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Abstract
Developing compiler optimizations, especially for new, rapidly evolving smart contract languages, can
be onerous and error-prone, but is especially important for smart contracts, where deployment and
execution directly translate to monetary cost and which cannot change once deployed. One common
optimization technique is the use of peephole optimizations, replacement rules that are applied
using pattern-matching. These rules are normally constructed using human expertise, which is both
time-consuming and far from systematic in exploring opportunities for optimization. In this work
we propose a pipeline to automatically populate the peephole optimizer of a smart contract compiler.
We apply superoptimization to an existing code base to obtain sequences of instructions, which
can be replaced by cheaper, observationally equivalent instructions. We then generate peephole
optimization rules by extracting the underlying patterns of these optimizations. We provide a
case study of our approach and a prototype implementation for bytecode of the Ethereum Virtual
Machine, the tool ppltr, which combines the superoptimizer ebso and the rule generator sorg. Then
we evaluate our approach by generating and applying nearly 1k peephole optimization rules extracted
from 2k optimizations obtained from deployed bytecode.
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1 Introduction

In this work we leverage formal methods to automatically populate the peephole optimizer
of a smart contract compiler. A peephole optimizer uses pattern matching to optimize a
small fragment of code, i.e., a peephole, by applying optimization rules. But finding sound
optimization rules is a bottleneck as witnessed by the peephole optimizer of the Solidity
compiler solc.1 Currently, solc features fewer than 20 rules compared to LLVM’s 1000+
rules. Thus we propose a pipeline to automatically populate the peephole optimizer of a
smart contract compiler by combining techniques from constraint solving and rewriting as
illustrated in Figure 1.

Smart contract languages typically have a large and accessible code base to use as a basis
for finding optimizations, e.g., code deployed to public blockchains or test cases.

1 github.com/ethereum/solidity/blob/ 019ec63f63bae7bbe89f5b62bb7b202ef5dadce6/
libevmasm/PeepholeOptimiser.cpp
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3:2 Populating the Peephole Optimizer of a Smart Contract Compiler

code base

rules

(3a)

find optimi-
zations

generate
rules

PUSH 0
SUB
PUSH 3
ADD
SHA3

PUSH 3
SUB
SHA3

(3b)

PUSH 0
SUB
PUSH x
ADD

PUSH x
SUB

(1) (2)

⇛

Figure 1 Pipeline to automatically generate peephole optimization rules from a code base.

(1) This allows us to start from an existing code base, to find optimizations by using auto-
mated tools to synthesize observationally equivalent but cheaper instruction sequences.

This automatic synthesis is possible, because many smart contract languages come with
formally defined operational semantics, e.g., the Ethereum yellow paper [22]. Moreover,
execution of a smart contract comes with a clear cost model – gas – giving rise to a precise
notion of optimality. To give an example, the bytecode for the Ethereum virtual machine
PUSH 0 SUB PUSH 3 ADD SHA3 computes a hash of 3 + (0−w) for some word w already on the
stack. As 3 + (0−w) = 3−w the bytecode corresponding to PUSH 3 SUB SHA3, computes the
same result and cheaper.
(2) From such optimizations, we can generate rules. Using concepts from rewriting we

generalize “unnecessarily specific” arguments and strip away “unnecessary” context to
obtain optimization rules.

For the above example, we generate the rule PUSH 0 SUB PUSH x ADD ⇛ PUSH x SUB by gener-
alizing 3 to x.
(3) Finally we can feed back and apply the generated rules to

(a) the rules themselves, and
(b) the code base and again start the cycle to find new optimizations.

We demonstrate the applicability of our pipeline in a case study for bytecode of the Ethereum
virtual machine (EVM). We implemented a prototype: ppltr, a peephole otimization rule
generator. For phase (1), we use the tool ebso [19], a superoptimizer for EVM bytecode. For
phase (2), we use sorg, a superoptimization based rule generator. All tools are available
open-source under the Apache-2.0 license.2 We evaluated our approach on bytecode of
the 250 most called contracts of the Ethereum blockchain, where we found 2032 distinct
optimizations from which we automatically generated 993 optimization rules.

Contributions

1. We propose a pipeline for automatically populating a peephole optimizer, and
2. a sound and complete procedure to generate optimization rules from optimizations.
3. We perform a case study for EVM bytecode with
4. a prototype implementation, together with
5. an evaluation.

2 Available at github.com/juliannagele/ebso/tree/v2.1, github.com/mariaschett/sorg/tree/v1.1,
and github.com/mariaschett/ppltr/tree/v1.0.

https://github.com/juliannagele/ebso/tree/v2.1
github.com/juliannagele/ebso/tree/v2.1
https://github.com/mariaschett/sorg/tree/v1.1
github.com/mariaschett/sorg/tree/v1.1
https://github.com/mariaschett/ppltr/tree/v1.0
github.com/mariaschett/ppltr/tree/v1.0
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2 Approach

We assume a machine model with a state over a set of words W with an observational
equivalence relation ≡ on states, which may take only parts of the state into account. States
are modified based on instructions from a set I, where an instruction ι ∈ I deterministically
transforms a state σ into some state σ′ denoted by σ ι→ σ′. Some instructions act only on
parts of the state, while others take immediate arguments from W. We write ι(w1, . . . , wk) for
an instruction ι ∈ I which takes k immediate arguments w1, . . . , wk ∈W and say that ι has
arity k. For example, in a stack-based machine the instruction PUSH 3 takes the immediate
argument 3, while SUB has arity 0, but consumes two arguments from the stack.

