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Abstract
Many graph problems can be formulated as a task of finding an optimal triangulation of a given
graph with respect to some notion of optimality. In this paper we give algorithms to such problems
parameterized by the size of a minimum edge clique cover (cc) of the graph. The parameter cc
is both natural and well-motivated in many problems on this setting. For example, in the perfect
phylogeny problem cc is at most the number of taxa, in fractional hypertreewidth cc is at most the
number of hyperedges, and in treewidth of Bayesian networks cc is at most the number of non-root
nodes of the Bayesian network.

Our results are based on the framework of potential maximal cliques. We show that the number
of minimal separators of graphs is at most 2cc and the number of potential maximal cliques is at
most 3cc. Furthermore, these objects can be listed in times O∗(2cc) and O∗(3cc), respectively, even
when no edge clique cover is given as input; the O∗(·) notation omits factors polynomial in the input
size. Using these enumeration algorithms we obtain O∗(3cc) time algorithms for problems in the
potential maximal clique framework, including for example treewidth, minimum fill-in, and feedback
vertex set. We also obtain an O∗(3m) time algorithm for fractional hypertreewidth, where m is the
number of hyperedges. In the case when an edge clique cover of size cc′ is given as an input we
further improve the time complexity to O∗(2cc′

) for treewidth, minimum fill-in, and chordal sandwich.
This implies an O∗(2n) time algorithm for perfect phylogeny, where n is the number of taxa. We
also give polynomial space algorithms with time complexities O∗(9cc′

) and O∗(9cc+O(log2 cc)) for
problems in this framework.
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1 Introduction

In this paper, we give algorithms to problems that can be formulated as a task of finding
an optimal triangulation of a given graph with respect to some notion of optimality. A
triangulation of a graph G is a chordal graph H with E(G) ⊆ E(H). For example, computing
the graph parameter treewidth corresponds to finding a triangulation with the minimum
possible size of a maximum clique, and minimum fill-in corresponds to finding a triangulation
with the least number of edges. In particular, we consider optimal triangulation problems
parameterized by the size of a minimum edge clique cover of the input graph, denoted by cc.
An edge clique cover of a graph is a set of cliques of the graph that covers all edges of the
graph. Our algorithms are based on the framework of potential maximal cliques [5, 14].
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1.1 Motivation
While in general the parameter cc could be considered non-standard, it has natural inter-
pretations in at least three settings on which algorithms for finding optimal triangulations
are applied: hypergraph parameters, phylogenetics, and probabilistic inference. The reason
that cc is a natural choice in these settings is that the input graph is constructed as a union
of cliques, with the goal of each clique W representing a constraint of type “the triangulation
must contain a maximal clique Ω with W ⊆ Ω”. Maximal cliques of a triangulation in turn
correspond to bags of a tree decomposition. Next we discuss the three settings in more detail.

The hypergraph parameter fractional hypertreewidth is a central structural parameter of
constraint satisfaction problems (CSPs) [18]. The computation of fractional hypertreewidth
can be formulated as a task of finding a triangulation H of the primal graph of the hypergraph,
minimizing the quantity maxΩ∈MC(H) FCOV(Ω), where MC(H) denotes the set of maximal
cliques of H and FCOV(Ω) denotes the minimum size of a so-called fractional edge cover of
the maximal clique Ω [30]. The primal graph of a hypergraph is constructed by inducing a
clique on each hyperedge, and therefore the size of its minimum edge clique cover is at most
m, the number of hyperedges.

In phylogenetics a central problem is to construct an evolutionary tree of a set of n

taxa (i.e. species) based on k characters (i.e. attributes) describing them [34]. For example,
when the character data is drawn from molecular sequences, the number of characters k

can be much larger than the number of taxa n [24]. Deciding if the taxa admit a perfect
phylogeny can be reduced to the chordal sandwich problem on the partition intersection
graph of the characters [19, 34]. Moreover, the optimization version of perfect phylogeny,
called the maximum compatibility problem of phylogenetic characters, can be reduced to the
weighted minimum fill-in problem on the partition intersection graph if the characters are
binary [4, 19]. The partition intersection graph has a vertex for each character-state pair,
and its edges are constructed by inducing a clique corresponding to each taxon [34]. Hence
the size of its minimum edge clique cover is at most n, the number of taxa.

A third setting in which parameterization by cc is motivated is probabilistic inference.
Given a Bayesian network, the first step of efficient probabilistic inference algorithms
is to compute a tree decomposition of small width of the moral graph of the Bayesian
network [22, 23]. The moral graph is constructed as a union of n′ cliques, where n′ is the
number of non-root nodes of the Bayesian network [23], and thus the size of its minimum
edge clique cover is at most n′.

This paper is also directly motivated by observations in practice. Starting from the Second
Parameterized Algorithms and Computational Experiments challenge (PACE 2017) [10],
algorithm implementations based on potential maximal cliques have been observed to out-
perform other exact algorithm implementations on problems formulated as finding optimal
triangulations [25, 26, 27, 31, 36, 37]. In particular, this paper is motivated by experi-
mental observations of the usefulness of potential maximal cliques in computing hypergraph
parameters [25, 26] and in phylogenetics [25, 27].

Our parameterization can be justified by real-world instances with small edge clique
covers. In the context of fractional hypertreewidth, 708 of the 3072 hypergraphs in the
standard HyperBench library [11] have m < n/2, where n is the number of vertices and
m is the number of hyperedges. In the context of phylogenetics, an instance describing
mammal mitochondrial sequences [20] has 7 taxa while its partition intersection graph has
245 vertices and an instance describing Indo-European languages [32] has 24 taxa while
its partition intersection graph has 864 vertices. In the context of Bayesian networks, the
Bayesian network “Andes” [8], accessed from the standard BNlearn repository [33], has 223
nodes of which 134 are non-root.
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1.2 Techniques
The algorithms that we design in this paper are based on the framework of potential maximal
cliques (PMCs) [5, 14]. Algorithms in this framework typically consist of two phases. In the
first phase the set Π(G) of PMCs of the input graph G is enumerated, and in the second
phase dynamic programming over the PMCs is performed in time O∗(|Π(G)|). The second
phase of the PMC framework has already been formulated for all of the problems that we
consider [14, 16, 17, 19, 30], so our O∗(3cc) time algorithms follow from an O∗(3cc) time
PMC enumeration algorithm that we give. This algorithm is based on the Bouchitté–Todinca
algorithm [6]. We achieve the O∗(3cc) bound by novel characterizations of minimal separators
and PMCs with respect to an edge clique cover. In particular, we show that minimal
separators correspond to bipartitions of an edge clique cover and almost all potential maximal
cliques correspond to tripartitions of an edge clique cover.

