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Abstract
The Cut & Count technique and the rank-based approach have lead to single-exponential FPT
algorithms parameterized by treewidth, that is, running in time 2O(tw)nO(1), for Feedback Ver-
tex Set and connected versions of the classical graph problems (such as Vertex Cover and
Dominating Set). We show that Subset Feedback Vertex Set, Subset Odd Cycle Trans-
versal, Restricted Edge-Subset Feedback Edge Set, Node Multiway Cut, and Multiway
Cut are unlikely to have such running times. More precisely, we match algorithms running in
time 2O(tw log tw)nO(1) with tight lower bounds under the Exponential Time Hypothesis, ruling out
2o(tw log tw)nO(1), where n is the number of vertices and tw is the treewidth of the input graph. Our
algorithms extend to the weighted case, while our lower bounds also hold for the larger parameter
pathwidth and do not require weights. We also show that, in contrast to Odd Cycle Transversal,
there is no 2o(tw log tw)nO(1)-time algorithm for Even Cycle Transversal.
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1 Introduction

Courcelle’s Theorem [8] states that any problem definable in MSO2 logic can be solved in
linear time on graphs of bounded treewidth. However, the algorithms obtained through
Courcelle’s meta-theorem have a huge dependency on treewidth. For certain problems, efforts
have been spent to find the “smallest” function f for which we can obtain an algorithm that,
given a graph with treewidth tw, has running time f(tw)nO(1). For Feedback Vertex
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3:2 Close Relatives of FVS Without Single-Exponential Algorithms in Treewidth

Set, standard dynamic programming techniques can be used to obtain an algorithm running
in 2O(tw log tw)nO(1) time, and for a while many believed this to be, in a sense, best possible.
However, this changed in 2011 when Cygan et al. [11] developed the Cut&Count technique,
by which they obtained a single-exponential 3twnO(1)-time randomized algorithm. Following
this, Bodlaender et al. [3] showed there is a deterministic 2O(tw)nO(1)-time algorithm, using
a rank-based approach and the concept of representative sets. Moreover, also in 2011,
Lokshtanov et al. [17] developed a framework yielding 2Ω(tw log tw)nO(1)-time lower bounds
under the Exponential Time Hypothesis (ETH) [16]. Recall that the ETH asserts that there
is a real number δ > 0 such that 3-SAT cannot be solved in time 2δn on n-variable formulas.
Lokshtanov et al.’s paper prompted several authors to investigate the exact time-dependency
on treewidth for a variety of graph modification problems.

For a vertex-deletion problem, the task is to delete at most k vertices so that the resulting
graph is in some target class. Feedback Vertex Set can be viewed as a vertex-deletion
problem where the graphs in the target class consist of blocks with at most two vertices (a
block is a maximal subgraph H such that H has no cut vertices). Bonnet et al. [6] considered
the class of problems, generalizing Feedback Vertex Set, where the target graphs consist
of blocks each of which has a bounded number of vertices, and is in some fixed hereditary,
polynomial-time recognizable class P. They showed that such a problem is solvable in time
2O(tw)nO(1) precisely when each graph in P is chordal (when P does not satisfy this condition,
an algorithm with running time 2o(tw log tw)nO(1) would refute the ETH). Baste et al. [2]
studied another generalization of Feedback Vertex Set: the vertex-deletion problem
where the target graphs are those having no minor isomorphic to a fixed graph H. They
showed a single-exponential parameterized algorithm in treewidth is possible precisely when
H is a minor of the banner (the cycle on four vertices with a degree-1 vertex attached to it),
but H is not P5 (the path graph on five vertices), assuming the ETH holds.

Slightly superexponential parameterized algorithms, running in time 2O(tw log tw)nO(1), are
by no means a formality for problems that are FPT in treewidth. For instance, Pilipczuk [19]
showed that deciding if a graph has a transversal of size at most k hitting all cycles of length
exactly ` (or length at most `) for a fixed value ` cannot be solved in time 2o(tw2)nO(1),
unless the ETH fails. This lower bound matches a dynamic-programming based algorithm
running in time 2O(tw2)nO(1). Cygan et al. [9] investigated the more general problem of
hitting all subgraphs H of a given graph G, for a fixed pattern graph H, again parameterized
by treewidth. For various H, they found algorithms running in time 2O(twu(H))nO(1), and
proved ETH lower bounds in 2Ω(tw`(H))nO(1), for values 1 < `(H) 6 u(H) depending on H.
Another recent example is provided by Sau and Uéverton [20] who prove similar results for
the analogous problem where “subgraphs” is replaced by “induced subgraphs”. Finally, for
the vertex-deletion problem where the target class is a proper minor-closed class given by
the non-empty list of forbidden minors, it is still open if the double-exponential dependence
on treewidth is asymptotically best possible [1].

Sometimes, only a seemingly slight generalization of Feedback Vertex Set can result
in problems with no single-exponential algorithm parameterized by treewidth. Bonamy et
al. [5] showed that Directed Feedback Vertex Set can be solved in time 2O(tw log tw)nO(1)

but not faster under the ETH, where tw is the treewidth of the underlying undirected graph.
In this paper, we consider another collection of problems that generalize Feedback Vertex
Set, and that do not have single-exponential algorithms parameterized by treewidth. An
equivalent formulation of FVS is to find a transversal of all cycles in a given graph. We
consider problems where the goal is to find a transversal of some subset of the cycles of
a given graph. If this subset of cycles is the set of cycles intersecting some fixed set of
vertices S, we obtain the following problem:
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Subset Feedback Vertex Set (Subset FVS) Parameter: tw(G)
Input: A graph G, a subset of vertices S ⊆ V (G), and an integer k.
Question: Is there a set of at most k vertices hitting all the cycles containing a vertex
in S?

If we further restrict this set of cycles to those that are odd, we obtain the next problem:

Subset Odd Cycle Transversal (Subset OCT) Parameter: tw(G)
Input: A graph G, a subset of vertices S ⊆ V (G), and an integer k.
Question: Is there a set of at most k vertices hitting all the odd cycles going through a
vertex in S?

Both of these problems are NP-complete. By setting S = V (G), one sees that the latter
problem generalises Odd Cycle Transversal, for which Fiorini et al. [14] presented a
2O(tw)nO(1)-time algorithm.

Alternatively, one can require a transversal of even cycles. We first consider the problem
of finding a transversal of all even cycles since, to the best of our knowledge, the fine-grained
complexity of this problem parameterized by treewidth has not previously been studied.

Even Cycle Transversal (ECT) Parameter: tw(G)
Input: A graph G and an integer k.
Question: Is there a set of at most k vertices hitting all the even cycles of G?