A program ρ is a sequence of instructions ι0 · · · ιn. The length of ρ is its number of
instructions, denoted by |ρ|. We write ε for the empty program and ρ ·τ for the concatenation
of programs ρ and τ . A program ρ = ι0 · · · ιn transforms a family of states σ = (σj)j≤n+1 by
stepwise transformation, i.e., σ0

ι0→ σ1
ι1→ . . .

ιn→ σn+1, and we write σ0
ρ→→ σn+1. Here σj is

the state after executing j instructions, and σ0 is the designated start state. We often write
states instead of families of states, when the distinction is clear from the context.

We write cost(ι, σ) for the cost incurred by executing instruction ι on state σ. The cost
of executing a program is simply the sum of the cost of its instructions: cost(ι0 · · · ιn,σ) =∑n
j=0 cost(ιj , σj). Two programs ρ and τ are equal, denoted by ρ = τ , if they are syntactically

equal, and equivalent, ρ ≡ τ , if they are observationally equivalent, i.e., for states σ and σ′

with σ0 ≡ σ′0, σ0
ρ→→ σ|ρ|+1, and σ′0

τ→→ σ′|τ |+1 we have σ|ρ|+1 ≡ σ′|τ |+1.

I Definition 1. Let ρ and τ be programs with ρ ≡ τ and cost(ρ,σ) > cost(τ,σ) for all
states σ. Then τ is an optimization of ρ, and we write ρ ⫺ τ .

In Section 2.1, we will show how we can obtain such optimizations – and in Section 2.2
we will use them to generate optimization rules. To do so, we need to define what constitutes
a rule. Therefore we abstract over the immediate arguments of instructions by using a
countably infinite set of variables V . We extend I to IV by adding instructions ι(x1, . . . , xk)
for all x1, . . . , xk ∈ V and all ι ∈ I of arity k > 0.

A program over IV is called a program schema. To obtain a maximal schema of a program
schema s every ι(w1, . . . , wk) in s is replaced by ι(x1, . . . , xk), where x1, . . . , xk are fresh
variables from V. All variables in a program schema s are collected in Var(s).

A substitution γ : V → W ∪ V maps variables to variables and words. In a ground
substitution γ the range is restricted to W, i.e., γ : V →W. We apply γ to a schema s by
replacing all variables x in s by γ(x) and write sγ for the result. Note that sγ is a program.
A substitution γ is at least as general as a substitution γ′, denoted γ ·≤ γ′, if there is a
substitution γ′′ such that γγ′′ = γ′. If γ ·≤ γ′ and γ′ 6 ·≤ γ then we say γ is more general than
γ′ and write γ ·< γ′.

We call program schemas s and t observationally equivalent, and write s ≡ t, if sγ ≡ tγ
holds for all γ and write cost(s,σ) > cost(t,σ′) if cost(sγ,σ) > cost(tγ,σ′) for all γ.

I Definition 2. Let ` and r be program schemas with ` ≡ r and cost(`,σ) > cost(r,σ). Then
`⇛ r is an (optimization) rule.

By definition, every optimization ρ ⫺ τ is an optimization rule ρ ⇛ τ . A context C is
a pair of program schemas (s1, s2). We write C[t] for the program schema s1 · t · s2 and
call s1 a prefix and s2 a postfix of C[t]. A context (s1, s2) is at least as general as a context
(t1, t2), denoted by (s1, s2) ≤ (t1, t2), if there is a context (r1, r2) such that r1 · s1 = t1 and
s2 · r2 = t2. If C ≤ C ′ and C ′ 6≤ C then we say C is more general than C ′ and write C < C ′.

FMBC 2020



3:4 Populating the Peephole Optimizer of a Smart Contract Compiler

The following definition captures all optimization rules that can produce a given opti-
mization when instantiated.

I Definition 3. The optimization rules for an optimization ρ ⫺ τ are defined as R(ρ ⫺ τ) =
{`⇛ r | ρ = C[`γ] and τ = C[rγ] for some substitution γ and context C}.

We ensure that applying peephole optimizations is sound by the following lemma.

I Lemma 4. If ρ ≡ τ then C[ρ] ≡ C[τ ] for all contexts C.

Proof. We show the statement by induction on C. By assumption, the statement holds for
the base case C = (ε, ε). For the step case C = (ι · s1, s2) observe that every instruction ι is
deterministic, i.e., executing ι starting from a state σ leads to a deterministic state σ′. By
induction hypothesis, executing s1ρs2 and s1τs2 from a state σ′ leads to an observationally
equivalent state σ′′, and therefore ι · s1 · ρ · s2 ≡ ι · s1 · τ · s2 holds. We can reason analogously
for C = (s1, s2 · ι). J

2.1 Find Optimizations
As Definition 1 suggests finding an optimization for a program ρ necessitates finding
1. an observationally equivalent program τ , where
2. the cost of τ is less than the cost of ρ.
We leverage a constraint solver, such as Z3 [8], to automatically find equivalent, but cheaper
programs. To this end, we express the above as an SMT problem: given a source program ρ,
is there a target program τ such that for all possible inputs, executing ρ and τ results in the
same final state, but the cost of τ is less than the cost of ρ? Our encoding is based on the
encoding from unbounded superoptimization [11].