On some of the problems we improve the time complexity to O∗(2cc′), where cc′ is the
size of an edge clique cover given as an input. The O∗(2cc′) time algorithms use the same
dynamic programming states as the standard PMC framework, but instead of using PMCs
for transitions we use fast subset convolution [2]. The application of fast subset convolution
requires ad-hoc techniques for each problem to take into account the cost caused by the
PMC implicitly selected by the convolution.

We also give algorithms that work in polynomial space and in times O∗(9cc′) and
O∗(9cc+O(log2 cc)). These algorithms are based on a polynomial space and O∗(9cc) time
algorithm for enumerating PMCs and on a lemma asserting that every minimal triangulation
of a graph G has a maximal clique that is in a sense a balanced separator with respect to an
edge clique cover of G.

1.3 Contributions
We start by giving bounds for the numbers of minimal separators and PMCs.

I Theorem 1. If G is a graph with an edge clique cover of size cc, then the number of
minimal separators of G is at most 2cc and the number of potential maximal cliques of G is
at most 3cc.

There are O∗(|∆(G)|) time algorithms for enumerating the minimal separators ∆(G) of a
graph G [1, 35], so it follows that the minimal separators of a graph can be enumerated in
O∗(2cc) time. For enumerating PMCs no algorithms that are linear in the size of the output
and polynomial in the size of the input are known1. Despite that, we are able to design an
efficient algorithm for enumerating PMCs parameterized by cc, even when no edge clique
cover is given as input. The fact that the algorithm works even when no edge clique cover
is given as input is crucial because there is no O∗(22o(cc)) time parameterized algorithm for
minimum edge clique cover assuming the exponential time hypothesis [9].

I Theorem 2. There is an algorithm that given a graph G whose minimum edge clique cover
has size cc enumerates the potential maximal cliques of G in O∗(3cc) time.

It follows that all problems that can be solved in O∗(|Π(G)|) time when the set Π(G) of
PMCs of the input graph G is given can be solved in O∗(3cc) time, even when no edge clique
cover is given as input. We remark that in addition to the problems mentioned earlier, the set

1 Obtaining an output-linear input-polynomial time algorithm for enumerating PMCs has been explicitly
stated as an open problem in 2006 [3] and to the best of our knowledge is still open.

IPEC 2020
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of such problems includes all problems in the framework called maximum induced subgraph
of bounded treewidth [16], including for example the problems maximum independent set,
minimum feedback vertex set, and longest induced path [16].

I Corollary 3. Treewidth, weighted minimum fill-in, and all instances of maximum induced
subgraph of bounded treewidth can be solved in O∗(3cc) time, where cc is the size of a
minimum edge clique cover of the input graph. Fractional hypertreewidth can be solved in
O∗(3m) time, where m is the number of hyperedges. The maximum compatibility problem of
binary phylogenetic characters can be solved in O∗(3n) time, where n is the number of taxa.

When an edge clique cover of size cc′ is given as an input, some of the algorithms can be
optimized to O∗(2cc′) time.

I Theorem 4. Treewidth, minimum fill-in, and chordal sandwich can be solved in O∗(2cc′)
time, where cc′ is the size of an edge clique cover given as an input.

I Corollary 5. The perfect phylogeny problem can be solved in O∗(2n) time, where n is the
number of taxa.

A previous parameterized algorithm for perfect phylogeny works in time O∗(4r), where
r ≤ n is the arity of characters [24]. Our O∗(2n) time algorithm improves over it in the case
when r > n/2. This case is motivated by the fact that the O∗(4r) algorithm works for partial
characters only via a reduction that sets r ≥ nf for a fraction f of missing data [34].

We also give polynomial space algorithms for some of the problems. The algorithms
work in O∗(9cc′) time when an edge clique cover of size cc′ is given as an input and in
O∗(9cc+O(log2 cc)) time when the parameter cc is given as an input.

I Theorem 6. Treewidth and weighted minimum fill-in can be solved in polynomial space and
O∗(9cc′) time, where cc′ is the size of an edge clique cover given as an input. Furthermore,
fractional hypertreewidth can be solved in polynomial space and O∗(9m) time.

I Corollary 7. The perfect phylogeny problem and the maximum compatibility problem of
binary phylogenetic characters can be solved in polynomial space and O∗(9n) time, where n

is the number of taxa.

I Theorem 8. Treewidth and weighted minimum fill-in can be solved in polynomial space
and O∗(9cc+O(log2 cc)) time, where cc is an integer given as an input that is at least the size
of a minimum edge clique cover of the input graph.

Finally, we demonstrate the tightness of the bounds on the numbers of minimal separators
and potential maximal cliques.

I Theorem 9. There is a family of graphs, containing for each positive integer cc a graph
with edge clique cover of size cc, O(cc2) vertices, Θ(2cc) minimal separators, and Θ(3cc)
potential maximal cliques.

Furthermore, the parameter edge clique cover cannot be relaxed to vertex clique cover
while retaining FPT, or even XP, bounds.

I Theorem 10. There is a family of graphs, containing for each positive integer n a graph
with n vertices, vertex clique cover of size 2, and Θ(2n/2) minimal separators.
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1.4 Related Work
The prior FPT algorithms for enumerating PMCs include an O∗(4vc) time algorithm, where
vc is the size of a minimum vertex cover, and an O∗(1.7347mw) time algorithm, where mw is
the modular width [15], extending the O(1.7347n) time algorithm, where n is the number of
vertices [16]. One can see that edge clique cover and vertex cover are orthogonal parameters
by considering complete graphs and star graphs. For modular width, the relation mw ≤ 2cc

holds, but there are graphs with mw = 2cc−2. In the conclusion of [15] the authors mentioned
that they are not aware of other FPT parameters than vc and mw for PMCs and asked
whether more parameterizations could be obtained.

Other parameterized approaches on the PMC framework include an FPT modulator
parameter [28] and an XP parameterization for minimal separators in H-graphs [13]. The
modulator parameter is orthogonal to edge clique cover. On H-graphs, the graphs with edge
clique cover of size cc are Kcc-graphs, so the H-graph parameterization implies an nO(cc2)

time algorithm for enumerating PMCs.
In addition to the already discussed O∗(4r) time algorithm for perfect phylogeny [24],

we are not aware of prior single-exponential FPT algorithms with the same parameters as
our algorithms. For fractional hypertreewidth there are parameterized algorithms whose
parameters depend on the sizes of intersections of hyperedges [12]. For treewidth and chordal
sandwich, different techniques have been used to obtain an O∗(3vc) time algorithm for
treewidth [7] and an O∗(2vc′) time algorithm for chordal sandwich, where vc′ is the size of a
minimum vertex cover of the admissible edge set [21].