We now move to edge variants of FVS. Note that Feedback Edge Set, where the goal
is to find a set of edges of weight at most k that hits the cycles, can be solved in linear time,
since it is equivalent to finding a maximum-weight spanning forest. Xiao and Nagamochi
showed that the subset variants Vertex-Subset Feedback Edge Set and Edge-Subset
Feedback Edge Set, where the deletion set only needs to hit cycles containing a vertex or
an edge (respectively) of a given set S, can also be solved in linear time [21]. On the other
hand, the latter problem becomes NP-complete when the deletion set cannot intersect S.
This problem is known as Restricted Edge-Subset Feedback Edge Set.

Restricted Edge-Subset Feedback Edge Set (RESFES) Parameter: tw(G)
Input: A graph G, a subset of edges S ⊆ E(G), and an integer k.
Question: Is there a set of at most k edges of E(G) \ S whose removal yields a graph
without any cycle containing at least one edge of S?

The final two NP-complete problems we consider are closely related to Subset Feedback
Vertex Set and Restricted Edge-Subset Feedback Edge Set. They are well-known
problems with an abundant literature of approximation and parameterized algorithms.

Node Multiway Cut Parameter: tw(G)
Input: A graph G, a subset of vertices T ⊆ V (G), called terminals, and an integer k.
Question: Is there a set of at most k vertices of V (G) \ T hitting every path between a
pair of terminals?

Multiway Cut Parameter: tw(G)
Input: A graph G, a subset of vertices T ⊆ V (G), called terminals, and an integer k.
Question: Is there a set of at most k edges hitting every path between a pair of
terminals?

IPEC 2020



3:4 Close Relatives of FVS Without Single-Exponential Algorithms in Treewidth

The look-alike problem Multicut, where the task is to separate each pair of terminals
in a given set of pairs (rather than all the pairs in a given set), is NP-complete on trees [15].
Therefore a parameterization by treewidth cannot help here. In the language of parameterized
complexity, Multicut parameterized by treewidth is paraNP-complete.

1.1 Our contribution
With the exception of Even Cycle Transversal, for which we provide only a lower bound,
we show that all the problems formally defined so far admit a slightly superexponential
parameterized algorithm, and that this running time cannot be improved, unless the ETH
fails. We leave as an open problem the existence of a slightly superexponential algorithm for
(Subset) Even Cycle Transversal parameterized by treewidth. We note that Deng
et al. [12] have already shown that Multiway Cut can be solved in time 2O(tw log tw)nO(1).
Our algorithms work for treewidth and weights, while our lower bounds hold for the larger
parameter pathwidth and do not require weights.

On the algorithmic side we show the following:

I Theorem 1. The following problems can be solved in time 2O(tw log tw)nO(1) on n-vertex
graphs with treewidth tw:

Subset Feedback Vertex Set,
Subset Odd Cycle Transversal,
Restricted Edge-Subset Feedback Edge Set, and
Node Multiway Cut.

We provide algorithms having the claimed running time for the weighted versions of each
of the four problems in Theorem 1. In these weighted versions, the input graph is given with
a weight function w on the vertices when the problem is to find a set of vertices, or on the
edges when the problem is to find a set of edges. Furthermore, in the weighted versions, the
problem asks for a solution of weight at most k.

On the complexity side, the main conceptual contribution of the paper is to show that
problems seemingly quite close to Feedback Vertex Set do not admit a single-exponential
algorithm parameterized by treewidth, under the ETH.

I Theorem 2. Unless the ETH fails, the following problems cannot be solved in time
2o(pw log pw)nO(1) on n-vertex graphs with pathwidth pw:

Subset Feedback Vertex Set,
Subset Odd Cycle Transversal,
Even Cycle Transversal,
Restricted Edge-Subset Feedback Edge Set,
Node Multiway Cut, and
Multiway Cut.

For the last two problems, our reductions build instances where the number of terminals
|T | is Θ(pw). Thus we also rule out a running time of |T |o(pw). All the reductions are
from k × k-(Permutation) Independent Set/Clique following a strategy suggested by
Lokshtanov et al. [18] (see for instance, [2,5–7,13]). These problems cannot be solved in time
2o(k log k), unless the ETH fails.

k × k-Independent Set Parameter: k

Input: A graph H with vertex set V (H) = [k]2 for some integer k.
Question: An independent set of size k hitting each column exactly once.
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k × k-Permutation Independent Set Parameter: k

Input: A graph H with vertex set V (H) = [k]2 for some integer k.
Question: An independent set of size k hitting each column and each row exactly once.

A row is a set of vertices of the form {(i, 1), (i, 2), . . . , (i, k)} ⊂ V (H) for some i ∈ [k],
while a column is a set {(1, j), (2, j), . . . , (k, j)} ⊂ V (H) for some j ∈ [k]. The problem
k × k-(Permutation) Clique is defined analogously, where the solution is required to be a
clique rather than an independent set.1

Roadmap for the lower bounds. To prove Theorem 2, we start by designing a gadget
specification for generic vertex-deletion problems. We show that any such problem, allowing
for gadgets respecting the specification, has the lower bound given in Theorem 2. This
is achieved by a meta-reduction from k × k-Permutation Independent Set. We give
gadgets for Subset FVS, Subset OCT, and ECT that comply with the specification. We
thus obtain the first three items of the theorem in a unified way, with simple and reusable
gadgets. This mini-framework may in principle be useful for other vertex-deletion problems.

In order to show a stronger lower bound for Node Multiway Cut, with the number
of terminals in Θ(k), we depart from the previous specification slightly, although we still
use some shared notation and arguments to bound the pathwidth, where convenient. This
reduction is from k × k-Independent Set.

Finally, the reduction to Multiway Cut is more intricate. For this problem it is
surprisingly challenging to discourage the undesirable solutions “cutting close” to every
terminal but one, where the deletion set yields a very large connected component for one
terminal, and small components for the rest of the terminals. In particular, the trick used
for the Node Multiway Cut lower bound cannot be replicated. We overcome this issue
by designing a somewhat counter-intuitive edge gadget which encourages the retention of
as many pairs of endpoints linked to two (distinct) terminals as possible. This uses the
simple fact that, in a ∆-regular graph, a clique of size k minimizes the number of edges
covered by k vertices: ∆k −

(
k
2
)
vs ∆k for an independent set of size k. We then reduce

from k × k-Permutation Clique. We discuss why getting the same lower bound for a
regular variant of k × k-Permutation Clique is technical, and bypass that difficulty by
encoding a degree-equalizer gadget directly in the Multiway Cut instance. As a side
note, we nevertheless prove that a semi-regular variant of k × k-Clique also has the slightly
superexponential lower bound. This proof uses a constructive version of the Hajnal-Szemerédi
theorem on equitable colorings.