Find an Observationally Equivalent Program

To encode observational equivalence we first need a constraint that expresses equality on
states: Let enc_eq_state(σ, σ′) be an SMT constraint that evaluates to true, whenever state
σ and state σ′ are observationally equivalent. The concrete instantiation of this constraint
depends on the machine that is modeled. For instance, the state may be modeled as several
uninterpreted functions. An encoding for the EVM, modeling the state with a stack, storage,
and exceptional halting can be found in Example 16, with the corresponding encoding of
enc_eq_state in Example 18.

Based on the operational semantics for every ι ∈ I, we need to encode the effect of ι on a
state i.e., the relation ι→.

I Definition 5. Let enc_step(ι, σ, σ′) be an SMT encoding of the effect of an instruction
ι as constraints between state σ and state σ′. For a program ρ = ι0 · · · ιn and states σ we
define enc_progr(ρ,σ) as

∧
06j6n enc_step(ιj , σj , σj+1).

Again, the concrete encoding of enc_step depends on the machine that is modeled, see
Example 17 for our instantiation for the EVM.

Most programs will consume some input words ~x. To pass them to the program, we
assume an encoding enc_init(~x,σ) that sets constraints on the start state σ0 appropriately,
e.g., putting the words in ~x in registers or on the stack according to the machine model. Based
on the constraint enc_step, we can encode the search space of all possible target programs.
To this end we represent the target program as a pair τ = 〈instr, n〉 of an uninterpreted
function instr(j) : N → I and its length n ∈ N. The function instr acts as a template to
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be filled by the SMT solver returning the instruction to be used at position j of the target
program. After a model has been found, the concrete target program can be reconstructed
as instr(0) · instr(1) · · · instr(n− 1).

I Definition 6. Given a set of instructions I we define the SMT encoding for the enumeration
of every program of length n as enc_search(τ,σ) as

∀j. 0 6 j < n→
∧
ι∈I

instr(j) = ι→ enc_step(ι, σj , σj+1) ∧
∨
ι∈I

instr(j) = ι (1)

The first clause states that if we pick ι at position j, then the effect is determined
by enc_step(ι, σj , σj+1). The second clause,

∨
ι∈I instr(j) = ι, ascertains that for every

position j some instruction is picked.

I Definition 7. The encoding for finding an observationally equivalent program to a given
program ρ is

∃n, ∀~x. enc_init(~x,σ) ∧ enc_init(~x,σ′) ∧
enc_progr(ρ,σ) ∧ enc_search(τ,σ′) ∧ enc_eq_state(σ|ρ|+1, σ

′
n) (2)

The first two constraints initialize states σ and σ′ with the same inputs, the third and
fourth constraint encode the effects of the existing program ρ and the sought after target
program τ respectively, while the final constraint demands that they are observationally
equivalent, i.e., that they result in equivalent states. With this constraint we will find
observational equivalent programs. Now we will need to add constraints on the cost.

Find a Cheaper Program

To achieve this we extend Constraint (2) from Definition 7 by a constraint stating that
the cost of executing the target program τ is less than the cost of executing the source
program ρ: i.e., cost(ρ,σ) > cost(τ,σ′). Here the cost of τ is again defined by summation,
i.e., for τ = 〈instr, n〉 we have cost(τ,σ′) =

∑n−1
j=0 cost(instr(j), σj).

2.2 Generate Rules
As Definition 3 indicates generating optimization rules from optimizations requires us
1. to find a substitution γ, and
2. to find a context C.

Find a Substitution

In the first step we generalize the immediate arguments of instructions in an optimization
ρ ⫺ τ by finding a substitution. We capture all possible generalizations of a rule using the
following definition.

I Definition 8. The generalized rules of an optimization rule ρ⇛ τ are defined as G(ρ ⇛
τ) = {`⇛ r | `γ = ρ and rγ = τ for some substitution γ}.

I Example 9. Let ρ ≡ τ be the optimization from the introduction, i.e., PUSH 0 SUB PUSH
3 ADD SHA3 ≡ PUSH 3 SUB SHA3. Then G(ρ ≡ τ) consists of two rules: PUSH 0 SUB PUSH x ADD
SHA3 ⇛ PUSH x SUB SHA3 and ρ⇛ τ itself. Note that the pair PUSH y SUB PUSH x ADD SHA3
and PUSH x SUB SHA3 is not in G(ρ ≡ τ). Applying the substitution γ = {x 7→ 3, y 7→ 0} would
yield the original optimization, but since PUSH y SUB PUSH x ADD SHA3 6≡ PUSH x SUB SHA3
they do not constitute an optimization rule.

Example 19 shows further generalized rules for EVM bytecode.

FMBC 2020



3:6 Populating the Peephole Optimizer of a Smart Contract Compiler

To implement G we can do an exhaustive search as follows: start from a maximal schema
for the given optimization and try all possibilities of mapping the variables back to the
original values, checking whether the result yields a rule. The following procedure implements
this approach, additionally using an order on the candidate substitutions to prune the search
space.