1.5 Organization of the Paper
The proofs of lemmas marked with ? are omitted and can be found in the full version of the
paper. In Section 2 we give necessary definitions and background on minimal triangulations
and PMCs. In Section 3 we characterize minimal separators and PMCs based on edge clique
cover, proving Theorem 1. In Section 4 we give enumeration algorithms for PMCs, proving
Theorem 2. In Section 5 we give faster algorithms for the case when an edge clique cover is
given as an input, proving Theorem 4. In Section 6 we give polynomial space algorithms,
proving Theorems 6 and 8. In Section 7 we demonstrate the tightness of our results, proving
Theorems 9 and 10. Proofs for the relation of modular width and edge clique cover claimed
in Section 1.4 can be found in the full version of the paper. We conclude in Section 8.

2 Preliminaries

We recall the standard graph notation that we use and preliminaries on minimal triangulations.
We also give formal definitions of the problems that we consider and introduce our notation
related to edge clique cover.

2.1 Notation on Graphs
We consider graphs that are finite, simple, and undirected. We assume that the graphs given
as input are connected. For graphs with multiple connected components, the algorithms can
be applied to each connected component independently. The sets of vertices and edges of a
graph G are denoted by V (G) and E(G), respectively. The set of edges of a complete graph
with vertex set X is X2. The subgraph G[X] induced by X ⊆ V (G) has V (G[X]) = X and
E(G[X]) = E(G) ∩X2. We also use the notation G \X = G[V (G) \X]. The vertex sets of
connected components of a graph G are C(G). The set of neighbors of a vertex v is denoted

IPEC 2020
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by N(v) and the set of neighbors of a vertex set X by N(X) =
⋃

v∈X N(v) \X. The closed
neighborhood of a vertex v is N [v] = N(v)∪ {v} and the closed neighborhood of a vertex set
X is N [X] = N(X)∪X. A clique of a graph G is a vertex set X such that G[X] is complete.
The set of inclusion maximal cliques of G is denoted by MC(G).

2.2 Minimal Triangulations

A graph is chordal if it has no induced cycle of four or more vertices. A chordal graph H is
a triangulation of a graph G if V (G) = V (H) and E(G) ⊆ E(H). A triangulation H of G is
a minimal triangulation of G if there is no triangulation H ′ of G with E(H ′) ( E(H). The
edges in E(H) \ E(G) are called fill-edges. A vertex set Ω ⊆ V (G) is a potential maximal
clique (PMC) of G if there is a minimal triangulation H of G such that Ω ∈ MC(H). The
set of PMCs of G is denoted by Π(G).

A vertex set S is a minimal a, b-separator of graph G if the vertices a and b are in different
components of G \ S, and S is inclusion minimal in this regard. A full component of a
vertex set X is a component C ∈ C(G \X) with N(C) = X. We note that S is a minimal
a, b-separator if and only if S has distinct full components containing a and b. A vertex set
S is a minimal separator if it is a minimal a, b-separator for some pair a, b, i.e., it has at least
two full components. We denote the set of minimal separators of G with ∆(G).

A block of a graph G is a vertex set C ⊆ V (G) such that N(C) ∈ ∆(G). We remark that
a common notation is to call such a pair (N(C), C) a full block [5]. In modern formulations
of the PMC framework the concept of non-full blocks is not needed [16], so we simplify the
notation by identifying the block with only the vertex set C.

Next we recall a couple of required propositions on the structure of PMCs.

I Proposition 11 ([5]). A vertex set Ω ⊆ V (G) is a PMC of a graph G if and only if
1. N(C) ( Ω for all C ∈ C(G \ Ω), i.e., no component of Ω is full, and
2. for all pairs of distinct vertices u, v ∈ Ω, either {u, v} ∈ E(G) or there is a component

C ∈ C(G \ Ω) with {u, v} ⊆ N(C).

We will refer to condition 1 of Proposition 11 as the no full component condition and
to condition 2 as the cliquish condition. Note that Proposition 11 implies an O(nm) time
algorithm for testing if a vertex set is a PMC [5].

I Proposition 12 ([5]). If Ω is a PMC of a graph G then all components C ∈ C(G \ Ω) are
blocks of G.

We call the components C ∈ C(G \ Ω) the blocks of Ω. Note that N(C) ( Ω, i.e., the
minimal separators of the blocks C ∈ C(G \ Ω) are strict subsets of the PMC. We also need
the following proposition connecting PMCs and blocks.

I Proposition 13 ([5]). If Ω is a PMC of a graph G and C is a block of Ω, then there is a
full component C ′ of N(C) such that Ω ⊆ N [C ′].

The following lemma, which follows from Proposition 11, simplifies some of our proofs.

I Lemma 14 (?). If Ω is a PMC of a graph G and contains a vertex v ∈ Ω such that no
block C ∈ C(G \ Ω) has v ∈ N(C), then Ω = N [v].
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2.3 Definitions of Problems
Let Tr(G) denote the set of triangulations of a graph G. The treewidth of a graph G is
minH∈Tr(G) maxΩ∈MC(H) |Ω| − 1. The minimum fill-in of G is minH∈Tr(G) |E(H) \ E(G)|.
Given a weight function w : V (G)2 → R≥0, the weighted minimum fill-in of G with respect
to w is minH∈Tr(G)

∑
e∈(E(H)\E(G)) w(e). Given a graph G and a set of admissible edges

F ⊆ V (G)2 \ E(G), the chordal sandwich problem is to determine if there is a triangulation
H of G with E(H) ⊆ E(G) ∪ F . Note that chordal sandwich can be reduced to weighted
minimum fill-in on the same graph G.

A hypergraph G has a set of vertices V (G) and a set of hyperedges E(G) that are
arbitrary subsets of vertices. The primal graph P (G) of G has vertices V (P (G)) = V (G) and
edges E(P (G)) =

⋃
e∈E(G) e2. A fractional edge cover of a set X ⊆ V (G) is an assignment

c : E(G) → R≥0 so that for each v ∈ X it holds that
∑

v∈e∈E(G) c(e) ≥ 1. The size of
a fractional edge cover c is

∑
e∈E(G) c(e). The minimum size of a fractional edge cover

of a set X ⊆ V (G) is denoted by FCOV(X). Note that FCOV(X) can be computed in
polynomial time by linear programming [18]. The fractional hypertreewidth of a hypergraph
G is minH∈Tr(P (G)) maxΩ∈MC(H) FCOV(Ω) [18, 30].

