
PACE Solver Description: Finding Elimination
Trees Using ExTREEm - a Heuristic Solver for the
Treedepth Decomposition Problem
Sylwester Swat
Institute of Computing Science, Poznan University of Technology, Poland
sylwester.swat@put.poznan.pl

Abstract
This article briefly describes the most important algorithms and techniques used in the treedepth
decomposition heuristic solver called “ExTREEm”, submitted to the 5th Parameterized Algorithms
and Computational Experiments Challenge (PACE 2020) co-organized with the 15th International
Symposium on Parameterized and Exact Computation (IPEC 2020).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Treedepth decomposition, elimination tree, separator, PACE 2020

Digital Object Identifier 10.4230/LIPIcs.IPEC.2020.33

Supplementary Material The source code of ExTREEm solver is available at https://doi.org/10.
5281/zenodo.3873126.

1 Problem description

A treedepth decomposition of a connected graph G = (V,E) is a rooted tree T = (V,ET) such
that every edge of G connects a pair of nodes that have an ancestor-descendant relationship
in T . The solver briefly described here is a heuristic approach to the treedepth decomposition
problem, where the goal is to find a treedepth decomposition for a given graph with as small
height as possible.

2 Solver description

In this paper, we provide a short description of the most important algorithms implemented
in solver ExTREEm. Due to many parameters used in the implementation and a lot of edge-
cases that need to be taken into account, this description may not contain full information
about the algorithms behavior in every possible situation.

Before we proceed to the actual description, let us fix some natural notations. For
a given graph G we denote by T (G) its treedepth decomposition. For a subset S ⊆ V

we denote by C(G,S) the set of connected components of G \ S. For a ∈ V we define
N(a) = {v ∈ V : {a, v} ∈ E} and for A ⊆ V we take N(A) =

⋃
v∈A

N(v).

Given a graph G, we find a separator S of G, then recursively obtain treedepth decompos-
itions for components in C(G,S), and finally merge separator S and found decompositions
into an elimination tree of G. At the end, we apply some additional improvements to T (G).

3 Separator evaluation

To assess the quality of a separator S we need to store values mn(G,S) and me(G,S)
denoting, respectively, the maximum number of nodes and the maximum number of edges of
a graph from C(G,S). Now let us define

© Sylwester Swat;
licensed under Creative Commons License CC-BY

15th International Symposium on Parameterized and Exact Computation (IPEC 2020).
Editors: Yixin Cao and Marcin Pilipczuk; Article No. 33; pp. 33:1–33:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-8763-0045
mailto:sylwester.swat@put.poznan.pl
https://doi.org/10.4230/LIPIcs.IPEC.2020.33
https://doi.org/10.5281/zenodo.3873126
https://doi.org/10.5281/zenodo.3873126
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 ExTREEm, a Heuristic Solver for the Treedepth Decomposition Problem

scoren(S) = |S| · 1− β−
log |V |

log β

1− β , where β = mn(G,S)
|V |

scoree(S) = |S| · 1− γ−
log |E|

log γ

1− γ , where γ = me(G,S)
|E|

score(S) = α · scoren(S) + (1− α) · scoree(S), where α ∈ [0, 1] is a parameter.

A separator S is balanced if mn(G,S) < b · |V | or me(G,S) < b · |E|, where b ∈ (0, 1) is
a parameter. For given two balanced or two unbalanced separators S1 and S2, we say that
S1 is better than S2 if score(S1) < score(S2). A balanced separator is always better than
an unbalanced one.

4 Preprocessing

The preprocessing phase consists of two steps. The first step consists in detecting some
induced subgraphs of a given graph G that are isomorphic to a cactus graph. We do that by
repeatedly choosing a node of degree at most 2, removing it from the graph and adding edges
connecting its neighbors (unless already present). Considering the initial graph G induced by
the set of removed nodes, we observe that all its connected components are cacti. For each
such cactus component we find a treedepth decomposition using recursively the Articulation
Point Separator Creator method (see 5.1). Roots of those decompositions are attached to a
proper node in a decomposition of the remaining graph.

The second step of the preprocessing is based on finding a maximum independent set in
a subgraph of G induced by a set containing all nodes that are “center nodes” of induced
claw-subgraphs as well as all nodes of degree four whose neighborhood induces a connected
graph in G. Each node from the found independent set is removed from G and all pairs of
its neighbors are connected by an edge. After finding a decomposition of the obtained graph,
nodes from the found independent set are attached to the deepest of their neighbors.

5 Separator creation

After preprocessing, we try to find a good separator. After generating candidates, we select
five best ones (with respect to their scores) that are further subjected to a refinement process,
called minimization. As a final separator we take the best one after the minimization.

5.1 Articulation Point Separator Creator
In this method, we find all articulation points (cut vertices) of a given graph. Then, for each
articulation point v, we find values mn(G, {v}) and me(G, {v}). This is done in O(|E|) time
using an algorithm similar to Tarjan’s algorithm for finding bridges and articulation points.

5.2 BFS Separator Creator
Given a set B ⊆ V , we run a standard breadth-first-search with source-nodes set B. By Li

we denote the i-th BFS layer, that is a set containing all vertices that are at distance i from
the set B. For each of those layers we consider a graph Gi = G[V \ (L0 ∪ . . . ∪ Li−1)]. Then,
we divide nodes in Li into blocks, two nodes belong to the same block if they belong to the
same connected component of Gi. For each such block X we find a minimum vertex cover of
a bipartite graph induced by the edges between sets X and (N(X) ∩ Li+1). All blocks and
vertex covers are treated as different separator candidates and are found in time O(|E||V | 12).