I Definition 10. We define the function generalize as follows:
1: function generalize(ρ⇛ τ)
2: R ← ∅
3: `0, r0 ← maximal program schemas `o and r0 for ρ and τ with Var(`0) ∩ Var(r0) = ∅
4: γ0 ← the substitution γ0 with ρ = `0γ0 and τ = r0γ0
5: Γ← {γ | γ(x) = γ0(x) or γ(x) = y for γ0(x) = γ0(y) and x, y ∈ Var(`0) ∪ Var(r0)}
6: for all γ ∈ Γ do
7: if `0γ ≡ r0γ then
8: R ← R ∪ {`0γ ⇛ r0γ}
9: Γ← Γ \ {γ′ | γ ·< γ′}
10: else
11: Γ← Γ \ {γ′ | γ′ ·< γ}
12: return R

Using the order ·< on substitutions to prune the search space is key for implementation.
Pruning only removes rules covered by others as the following lemma shows.

I Lemma 11. For every `⇛ r ∈ G(α) of a rule α there is a `′ ⇛ r′ ∈ generalize(α) and a
substitution γ such that `′γ = ` and r′γ = r.

Proof. We fix `⇛ r ∈ G(α). Let `0 and r0 be the maximal schemas of α. By definition of
maximal schema there is a γ′ such that `0γ

′ = ` and r0γ
′ = r. A renaming of γ′ is in Γ and

thus either generalize(α) will consider it at some point, or it will be removed by either line 9
or line 11.

If it is considered then a renaming of ` ⇛ r is in generalize(α). If it is removed by line 9,
then a substitution γ with γ ·< γ′ and and `0γ ≡ r0γ was considered. Thus `0γ ⇛ r0γ is
in generalize(α) and we have `0γγ

′′ = ` and r0γγ
′′ = r for some γ′′ by γ ·< γ′. If γ′ was

removed by line 11 then a substitution γ with γ′ ·< γ and and `0γ 6≡ r0γ was considered. But
this contradicts the assumption `⇛ r ∈ G(α), because observational equivalence is closed
under substitution. J

Find a Context

As a second step We strip the generalized rules of any unnecessary pre- and postfix. Again
we first capture all possible stripped rules and then give an implementation.

I Definition 12. The stripped rules of a rule ρ ⇛ τ are defined as C(ρ ⇛ τ) = {` ⇛ r | ρ =
C[`] and τ = C[r]}.

I Example 13. Continuing Example 9, for the rule PUSH 0 SUB PUSH x ADD SHA3 ⇛ PUSH x

SUB SHA3 the stripped rules C contain the rule PUSH 0 SUB PUSH x ADD ⇛ PUSH x SUB, obtained
by stripping away the context (ε, SHA3), and the original rule itself, since applying the empty
context (ε, ε) to a program yields the program itself.

Example 20 shows further rules stripped of their context in EVM bytecode.
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To implement C we follow the same strategy as for G: try all possible contexts in an
exhaustive search, checking whether they yield a rule and use an order contexts to prune the
search space.

I Definition 14. We define the function strip as
1: function strip(ρ⇛ τ)
2: R ← ∅
3: (s0, t0)← the longest common prefix s0 and the longest common postfix t0 of ρ and τ
4: `0, r0 ← the program schemas `0 and r0 with s0 · `0 · t0 = ρ and s0 · r0 · t0 = τ

5: Γ← {C | C = (s, t) where s′ · s = s0 and t · t′ = t0 for some s′, t′}
6: for all C ∈ Γ do
7: if C[`0] ≡ C[r0] then
8: R ← R ∪ {C[`0] ⇛ C[r0]}
9: Γ← Γ \ {C ′ | C < C ′}
10: else
11: Γ← Γ \ {C ′ | C ′ < C}
12: return R

Again, the order on contexts allows us to prune the search space without loss.

I Lemma 15. For every `⇛ r ∈ C(α) of a rule α there is a `′ ⇛ r′ ∈ strip(α) and a
context C such that C[`′] = ` and C[r′] = r.

Proof. We fix a rule `⇛ r ∈ C(α). Let (s0, t0) be the longest common prefix and the longest
common postfix of α and be `0, r0 the program schemas with s0 · `0 · t0 ⇛ s0 · r0 · t0 = α. A
context C ′ with C ′[`0] = ` and C ′[r0] = r is in Γ and thus either strip(α) will consider it at
some point, or it will be removed by either line 9 or line 11.

If it is considered then `⇛ r is in strip(α). If it is removed by line 9, then a context C
with C < C ′ and and C[`0] ≡ C[r0] was considered. Thus C[`0] ⇛ C[r0] is in strip(α) and we
have C ′′[C[`0] = ` and C ′′[C[r0]] = r for some C ′′ by C < C ′. If C ′ was removed by line 11
then a context C with C ′ < C and and C[`0] 6≡ C[r0] was considered. Again this contradicts
the assumption `⇛ r ∈ C(α), because observational equivalence is closed under context. J

Soundness and Completeness

Finally, we combine the two functions and for an optimization ρ ⫺ τ define sorg(ρ ⫺ τ) =
{strip(`⇛ r) | `⇛ r ∈ generalize(ρ⇛ τ)}.

The rules generated by sorg(ρ ⫺ τ) are sound: for every ` ⇛ r ∈ sorg(ρ ⇛ τ) there is a
substitution γ and a context C such that C[`γ] = ρ and C[rγ] = τ . This directly follows
from generalize(ρ⇛ τ) ⊆ G(ρ⇛ τ) and strip(ρ⇛ τ) ⊆ C(ρ⇛ τ).