Roadmap for the algorithms. To prove Theorem 1, we first present a 2O(tw log tw)n3-time
algorithm for the weighted variant of Subset OCT. With a few modifications, it can solve
the weighted variant of Subset FVS. We obtain algorithms for the other problems in
Theorem 1 by reducing these problems to the weighted variant of Subset FVS.

Let us explain our approach for Subset OCT on a graph G with S ⊆ V (G). We solve
Subset OCT indirectly by finding a set X ⊆ V (G) of maximum weight that induces a
graph with no odd cycles traversing S (we call such a graph S-bipartite). We prove that
a graph has no odd cycle traversing S if and only if for each block C, either C is bipartite
or C has no vertex in S. From this characterization, we prove that it is enough to store
2O(tw log tw) partial solutions at each bag B of a tree decomposition.

1 Observe that we switch the columns and the rows compared to the original definition of k×k-Clique [18].
While this is of course equivalent, it will make the representation of some gadgets slightly more conducive
to the page layout.

IPEC 2020



3:6 Close Relatives of FVS Without Single-Exponential Algorithms in Treewidth

Let B be a bag of the tree decomposition of G and GB be the graph induced by the
vertices in B and its descendant bags in the tree decomposition. A partial solution of GB is a
set X ⊆ V (GB) that induces an S-bipartite graph. We design an equivalence relation ≡B on
the partial solutions of GB such that for every X ≡B Y and W ⊆ V (G) \ V (GB), G[X ∪W ]
is S-bipartite if and only if G[Y ∪W ] is S-bipartite. Consequently, it is enough to keep
a partial solution of maximum weight for each equivalence class of ≡B. Intuitively, the
equivalence relation ≡B is based on the information: (1) how the blocks of G[X] intersecting
B are connected, (2) whether important blocks (that have the possibility to create an S-
traversing odd cycle later) contain a vertex of S, and (3) the parity of the paths between the
vertices in B. Since ≡B has 2O(tw log tw) equivalence classes, we deduce from this equivalence
relation a 2O(tw log tw)n3-time algorithm with standard dynamic-programming techniques.
The polynomial factor n3 appears because we can test X ≡B Y in time O(n2).

For the weighted variant of Subset FVS, we can use the same equivalence relation
without (3). We reduce the weighted variant of Node Multiway Cut to Subset FVS by
adding a vertex v of infinite weight adjacent to the set of terminals, setting S = {v}, and
also giving infinite weights to the terminals. Furthermore, we reduce the weighted variant of
Restricted Edge-Subset Feedback Edge Set to the weighted variant of Subset FVS
by subdividing each edge, setting S as the set of subdivided vertices corresponding to the
given subset of edges, and giving infinite weights to the original vertices and the vertices
in S. These two reductions show that both problems admit 2O(tw log tw)n3-time algorithms.

Organization. The rest of the paper is organized as follows. In Section 3 we prove all the
ETH lower bounds of Theorem 2. More precisely, in Section 3.1 we introduce a gadget
specification for a generic vertex-deletion problem, and we show the slightly superexponential
lower bound for any problem complying with the gadget specification. In Section 3.2 we
design gadgets for Subset FVS, Subset OCT, ECT, and thus obtain the first three items
of Theorem 2. In Sections 3.3 and 3.4 we present specific reductions for Node Multiway
Cut and Multiway Cut, respectively. In Section 4 we prove that the weighted variants
of Subset OCT, Subset FVS, Restricted Edge-Subset Feedback Edge Set, and
Node Multiway Cut admit 2O(tw log tw)n3-time algorithms. The statements marked with
a ? have their proof deferred to the full version.

2 Preliminaries

Our graph-theoretic terminology is standard; any terminology undefined here is deferred to
the long version. A set X ⊆ V (G) is a clique if G has an edge between every pair of vertices
in X. A graph with vertex set X ∪ Y that has an edge between every vertex x ∈ X and
y ∈ Y is called a biclique, and is denoted K|X|,|Y |. For u, v ∈ V (G), we say that u and v
are twins if N(u) = N(v). If u and v are adjacent, then we say that u and v are true twins;
whereas when u and v are non-adjacent twins, we say that u and v are false twins.

A vertex v of G is a cut vertex if the deletion of v from G increases the number of
connected components. We say G is 2-connected if it is connected and has no cut vertices.
Note that every connected graph on at most two vertices is 2-connected. A block of G is a
maximal 2-connected subgraph of G.

A tree decomposition of a graph G is a pair (T,B) consisting of a tree T and a family
B = {Bt}t∈V (T ) of sets Bt ⊆ V (G), called bags, satisfying the following three conditions:
1. V (G) =

⋃
t∈V (T )Bt,

2. for every edge uv of G, there exists a node t of T such that u, v ∈ Bt, and
3. for t1, t2, t3 ∈ V (T ), Bt1 ∩Bt3 ⊆ Bt2 whenever t2 is on the path from t1 to t3 in T .
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The width of a tree decomposition (T,B) is max{|Bt| − 1 : t ∈ V (T )}. The treewidth of G
is the minimum width over all tree decompositions of G. A path decomposition is a tree
decomposition (P,B) where P is a path. The pathwidth of G is the minimum width over all
path decompositions of G. We denote a path decomposition (P,B) as (Bv1 , . . . , Bvt), where
P is a path v1v2 · · · vt.

3 Superexponential lower bounds parameterized by treewidth

Our reductions for Subset FVS, Subset OCT, and ECT, in Section 3.2, will have the
same skeleton. In order to avoid repeating the same arguments, we show in Section 3.1
the lower bound of Theorem 2 for a meta-problem. We prove the lower bound for Node
Multiway Cut in Section 3.3, and the lower bounds for Multiway Cut and Restricted
Edge-Subset Feedback Edge Set in Section 3.4.

3.1 Lower bound for a generic vertex-deletion problem
The scope of application of Theorem 2 is any hereditary vertex-deletion problem Π; that
is, if G − X satisfies a problem instance P (Π), then G − X ′ also satifies P (Π) for every
X ′ ⊇ X. The main part of the input is a graph G and a non-negative integer k′. In addition,
we allow any sort of labelings of G, be it subsets of vertices S1, S2, . . . ⊆ V (G), of edges
E1, E2, . . . ,⊆ E(G), pairs of vertices P1, P2, . . . ⊆

(
V (G)

2
)
, etc. The goal is to find a subset

X ⊆ V (G) of k′ vertices such that a property P (Π), dependent on Π, is satisfied on G−X
with its induced labeling. A subset of vertices A ⊆ V (G) is a Π-obstruction if G[A] does not
satisfy P (Π). A set X ⊆ V (G) is Π-legal if G −X satisfies P (Π) (in particular, solutions
are Π-legal sets of size k′). As P (Π) is assumed hereditary, a Π-legal set intersects every
Π-obstruction. Finally a Π-legal s-deletion within Y is a set X ⊆ Y of size at most s such
that G[Y \X] satisfies P (Π).