For all of the aforementioned problems there is an optimal solution corresponding to a
minimal triangulation. Furthermore, all of the problems can be solved in O∗(|Π(G)|) time
when Π(G) is given as an input [14, 17, 19, 29, 30].

2.4 Notation on Edge Clique Cover
An edge clique cover of a graph G is a collectionW of cliques of G so that

⋃
W∈W W 2 = E(G).

We often manipulate vertex sets based on an edge clique cover W. For a vertex v ∈ V (G),
we denote by W [v] = {W ∈ W | v ∈W} the set of cliques in W that contain v. Similarly, for
a vertex set X we denote by W[X] =

⋃
v∈XW[v] the set of cliques in W that intersect X.

A non-empty subset W ′ ⊆ W of an edge clique cover W is called a part of the edge clique
cover. The vertices in V (G,W ′) = {v ∈ V (G) | W[v] ⊆ W ′} are called the vertices of the
part W ′. We use a shorthand V (G,W1, . . . ,Wp) = V (G,W1)∪ . . .∪V (G,Wp) to denote the
union of vertices of multiple parts. The components of a part are C(W ′) = C(G[V (G,W ′)]).
A part is called good if all of its components are blocks, in which case the components of the
part may be called the blocks of the part. Note that a part W ′ with V (G,W ′) = ∅ is good.
Two disjoint parts W1,W2 are called compatible if V (G,W1,W2) = V (G,W1 ∪W2).

3 Characterization of the Central Combinatorial Objects

In this section we show that if a graph has an edge clique cover of size cc, then the number
of blocks and minimal separators of the graph is at most 2cc and the number of potential
maximal cliques is at most 3cc. The characterizations of these objects will be later used in
the design of the algorithms.

We start by showing that blocks correspond to parts of an edge clique cover.

I Lemma 15. Let G be a graph and W an edge clique cover of G. If C is a block of G then
V (G,W[C]) = C.

Proof. Clearly C ⊆ V (G,W[C]). Note that V (G,W[C]) ⊆ N [C] because any vertex v

intersecting a common clique with a vertex u ∈ C must be a neighbor of u. Suppose there
is a vertex v ∈ (V (G,W[C]) ∩ N(C)). Let C ′ be a full component of N(C) distinct from
C, implying that v ∈ N(C ′). All the cliques that v intersects also intersect with C, and
therefore there must be a vertex in C ′ that is in a clique intersecting with C which is a
contradiction to the fact that N(C) separates C and C ′. J

IPEC 2020
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By Lemma 15, any block C of G can be uniquely identified with a set W[C] ⊆ W.
Therefore, the number of blocks is at most 2cc. Any minimal separator is identified as N(C)
of at least two blocks C, so the number of minimal separators is at most 2cc−1.

Next we show that each PMC is either a closed neighborhood of a vertex or can be
represented by a tripartition of edge clique cover.

I Lemma 16. Let G be a graph and W an edge clique cover of G. If Ω is a potential
maximal clique of G, then either (1) Ω = N [v] for a vertex v ∈ V (G) or (2) C(G \ Ω) =
C(W1) ∪ C(W2) ∪ C(W3), where {W1,W2,W3} is a partition of W into good parts.

Proof. Suppose that case 1 does not apply, i.e., Ω is not equal to N [v] for any v ∈ V (G).
By Proposition 12 the components C ∈ C(G \Ω) are blocks and therefore by Lemma 15 they
define a collection P = {W [C] | C ∈ C(G \ Ω)} of disjoint good parts of W. If the collection
P is not a partition of W , add an additional part W ′ =W \ (

⋃
Wi∈P Wi) to the collection to

make it a partition of W. We have that V (G,W ′) = ∅ because if there would be a vertex v

with W[v] ⊆ W ′, then v would be in Ω because it is not in any block, and also v would not
be in the neighborhood of any block, so by Lemma 14 we would have Ω = N [v]. Now we
have a partition P of W into good parts with

⋃
Wi∈P C(Wi) = C(G \ Ω).

The partition P has at least two parts because otherwise Ω would be empty. If the
number of parts is two, i.e. P = {W1,W2}, let W1 be a part such that V (G,W1) is not
empty. Such a part exists because otherwise Ω = V (G) and case 1 would apply. No vertex of
Ω is in V (G,W2), so V (G,W1) is a full component of Ω, which is a contradiction to the no
full component condition.

If the number of parts is at least three, merge arbitrary compatible pairs of parts
until the number of parts is three or no pairs of parts can be merged anymore. If we
end up with three parts, we are done. If we end up with more than three parts, i.e.
P = {W1,W2,W3,W4, . . .}, then take a vertex u ∈ (V (G,W1 ∪W2) \ V (G,W1,W2)) and
a vertex v ∈ (V (G,W3 ∪W4) \ V (G,W3,W4)). Because of our assumption that we cannot
continue the merging process anymore both of these vertices exist and are in Ω. However,
there is no edge between u and v and there is no common component in whose neighborhood
u and v are, which is a contradiction to the cliquish condition. J

We call the PMCs corresponding to case 1 of Lemma 16 type 1 PMCs and the PMCs
corresponding to case 2 type 2 PMCs. The number of type 1 PMCs is at most n, the
number of vertices. Another upper bound for the number of type 1 PMCs is 2cc, because
if W[v] = W[u] for vertices v and u then N [v] = N [u]. The number of type 2 PMCs is at
most S(cc, 3), where S denotes the Stirling numbers of the second kind. One can verify that
S(cc, 3) + 2cc ≤ 3cc and the bound for PMCs follows.

4 Enumeration Algorithms

In this section we modify the Bouchitté–Todinca algorithm [6] for enumerating PMCs to give
an O∗(3cc) time PMC enumeration algorithm and a polynomial space O∗(9cc) time PMC
enumeration algorithm.

The Bouchitté–Todinca algorithm is based on theorems characterizing PMCs based on
minimal separators. We summarize the theorems in the following proposition.
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I Proposition 17 ([6]). Let G be a connected graph with |V (G)| > 1 and v any vertex of G.
If Ω is a PMC of G, one of the following holds.
1. Ω \ {v} ∈ Π(G \ {v}).
2. Ω \ {v} ∈ ∆(G).
3. Ω = S ∪ T , where S ∈ ∆(G) and T ∈ ∆(G[C ∪ {x, y}]), where C is a full component of

S and x and y are non-adjacent vertices in S.