The rules generated by sorg(ρ ⫺ τ) are also complete: for every `⇛ r ∈ R(ρ ⫺ τ) there is
a `′ ⇛ r′ ∈ sorg(ρ ⫺ τ), a substitution γ and a context C such that C[`′γ] = ` and C[r′γ] = r.
This directly follows from Lemmas 11 and 15.

3 Case Study: EVM bytecode

To demonstrate the applicability of our pipeline from Figure 1 we implement it in the context
of Ethereum for EVM bytecode. We sketch how one could apply the approach to other smart
contract languages in Section 5.

The EVM is a virtual machine formally defined in the Ethereum yellow paper [22]. It
is based on a stack which holds bit vectors of size 256. The stack may over- or underflow;

FMBC 2020



3:8 Populating the Peephole Optimizer of a Smart Contract Compiler

both lead the EVM to enter an exceptional halting state. The EVM also features a volatile
memory, which is a word-addressed byte array, and a persistent key-value storage, which is a
word-addressed word array stored on the Ethereum blockchain.

3.1 Find Optimizations with ebso
We find optimizations using our tool ebso [19], an EVM bytecode superoptimizer. As an input
ebso takes an ebso block – a basic block that additionally does not contain instructions whose
semantics are not encoded, such as instructions that have an outside effect like LOG. Then,
encoding the EVM execution state and unbounded superoptimization following Section 2.1,
in the best case ebso produces a cheaper, observationally equivalent ebso block.

I Example 16. We encode the EVM execution state σ using four uninterpreted functions
〈sk, c, hlt, str〉 to model the stack, stack pointer, exceptional halting and storage:
(i) sk(j, ~x, n) returns the word from position n, starting from 0, in the stack after executing

j instructions on ~x,
(ii) c(j) returns the number of words on the stack after executing j instructions,
(iii) hlt(j) returns true (>) if exceptional halting has occurred after executing j instructions,

and false (⊥) otherwise, and
(iv) str(j, ~x, k) returns the word at key k after executing j instructions on ~x.
Note that these functions represent all states throughout an execution, i.e., σ, while to obtain
σj for some j, we simply apply them to j thus: σj = 〈sk(j), c(j), hlt(j), str(j)〉. To refer to
individual components of states we use subscripts, for instance we write skσ to refer to the
stack of state σ.

For a program ρ which takes d arguments on the stack we add d fresh variables to
represent the input ~x and add the following constraint to enc_init(~x,σ):∧

06i<d
skσ(~x, 0, i) = xi ∧ cσ(0) = d ∧ hltσ(0) = ⊥

The storage str is initialized similarly using an Ackermann encoding [1, 14].

To ease readability and save space we do not include the EVM’s memory in this encoding
of the execution state. It can be represented analogously to the storage.

I Example 17. Next we instantiate the operational semantics of the instructions. The
constraint enc_stack(ι, σj , σj+1) describes the effect that ι has on stack. Here we give as
example the instruction SUB and refer to [22] or [19] for details. Let −bv denote subtraction
on bit-vectors. Then we have

enc_stack(SUB, σj , σj+1) := skσ(j + 1, ~x, cσ(j + 1)− 1)
= skσ(j, ~x, cσ(j)− 1)−bv skσ(j, ~x, cσ(j)− 2)

Using enc_stack we can formulate the constraint enc_step. Here δ(ι) and α(ι) refer to the
number of words which ι deletes from, and adds to the stack respectively. For all instructions
except SSTORE we have:

enc_step(ι, σj , σj+1) := enc_stack(ι, σj , σj+1) ∧
cσ(j + 1) = cσ(j) + α(ι)− δ(ι) ∧
∀n. n < cσ(j)− δ(ι)→ skσ(j + 1, ~x, n) = skσ(j, ~x, n) ∧
hltσ(j + 1) = hltσ(j) ∨ cσ(j)− δ(ι) < 0 ∨ cσ(j)− δ(ι) + α(ι) > 210 ∧
∀w. strσ(j + 1, ~x, w) = strσ(j, ~x, w)
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Here the second line updates the counter for the number of words on the stack according to
the number of words added and deleted. The third line expresses that all words on the stack
below cσ(j)− δ(ι) are preserved. The fourth line captures that exceptions relevant to the
stack can occur through either an underflow or an overflow, and that once it has occurred, an
exceptional halt state persists. Finally the last line states that all ι 6= SSTORE do not change
the storage. The constraint for SSTORE is similar updating the storage using the Ackermann
encoding.

I Example 18. The final ingredient we need to instantiate is the equivalence relation on
states. For two states at steps j1 and j2 where σj1 = 〈sk(j1), c(j1), hlt(j1), str(j1)〉 and σ′j2

=
〈sk′(j2), c′(j2), hlt′(j2), str′(j2)〉 and input ~x we define the constraint enc_eq_state(σj1 , σ

′
j2

)
as

c(j1) = c′(j2) ∧ hlt(j1) = hlt′(j2)
∧ ∀w. str(j1, ~x, w) = str′(j2, ~x, w)
∧ ∀n. n < c(j1)→ sk(j1, ~x, n) = sk′(j2, ~x, n)

With the presented encoding, ebso, and an SMT solver we can now automatically find
optimizations for EVM bytecode. Next, we also want to automatically generate rules.