Common base

The meta-result of Theorem 3 concerns hereditary vertex-deletion problems admitting four
types of gadgets. These gadgets, which will eventually depend on Π, are attached to a
common problem-independent base. We first describe the common base. H• is a set of 2k2

vertices, for some implicit positive integer k. We denote these vertices by v•(i, j, z) for each
i ∈ [k], j ∈ [k], and z ∈ [2]. We imagine the vertices of H• being displayed in a k-by-k grid
with v•(i, j, 1) and v•(i, j, 2) side by side in the i-th row and j-th column.

The base consists of copies of H• that we denote by H1, H2, . . . and typically index by p.
The vertices of Hp are denoted by vp(i, j, z). The vertices vp(i, j, 1) and vp(i, j, 2) are said
to be homologous. We set Cp,j :=

⋃
i∈[k],z∈[2]{vp(i, j, z)} and refer to it as the j-th column

of Hp. Similarly Rp,i :=
⋃
j∈[k],z∈[2]{vp(i, j, z)} is called the i-th row of Hp. We can attach

to the base a list of gadgets as detailed now. The vertices added to the base are called
additional or new.

Column selector gadget

A k-column selector gadget has the following specification. Its vertex set is a single column Cp,j
plus O(k) additional vertices Csel(p, j). The only restriction on the edge set of the gadget is
that homologous vertices should remain non-adjacent. Other than that, any edge can be
added within Cp,j . However the open neighborhood of Csel(p, j) has to be contained in Cp,j .

IPEC 2020



3:8 Close Relatives of FVS Without Single-Exponential Algorithms in Treewidth

A problem Π admits a column selector gadget if, for every positive integer k, one can build
in time kO(1) a k-column selector such that the only Π-legal (2k − 2)-deletions within Cp,j ∪
Csel(p, j) are one of the k sets: Cp,j \ {vp(1, j, 1), vp(1, j, 2)}, Cp,j \ {vp(2, j, 1), vp(2, j, 2)}, . . . ,
Cp,j \ {vp(k, j, 1), vp(k, j, 2)}.

Row selector gadget

In order to keep small balanced separators, our k-row selector gadget is quite different
from the k-column selector. Its vertex set is a single row Rp,i plus O(1) additional vertices
Rsel(p, i). Furthermore no edge can be added within Rp,i. Again the open neighborhood of
Rsel(p, i) has to be contained in Rp,i.

A problem Π admits a row selector gadget if, for every positive integer k, one can build in
time kO(1) a k-row selector such that, for every j 6= j′ ∈ [k], Rsel(p, i)∪ {vp(i, j, 1), vp(i, j, 2),
vp(i, j′, 1), vp(i, j′, 2)} is a Π-obstruction.

Edge gadget

The vertex set of an edge gadget is of the form {vp(i, j, 1), vp(i, j, 2), vp(i′, j′, 1), vp(i′, j′, 2)}∪
Ep(i, j, i′, j′) where i 6= i′ ∈ [k], j 6= j′ ∈ [k], and Ep(i, j, i′, j′) is a set of O(k) vertices2. There
is no restriction on the edge set. As usual the open neighborhood of Ep(i, j, i′, j′) has to be
contained in {vp(i, j, 1), vp(i, j, 2), vp(i′, j′, 1), vp(i′, j′, 2)}.

A problem Π admits an edge gadget if one can build in time kO(1) an edge gadget such
that Ep(i, j, i′, j′) ∪ {vp(i, j, 1), vp(i, j, 2), vp(i′, j′, 1), vp(i′, j′, 2)} is a Π-obstruction.

Propagation gadget

The vertex set of a propagation gadget is of the form Hp ∪Hp+1 ∪ Pp where Pp is a set of
kO(1) vertices. There is a subset P ′p ⊆ Pp of size O(k) such that each vertex of Pp \ P ′p
has at most one neighbor in Hp ∪ Hp+1 and the rest of its neighborhood in P ′p. This
fairly technical condition aims to give some extra flexibility while keeping sufficiently small
separators between Hp and Hp+1. In particular, if Pp is itself of size O(k), then the condition
is trivially met with P ′p = Pp . The propagation gadget has no edge with both endpoints
in Hp ∪ Hp+1. Everything else is permitted, but the open neighborhood of Pp has to be
contained in Hp ∪Hp+1.

A problem Π admits a propagation gadget if one can build in time kO(1) a propagation
gadget such that for every i, j 6= j′ ∈ [k], Pp∪{vp(i, j, 1), vp(i, j, 2), vp+1(i, j′, 1), vp+1(i, j′, 2)}
is a Π-obstruction.

Intended-solution property

A hereditary vertex-deletion problem Π and a description of the four above gadgets for Π
have the intended-solution property if the following holds. On any graph G built by adding to
the base H1 ∪ . . .∪Hp ∪ . . . Hm at most one edge gadget in each Hp, one propagation gadget
between consecutive pairs Hp and Hp+1, and some column and row selector gadgets, every
deletion set

⋃
p∈[m],i∈[k],j∈[k]\{ji},z∈[2]{vp(i, j, z)} (with {j1, j2, . . . , jk} = [k]) intersecting

every edge gadget is Π-legal.
We can now state the lower bound for the generic hereditary vertex-deletion problems.

2 O(1) vertices will actually suffice for all the gadgets of Section 3.2.
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I Theorem 3. Unless the ETH fails, every vertex-deletion problem Π admitting a column
selector, a row selector, an edge, and a propagation gadget, satisfying the intended-solution
property, cannot be solved in time 2o(pw log pw)nO(1) on n-vertex graphs with pathwidth pw.

Proof. From any instance H of k × k-Permutation Independent Set, we build an
equivalent Π-instance (G, k′ = kO(1)) of size kO(1) with pathwidth in O(k). Since under
the ETH there is no algorithm solving k × k-Permutation Independent Set in time
2o(k log k)kO(1), we derive the claimed lower bound.

Construction. We number the edges in E(H) as e1, . . . , em. We start with a base consisting
of m copies of H•, labelled Hp for p ∈ [m] (see description of the common base). The
vertices vp(i, j, 1) and vp(i, j, 2) encode the vertex (i, j) ∈ V (H); recall that we call such a
pair homologous. We attach to each column Cp,j , for p ∈ [m] and j ∈ [k], a column selector
gadget (for Π), with additional vertices Csel(p, j). For each pair p ∈ [m], i ∈ [k], we add a
row selector gadget to Rp,i, with additional vertices Rsel(p, i).