S. Swat 33:3

5.3 Component Expansion Separator Creator
We take some subset B ⊆ V and then iteratively expand B by adding to it one node from
N(B)\B. In the first variant, we select a node with the tightest connection to B. In the second
one, we select a node from B that has the least number of neighbors outside B, then add these
neighbors toB in an arbitrary order. We obtain a sequence (v1, . . . vn) of added nodes called an
expansion order. We now consider separators Si = {vj : j ≤ i,N(vj) ∩ (V \ {v1, . . . , vi}) 6= ∅}
and try to improve the given expansion order by taking smaller connected components of
the partitioned graph before the larger ones. If we have already constructed separator Si

and we add vi+1 to that separator (and probably do some more changes) to obtain Si+1, we
afterwards rearrange all remaining nodes vi+2, . . . , vn in such a way that nodes belonging
to smaller connected components of G[{vi+2, . . . , vn}] occur before all nodes that belong to
larger connected components. All separators Si are found in time O(|E| log |V |).

5.4 Flow Separator Creator
At the beginning, we select two sets of nodes that are possibly far from each other. This
is done by creating a “landmark set”, that is a set L obtained by first selecting a random
node and then iteratively adding to L any node that is farthest from L. Then, we select
two random nodes u and v from L and consider sets of the form B = N(N(N(u))) and
E = N(N(N(v))). Afterwards, we find a maximal set of node-disjoint paths that begin in B
and end in E. As a separator candidate we take the union of those paths, then minimize it
with Greedy Minimizer. This method of creating separators works best in the context of
Flow Minimizer.

5.5 FlowCutter Separator Creator
In this method, we use our own implementation of a slightly modified version of the FlowCutter
algorithm (see [1]). The main idea remains the same - to expand the set of sources or targets
and to avoid augmenting paths. As initial source nodes and target nodes we consider, as
in 5.4, pairs of nodes from the “landmark set”. Additionally, we admit certain imbalance in
the source-reachable and target-reachable node sets only after the size of sources and targets
reaches some fixed fraction of |V |. After a last node is marked as a source or a target, we
consider four different expansion orders based on the order of adding graph nodes to sources
and targets, and for each order we find separators using the Component Expansion Separator
Creator method (5.3). We also consider as a separator a vertex cover of a graph induced by
edges between the final sets of sources and targets.

6 Separator minimization

After creating separator candidates, we proceed to the refinement step - for each candidate
S we exhaustively try to minimize the value of score(S) using following methods:

1. Vertex Cover Minimizer – we find a vertex cover of a bipartite graph induced by edges
between sets S and N(S) ∩ Cd, where Cd is some subset of C(G,S).

2. BFS Minimizer and Component Expansion Minimizer – we find separators using the
methods from 5.2 and 5.3, respectively, with the initial source-set S.

3. Greedy Minimizer – we iteratively remove nodes from S, each time selecting a node which
removal results in the minimal total size of the connected components adjacent to that
node.

IPEC 2020

33:4 ExTREEm, a Heuristic Solver for the Treedepth Decomposition Problem

4. Flow Minimizer and FlowCutter Minimizer – we find separators using the methods from
5.4 and 5.5, respectively, with the initial sets of sources and targets set to some subsets
of nodes that lie at a fixed distance from S.

7 Subtrees merging

After recursively finding decompositions for all components in C(G,S) = {c1, . . . , ck}, we
need to merge the results to obtain T (G). To do that, we sort all components according
to the nonincreasing depths of their decompositions. Then, we create a sequence S′ by
iteratively adding to S′ nodes from S ∩ N(Ci) that were not added to S′ earlier. As the
tree T (G) we initially take the path represented by sequence S′, then we attach each tree
T (G[Ci]) to the last node from sequence S′ that occurs in N(Ci). The whole procedure takes
time O(|E| log |V |).

8 Tree improvements

When the tree T (G) is created, we try to improve it by performing some structure-based
changes. Those improvements are based on pivot-like operations.

8.1 Block pivots
By the block of v ∈ V in a tree T (G) we mean a maximal path in T (G) which contains v,
such that each node on that path, apart from the deepest one, has at most one son. We
construct a separator S of G by taking all nodes from the root-block of T and recursively
doing the same for the highest tree in the decomposition of G \ S, until |S| > d ·H, where
d ∈ [0, 1] is a parameter and H is the height of T (G). Then, we merge separator S and all
trees just as described in Section 7.

8.2 Hall-set pivots
Let us fix any block in T (G) that lies on a longest leaf-root path P and let v be the topmost
node in that block. Let U(v) be the set of nodes on that path from the root to the parent
of v and D(v) be the remaining nodes on path P . By Tv we denote the subtree of T with
root in v. We now consider a maximum matching M in a bipartite graph induced by edges
between sets U(v) and N(U(v)) ∩R, where R is either Tv or Tv \D(v).

If possible, we take a set HM ⊆ U(v) with the property |HM | > |N(HM) ∩R| and check
a treedepth decomposition obtained from T by removing nodes that belong to N(HM) ∩R,
setting those nodes as the root-block and performing some other necessary structural changes.

9 Availability

The source code of ExTREEm solver is available at https://doi.org/10.5281/zenodo.
3873126.

References
1 Michael Hamann and Ben Strasser. Graph bisection with pareto-optimization. CoRR,

abs/1504.03812, 2015. arXiv:1504.03812.

https://doi.org/10.5281/zenodo.3873126
https://doi.org/10.5281/zenodo.3873126
http://arxiv.org/abs/1504.03812

	Problem description
	Solver description
	Separator evaluation
	Preprocessing
	Separator creation
	Articulation Point Separator Creator
	BFS Separator Creator
	Component Expansion Separator Creator
	Flow Separator Creator
	FlowCutter Separator Creator

	Separator minimization
	Subtrees merging
	Tree improvements
	Block pivots
	Hall-set pivots

	Availability