The algorithm uses case 1 to generate n induced subgraphs of the input graph, from
which PMCs are generated by cases 2 and 3. Note that the size of a minimum edge clique
cover is monotone with respect to induced subgraphs. We need the following lemma, which
follows from Proposition 11, to ensure that each PMC of each induced subgraph corresponds
to at most one PMC of the original graph.

I Lemma 18 ([6]). Let G be a graph and v ∈ V (G). If Ω ∈ Π(G \ {v}), then at most one of
Ω and Ω ∪ {v} is a PMC of G.

Now, we can just enumerate PMCs from cases 2 and 3 in each of the n induced subgraphs,
and each time a PMC is found we use Lemma 18 to generate at most one PMC of the original
graph in polynomial time.

Next we complete the description of the algorithm by showing that PMCs from cases 2
and 3 can be enumerated in O∗(3cc) time. The proof is based on Lemma 15 on the structure
and the number of blocks.

I Lemma 19. There is an algorithm that given a graph G whose minimum edge clique cover
has size cc enumerates the PMCs of G, possibly with duplicates, in polynomial space and
O∗(3cc) time.

Proof. By Lemma 18, it is sufficient to enumerate PMCs corresponding to cases 2 and 3 of
Proposition 17. For case 2, the bound follows from the 2cc bound on minimal separators
and a polynomial space O∗(|∆(G)|) time minimal separator enumeration algorithm [35]. For
case 3, we do polynomial space enumeration of minimal separators in the graph G, and every
time we output a minimal separator S, we do polynomial space enumeration of minimal
separators in the graph G[C ∪ {x, y}] for all full components C of S and all non-adjacent
pairs x, y ∈ S.

We do the inner iteration O(n2) times for each block C of G. The complexity of the inner
iteration depends on the size of a minimum edge clique cover of G[C ∪ {x, y}]. Let W be a
minimum edge clique cover of G. By Lemma 15, the block C corresponds to an unique subset
W [C] of W . The subset W [C] is an edge clique cover of G[C ∪ {x, y}] because all edges in it
are adjacent to C because x and y are non-adjacent. Therefore, the time complexity of the
inner iteration is O∗(2|W[C]|), and therefore, the time complexity of the algorithm is at most∑
W′⊆W O∗(2|W′|) = O∗(3cc). J

Using for example sorting we can deduplicate the output of the algorithm of Lemma 19
and an O∗(3cc) time exponential space algorithm for enumerating PMCs without duplicates
follows. For deduplication in polynomial space, we use a simple trick that is efficient enough
for our purposes.

I Lemma 20. There is an algorithm that given a graph G whose minimum edge clique cover
has size cc enumerates the PMCs of G in polynomial space and O∗(9cc) time.

Proof. Run the algorithm of Lemma 19 multiple times in succession, each time outputting
the lexicographically smallest PMC that is lexicographically larger than the previous PMC
outputted, until no such PMC is found. Now, using the algorithm at most 3cc times we have
outputted the PMCs of G in lexicographically strictly increasing order. J
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5 Faster Algorithms When Edge Clique Cover is Given

We use fast subset convolution [2] to design O∗(2cc′) time algorithms for treewidth, minimum
fill-in, and chordal sandwich, where cc′ is the size of an edge clique cover given as an input.
In particular, we make use of the following result.

I Proposition 21 ([2]). Let X be a set, f : 2X → [M ] and g : 2X → [M ] functions from the
set 2X of all subsets of X to the set of integers up to M . The function (f ∗ g) defined as
(f ∗ g)(Y ) = minY ′⊆Y f(Y ′) + g(Y \ Y ′) can be computed for all Y ⊆ X in O∗(2|X|M) time.

The algorithms we introduce are modifications of the dynamic programming phase of
the PMC framework. In most of this section our presentation is general in the sense that
it applies to each of the three problems. We use the term “optimal triangulation” to refer
to a triangulation with the minimum size of a maximum clique in the context of treewidth,
a triangulation with the least number of edges in the context of minimum fill-in, and to a
triangulation that has no non-admissible fill-edges in the context of chordal sandwich (or to
information that no such triangulation exists).

We start by recalling the dynamic programming phase of the PMC framework. The
states of the dynamic programming correspond to realizations of blocks.

I Definition 22 ([5]). Let G be a graph and C a block of G. A realization R(C) of C is a
graph with V (R(C)) = N [C] and E(R(C)) = E(G[N [C]]) ∪N(C)2.

The following proposition characterizes minimal triangulations of a realization of a block.

I Proposition 23 ([5]). Let G be a graph and C a block of G. The graph H is a minimal
triangulation of R(C) if and only if (i) V (H) = N [C] and (ii) there is a PMC Ω ∈ Π(G)
with N(C) ⊆ Ω ⊆ N [C] and

E(H) = Ω2 ∪
⋃

Ci∈C(R(C)\Ω)

E(Hi),

where Hi is any minimal triangulation of R(Ci). It also holds that each Ci is a block of G.

Proposition 23 implies dynamic programming formulas for computing optimal triangula-
tions of realizations of all blocks [5, 14, 29].

We use the following proposition for a base case.

I Proposition 24 ([5]). Let G be a graph that is not complete. The graph H is a minimal
triangulation of G if and only if (i) V (H) = V (G) and (ii) there is a minimal separator
S ∈ ∆(G) with

E(H) =
⋃

Ci∈C(G\S)

E(Hi),

where Hi is any minimal triangulation of R(Ci). It also holds that each Ci is a block of G.

Once we have computed optimal triangulations of realizations of all blocks, we can
compute an optimal triangulation of the graph via Proposition 24 in time O∗(2cc). For
computing optimal triangulations of realizations, the bottleneck in implementing the recursion
of Proposition 23 is in iterating over the PMCs.

The high-level idea of our algorithm is that we use Proposition 23 directly only with
type 1 PMCs, i.e., PMCs Ω = N [v] for some vertex v ∈ V (G). For type 2 PMCs, we simulate
the iteration over PMCs with fast subset convolution. In particular, we show that each PMC
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Ω of type 2 with N(C) ⊆ Ω ⊆ N [C] can be expressed in terms of two disjoint good parts W1
and W2 of W[C], where W is an edge clique cover of G. In the case of treewidth, minimum
fill-in, and chordal sandwich, an optimal partition of every subset W ′ ⊆ W into two good
parts W1 and W2 can be computed with fast subset convolution, provided that we have first
computed optimal triangulations of realizations of all blocks in C(W1) and C(W2).

We first show the direction that each PMC can be expressed in terms of W1 and W2.