For each edge ep = (ip, jp)(i′p, j′p) ∈ E(H) (p ∈ [m]), we attach an edge gadget, with
additional vertices Ep(ip, jp, i′p, j′p), to {vp(ip, jp, 1), vp(ip, jp, 2), vp(i′p, j′p, 1), vp(i′p, j′p, 2)}. For
each p ∈ [m−1], we add a propagation gadget between Hp and Hp+1, with additional vertices
Pp. This finishes the construction of G. We set k′ := 2(k − 1)km.

Correctness. We first assume that there is a solution I to k×k-Permutation Independent
Set. That is, I is an independent set of H with exactly one vertex per column and per row.
Say the vertices of I are (1, j1), (2, j2), . . . (k, jk) with {j1, j2, . . . , jk} = [k]. Then

X :=
⋃
p∈[m]

Hp \ ∪i∈[k]{vp(i, ji, 1), vp(i, ji, 2)}

is a solution to Π. Indeed it is Π-legal since it intersects every edge gadget (if not, the edge
gadget would be between two vertices of I, a contradiction) and Π satisfies the intended-
solution property, by assumption. Furthermore |X| = 2mk(k − 1) = k′.

We now assume that the Π-instance (G, k′) admits a solution (of size k′), say X. The
graph G has km disjoint Π-obstructions Cp,j ∪ Csel(p, j). For each of these sets, at least
s := 2(k− 1) vertices must be deleted, by the specification of the column sector gadget. Since
globally only k′ = kms vertices can be deleted, X intersects each Cp,j∪Csel(p, j) at a set Cp,j \
{vp(ij,p, j, 1), vp(ij,p, j, 2)} for some ij,p ∈ [k]. Moreover, the k row selector gadgets attached
to each Hp enforce that {i1,p, i2,p, . . . , ik,p} = [k], and the propagation gadget Pp enforces
that ij,p = ij,p+1 for every j ∈ [k]. This implies that ij,1 = ij,2 = . . . = ij,m for every j ∈ [k],
and we simply denote this common value by ij . We claim that {(i1, 1), (i2, 2), . . . , (ik, k)}
is a solution to the k × k-Permutation Independent Set instance. We have already
argued that {i1, i2, . . . , ik} = [k]. Finally there cannot be an edge ep = (ij , j)(ij′ , j′) ∈ E(H)
since then the Π-obstruction Ep(ij , j, ij′ , j′)∪{vp(ij , j, 1), vp(ij , j, 2), vp(ij′ , j′, 1), vp(ij′ , j′, 2)}
would be disjoint from X.

Pathwidth in O(k). Let P ′p be the O(k) vertices of Pp with strictly more than one neighbor
in Hp ∪Hp+1. For every p ∈ [m− 1], we set Yp := P ′p ∪ Ep(ip, jp, i′p, j′p) ∪Cp,jp

∪ Csel(p, jp) ∪
Cp,j′p ∪ Csel(p, j

′
p) ∪

⋃
i∈[k]Rsel(p, i), and we observe that |Yp| = O(k) (this is where it is

important that each Rsel(p, i) has constant size). For each p ∈ [m] and j ∈ [k − 2], let Zp,j
be Cp,j∗ ∪ Csel(p, j∗) where j∗ is the j-th index, by increasing value, in [k] \ {jp, j′p}. Again
we notice that |Zp,j | = O(k).

Here is a path-decomposition of G of width O(k) in case every Pp \ P ′p is empty:
Y1, Y1 ∪ Z1,1, Y1 ∪ Z1,2, . . . , Y1 ∪ Z1,k−2, Y1 ∪ Y2, Y1 ∪ Y2 ∪ Z2,1, Y1 ∪ Y2 ∪ Z2,2, . . . , Y1 ∪ Y2 ∪
Z2,k−2, Y2∪Y3, . . . , Yp−2∪Yp−1, Yp−2∪Yp−1∪Zp−1,1, Yp−2∪Yp−1∪Zp−1,2, . . . , Yp−2∪Yp−1∪
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Zp−1,k−2, Yp−1, Yp−1 ∪Zp,1, Yp−1 ∪Zp,2, . . . , Yp−1 ∪Zp,k−2. Indeed the maximum bag size is
O(k) and each edge of G appears in at least one bag. Two crucial properties used in this
path-decomposition are that (1) the removal of P ′p ∪ P ′p+1, so in particular of Yp ∪ Yp+1,
disconnects Hp+1 from the rest of G, and (2) there is no edge between Zp,j and Zp,j′ for
j 6= j′ ∈ [k − 2] and p ∈ [m].

In the general case, a path-decomposition of width O(k) for G is obtained from the
previous decomposition by observing the following rule. Each time a vertex of Hp appears
in a bag for the first time, we introduce and immediately remove each of its neighbors in
Pp \ P ′p one after the other. J

3.2 Designing ad hoc gadgets
We now build specific gadgets for Subset Feedback Vertex Set, Subset Odd Cycle
Transversal, and Even Cycle Transversal. For these problems, we always use S to
denote the prescribed subset of vertices through which no cycle, no odd cycle, or no even
cycle should go, respectively.

3.2.1 Column selector gadgets
We begin with the column selector gadget G1(C) used for Subset FVS and Subset OCT,
followed by the gadget G2(C) used for ECT. The column selector gadget G1(C) attached
to a column Cp,j is defined as follows. It comprises 3k additional vertices. These 3k
vertices are all added to S, and they form an independent set. Each of the first k vertices,
dp,j(1, 1), . . . , dp,j(k, 1) ∈ S, are adjacent to all vertices in

⋃
i∈[k]{vp(i, j, 1)}, so these vertices

induce a biclique. The next k vertices, dp,j(1, 2), . . . , dp,j(k, 2) ∈ S, also twins, are adjacent
to all vertices in

⋃
i∈[k]{vp(i, j, 2)}. We add dp,j(1), . . . , dp,j(i), . . . , dp,j(k) and, for each

i ∈ [k], we link dp,j(i) to all the vertices in {vp(i, j, 1)} ∪
⋃
i′∈[k]\{i}{vp(i′, j, 2)}. Finally we

make every distinct pair vp(i, j, z), vp(i′, j, z′) adjacent, except if i = i′.
We obtain the column selector gadget G2(C) from G1(C) by adding, for each z ∈ [2], a

vertex dp,j(k + 1, z) adjacent to all vertices in
⋃
i∈[k]{vp(i, j, z)}, and by subdividing each

edge dp,j(i)vp(i, j, 1) once.