3.2 Generate Rules with sorg
To generate rules for EVM bytecode we implemented sorg, a superoptimization based rule
generator. Like ebso, sorg is implemented in OCaml; sorg depends on ebso for the representa-
tion of EVM bytecode and SMT encoding to check observational equivalence.

The main contribution of sorg is to provide notions of program schema, substitutions,
and context in order to implement the two main procedures of Section 2.2: generalize and
strip. For generalize we implement the procedure from Definition 10, keeping only the most
general rules in the result.

I Example 19. In our evaluation in Section 4, we found the following optimization:
SWAP1 POP PUSH 0 PUSH 1 MUL PUSH 0 ⫺ SWAP1 POP PUSH 0 DUP1

Generalizing immediate arguments and dropping the prefix SWAP1 POP sorg yields two optimiza-
tion rules: PUSH x PUSH 1 MUL PUSH x ⇛ PUSH x DUP1 as well as PUSH 0 PUSH x MUL PUSH
0 ⇛ PUSH 0 DUP1.

For strip we implement the procedure from Definition 14, keeping only the most stripped
rules.

I Example 20. From the rule CALLVALUE DUP1 POP ⇛ CALLVALUE CALLVALUE POP sorg can
either strip the postfix POP or the prefix CALLVALUE, obtaining the rules CALLVALUE DUP1 ⇛

CALLVALUE CALLVALUE and DUP1 POP ⇛ CALLVALUE POP.

One main ingredient of both generalize and strip is a check for observational equivalence.
To determine observational equivalence in sorg we use an SMT encoding with components
from ebso, similar to Definition 7. For two program schemas ρ and τ , we have ρ ≡ τ if there
are no inputs that distinguish them. That is

∃~x. enc_init(~x,σ) ∧ enc_init(~x,σ′)
∧ enc_progr(ρ,σ) ∧ enc_progr(τ,σ′)
∧ ¬enc_eq_state(σ|ρ|+1, σ

′
|τ |+1)
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With sorg we can now automatically generate rules, but it remains to glue the tools
together and implement a feedback mechanism.

3.3 Coordinate with ppltr

To coordinate our tools ebso and sorg we implemented the tool ppltr, a populator for a
peephole optimizer. As ebso and sorg, ppltr is implemented in OCaml. The tool has two main
tasks. The first is to manage the interfaces, i.e., to generate ebso blocks from smart contracts,
generate ebso blocks for a given size k, prepare optimizations generated by ebso as input for
sorg, and analyze and de-duplicate a set of rules produced by sorg. The second main task is
to feed back the optimization rules, i.e., to rewrite right-hand sides of the optimization rules
themselves, and apply the optimization rules to ebso blocks. To achieve the latter task, ppltr
implements a rewrite engine.

4 Evaluation

We evaluate our pipeline by generating optimization rules for EVM bytecode. We collected
the 250 most called smart contracts until block 9 786 000 at Apr-01-2020 12:17:26 PM +UTC
from the Ethereum blockchain using Google BigQuery.3

We split the 250 contracts into 106 798 ebso blocks E. As peephole optimization rules
typically span only few instructions, we restrict the size of a block: using a sliding window
we split every block larger than 6 instructions into k blocks of at most 6 instructions. To
reduce the noise, we remove blocks which are only different in the arguments of PUSH keeping
only those with words of size smaller than 5 bit. We so obtain 54 301 ebso blocks.
(1) Using ebso find 1580 optimizations from these blocks, run on a cluster with Intel Xeon

Gold 6126 CPUs at 2.60 GHz, 2 GB of memory and a time-out of 15 min.
(2) From these optimizations, we generate 1525 rules with sorg, run on the same set-up. For

48 optimizations sorg timed out and could not generate rules and we removed roughly
half the rules, as they were duplicates generated from different optimizations.

(3) Thus we arrive at 758 rules R0, which we use with the rewrite engine of ppltr to
(a) rewrite the right-hand sides of R0 reducing 4 rules, and
(b) rewrite our original ebso blocks in E, which changed 17 255 ebso blocks.

We again use the same window-size and noise reduction to get 25 585 new ebso blocks. Going
through the same procedure, we find 452 optimizations with ebso, and generate 435 rules R1
with sorg with 16 timeouts. Combining the results we get 993 rules R2 = R0 ∪R1 which are
available at

github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv

We right-reduced 31 rules in R2 and discarded 967 replicated rules originating from different
optimizations. One optimization generated two rules (cf. Example 19).

To estimate gas and size saving on a contract level we apply the rules in R2 to
1. our original 250 most called smart contracts, and
2. extend the data set to the 1000 most called contracts.

3 cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-
smart-contract-analytics.

https://github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv
github.com/mariaschett/ppltr/blob/v1.0/eval/17-reduced-rules.csv
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
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Table 1 Savings when applying the rules in R2 on most called contracts.

accumulated gas savings accumulated length savings

250 most called contracts 106 811 g 35 699 instructions 3.94 %
1000 most called contracts 435 002 g 146 376 instructions 4.58 %

Table 1 shows our results. The first column shows the accumulated gas savings over all
contracts, and the second column shows the accumulated length savings. Note that results
depend on the order in which the rules are applied (cf. Section 5). First, we can observe that
the rules translate well from 250 to 1000 contracts, achieving roughly 4 times higher savings,
which demonstrates that R2 also extends beyond the original data set, from which it was
generated.