I Lemma 25. Let G be a graph, W an edge clique cover of G, and C a block of G. If a
graph H is a minimal triangulation of R(C), then either (1) there is a vertex v ∈ V (G) and

E(H) = N [v]2 ∪
⋃

Ci∈C(R(C)\N [v])

E(Hi),

where N [v] ∈ Π(G), N(C) ⊆ N [v] ⊆ N [C], and Hi is a minimal triangulation of R(Ci), or
(2) there is a partition {W1,W2,Wo} of W into good parts with W1 ∪W2 ⊆ W[C], a block
C ′ ∈ C(Wo) with N(C) = N(C ′), and

E(H) = Ω2 ∪
⋃

Ci∈C(W1)∪C(W2)∪(C(Wo)\C(G\N(C)))

E(Hi),

where Ω = V (G) \ V (G,W1,W2,Wo) and Hi is a minimal triangulation of R(Ci).

Proof. Case 1 corresponds to Proposition 23 with PMCs of type 1. Next we prove that
case 2 covers all PMCs of type 2.

Let Ω be any PMC of G with N(C) ⊆ Ω ⊆ N [C] such that there is no vertex v with
Ω = N [v]. Consider the part W ′o =W \W[C] and let us prove that W ′o is a good part and
C(W ′o) = C(G \N(C)) \ {C}. Observe that {C, N(C), V (G,W ′o)} is a partition of V (G), and
moreover there are no edges between C and V (G,W ′o). Now, for any component C ′ ∈ C(W ′o),
it must hold that N(C ′) ⊆ N(C), and therefore N(C ′) is a minimal separator and therefore
W ′o is a good part whose blocks are the components of G \N(C) except C.

Similarly as in the proof of Lemma 16, consider the collection of disjoint good parts
P = {W[Ci] | Ci ∈ C(G \ Ω)}. All of the parts that intersect W ′o are subsets of W ′o because
they do not intersect W[C], and therefore we replace the parts that intersect W ′o by the
part W ′o. Now by similar arguments as in Lemma 16 we can add one additional part to
the collection to make it a partition of W. Now we have a partition P of W with |P | ≥ 2
and W ′o ∈ P . Moreover,

⋃
Wi∈P C(Wi) = C(G \ Ω). If |P | = 2, then it would hold that

P = {W ′o,W [C]}, in which case Ω = N(C) would hold, which is a contradiction. If there are
at least three parts, then merge compatible parts until we have three parts or cannot merge
parts anymore. By the proof of Lemma 16, we will end up with three parts. Now let Wo be
the part that contains W ′o and W1 and W2 the other two parts. Because W ′o =W \W[C],
we have that W1 ∪W2 ⊆ W[C]. Moreover, because N(C) has at least two full components,
and all components of N(C) except C are components of W ′o, we have that there is a block
C ′ ∈ C(Wo) with N(C ′) = N(C).

Finally, we need to show that C(R(C) \ Ω) = C(W1) ∪ C(W2) ∪ (C(Wo) \ C(G \N(C))).
By Proposition 13 we have that C(R(C) \ Ω) = C(G \ Ω) \ C(G \ N(C)) and therefore
C(R(C) \Ω) = C(W1)∪ C(W2)∪ C(Wo) \ C(G \N(C)). All blocks of W1 and W2 are subsets
of C because W1 ∪W2 ⊆ W[C]. J

The following lemma guarantees that the characterization of PMCs of type 2 in Lemma 25
is sound in the sense that all graphs H that it defines are (not necessarily minimal) triangu-
lations of G.
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I Lemma 26 (?). Let G be a graph, W an edge clique cover of G, and C a block of G.
Furthermore, let {W1,W2,Wo} be a partition of W into good parts with W1 ∪W2 ⊆ W[C]
and C ′ a block of G with C ′ ∈ C(Wo) and N(C) = N(C ′). Let H be any graph with (i)
V (H) = N [C] and (ii)

E(H) = Ω2 ∪
⋃

Ci∈C(W1)∪C(W2)∪(C(Wo)\C(G\N(C)))

E(Hi),

where Ω = V (G) \ V (G,W1,W2,Wo) and Hi is any triangulation of R(Ci). The graph H is
a triangulation of R(C).

In Lemmas 25 and 26 we formulated a recursion that characterizes all minimal triangula-
tions of a realization R(C) of a block C in terms of minimal triangulations of realizations
R(C ′) of blocks C ′ ( C. What remains is to integrate the computation of the optimal cost
of the triangulation into this characterization. The following lemma is used for treewidth
and minimum fill-in. It is simple, but we state it as a warmup for what follows.

I Lemma 27 (?). Let G be a graph, W an edge clique cover of G, {W1,W2,Wo} a partition
of W, and Ω = V (G) \ V (G,W1,W2,Wo). It holds that |Ω| = |V (G)| − |V (G,W1)| −
|V (G,W2)| − |V (G,Wo)|.

Therefore, the size of Ω can be computed as a sum that considers W1, W2, and Wo inde-
pendently, and therefore we can integrate the computation of it into fast subset convolution.
For treewidth, we only have to make sure that |Ω| ≤ k + 1, where k is the upper bound for
treewidth in the decision problem. For minimum fill-in, we can compute the number of edges
in the triangulation of R(C) as

(|Ω|
2
)

+
∑

Ci∈C(R(C)\Ω)(|E(Hi)| −
(|N(Ci)|

2
)
), where Hi is an

optimal triangulation of the realization R(Ci).
A similar lemma is used for chordal sandwich.

I Lemma 28 (?). Let G be a graph, W an edge clique cover of G, {W1,W2,Wo} a
partition of W into good parts, and Ω = V (G) \ V (G,W1,W2,Wo). It holds that Ω2 =⋃
Wi∈{W1,W2,Wo}(V (G) \ V (G,Wi,W \Wi))2.

Lemma 28 guarantees that each fill-edge caused by the PMC Ω can be “seen” from at least
one of the parts W1, W2, Wo, implying that it is sufficient to check each part independently
to guarantee that Ω does not add any forbidden fill-edges. We remark that Lemma 28
appears to be difficult to generalize to count the exact number of fill-edges, which is the
barrier why we are not able to give an O∗(2cc′) time algorithm for weighted minimum fill-in.