I Lemma 4. G1(C) is a column selector gadget for Subset Feedback Vertex Set and
Subset Odd Cycle Transversal, and G2(C) is a column selector gadget for Even Cycle
Transversal.

Proof. The gadgets G1(C) and G2(C) add 3k and 4k + 2, respectively, new vertices, thus
O(k). Their edge set respects the specification of the column selector.

We first show that the only Π-legal (2k − 2)-deletions within G1(C) are the sets Cp,j \
{vp(i, j, 1), vp(i, j, 2)} (for i ∈ [k]), for Π ∈ {Subset FVS, Subset OCT}. For every p ∈ [m],
j ∈ [k], and z ∈ [2], the biclique Kk,k between

⋃
i∈[k]{vp(i, j, z)} and

⋃
i∈[k]{dp,j(i, z)} ⊆ S

forces the removal of all but at most one vertex of
⋃
i∈[k]{vp(i, j, z)}, or all the vertices in⋃

i∈[k]{dp,j(i, z)}. Indeed, recall that the former set is a clique, while the latter set is an
independent set and is contained in the prescribed set S. Hence keeping at least one vertex
in
⋃
i∈[k]{dp,j(i, z)} and at least two in

⋃
i∈[k]{vp(i, j, z)} results in an odd cycle (a triangle)

going through at least one vertex of S. Thus the only Π-legal (2k − 2)-deletions within
G1(C) have to remove exactly k − 1 vertices in

⋃
i∈[k]{vp(i, j, 1)} and exactly k − 1 vertices

in
⋃
i∈[k]{vp(i, j, 2)}. Let Y denote such a deletion set, and observe that Y ∩ S = ∅. We

further claim that if vp(i, j, 1) is not in Y , then vp(i, j, 2) is also not in Y . Assume, for the
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sake of contradiction, that vp(i, j, 1) and vp(i′, j, 2) are two (adjacent) vertices, not in Y ,
with i 6= i′. Then dp,j(i) ∈ S forms a surviving triangle with vp(i, j, 1) and vp(i′, j, 2). Thus
Y = Cp,j \ {vp(i, j, 1), vp(i, j, 2)} for some i ∈ [k].

This finishes the proof that G1(C) is a column selector gadget for Subset FVS and
Subset OCT. We now adapt the arguments for G2(C) and Π = ECT. Now the biclique
Kk,k+1 between

⋃
i∈[k]{vp(i, j, z)} and

⋃
i∈[k+1]{dp,j(i, z)} ⊆ S forces the removal of all but

at most one vertex of
⋃
i∈[k]{vp(i, j, z)}, or all but at most one vertex of

⋃
i∈[k+1]{dp,j(i, z)},

otherwise there would be a surviving even cycle C4. Since only k− 1 vertices can be removed
from each Π-obstruction

⋃
i∈[k]{vp(i, j, z)} ∪

⋃
i∈[k+1]{dp,j(i, z)} ⊆ S (with z ∈ [2]), the only

Π-legal (2k− 2)-deletions within G2(C) remove all but one vertex in
⋃
i∈[k]{vp(i, j, 1)} and in⋃

i∈[k]{vp(i, j, 2)}. The end of the proof is similar to the previous paragraph since the triangle
dp,j(i)vp(i, j, 1)vp(i′, j, 2) is now a C4 (recall that we subdivided the edge dp,j(i)vp(i, j, 1)
once). J

3.2.2 Row selector gadgets

The row selector G1(R), attached to Rp,i, consists of two additional vertices r1(p, i), r′1(p, i) ∈
S made adjacent to every vertex in

⋃
j∈[k]{vp(i, j, 1)}. The row selector G2(R) consists of three

additional vertices r2(p, i), r′2(p, i), r′′2 (p, i), each adjacent to all vertices in
⋃
j∈[k]{vp(i, j, 1)}.

We put only r′2(p, i) in S, and we add an edge between r2(p, i) and r′′2 (p, i).

I Lemma 5 (?). G1(R) is a row selector gadget for Subset Feedback Vertex Set and
Even Cycle Transversal, and G2(R) is a row selector gadget for Subset Odd Cycle
Transversal.

Crucially for the intended-solution property, the odd cycle r2(p, i)vp(i, j, 1)r′′2 (p, i) does not
contain any vertex of S.

3.2.3 Edge gadgets

Let G1(E) be the following edge gadget, that we present for ep = (i, j)(i′, j′). We add an
edge between vp(i, j, 1) and vp(i′, j′, 1). We add a vertex sp adjacent to both vp(i, j, 1) and
vp(i′, j′, 1). We add sp to the set S ⊆ V (G). The edge gadget G2(E) is obtained from G1(E)
by subdividing the edge spvp(i′, j′, 1) once.

I Lemma 6 (?). G1(E) is an edge gadget for Subset Feedback Vertex Set and Subset
Odd Cycle Transversal, and G2(E) is an edge gadget for Even Cycle Transversal.

3.2.4 Propagation gadgets

We present G1(P), a propagation gadget inserted between Hp and Hp+1. We first add an
independent set of 2k vertices. Among them, the k vertices rp,1, . . . , rp,k represent the row
indices in Hp and Hp+1, while the k other vertices cp,1, . . . , cp,k represent the column indices.
We link rp,i to all the vertices in

⋃
j∈[k]{vp(i, j, 2)} ∪

⋃
j∈[k]{vp+1(i, j, 1)}. Similarly, we link

cp,j to all the vertices in
⋃
i∈[k]{vp(i, j, 2)} ∪

⋃
i∈[k]{vp+1(i, j, 1)}. Finally, we add a vertex

cp ∈ S adjacent to all the vertices cp,1, . . . , cp,k.
The gadget G2(P) is defined similarly, except that we subdivide the edge rp,ivp(i, j, 2)

once, for each i, j ∈ [k]. Finally the gadget G3(P) adds to G2(P), a vertex c′p,j , for each
j ∈ [k]. The vertex c′p,j is linked to cp,j and to cp.
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I Lemma 7 (?). G1(P) is a column selector gadget for Subset Feedback Vertex Set,
G2(P) is a column selector gadget for Subset Odd Cycle Transversal, and G3(P) is a
column selector gadget for Even Cycle Transversal.

3.2.5 Wrap-up
We can now use the above gadgets to establish the following.

I Theorem 8. Unless the ETH fails, the following problems cannot be solved in time
2o(pw log pw)nO(1) on n-vertex graphs with pathwidth pw:

Subset Feedback Vertex Set,
Subset Odd Cycle Transversal, and
Even Cycle Transversal.

