our prototype approach simply ties the path-dependent type to a static
allocation site, which may produce many object instances. The only advantage of our scheme is that it
can be written in Rust’s existing type system.
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Note that this tag-type approach is not as strict as a true static path-dependent type,
even as our example illustrates that the tag types can distinguish references from ‘v‘ and
‘w‘. Consider the case where a container is allocated within a loop: each instance, on
each iteration, must have the same type, but logical memory safety requires disallowing a
deferred-borrow from one to be used in a dereference with another.

However, this prototype has some value: it lets us see an approximation of the annotation
burden, in that deferred-borrow types Ref<T>/v become Ref<T, V>. This is enough to
evaluate the feasibility of large-program refactorings.

6.2 Macros for Tag Types

In order to make this strategy feasible and ergonomic enough for reasonable prototype use, we
define several macros alongside our library of container types so that (i) container definition
(with tag type) and (ii) deferred-reference access, which would become an invisible auto-deref
with true path-dependent types, are both relatively simple.

First, we define a macro that defines a new empty tag type and parameterizes a container
constructor:

fn main() {
let v = vec![1,2,3,4];
let mut v = freeze!(FrozenVec, v);

This expands to a struct-type definition inside a new scope (hence invisible to the rest of
the program) and a constructor invocation parameterized on this tag type. The multiple
instances that are produced by this expression are not distinguished by the type system as they
would be with path-dependent types, but they are distinguished from other containers in the
program that happen to coincide in the element type. (This is thus a form of allocation-site
newtype idiom.)

Then, we define a macro that provides a short form for the deferred borrow itself, allowing
the above dereferences to become simply:

fn ref<Tag>(v: &mut FrozenVec<u32, Tag>, elem: FrozenVecRef<u32, Tag>) {
let value = *d!(v, elem);
*dmut!(v, elem) += 1;

}

7 Qualitative Evaluation: Newly Possible Programming Patterns

We briefly describe several programming patterns that are possible with deferred borrows
but not while restricted to true borrows, and discuss how API design considerations change
when more flexible object references are possible.

7.1 Use Case #1: Graph Library

Consider the use-case of a general graph library: a top-level Graph object owns many Node
instances, and each node contains out-edges to other nodes, with some Edge data attached
to each out-edge. A straightforward Rust implementation, without deferred borrows, would
simply hold Nodes in an array, and use indices to refer to them from other nodes:
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pub struct Graph {
nodes: Vec<Node>,

}

pub type NodeIndex = usize;
pub struct Node {

out_edges: Vec<(Edge, NodeIndex)>,
}

pub type EdgeIndex = usize;

We can then provide an API that allows for insertion of nodes and edges, and allows for
accessing or mutating the data at each node or edge:

impl Graph {
pub fn add_node(&mut self, node: Node) -> NodeIndex { ... }
pub fn add_edge(&mut self, from: NodeIndex, to: NodeIndex, data: Edge) { ... }

pub fn node<'a>(&'a self, node: NodeIndex) -> &'a Node { ... }
pub fn node_mut<'a>(&'a mut self, node: NodeIndex) -> &'a mut Node { ... }
pub fn edge<'a>(&'a self, node: NodeIndex, edge: EdgeIndex) -> &'a Edge { ... }
pub fn edge_mut<'a>(&'a mut self, node: NodeIndex, edge: EdgeIndex)

-> &'a mut Edge { ... }

// ...
}

The two primary issues with such an API, as we have described already in motivating
our approach, are (i) verbosity in use, due to the need to handle indices differently than
native pointers/borrows, and (ii) logical unsafety because indices may be forged by the user,
or erroneously taken from other contexts (e.g., another graph).