Algorithm 1 presents the full O∗(2cc′) time algorithm for treewidth. The algorithms for
minimum fill-in and chordal sandwich are similar. The algorithm maintains a collection B
of blocks C for which it is known that the treewidth of R(C) is at most k. The invariant
of the main loop of lines 3 to 19 is that after ith iteration, all blocks of size at most i and
treewidth at most k have been added to B. In each iteration of the main loop, the algorithm
iterates over all good partsW ′ on lines 5 to 7, and if all realizations of blocks of the part have
treewidth at most k adds the part to a collection F|V (G,W′)|. These parts W ′ correspond
to parts W1 and W2 of our lemmas. Then, fast subset convolution is applied on line 8 on
the collections F to find for all combinations (W1 ∪W2) of disjoint parts W1 and W2 the
maximum number of vertices in V (G,W1,W2). Then on lines 9 to 15 the algorithm iterates
through all good parts Wo, thus determining (W1 ∪W2) and all other variables that need to
be taken into account. In particular, note that each part Wo determines only polynomially
many blocks C such that there is C ′ ∈ C(Wo) with N(C ′) = N(C).
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Algorithm 1 Treewidth in O∗(2cc′
) time.

Input :Connected graph G, an edge clique cover W of G, and an integer k

Output :Whether the treewidth of G is at most k

1 if G is complete then return |V (G)| ≤ k + 1
2 Let B ← ∅ be a collection of blocks of G

3 for i← 1 to n do
4 For each 0 ≤ j ≤ n let Fj ← ∅ be a collection of subsets of W
5 for each good part W ′ ⊆ W do
6 if C(W ′) ⊆ B then
7 F|V (G,W′)| ← F|V (G,W′)| ∪ {W ′}
8 Use fast subset convolution to compute for each subset W ′ ⊆ W the maximum

value of j + k such that there is W ′′ ⊆ W ′ with W ′′ ∈ Pj and (W ′ \W ′′) ∈ Pk

9 for each good part Wo ⊆ W do
10 Let t be the value on W \Wo computed in line 8
11 if t exists and n− t− |V (G,Wo)| ≤ k + 1 then
12 for each minimal separator N(C ′) with C ′ ∈ C(Wo) do
13 if exists C ∈ C(G \N(C ′)) with (W \Wo) ⊆ W[C] then
14 if (C(Wo) \ C(N(C))) ⊆ B then
15 B ← B ∪ {C}

16 for each block C of G do
17 for v ∈ V (G) | N [v] ∈ Π(G) and |N [v]| ≤ k + 1 and N(C) ⊆ N [v] ⊆ N [C] do
18 if C(R(C) \N [v]) ⊆ B then
19 B ← B ∪ {C}
20 for S ∈ ∆(G) do
21 if C(G \ S) ⊆ B then
22 return True
23 return False

The analysis of the algorithm focuses on transitions via PMCs of type 2 and proceeds by
induction on the main loop invariant. The time complexity follows simply from fast subset
convolution, the bound 2cc on the number of blocks, and the fact that each iteration of the
loop of the lines 9 to 15 takes polynomial time. The correctness is shown by combining the
lemmas introduced in this section.

I Lemma 29 (?). There is an algorithm that given a graph G with an edge clique cover of
size cc′ determines the treewidth and minimum fill-in of G in time O∗(2cc′). Furthermore,
if also a set F ⊆ V (G)2 \ E(G) is given the algorithm determines if there is a triangulation
H of G with E(H) ⊆ E(G) ∪ F , i.e., solves the chordal sandwich problem.

6 Polynomial Space Algorithms

We give polynomial space algorithms for treewidth, weighted minimum fill-in, and fractional
hypertreewidth. The algorithms are based on the following characterization of minimal
triangulations.
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I Proposition 30 ([5]). Let G be a graph, H a minimal triangulation of G, and Ω a maximal
clique of H. For each Ci ∈ C(G \ Ω) there exists a minimal triangulation Hi of R(Ci) such
that

E(H) = Ω2 ∪
⋃

Ci∈C(G\Ω)

E(Hi).

Note that by iterating over all Ω ∈ Π(G) in Proposition 30 we can indeed construct all
minimal triangulations of G. Furthermore, all graphs H constructed in this manner are
minimal triangulations [5].

The idea of the algorithm is to use the recursion of Proposition 30 directly, without
dynamic programming. The following “balanced PMC” lemma guarantees that we can expect
the size of an edge clique cover to roughly halve in each level of the recursion.

I Lemma 31. Let G be a graph with an edge clique cover W. Any minimal triangulation H

of G has a maximal clique Ω so that all blocks C ∈ C(G \ Ω) have |W[C]| ≤ |W|/2.

Proof. Note that for any PMC Ω there can be at most one component C ∈ C(G \Ω) so that
|W[C]| > |W|/2 because the sets W[Ci] over Ci ∈ C(G \ Ω) correspond to disjoint subsets
of W. Let H be any minimal triangulation of G and pick arbitrary maximal clique Ω of H.
While there is a component C ∈ C(G\Ω) such that |W [C]| > |W|/2, pick a maximal clique Ω
of H such that N(C) ⊆ Ω ⊆ N [C]. If this process stops, we have found the desired maximal
clique Ω. Suppose the process does not stop. It considers an infinite sequence of blocks
C1, C2, . . . with an associated infinite sequence of PMCs Ω1, Ω2, . . . with Ci ∈ C(G \ Ωi).
Consider two consecutive blocks Ci and Ci+1 in this sequence such that Ci+1 is not a subset
of Ci, which exist because G is finite. Recall that N(Ci) ⊆ Ωi+1 ⊆ N [Ci]. Because Ci+1
is not a subset of Ci, we have that N(Ci+1) ⊆ N(Ci), implying that Ci and Ci+1 are two
distinct components of N(Ci). Therefore the sets W [Ci] and W [Ci+1] are disjoint, implying
that either of them has to be of size at most |W|/2, which is a contradiction. J

We combine Proposition 30 and Lemma 31 into the following lemma.

I Lemma 32 (?). Let G be a graph and W an edge clique cover of G. A graph H is a
minimal triangulation of G if and only if (1) V (H) = V (G) and (2) there is a PMC Ω ∈ Π(G)
with |W[Ci]| ≤ |W|/2 for all Ci ∈ C(G \ Ω) and

E(H) = Ω2 ∪
⋃

Ci∈C(G\Ω)

E(Hi),

where Hi is a minimal triangulation of R(Ci).

Algorithm 2 presents a polynomial space O∗(9cc′) time algorithm for treewidth. The
algorithms for other problems are similar. The algorithm implements the characterization of
Lemma 32, with the observation that W[C] ∪ {N(C)} is an edge clique cover of R(C).

The time complexity analysis of the algorithm reduces to a recursion equation resembling
t(cc′) = 9cc′ + 3cc′2t(cc′/2), with some polynomial factors that get cleaned up at the end by
the O∗(·) notation.