Now let us consider the gas savings. In Table 1 we accumulate the cost of all the removed
instructions for each contract. How much is actually saved, however, depends on how often
the contract is called and which parts are executed. Unfortunately we lack the resources to
replay all the transactions to determine the exact savings. Taking into account how often
a contract was called, we save 7.41× 1010 g for the former and 1.02× 1011 g for the latter.
Assuming that about 10 % of a contract is executed per call and that savings are uniformly
distributed, this translates to 41 049.33 $ and 56 505.15 $ for a gas price of 27.6 gwei and an
ETH-USD course of 200.62 $, which are averages from etherscan.io/charts.

While the cost of executing a cheap instruction like ADD or POP may be negligible, the
cost of storing that instruction may not be so. Therefore, we also look at the savings in
length: the overall storage space of the bytecode reduces by more than 4.5 %. The contract
with the highest length saving was reduced by 19.94 %, removing 345 from originally 1730
instructions.

We also analyze which rules are applied to the contracts. Applying rules may lead to the
applicability of other rules, but exploring all rewrite sequences is intractable, and we assume
that initial applicability on a contract is a reasonable proxy. Figure 2 groups rules in R2 by
their applicability to the 1000 most called contracts. We can observe a long tail: more than
half of the nearly 1k rules are applicable only 10 times or less, whereas the top 50 rules are
applicable more than 500 times. This suggests that, if a smaller set of rules is desired, this
analysis can guide which rules to discard.

Next we inspect the rules within R2. The five most applied rules for the 1000 most called
contracts are listed in Figure 3. Most of these rules are relatively simple and should clearly
be applied exhaustively. The fourth rule is perhaps a bit unexpected and may have been
missed on manual inspection, but it is cheaper to execute CALLVALUE twice than duplicating
its result. The last rule hints at a specific compiler produced anti-pattern. Our approach
could also be leveraged to detect those.

Figure 4 shows the six rules with the highest gas savings, 17 g and 15 g. We consider two
of these rules in more detail. The rule PUSH 1 MUL PUSH 0 NOT AND ⇛ ε combines two obser-
vations – that 1 and PUSH 0 NOT are neutral elements for multiplication and AND respectively.

0 100 200 300 400 500 600 700 800 900

rule applicable n times: < 10 < 20 < 50 < 100 < 500 > 500

Figure 2 Applicability of rules in R2 to 1000 most called contracts.
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1. SWAP1 POP POP ⇛ POP POP (×8926)
2. ISZERO ISZERO ISZERO ⇛ ISZERO (×7893)
3. PUSH y PUSH x SWAP1 ⇛ PUSH x PUSH y (×7742)
4. CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE (×7740)
5. SWAP1 SLOAD SWAP1 PUSH x EXP SWAP1 ⇛ PUSH x EXP SWAP1 SLOAD (×5625)

Figure 3 Rules most applied to the 1000 most called contracts.

1. PUSH 1 MUL DUP3 PUSH 0 NOT AND ⇛ DUP3
PUSH 1 MUL PUSH 0 NOT AND ⇛ ε

2. PUSH 0 DUP6 DUP5 SUB LT ISZERO ⇛ PUSH 1
PUSH 0 NOT AND EQ ISZERO ISZERO ⇛ EQ
SWAP1 PUSH 0 NOT AND SWAP1 ⇛ ε

PUSH 0 DUP2 PUSH x AND LT ISZERO ⇛ PUSH 1

Figure 4 Rules saving most gas.

Depending on the implementation of the peephole optimizer it may be desirable to split this
rule which could be achieved by left-reducing the rules. Key to the rule PUSH 0 DUP6 DUP5
SUB LT ISZERO ⇛ PUSH 1 is the less-than comparison LT with the smallest element 0 always
evaluating to false. The rule does not depend on the result of DUP6 DUP5 SUB, and indeed this
is replaced by DUP2 PUSH x AND in the otherwise identical rule in the last line. Generalizing
those two rules would require the use of higher-order patterns.

Rules may not only save gas, but also reduce the length of the produced code. These
often coincide, and indeed the top 14 length-reducing rules, removing 5 instructions each,
subsume the above gas-saving rules. On the other end, there are also rules which save gas
but do not reduce the length such as CALLVALUE DUP1 ⇛ CALLVALUE CALLVALUE saving 1 g. In
Table 2, we analyze the right-hand sides of R2. We investigated which instructions were
added, i.e., do not appear on the left-hand side, and removed, i.e., appear on the left- but not
the right-hand side of the rule. We group instructions for arithmetic, comparison, bitwise
operations, and environment/memory. Unsurprisingly, many more instructions were removed
than added, which is expected, because removing instructions always saves gas. The majority
of removed instructions is concerned with the stack layout. Surprisingly, also ISZERO is often
redundant – as also observed in the second rule in Figure 3. Still, instructions are also
synthesized on the right-hand side giving rise to optimizations taking the semantic of an
instructions into account – potentially also interacting with stack manipulation, for example
the rule SWAP1 LT ⇛ GT.

Finally, we also successfully validated all rules R2 by running a reference implementation
of the EVM, go-ethereum version 1.9.14 on pseudo-random input.4 Therefore, we run the
bytecode of every block in E and the bytecode obtained by applying the rewrite rules to
observe that both produce the same final state.