Thus, the following code is valid, but produces an unexpected result, because the
programmer mixes indices from different domains (two different graphs) and erroneously
uses an index in the wrong domain (here, a node index for graph g1 used to index into g2’s
nodes):

fn graphs_are_isomorphic(g1: &Graph, g2: &Graph) -> Mapping {
'l: for mapping in generate_all_mappings() { // brute-force

for n1 in g1.node_ids() {
let n2 = mapping.map_node(n1);
// TYPO / logical error --v
if !nodes_are_isomorphic(g1, g2, n1, n1, &mapping) {

continue 'l;
}

}
return mapping;

}
}

In addition, accessing node data is cumbersome: each access must be written as
g.nodes[i] rather than simply p (where p is a borrow). Note that the API user can-
not simply take and save multiple borrows: if any borrow is live (mutable or immutable),
no other mutable borrow can be created or used. (This may not be an issue for code that
simply queries a data structure, though the lifetime annotations can still be difficult to
manage. However it is surely an issue for any code that updates a data structure while
holding multiple pointers into its inner structure.) As a result of this limitation, typical
function bodies might look as follows:
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fn nodes_are_isomorphic(g1: &Graph, g2: &Graph, n1: NodeIndex, n2: NodeIndex,
mapping: &Mapping) {

if !data_is_equal(&g1.nodes[n1].data, &g2.nodes[n2].data) {
return false;

}
// ...

}

fn mutate_nodes<F: Fn(&mut Node)>(g: &mut Graph, root: NodeIndex, mutate: F) {
mutate(&mut g.nodes[root]);
for i in 0..g.nodes[root].neighbor_count() {

let neighbor = g.nodes[root].get_neighbor(i);
if /* ... !visited(neighbor) ... */ {

mutate_nodes(g, neighbor, mutate);
}

}
}

In contrast, a graph library that makes use of the deferred borrow pattern and the
path-dependent types extension to Rust could define an API as follows:

impl Graph {
pub fn add_node(&mut self, node: Node) -> NodeRef/0 { ... }
// ...

}

impl DefBorrow<Node, Graph> for NodeRef {
fn def_borrow<'a>(&self/a, g: &'a Graph) -> &'a Node { ... }

}
impl DefBorrowMut<Node, Graph> for NodeRef {

fn def_borrow_mut<'a>(&mut self/a, g: &'a Graph) -> &'a mut Node { ... }
}

Given this API, the above functions could be rewritten as below, using generic path
parameters (§4.4) to the Mapping object (definition omitted here) so that it can accept and
produce indices associated with each graph object:

fn graphs_are_isomorphic(g1: &Graph, g2: &Graph) -> Mapping</0, /1> {
'l: for mapping in generate_all_mappings() { // brute-force

for n1 in g1.nodes() { // n1 is of type: NodeRef/g1
let n2 = mapping.map_node(n1); // n2 is of type: NodeRef/g2
// typecheck error caught statically ---------v
if !nodes_are_isomorphic(g1.node(n1), g2.node(n1), &mapping) {

continue 'l;
}

}
return mapping;

}
}

Furthermore, if auto-dereference behavior is implemented for the deferred-borrow traits,
then node accesses become much more convenient:

fn nodes_are_isomorphic(g1: &Graph, g2: &Graph, n1: NodeRef/0, n2: NodeRef/1,
mapping: &Mapping</0, /1>) {

if !data_is_equal(&n1.data, &n2.data) {
return false;

}
// ...

}

ECOOP 2020



30:22 Safe, Flexible Aliasing with Deferred Borrows

fn mutate_nodes<F: Fn(&mut Node)>(g: &mut Graph, root: NodeRef/0, mutate: F) {
mutate(&mut *root); // auto-deref.
for i in 0..root.neighbor_count() {

let neighbor = root.get_neighbor(i);
if /* ... !visited(neighbor) ... */ {

mutate_nodes(g, neighbor, mutate);
}

}
}

Note that the efficiency of these node accesses can be adjusted in a tradeoff with graph-
mutation flexibility. If the user is willing to accept that the graph is frozen at a certain node
count (many graph algorithms have this property: they do not mutate the graph topology,
only data at each node/edge), then nodes can be stored in a FrozenVec, and a NodeRef is
exactly as efficient as a true pointer, because it compiles down to exactly that. In contrast,
if the programmer desires to allow graph expansion, an AppendOnlyVec could be used. If
deletions are also desired, a more complex reference type might be used that dynamically
prevents deletions of nodes with outstanding references. In short, the deferred-borrow idiom
allows code to be generic to the particular reference/addressing scheme.