I Lemma 33 (?). There is an algorithm that given a graph G with an edge clique cover of
size cc′ determines the treewidth of G in polynomial space and O∗(9cc′) time. If also a weight
function w : V (G)2 → R≥0 is given, the algorithm determines the weighted minimum fill-in
of G with respect to w. There is also algorithm that given a hypergraph G with m hyperedges
determines its fractional hypertreewidth in polynomial space and O∗(9m) time.



T. Korhonen 22:15

Algorithm 2 Treewidth in polynomial space and O∗(9cc′
) time.

Input :Connected graph G, an edge clique cover W of G, and an integer k

Output :Whether the treewidth of G is at most k

1 for Ω ∈ Π(G) do
2 if |Ω| ≤ k + 1 and |W[Ci]| ≤ |W|/2 for all Ci ∈ C(G \ Ω) then
3 ok ← True
4 for C ∈ C(G \ Ω) do
5 if Treewidth(R(C),W[C] ∪ {N(C)}, k) = False then
6 ok ← False
7 if ok then return True
8 return False

The main idea to make the algorithm work when we do not know the edge clique cover is
to just check if there are at most 3cc PMCs. The reason why the time complexity becomes
a bit higher than in Lemma 33 is that we cannot assume that the worst case of branching
from a PMC Ω results in only two subproblems. In particular, we cannot assume anything
better than cc subproblems each with a minimum edge clique cover of size cc/2 + 1.

I Lemma 34 (?). There is an algorithm that given a graph G and an integer cc uses
polynomial space and O∗(9cc+O(log2 cc)) time and returns an integer t that is at least the
treewidth of G. If also a weight function w : V (G)2 → R≥0 is given, the algorithm also
returns a number f that is at least the weighted minimum fill-in of G with respect to w. If
cc is at least the size of a minimum edge clique cover of G, then t is the treewidth of G and
f is the weighted minimum fill-in of G with respect to w.

7 Tightness

We show that the bounds O(2cc) and O(3cc) for the numbers of minimal separators and
PMCs are tight, and that the parameter edge clique cover cannot be relaxed to vertex clique
cover.

Let us construct a graph Kcc
2 . LetW be a collection of size cc initially containing disjoint

sets of size 1, i.e.,W = {W1, . . . , Wcc} with Wi = {vi}. For each pair 1 ≤ i < j ≤ cc we insert
an element vi,j into the sets Wi and Wj . Now, the vertex set of Kcc

2 is V (Kcc
2 ) =

⋃
W∈W W

and the edge set of Kcc
2 is E(Kcc

2 ) =
⋃

W∈W W 2. The collection W is therefore an edge
clique cover of Kcc

2 .

I Lemma 35. The graph Kcc
2 has Θ(2cc) minimal separators and Θ(3cc) PMCs.

Proof. Upper bounds follow from Theorem 1. For distinct subsets W ′ ⊆ W the vertex sets
V (Kcc

2 ,W ′) are distinct because they can be identified by the inclusion of the vi vertices.
Let W ′ be any non-empty strict subset of W. Note that Kcc

2 [V (Kcc
2 ,W ′)] is connected, and

therefore also Kcc
2 [V (Kcc

2 ,W\W ′)] is connected. Any vertex in V (Kcc
2 )\V (Kcc

2 ,W ′,W\W ′)
is of type vi,j and has a neighbor in both V (Kcc

2 ,W ′) and V (Kcc
2 ,W \ W ′). Therefore,

V (Kcc
2 ) \ V (Kcc

2 ,W ′,W \W ′) is a minimal separator and V (Kcc
2 ,W ′) and V (Kcc

2 ,W \W ′)
are blocks of it. Therefore, the number of minimal separators of Kcc

2 is at least the number
of bipartitions of W, i.e., Ω(2cc).

Take any tripartition {W1,W2,W3} of W . Note that distinct tripartitions define distinct
sets V (Kcc

2 ,W1,W2,W3). We show that Ω = V (Kcc
2 ) \ (Kcc

2 ,W1,W2,W3) is a PMC of
Kcc

2 . Any vertex in Ω is of type vi,j , with vertices vi and vj in different blocks V (Kcc
2 ,Wp).
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Therefore, for any pair of vertices in Ω there is a common block that they are adjacent to,
and therefore Ω satisfies the cliquish condition. A component V (Kcc

2 ,W1) cannot be full
because there is a vertex vi,j that intersects cliques Wi ∈ W2 and Wj ∈ W3 and therefore
is in the PMC but not in the neighborhood of V (Kcc

2 ,W1). Therefore, Ω satisfies the no
full component condition. Therefore, the number of PMCs of Kcc

2 is at least the number of
tripartitions of W, i.e., Ω(3cc). J

We use a simpler construction to show that there cannot be FPT, or even XP, bounds for
minimal separators and potential maximal cliques parameterized by the size of a minimum
vertex clique cover, i.e., the number of cliques to cover all vertices of a graph.

I Lemma 36. A graph that is constructed as a disjoint union of two cliques of size n/2
connected by a matching of n/2 edges has Ω(2n/2) minimal separators.

Proof. All ways of selecting one endpoint of each edge of the matching result in selecting a
minimal separator, expect the two ways that select one of the cliques. J

Note that |Π(G)| ≥ |∆(G)|/n [6], so the graphs of Lemma 36 have also an exponential
number of PMCs.

8 Conclusion

We bounded the number of minimal separators and PMCs by the size of a minimum
edge clique cover, obtaining new FPT algorithms for problems in the PMC framework.
The parameterization by edge clique cover is motivated by real applications of optimal
triangulations, and our results provide theoretical corroboration on the observations of the
efficiency of the PMC framework in practice. Prior to our work, only the recent paper of
Fomin et al. [15] considers FPT bounds for PMCs. Our work answers to their proposal for
finding further FPT parameterizations for PMCs.

We omitted polynomial factors in our analysis, but the author believes that the polynomial
factors are reasonably low and all of the algorithms that we gave can be implemented in a
practical manner when cc is small. We also remark that the techniques introduced in this
paper can be used to obtain O∗(2O(m)) time algorithms for generalized hypertreewidth via
the results of [30]. We focused on fractional hypertreewidth because it is a more general
parameter [18], and its computation is simpler in the sense that FCOV(Ω) can be computed
in polynomial time, unlike its counterpart in generalized hypertreewidth.

Our bounds and enumeration algorithms for minimal separators and PMCs are tight with
respect to cc up to polynomial factors. Improving the algorithms for individual problems or
proving (conditional) lower bounds remains as a problem for future work. Also, the question
of finding further useful parameterizations of PMCs still remains for future work. Because of
the naturality of cc in multiple settings related to optimal triangulations, we expect that
more applications of our results could arise in future.
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