Proof. We need to check that these problems satisfy the preconditions of Theorem 3.
Sections 3.2.1 to 3.2.4 and Lemmas 4 to 7 show how to build the four types of gadgets.
Which problem uses which version of the gadget is summarized in Table 1. See Figure 1 for
a schematic representation of the construction for Subset FVS.

Table 1 The different gadgets used for the different problems.

column selector row selector edge gadget propagation gadget

Subset FVS G1(C) G1(R) G1(E) G1(P)
Subset OCT G1(C) G2(R) G1(E) G2(P)

ECT G2(C) G1(R) G2(E) G3(P)

Finally we have to check that the problems have the intended-solution property. We
shall prove that every set X :=

⋃
p∈[m],i∈[k],z∈[2]{vp(i, ji, z)}, with {j1, . . . , jk} = [k] and

intersecting all the edge gadgets is Π-legal in any graph G obtained by attaching to the
base the four types of gadgets with respect to their specification of Section 3.1. The set
X is a solution to Π ∈ {Subset FVS, Subset OCT, ECT}, if and only if no 2-connected
component (i.e., a block of size at least 3) of G−X is a Π-obstruction. Indeed no cycle can
go through a cut-vertex.

We first note that there is no 2-connected component within G1(C), G2(C), G1(R), G1(E),
G2(E) restricted to G −X. For the latter two gadgets, this is because, by assumption, X
intersects every edge gadget. In a gadget G2(R) restricted to G−X, there is one 2-connected
component, namely a triangle; but none of its vertices belongs to S.

We now observe that every vertex cp is a cut-vertex in G1(P), G2(P), and G3(P) restricted
to G −X. So the remaining 2-connected components of G −X are induced cycles C4 of
the form rp,ivp(i, j, 2)cp,jvp+1(i, j, 1) when G1(P) is used, or induced C5 when G2(P) is used,
or triangle and induced cycle C5 when G3(P) is used. In the first two cases, none of the
vertices of the cycles belongs to S. In the third case, no cycle is even. This establishes that
Subset FVS, Subset OCT, and ECT with their respective combination of gadgets have
the intended-solution property. J

3.3 Lower bound for Node Multiway cut
For Node Multiway Cut we will also start from the base

⋃
p∈[m]Hp but we will deviate

from the gadget specification of Section 3.1. We will “communalize” the selector, edge, and
propagation gadgets. That way, we are able to show the claimed lower bound even when the
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s1 s2 s3

row

column

c1

row

column

c2

Csel Csel Csel Csel Csel Csel Csel Csel Csel

Figure 1 Example of the overall picture for Subset Feedback Vertex Set. The first three
edges (in green) in the reduction from k × k-Permutation Independent Set, with k = 3, to
Subset FVS. The doubly-circled vertices are vertices in S. The column selector gadget Csel, of
size O(k), forces that only one pair of homologous vertices is retained in each column. We did not
represent the row selector gadget.

number of terminals is linearly tied to the pathwidth. This is unlike our constructions for
Subset FVS and Subset OCT in Theorem 8 where the size of the prescribed subsets S is
significantly larger than the pathwidth.

I Theorem 9 (?). Unless the ETH fails, Node Multiway Cut cannot be solved in time
2o(p log p)nO(1) on n-vertex graphs where p = pw + |T | is the sum of the pathwidth of the input
graph and the number of terminals.

3.4 Lower bound for Multiway Cut
To obtain the lower bound for Multiway Cut, we reduce from k×k-Permutation Clique.

I Theorem 10 (?). Unless the ETH fails, Multiway Cut cannot be solved in time
2o(p log p)nO(1) on n-vertex graphs where p = pw + |T | is the sum of the pathwidth of the input
graph and the number of terminals.

By a simple reduction from Multiway Cut to Restricted Edge-Subset Feedback
Edge Set, we obtain the following as a corollary.

I Theorem 11. Unless the ETH fails, Restricted Edge-Subset Feedback Edge Set
cannot be solved in time 2o(p log p)nO(1) on n-vertex graphs where p = pw + |S| is the sum of
the pathwidth of the input graph and the number of undeletable (terminal) edges.

It is not difficult to adapt the construction of Theorem 10 for the directed variant of
Multiway Cut.
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I Theorem 12. Unless the ETH fails, Directed Multiway Cut cannot be solved in
time 2o(pw log pw)nO(1) on n-vertex directed graphs whose underlying undirected graph has
pathwidth pw.

4 Slightly superexponential algorithms

In this section, we present 2O(tw log tw)n3-time algorithms for the weighted variants of the con-
sidered problems with the exception of ECT. We first present in Theorem 15 a 2O(tw log tw)n3-
time algorithm for Subset OCT. Then, we show that with simple modifications this
algorithm can solve Subset FVS. We deduce the algorithms for the other problems by
reducing these problems to the weighted variant of Subset FVS.

Let us focus on the Subset OCT problem. For a graph G and a vertex set S of G, we
say that G is S-bipartite if it has no odd cycle containing a vertex of S. Solving Subset
OCT is equivalent to find an S-bipartite induced subgraph of maximum size. The following
characterization of S-bipartite graphs will be useful.

I Lemma 13 (?). A graph G is S-bipartite if and only if for every block B of G, either B
has no vertex of S, or it is bipartite.

One can easily modify the proof of one direction of Lemma 13 to prove the following fact.

I Fact 14. If a graph G is 2-connected and not bipartite, then there exists an odd path and
an even path between every pair of vertices.

A tree decomposition (T,B = {Bt}t∈V (T )) is a nice tree decomposition with root node
r ∈ V (T ) if T is a rooted tree with root node r, and every node t of T is one of the following:
1. a leaf node: t is a leaf of T and Bt = ∅;
2. an introduce node: t has exactly one child t′ and Bt = Bt′ ∪ {v} for some v ∈ V (G) \Bt′ ;
3. a forget node: t has exactly one child t′ and Bt = Bt′ \ {v} for some v ∈ Bt′ ; or
4. a join node: t has exactly two children t1 and t2, and Bt = Bt1 = Bt2 .

I Theorem 15. (Weighted) Subset Odd Cycle Transversal can be solved in time
2O(tw log tw)n3 on n-vertex graphs with treewidth tw.

Proof. In the following, we fix a graph G, S ⊆ V (G), and a weight function w : V (G)→ R.
Using Bodlaender et al.’s fpt approximation algorithm [4] and an algorithm of constructing
a nice tree-decomposition (folklore; see Lemma 7.4 in [10]), we can obtain a nice tree
decomposition of G of width at most 5tw + 4 in time O(ctw · n) for some constant c. Let
(T, {Bt}t∈V (T )) be the resulting nice tree decomposition. For each node t of T , let Gt be the
subgraph of G induced by the union of all bags Bt′ where t′ is a descendant of t.