Finally, we note that the lessons we have learned from this example also apply to more
heterogeneous or general data structures with arbitrary object-to-object linkage. For example,
a tree with parent pointers (thus creating cycles between parent and children) or cross-links,
could store tree nodes in an array and use deferred-borrow references throughout.

7.2 Use Case #2: Entity-Component Systems
Many programs operate on a large number of objects that fall into a small number of
categories, and must hold references to these objects throughout their data structures. A
common pattern is the entity-component system: the program has some global context with
a few arrays or dynamically-sized vectors, one per object type; and a reference to an object
of type T is simply an index into the vector of all Ts. This provides efficiency advantages by
allowing for more compact references (e.g., 32-bit indices instead of 64-bit pointers), more
compact heap layout, and more efficient access patterns (i.e., streaming through an array in
order rather than pointer-chasing). As such, the pattern is often used in high-performance
scenarios such as game programming.

If we use deferred-borrow references for every entity in the system, we again have the
guarantee against incorrect use of indices: e.g., an index into the array of all T objects
cannot be used to index into the array of U objects instead. The path-dependent types
are particularly ergonomic in this use pattern, however, because it is already the case that
nearly every function will be passed a top-level “context” that allows access to the entity
arrays; the reference types simply have types with paths starting at that context, and are
thus automatically usable anywhere in the program without further plumbing. For example:

fn f(ctx: &mut Ctx, t: TRef/0, u: URef/0) {
t.do_stuff(ctx);
u.mutate(ctx);
t.operate_with(ctx, u);

}

As a real-world test of this hypothesis, we took a small program, a microarchitectural CPU
simulator, consisting of around 6000 lines of Rust. The simulator is written approximately in
the style described above: references to major components of the simulated system (CPU
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cores, caches, memory banks, etc.) are all by IDs that are indices into simulator-wide arrays.
We adapted the system so that, instead, it would use deferred borrows to refer to CPU cores.
The diff for this change (using the tag-type-based prototype library described in §6) was
approximately 200 lines, almost all of which were in function signatures or field types within
struct definitions.

7.3 Use Case #3: Logical Safety in an Array-based Algorithm
We note that static path-dependent types have uses outside of the deferred-borrow pattern.
In fact, they are applicable as a means of tying references or handles to a particular context
wherever such handles occur.

To see one such example, let us consider the case of an algorithm that operates on arrays
of data, and manipulates indices into those arrays. It is often the case that such code is
error-prone to write: the programmer might confuse which index corresponds to which array.

Let us say, for example, that we wish to develop an edit-distance algorithm that takes
two strings (arrays of characters):

fn edit_distance(s1: &[u8], s2: &[u8]) -> usize {
for i in 0..s1.len() {

for j in 0..s2.len() {
do_stuff(s1[i], s2[j]); // correct
do_stuff(s1[i], s2[i]); // logical error!

}
}

}

One could make use of static path-dependent types to make such a logical error impossible,
by defining a type SafeSlice<T> that wraps a &[T] and provides deferred-borrow-like element
references:

fn edit_distance(s1: SafeSlice<u8>, s2: SafeSlice<u8>) -> usize {
for i in s1.indices() {

for j in s2.indices() {
do_stuff(s1, s2, i, j);
do_stuff(s1, s2, i, i); // caught at compile time!

}
}

}

In fact, path-dependent types are far more powerful than our examples have demonstrated
so far: they serve, in brief, as a way to ensure unforgeable values that are produced and
consumed by some opaque manager object and usable only with that object. We believe this
type-system primitive would have many other use cases in a systems programming language
such as Rust.

8 Related Work

Many prior works have explored the tradeoff space in type-system approaches to sound,
usable memory-safety with useful aliasing guarantees that allow for parallelism. While we
build on the particular programming language Rust in this work, Rust borrows from a long
line of work on ownership-based and region-based memory-management. In addition, we
adapt path-dependent types, which are a limited form of generalized dependent types, to
provide type safety. To our knowledge, this is the first work to combine path-dependent
types with a region-based ownership or borrowing system to provide static safety guarantees
for a more flexible form of “borrowed” ownership.
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Ownership tracking originated with Ownership Types [5] and spawned a long line of
followup works [4, 3, 1, 6, 9, 15] to encode “contexts” or ownership domains, reason about
split or fractional ownership and varying levels of access permission, allow “ombudsmen”
that provide a safe external reference to internal state, and other approaches. In general,
these past works begin with a highly restricted system – objects form a strict ownership tree,
and access to an object is possible only by its owner – and then systematically relax that
constraint to allow for common programming idioms to be expressed.