5 Related and Future Work

Chen et al. [7] also developed a tool to rewrite optimization patterns in EVM bytecode. As
opposed to our approach, they devised their 24 (anti-)patterns by manual inspection of the
code base. Albert et al. [2] synthesize optimized straight-line EVM bytecode for operations on

4 github.com/ethereum/go-ethereum

https://github.com/ethereum/go-ethereum
github.com/ethereum/go-ethereum
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Table 2 Added and removed instructions by group.

arith. comp. ISZERO bitwise DUPi SWAPi PUSH POP env./mem.

added 10 27 24 12 47 28 134 14 29
removed 80 92 108 83 345 952 182 173 18

the stack with Max-SMT. To gain efficiency, they do not encode the semantics of bit-vector
instructions, and instead employ hand-crafted simplification rules. These hand-crafted rules
could be inspired by, or even automatically derived from, rules generated by ppltr, which do
consider the semantic of bit-vector instructions. Bansal et al. [5] use superoptimization to
automatically generate a peephole optimizer for x86 binaries. Aside from the application, the
main difference of their approach to ppltr is that it does not process optimizations into rules
but instead keeps them in an optimization database in order to reapply them. Moreover it
uses an enumeration based superoptimizer, which is more exhaustive, but limits instruction
sequences to length 3.

We believe our approach is also applicable for different smart contract languages. Face-
book’s Move [6] is a gas-metered and verification friendly designed language with an existing
code base, such as for example from github.com/libra/libra/tree/master/language/
move-lang/functional-tests/tests. The machine model of Move is stack-based with
typed locals. To adapt the presented approach the SMT encoding would need to be extended
to incorporate types and locals. Michelson [15], the smart contract language for the Tezos
blockchain, also comes with a detailed formal semantics. Like the EVM it is a stack-based
language, but features high-level data types, like lists, sets, and maps. To use the presented
approach these data types need to be handled in the SMT encoding and SMT solvers do
support complex theories such as sets and lists. Moreover, type information could be used to
prune search space, resulting in a positive performance impact.

To automatically integrate the rules generated by ppltr into a compiler a DSL like the
one used by GCC5 or Alive [16] might prove useful. Such an automatic integration would be
especially welcome when one wants to re-populate the optimizer of a compiler, e.g. because
new instructions are available, such as the addition of shift-operators to the EVM.

Hirai [10] used the meta-tool Lem [17] to formalize the semantics of the EVM. This
formalization was extended by Amani et al. [3] by a program logic using the interactive
proof assistant Isabelle/HOL to provide an approach to the verification of Ethereum smart
contracts. Another formalization of the EVM semantics by Hildenbrandt et al. [9] use the
K-framework [20], a rewriting-based framework for defining programming language design
and semantics. One of these formalizations could be used to verify the correctness of our
encoding, or possibly even generate it automatically.

Our definitions in Section 2.2 are based on concepts from term rewriting [4] and thus we
also look at the machinery of term rewriting. Termination of the rules ensures we can apply
them exhaustively without looping. Intuitively all rules in R2 are terminating, since left-hand
sides have a higher cost than right-hand sides, and indeed the termination prover WANDA [12]
shows termination of all 993 rules in R2.6 Confluence guarantees a unique result regardless
of how the rules are applied. To check confluence one analyses critical pairs, situations where

5 gcc.gnu.org/onlinedocs/gccint/The-Language.html
6 We chose WANDA as its support for types allowed us to leverage that arguments of PUSH are words,
which greatly aided the automated proof.
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application of one rule potentially destroys the possibility for applying another one. The
confluence checker CSI [18] reports 82 765 critical pairs, 14 973 of which are joinable and
thus harmless. The remaining 67 792 are not, so the rules in R2 are not confluent. This is
not surprising, since there are different ways to achieve the same with the same cost, e.g.
PUSH x PUSH x and PUSH x DUP1. This may be resolved by defining an additional precedence
on the rules, e.g., based on the size of their bytecode. To make a terminating set of rules
confluent, one can use completion – automatically if we employing tools such as Ctrl [21].
Finally, one could imagine more expressive rules such as PUSH x PUSH y ADD ⇛ PUSH z where
z = x + y. Such rules allow to capture constant folding. To do so, rules in constrained
rewriting [13] come with constraints over a theory as used in SMT solvers.

6 Conclusion

We propose a pipeline to populate the peephole optimizer of a smart contract compiler with
three phases to
(1) find optimizations, from which we
(2) generate rules, and
(3) a feedback mechanism to apply the rules.
We demonstrate our approach for EVM bytecode using the tools ebso, sorg, and ppltr,
generating 993 peephole optimization rules from the 250 most called contracts of the Ether-
eum blockchain. We successfully applied our rules to the 1000 most called contracts and
discarded 146 376 instructions, saving 435 002 g and 4.5 % storage space. An advantage of
our approach lies in its modularity. On the one hand in the modularity of the phases. One
could, for example, obtain additional optimizations in a different manner and incorporate
them easily. On the other hand, there is the modularity inherent to peephole optimization
rules being applied to short programs: it enables an iterative approach to encoding and
optimizing instructions based on feasibility and profitability.

Our approach is tailored towards new, rapidly evolving languages and their compilers
with clear cost models such as gas metering, and we believe readily applies to languages
other than EVM bytecode such as Move and Michelson.
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