Let t be a node of T . A partial solution of Gt is a subset X ⊆ V (Gt) such that G[X] is
S-bipartite. We are going to introduce an equivalence relation ≡t between partial solutions
in order to obtain the property that if X ≡t Y , then for every W ⊆ V (Gt), G[X ∪W ] is
S-bipartite if and only if G[Y ∪W ] is S-bipartite.

Let X ⊆ V (G) (not necessarily contained in Gt). We denote by Inc(X) the block-cut
tree of G[X], that is the bipartite graph whose vertices are the blocks and the cut vertices of
G[X] and where a block B is adjacent to a cut vertex v if v ∈ V (B). Observe that Inc(X) is
by definition a forest.

We say that a vertex v of Inc(X) is active (with respect to t) if:
v is a cut vertex of G[X] in Bt,
v is a block of G[X] that contains at least two vertices in Bt, or
v is a block of G[X] that contains exactly one vertex in Bt that is not a cut vertex.
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Note that every vertex in Bt is an active cut vertex or it is in an active block of G[X].
We construct the auxiliary graphs Auxp(X, t) and Aux(X, t) from Inc(X) as follows:

1. We remove recursively the leaves and the isolated vertices that are inactive. Let Auxp(X, t)
be the resulting graph (p for “prototype”).

2. For every maximal path P of Auxp(X, t) between u and v and with inactive internal
vertices of degree 2, we remove the internal vertices of P and we add an edge between u
and v (shrinking degree 2 nodes that are inactive).

Figure 2 illustrates the constructions of Auxp(X, t) and Aux(X, t). Observe that Operation 1
removes the inactive blocks of G[X] that contain one vertex in Bt. Thus, every block in
Auxp(X, t) that contains vertices in Bt is active. By construction, Aux(X, t) is a forest whose
vertices are the active vertices of Inc(X) and the inactive vertices that have degree at least 3
in Auxp(X, t). Importantly, the algorithm uses the graphs Aux(X, t) for X ⊆ V (Gt) and in
the proof we will use Aux(X, t) and Auxp(X, t) for X ⊆ V (Gt) or X ⊆ Bt ∪ V (Gt).

By Step 2, any edge uv of Aux(X, t) corresponds to an alternating sequence P of cut
vertices and blocks A1, A2, . . . , Ax that forms a path from u = A1 to v = Ax in Inc(X). We
define the graph Muv as the union of the blocks in P . Note that one of A1 and A2 is a
cut vertex and one of Ax−1 and Ax is a cut vertex. We say that these cut vertices are the
endpoints of Muv.

Inc(X)

G[X ]

Aux(X, t)

Figure 2 Example of graphs Inc(X) and Aux(X, t) constructed from a graph G[X]. The vertices
in Bt are white filled. The red vertices and edges in Inc(X) are those we remove to obtain Auxp(X, t).

Let X and Y be two partial solutions of Gt. We say that X ≡t Y if X ∩ Bt = Y ∩ Bt,
and there is an isomorphism ϕ from Aux(X, t) to Aux(Y, t) such that:
1. For every vertex v in Aux(X, t), v is active if and only if ϕ(v) is active.
2. For every vertex v in Aux(X, t), v is a block if and only if ϕ(v) is a block.
3. For every active cut vertex v in Aux(X, t), we have ϕ(v) = v.
4. For every active block B in Aux(X, t):

a. V (B) ∩Bt = V (ϕ(B)) ∩Bt,
b. V (B) ∩ S 6= ∅ if and only if V (ϕ(B)) ∩ S 6= ∅, and
c. B is bipartite if and only if ϕ(B) is bipartite.

5. For every edge uv in Aux(X, t):
a. Muv is bipartite if and only if Mϕ(u)ϕ(v) is bipartite, and
b. V (Muv) ∩ S 6= ∅ if and only if V (Mϕ(u)ϕ(v)) ∩ S 6= ∅.

6. For every pair (u, v) of vertices in Bt ∩X and every path PX between u and v in G[X],
there exists a path PY in G[Y ] between u and v with the same parity as PX .

B Claim 16 (?). For every node t of T , ≡t has 2O(tw log tw) equivalence classes.
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B Claim 17 (?). Let t be a node of T and X,Y be two partial solutions associated with
t. If X ≡t Y , then, for every Z ⊆ V (Gt), the graph G[X ∪ Z] is S-bipartite if and only if
G[Y ∪ Z] is S-bipartite.

We are now ready to describe our algorithm. For each node t of T and I ⊆ Bt, let P [t, I]
be the set of all partial solutions X of Gt where X ∩Bt = I. A reduced set R[t, I] is a subset
of P[t, I] satisfying that

for every partial solution X ∈ P[t, I], there exists X ′ ∈ R[t, I] where X ≡t X ′ and
w(X ′) ≥ w(X), and
no two partial solutions in R[t, I] are equivalent.

We will recursively compute a reduced set R[t, I] for every node t of T and I ⊆ Bt. Claim 16
guarantees that |

⋃
I⊆Bt

R[t, I]| = 2O(tw log tw).
We describe how to compute a reduced set R[t, I] depending on the type of the node t.

We fix a node t and I ⊆ Bt. For each leaf node t and I = ∅, we assign R[t, I] := ∅. For
A ⊆ 2V (Gt), we define reducet(A) as the operation which removes the elements of A that
does not induce S-bipartite graph and then returns a set that contains, for each equivalence
class C of ≡t over A, a partial solution of C of maximum weight.

1) t is an introduce node with child t′ and Bt \ Bt′ = {v}:

If v /∈ I, then it is easy to see that R[t′, I] is a reduced set of P[t, I] = P[t′, I]. In this
case, we take R[t, I] = R[t′, I]. Assume now that v ∈ I. We set R[t, I] = reducet(A) with A
the set that contains X ∪ {v} for every X ∈ R[t′, I \ {v}].

2) t is a forget node with child t′ and Bt′ \ Bt = {v}:

We simply set R[t, I] = reducet(R[t′, I] ∪R[t′, I ∪ {v}]).

3) t is a join node with two children t1 and t2:

We setR[t, I] = reducet(A) whereA is the set that containsX1∪X2 for everyX1 ∈ R[t1, I]
and X2 ∈ R[t2, I].

We defer the proof of the correctness and the runtime to the long version. J

I Theorem 18 (?). Subset Feedback Vertex Set, Restricted Edge-Subset Feed-
back Edge Set, and Node Multiway Cut, and their weighted variants can be solved in
time 2O(tw log tw)n3 on n-vertex graph with treewidth tw.
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