Rust’s borrowing system adapts region-based memory management ideas from Cyclone [8]
to provide safe borrows of subtrees of the ownership tree. The borrows have constrained
lifetimes, based on lexical regions, and the lifetimes of borrows of the same owned object are
mutually disjoint. Abstractly, borrowing can also be seen as a form of permission system;
effects and permissions have been widely studied as a means to provide memory safety and
allow for deterministic parallel processing [9, 12].

Path-dependent types are a subset of dependent types [23], and have been extensively
studied in the context of object-oriented languages, starting with Ernst [7] and Odersky
et al. [14]. These works use path-dependent types to tie together related specific object
instances, exactly as we use them to tie element references to the appropriate containers.
In the context of the Scala language, path-dependent types have been formalized and serve
as a foundational abstraction in the language [2], although Scala’s path-dependent types
associate a new type with each value or class instance at runtime, and are hence a dynamic
concept; the Scala implementation performs dynamic checks as a result. In contrast, our use
of path-dependent types is purely static. Other sorts of dependent types, such as constraint
types [13], can also encode restrictions on values which can in principle be used to build safe
containers as we have. Such schemes are powerful and general; in contrast, our approach is
specific to the problem of associating one object with another specific object.

There has been some work on how to build container data types in the context of
ownership systems, or to fit a more regimented ownership system. Potanin et al. [16] modify
standard Java container types to conform to an owner-as-accessor ownership system: this
means that they must ensure that direct object accesses to internal state only go through
the container itself. This is similar to how our deferred-borrow objects contain state that
allows a container to return a direct reference at time of use.

9 Future Work and Conclusion

In this paper, we have examined the shortcomings of ownership and borrow-based memory
management as practiced in the Rust programming language. Although borrows with static
lifetimes allow the compiler to verify that (i) no dangling pointers exist, and (ii) no aliasing
mutable pointers exist, the imprecision in borrow tracking that arises when container data
types are used frequently creates friction for programmers. A standard idiom is to refer to
container elements by index, manually indexing an element each time a short-lived borrow is
required. However, this approach is cumbersome and is logically unsafe because an index is
not tied to the container. We introduce deferred borrows, which encapsulate a memory-safe
reference to an element of a container. A deferred borrow provides the same static guarantees
as an ordinary borrow: it will never be dangling and it will never allow aliasing mutable
pointers to exist. This is achieved by performing a true borrow of the associated container
only when the deferred borrow is actually used, rather than when it is created. The associated
container is tied to the deferred borrow with the use of static path-dependent types.
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While we have presented a complete proposal, we believe there are several angles for
further expansion of this language feature that are promising. First, while the deferred-borrow
implementation is currently manual (the container type must return a value with a type that
implements the DefBorrow trait), it could be auto-derived from an ordinary access method
that returns a true borrow. The compiler should be able to analyze the method body to
determine whether actions are safe to defer based on just a few assumptions (e.g., that the
internal storage of a Vec will not be reallocated).

Second, we have not discussed field borrows so far, but conceptually a field accessor
(x.a) is a deferred-borrow operator, or selector, whose state happens to be constant. The
Rust borrow checker obviates the need for deferred field borrows in many common cases
because it can directly track individual fields (it natively understands field access paths),
but reformulating field accesses in terms of deferred borrows may provide an opportunity to
simplify the borrow checker.

Finally, deferred borrows, when seen as operators (curried with specific state) that convert
the root container borrow to an element borrow at the time of use, should be composable
as well. This is especially useful when considering field accessors as deferred-borrow state.
In essence, deferred borrows encapsulate an arbitrary access path, possibly constructed
by concatenating access path components, allowing the program to refer to state without
restricting access to portions of the state tree in the meantime.

We believe that the deferred-borrow approach will be a valuable addition to the repertoire
of safe memory management techniques in Rust and related ownership-and-borrowing-based
type systems in the future.
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